WO2022252594A1 - 发光器件及其制备方法、显示器件 - Google Patents

发光器件及其制备方法、显示器件 Download PDF

Info

Publication number
WO2022252594A1
WO2022252594A1 PCT/CN2021/141735 CN2021141735W WO2022252594A1 WO 2022252594 A1 WO2022252594 A1 WO 2022252594A1 CN 2021141735 W CN2021141735 W CN 2021141735W WO 2022252594 A1 WO2022252594 A1 WO 2022252594A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
metal electrode
layer
metal
Prior art date
Application number
PCT/CN2021/141735
Other languages
English (en)
French (fr)
Inventor
赖学森
严怡然
张建新
敖资通
杨帆
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2022252594A1 publication Critical patent/WO2022252594A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • the present application relates to the field of display technology, in particular to a light-emitting device, a manufacturing method thereof, and a display device.
  • QLEDs quantum dot light-emitting diodes
  • OLEDs organic light-emitting diodes
  • QLED devices have become strong competitors in the field of next-generation display and lighting due to their unique optical and physical properties such as continuously adjustable light-emitting spectrum, high brightness, and high color purity.
  • QLED devices widely adopt a sandwich structure consisting of an anode, an organic hole transport layer, a light-emitting layer, an inorganic electron transport layer, and a metal cathode.
  • the deposition method of vacuum evaporation is widely used for the cathode metal electrode in the device.
  • the electrically heated evaporated metal is used as the evaporation source, and then deposited at room temperature with other functional layers.
  • the cathode metal electrode corresponding to the required shape area is formed through the mask plate.
  • the vacuum evaporation deposition method currently used for cathode metal electrodes is prone to accumulation of metal atoms, forming irregular metal particles, increasing roughness, reducing electrode compactness, and metal electrodes are prone to defects such as pinholes or protrusions. Prone to water and oxygen corrosion.
  • the filling performance of the surface defects of the electron transport film layer deposited by inorganic metal nanoparticles such as zinc oxide needs to be improved, which affects the interface contact between the metal electrode and other functional layers, which is not conducive to the interfacial transport of charges.
  • the metal electrode is deposited by vacuum evaporation, since the evaporation source is a point-like independent source, the concentration at the edge of the scattered metal atom beam is relatively low, resulting in relatively low concentration of metal atoms deposited on the device on the edge of the mask. In between, differences in electrode thickness between devices can lead to differences in device performance.
  • One of the purposes of the embodiments of the present application is to provide a light-emitting device and its preparation method, and a display device, aiming to solve the problem of poor density of metal electrodes prepared by vacuum evaporation in the related art.
  • a method for preparing a light-emitting device comprising the following steps:
  • the metal electrode layer is evaporated and deposited on the surface of the semi-device to be evaporated to obtain a light emitting device.
  • a light emitting device is provided, and the light emitting device is manufactured by the above-mentioned preparation method.
  • a display device including the above-mentioned light-emitting device.
  • the beneficial effect of the preparation method of the light-emitting device provided in the embodiment of the present application is that: under the preset temperature condition, the metal electrode layer is deposited on the surface to be vapor-deposited of the half-device by evaporation to obtain the light-emitting device.
  • the half-device is in a heating environment at a preset temperature, that is, the in-situ heat treatment effect under the dynamic deposition of the metal electrode is achieved.
  • the metal vapor reaches a certain temperature on the half-device surface, the surface of the half-device has a certain temperature, reducing Pinholes and large bumps caused by random motion of metal particles produced by metal vapor quench deposition.
  • metal atoms can maintain higher mobility and activity in a heating environment at a preset temperature while depositing, which can not only make the arrangement of surface grains more compact and uniform, and form a metal electrode layer with a denser and uniform thickness, but also can Promote the diffusion of metal particles to the interface of the half-device functional layer, so that the metal particles can be better deposited and filled on the surface of the half-device to be evaporated to form a smooth and dense interface contact, which is conducive to the transport of carriers at the interface.
  • the semi-device when the metal electrode is prepared, the semi-device is in a heating environment at a preset temperature, which can better remove the gas attached to the surface of the functional layer of the semi-device in combination with the environment during evaporation deposition, thereby reducing the metal vapor on the surface of the functional layer.
  • the surface stress of the deposition reduces the influence of gas molecules attached to the surface of the functional layer on the deposition of metal particles.
  • depositing metal electrodes in a heating environment at a preset temperature can directly promote the diffusion of metal particles in the interface functional layer and optimize the contact interface, without the need to promote interface fusion through heat treatment after forming a metal electrode film, shortening or even Eliminate the time required for forward aging of the device when improving performance, and reduce the time cost of post-aging treatment.
  • the beneficial effect of the light-emitting device lies in that: while the above-mentioned dynamic deposition of the metal electrode is used, the semi-device is prepared by in-situ heat treatment in a heating environment at a preset temperature, which not only makes the metal electrode film layer It has good compactness and uniform thickness; it also promotes the diffusion of interfacial layer particles, thereby optimizing the interfacial contact of the functional layer, which is conducive to carrier migration and transmission, improves the efficiency of carrier migration and transmission, and improves the stability of light-emitting devices.
  • the beneficial effect of the display device provided by the embodiment of the present application is that: since the above-mentioned light-emitting device with high carrier transfer efficiency and light-emitting stability is included, the display device has high light-emitting efficiency and stable photoelectric performance.
  • FIG. 1 is a schematic flow chart of a method for preparing a light-emitting device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the vapor-deposited metal electrode of the light-emitting device provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the temperature increase of the heating source provided by the embodiment of the present application along the center of the fixed disk to the edge;
  • Fig. 4 is a schematic structural diagram of a light emitting device provided by an embodiment of the present application.
  • Fig. 5 is the relationship diagram of the heating temperature provided by Example 2 of the present application with the evaporation time
  • Fig. 6 is a current density test chart of the light emitting devices provided in the examples and comparative examples of the present application.
  • a and/or B describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone Happening. Among them, A and B can be singular or plural.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • “at least one (one) of a, b, or c”, or “at least one (one) of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the first aspect of the embodiment of the present application provides a method for preparing a light-emitting device, including the following steps:
  • vapor deposition deposits a metal electrode layer on the surface of the semi-device to be vapor-deposited to obtain a light-emitting device.
  • the metal electrode layer is deposited by vapor deposition on the surface to be vapor-deposited of the semi-device under preset temperature conditions to obtain a light-emitting device.
  • the half-device is in a heating environment at a preset temperature, that is, the in-situ heat treatment effect under the dynamic deposition of the metal electrode is achieved.
  • the metal vapor reaches a certain temperature on the half-device surface, the surface of the half-device has a certain temperature, reducing Pinholes and large bumps caused by random motion of metal particles produced by metal vapor quench deposition.
  • the heating treatment at the preset temperature while depositing can also keep the metal atoms more mobile and active, which can not only make the arrangement of the surface grains more compact and uniform, form a metal electrode layer with a denser and uniform thickness, but also promote The metal particles diffuse to the interface of the functional layer of the half-device, so that the metal particles are better deposited and filled on the surface to be evaporated of the half-device to form a smooth and dense interface contact, which is conducive to the transport of carriers at the interface.
  • the semi-device when the metal electrode is prepared, the semi-device is in a heating environment at a preset temperature, which can better remove the gas attached to the surface of the functional layer in combination with the environment during evaporation deposition, thereby reducing the risk of metal vapor deposition on the surface of the functional layer.
  • Surface stress reducing the influence of gas molecules attached to the surface of the functional layer on the deposition of metal particles.
  • depositing metal electrodes in a heating environment at a preset temperature can directly promote the diffusion of metal particles in the interface functional layer and optimize the contact interface, without the need to promote interface fusion through heat treatment after forming a metal electrode film, shortening or even Eliminate the time required for forward aging of the device when improving performance, and reduce the time cost of post-aging treatment.
  • the temperature of the surface to be evaporated of the semi-device is close to or equal to the preset temperature.
  • the preset temperature is 50° C. to 150° C., and the heating environment at this temperature is most conducive to the deposition of metal particles to form a dense film with uniform thickness, which can effectively optimize the metal electrode layer at the contact interface.
  • the heating environment temperature is lower than 50°C, the heating environment has little effect on the deposition of metal particles, and the quality of the formed metal electrode film is not significantly improved; when the provided heating energy reaches a certain level, the deposition and rearrangement effect of metal atoms is more effective.
  • the temperature of the heating environment exceeds 150°C, due to the limited thermal stability of the quantum dot luminescent material itself, it is easy to decompose when the temperature is too high, which may affect the photoelectric performance of the device.
  • the preset temperature condition in the embodiment of the present application can be realized by setting a heating source, and the specific setting method of the heating source is not specifically limited, as long as the semi-device can have a suitable temperature during evaporation.
  • the step of heating the half-device includes: setting a heating source on the substrate side of the half-device, and setting the heating source close to the substrate side of the half-device; At the same time as the surface of the electronic functional layer, the half-device is heated from the substrate side of the half-device to achieve the effect of in-situ heat treatment under the dynamic deposition of metal electrodes, which is not only conducive to the deposition of metal particles, but also can optimize the interface contact.
  • the preset temperature condition is achieved by setting a heating source, wherein the heating source is set close to the substrate side of the half-device, so that the surface to be evaporated of the half-device reaches a preset temperature range of 50 ° C ⁇ 150 ° C, the preset temperature Setting the temperature not only ensures the heating effect on the half-device, but also avoids the effect of excessive temperature on the material of the functional layer of the half-device.
  • the semi-device is arranged on a fixed turntable of the vacuum evaporation device, and the heating source is arranged between the half-device and the fixed turntable.
  • the half-device is placed in the mask, and then placed on a fixed tray with a heating device, the half-device is heated to a preset temperature while vacuuming, and the evaporation starts after reaching a certain vacuum degree
  • Metal electrodes are deposited to form a metal electrode layer on the surface to be evaporated of the half-device.
  • the embodiment of the present application does not specifically limit the shape and size of the fixed turntable, which may be in the shape of a circle, a rectangle, etc., and its size may be determined according to the actual number of semi-devices to be processed.
  • the mask plate is used to fix the half-device, so that the half-device can be better fixed on the fixed turntable.
  • the specific setting position of the heating source only needs to enable the semi-device to reach the preset temperature during evaporation, and the heating source can be directly integrated with the fixed turntable, or can be set on the mask.
  • the preset temperature presents an increasing trend from the center to the edge of the half-device.
  • the heating temperature of the heating source is adjusted along the The radial direction of the half-device increases sequentially, so that the upper edge temperature of the mask plate is higher during evaporation, and the middle temperature is lower, and the temperature rises gradually from the middle to the edge, so that the metal particles deposited on the surface of the device at the edge of the mask plate have higher activity. , can better form a uniform and dense metal electrode layer, and reduce the difference in the thickness of the metal electrode at the edge of different mask positions of the semi-device and the intermediate device.
  • the half-device is divided into several concentric regions along the direction from the center to the edge of the half-device, and the preset temperature of the region closer to the center is lower.
  • the half-device is divided into 2 to 5 concentric areas of equal or unequal area along the direction from the center to the edge of the half-device, and the preset temperature of each area is gradually increased along the direction from the center to the edge , the closer to the center the lower the preset temperature.
  • the fixed turntable is divided into 2 to 5 equal-area regions along the direction from the center to the edge of the fixed turntable, and the preset temperature of each region gradually increases along the direction from the center to the edge of the fixed turntable.
  • the preset temperature of each region increases gradually in the range of 30° C. to 50° C. along the direction from the center to the edge of the half-device.
  • the fixed turntable is divided into three equal-area areas, thereby forming three concentric areas of the central area, the middle ring area and the outer ring area. These three areas
  • the preset temperature can be 50°C ⁇ 80°C, 80°C ⁇ 100°C and 100°C ⁇ 150°C from the central area, the middle ring area to the outer ring area.
  • the predetermined temperature and the deposition thickness of the metal electrode layer have a linear or non-linear increasing trend.
  • the electrode deposition effect will be affected due to insufficient temperature when the preset temperature remains unchanged. Therefore, while introducing the in-situ heat treatment under the dynamic deposition of metal electrodes, a temperature control program that continuously increases the preset temperature with the increase of the thickness of the metal electrodes is adopted during evaporation, so that the preset temperature of the surface of the semi-device increases with the deposition of the metal electrode layer. The increase of the thickness increases, thereby improving the control effect of temperature on the electrode layer when the deposition thickness of the metal electrode is thickened.
  • the preset temperature and the deposition thickness of the metal electrode layer can be in a linear increasing relationship, such as 5 ⁇ 20°C/5nm, that is, the preset temperature can be increased by 5nm for every 5nm increase in the thickness of the metal electrode layer. ⁇ 20°C.
  • the conditions for vapor deposition of the metal electrode layer include: evaporating the metal under a pressure of 10 ⁇ 2 Pa ⁇ 10 ⁇ 4 Pa, and the distance between the metal evaporation source and the half-device is 10 ⁇ 50 cm.
  • the vacuum degree of 10 -2 Pa ⁇ 10 -4 Pa pressure it is not only conducive to the evaporation of metal particles, so that the particles have molecular mobility and move in a straight line; but also ensure that the rate of metal vapor molecules reaching the surface of the semi-device is higher than that of the residual gas.
  • the arrival rate of molecules can reduce the impact and pollution of residual gas molecules on the surface film of the device, and improve the purity and uniformity of the formed metal electrode film.
  • the evaporation spacing of 10 ⁇ 50cm takes into account the uniformity of metal particle deposition and the mean free path of gas phase particles.
  • the evaporated atoms are free and collision-free, and the deposition speed is fast. If the evaporation distance is too large, the thermal movement distance of metal atoms will be increased, the scattering probability will be increased, and the deposition efficiency will be reduced; if the evaporation distance is too small, the scattering coverage of deposition will be affected.
  • the temperature of the vacuum evaporation in this application depends on the performance of the metal material actually used, as long as the generated heat can make the molecules or atoms of the evaporation material obtain enough kinetic energy to evaporate, in some specific embodiments, the evaporation temperature can be 1000 ⁇ 2000°C.
  • the evaporation time is determined by the thickness of the metal electrode layer to be prepared.
  • the metal electrode layer includes at least one metal material among Al, Ag, Cu, Mo, and Au.
  • the morphology of metallic materials includes, but is not limited to, dense films, nanowires, nanospheres, nanorods, nanocones, nanohollow spheres, or mixtures thereof.
  • the metal electrode layer includes Ag and Al.
  • the metal electrode layer has a thickness of 10 nm ⁇ 100 nm.
  • the half-device includes an anode, a hole functional layer, a quantum dot light-emitting layer, and an electronic functional layer that are sequentially stacked and laminated.
  • the quantum dot light-emitting diode of the embodiment of this application because the light-emitting layer in QLED is formed by quantum dot nanoparticles, the roughness and flatness of its surface are compared with those formed by organic solution crystallization in OLED in organic light-emitting diodes. The film is poor, resulting in poor density of the interface between the quantum dot nanoparticle layer of QLED and other functional layers.
  • the embodiment method of the present application achieves the purpose of simultaneous heating by preset temperature during evaporation, better promotes the volatilization of the solvent in the functional layer, and makes the metal electrode atoms better diffuse and disperse on the surface of the quantum dot nanoparticle layer, forming Smoother and denser contact interface.
  • the surface of OLED film formed by evaporation or solution spin coating is smoother and smoother, and the interface contact performance between it and the electrode is better. Therefore, the performance improvement effect of the method of the embodiment of the present application is more obvious for the QLED device than for the OLED device.
  • the surface to be evaporated is the surface of the electron transport layer away from the light-emitting layer, and the material of the electron transport layer has good thermal stability, which is beneficial to the evaporation deposition of the metal electrode.
  • the method for obtaining a half-device to be evaporated includes the step of: sequentially stacking an anode, a hole functional layer, a light-emitting layer, and an electronic functional layer on a substrate to obtain a half-device to be evaporated. Specifically include steps:
  • the substrate in order to obtain a high-quality light-emitting device, the substrate often needs to undergo a pretreatment process.
  • the pretreatment step includes: cleaning the substrate such as ITO conductive glass with a cleaning agent to initially remove the stains on the surface, and then sequentially. Deionized water, acetone, absolute ethanol, and deionized water were ultrasonically cleaned for 20 min to remove impurities on the surface, and finally dried with high-purity nitrogen to obtain the ITO positive electrode.
  • the selection of the substrate is not limited, and a rigid substrate or a flexible substrate may be used.
  • the rigid substrate includes, but is not limited to, one or more of glass and metal foil.
  • flexible substrates include, but are not limited to, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polyether ether ketone (PEEK), polystyrene (PS), polyethersulfone (PES), polycarbonate (PC), polyarylate (PAT), polyarylate (PAR), polyimide (PI), polyvinyl chloride (PV), poly One or more of ethylene (PE), polyvinylpyrrolidone (PVP), and textile fibers.
  • PET polyethylene terephthalate
  • PEN polyethylene terephthalate
  • PEEK polyether ether ketone
  • PS polystyrene
  • PS polyethersulfone
  • PC polycarbonate
  • PAT polyarylate
  • PAR polyarylate
  • PI polyimide
  • the choice of anode material is not limited, and can be selected from doped metal oxides, including but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), magnesium-doped zinc oxide (MZO), aluminum-doped magnesium oxide (AMO) one or more.
  • doped metal oxides including but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), magnesium-doped zinc oxide (MZO), aluminum-doped magnesium oxide (AMO) one or more.
  • the step of preparing a hole functional layer on the surface of the anode away from the substrate includes: on a substrate such as ITO, the solution of the prepared hole injection or hole transport material is drip-coated, Spin coating, immersion, coating, printing, evaporation and other processes are used to deposit and form films; the film thickness is controlled by adjusting the concentration of the solution, deposition speed and deposition time, and then thermal annealing at an appropriate temperature.
  • the hole functional layer includes a hole transport layer and a hole injection layer.
  • the hole injection layer includes, but is not limited to, one or more of organic hole injection materials, doped or undoped transition metal oxides, doped or undoped metal chalcogenide compounds .
  • organic hole injection materials include, but are not limited to, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), copper phthalocyanine (CuPc), 2,3, 5,6-tetrafluoro-7,7',8,8'-tetracyanoquinone-dimethyl (F4-TCNQ), 2,3,6,7,10,11-hexacyano-1,4,5 , one or more of 8,9,12-hexaazatriphenylene (HATCN).
  • PDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid
  • CuPc copper phthalocyanine
  • F4-TCNQ 2,3,6,7,10,11-hexacyano-1,
  • the transition metal oxide includes, but is not limited to, one or more of MoO 3 , VO 2 , WO 3 , CrO 3 , and CuO.
  • the metal chalcogenides include, but are not limited to, one or more of MoS 2 , MoSe 2 , WS 2 , WSe 2 , and CuS.
  • the hole transport layer may be selected from organic materials with hole transport capability and/or inorganic materials with hole transport capability.
  • organic materials with hole transport capabilities include but are not limited to poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (TFB), poly Vinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (poly-TPD), poly(9,9-dioctyl fluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4,4''-tris(carbazol-9-yl)triphenylamine (TCTA), 4 ,4'-bis(9-carbazole)biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methyl
  • inorganic materials with hole transport capabilities include but are not limited to doped graphene, undoped graphene, C60, doped or undoped MoO 3 , VO 2 , WO 3 , CrO 3 One or more of , CuO, MoS 2 , MoSe 2 , WS 2 , WSe 2 , CuS.
  • the step of preparing a light-emitting layer on the surface of the hole transport layer includes: on the substrate on which the hole transport layer has been deposited, the solution of the light-emitting substance prepared at a certain concentration is drip-coated, spin-coated, The film is deposited by immersion, coating, printing, evaporation and other processes, and the thickness of the light-emitting layer is controlled by adjusting the concentration of the solution, deposition speed and deposition time, about 20-60 nm, and dried at an appropriate temperature.
  • the quantum dot light-emitting layer includes quantum dot materials
  • the quantum dot materials include but are not limited to: Group II-IV, Group II-VI, Group II-V, Group III-V, Group III-VI of the Periodic Table of Elements At least one of the group, IV-VI group, I-III-VI group, II-IV-VI group, II-IV-V group semiconductor compound, or a core-shell structure semiconductor compound composed of at least two of the above semiconductor compounds .
  • the quantum dot functional layer material is selected from at least one semiconductor nanocrystalline compound in CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, or at least two compositions Semiconductor nanocrystalline compounds with mixed type, gradient mixed type, core-shell structure type or joint type and other structures.
  • the quantum dot functional layer material is selected from at least one of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe A semiconductor nanocrystalline compound, or a semiconductor nanocrystalline compound of a mixed type, a gradient mixed type, a core-shell structure type or a joint type of at least two compositions.
  • the quantum dot functional layer material is at least one selected from perovskite nanoparticle materials (especially luminescent perovskite nanoparticle materials), metal nanoparticle materials, and metal oxide nanoparticle materials. Each of the above quantum dot materials has the characteristics of quantum dots and has good photoelectric performance.
  • the particle size range of the quantum dot material is 2-10 nm. If the particle size is too small, the film-forming property of the quantum dot material will deteriorate, and the energy resonance transfer effect between quantum dot particles is significant, which is not conducive to the development of the material. For applications, if the particle size is too large, the quantum effect of the quantum dot material will be weakened, resulting in a decrease in the photoelectric performance of the material.
  • the step of preparing an electron transport layer on the surface of the light-emitting layer includes: on the substrate on which the quantum dot light-emitting layer has been deposited, the metal oxide transport material solution prepared with a certain concentration is drip-coated, Spin coating, immersion, coating, printing, evaporation and other processes to deposit and form films, and control the thickness of the electron transport layer by adjusting the concentration of the solution, deposition speed (for example, the rotation speed is between 3000 ⁇ 5000rpm) and deposition time, about 20 ⁇ 60 nm, and then annealed at 150°C ⁇ 200°C to form a film to fully remove the solvent.
  • deposition speed for example, the rotation speed is between 3000 ⁇ 5000rpm
  • deposition time about 20 ⁇ 60 nm
  • the material of the electron transport layer includes but not limited to ZnO, TiO 2 , SnO, Ta 2 O 3 , AlZnO, ZnSnO, InSnO, Alq 3 , Ca, Ba, CsF, LiF, CsCO 3 and the like.
  • the obtained light-emitting device is packaged, and the package can be packaged by a common machine or manually.
  • the oxygen content and water content are both lower than 0.1ppm to ensure the stability of the device.
  • the second aspect of the embodiment of the present application provides a light-emitting device, which is manufactured by the above-mentioned preparation method.
  • the light-emitting device provided by the second aspect of the present application is prepared by adopting the method of in-situ heat treatment of the semi-device in a heating environment at a preset temperature at the same time as the above-mentioned dynamic deposition of the metal electrode, which not only makes the metal electrode film denser , the thickness is uniform; and it promotes the diffusion of interface layer particles, thereby optimizing the interface contact of the functional layer, which is conducive to the transfer of carriers, improves the transfer efficiency of carriers, and improves the stability of light-emitting devices.
  • the light-emitting device includes an anode disposed on a substrate, a hole injection layer deposited on the surface of the anode, a hole transport layer deposited on the surface of the hole injection layer, and a hole transport layer deposited on the surface of the hole A light-emitting layer on the surface of the hole transport layer, an electron transport layer deposited on the surface of the light-emitting layer, and a cathode deposited on the surface of the electron transport layer.
  • the present application provides a display device including the above-mentioned light emitting device.
  • the display device provided by the third aspect of the present application includes the above-mentioned light-emitting device with high carrier transfer efficiency and light-emitting stability, so the display device has high light-emitting efficiency and stable photoelectric performance.
  • a light-emitting device the preparation of which comprises the steps of:
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Al, the speed is 1 angstrom/second, and the time is 100 seconds; the heating temperature of the heating plate between the fixed turntable and the semi-device is set to 100 °C,
  • the electrodes were dynamically deposited in an environment with a half-device surface temperature of about 100 °C until the thickness reached 100 nm.
  • a light-emitting device the preparation of which comprises the steps of:
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Al, the speed is 1 angstroms/second, and the time is 100 seconds; the heating temperature of the heating plate between the fixed turntable and the semi-device is set to The temperature control program with increasing plating time is specifically shown in Figure 5 until the thickness of the metal electrode layer reaches 100nm.
  • a light-emitting device the preparation of which comprises the steps of:
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Al, the speed is 1 angstroms/second, and the time is 100 seconds; from the center of the fixed turntable to the radial edge, it is divided into central area, middle ring area and There are three equal-area areas in the outer ring area, in which the temperatures of the central area, the middle ring area and the outer ring area are 80°C, 90°C and 100°C respectively, as shown in Figure 3, until the thickness of the metal electrode layer reaches 100nm.
  • a light-emitting device the preparation of which comprises the steps of:
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Al, the speed is 1 angstrom/second, and the time is 100 seconds; the electrode is deposited in an environment without additional heating until the thickness reaches 100nm.
  • a light-emitting device the preparation of which comprises the steps of:
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Al, the speed is 1 angstroms/second, and the time is 100 seconds; the heating temperature of the heating plate between the fixed turntable and the semi-device is set to 180 °C, Electrodes were dynamically deposited in a heated environment until the thickness reached 100 nm.
  • Example 2 while introducing in-situ heat treatment under the dynamic deposition of metal electrodes, a temperature control program that continuously increases the preset temperature with the increase of evaporation time (ie, electrode thickness) is adopted, so that the preset temperature of the heating source increases with the deposition.
  • the thickness of the metal electrode layer is increased, thereby improving the control effect of temperature on the electrode layer when the deposition thickness of the metal electrode is thickened, and improving the current density of the light-emitting device.
  • the preset temperature of the heating source is increased sequentially along the direction from the center of the fixed turntable to the edge, and the temperature gradient is used to better improve the uniformity of the film thickness, and The compactness and flatness of the electrode have been significantly improved, and the current density of the device has also been significantly improved.
  • the preset temperature being too high (180° C.)
  • thermal decomposition of the luminescent material resulted in damage to the photoelectric performance of the device, resulting in serious leakage of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种发光器件及其制备方法,以及一种显示器件,其中,发光器件的制备方法包括步骤:获取待蒸镀金属电极层的半器件;在预设温度条件下在所述半器件的待蒸镀表面进行蒸镀沉积金属电极层,得到发光器件。本申请发光器件的制备方法,在金属电极动态沉积的同时,半器件在加热环境中进行原位热处理,不但使金属电极膜层致密性好,厚度均一;而且促进了界面层粒子的扩散,从而优化了功能层界面接触,有利于载流子迁移传输,提高了载流子迁移传输效率,提高了发光器件稳定性。

Description

发光器件及其制备方法、显示器件
本申请要求于2021年06月03日在中国专利局提交的、申请号为202110620486.9、发明名称为“发光器件及其制备方法、显示器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种发光器件及其制备方法、显示器件。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。量子点发光二极管(QLED)、有机发光二极管(OLED)等发光器件,由于具有连续可调的发光光谱、亮度高、色纯度高等的独特光学物理特性,成为下一代显示和照明领域的有力竞争者。其中,QLED器件,广泛采用由阳极、有机空穴传输层、发光层、无机电子传输层和金属阴极构成的三明治结构。
目前,对于器件中的阴极金属电极广泛采用真空蒸镀的沉积方式,该方式沉积金属电极时,在低真空度下,电加热蒸发金属作为蒸发源,然后再沉积在常温下的有其他功能层的半成品器件上,通过掩模板形成相应所需形状面积的阴极金属电极。然而,目前阴极金属电极采用的真空蒸镀沉积方式,容易产生金属原子的聚集堆积,形成不规则的金属颗粒,粗糙度增加,电极致密性降低,金属电极容易产生针孔或者凸起等缺陷,容易产生水氧侵蚀。并且,对于氧化锌等无机金属纳米颗粒沉积成的电子传输薄膜层表面缺陷的填充性能效果有待提升,影响金属电极与其他功能层之间的界面接触,不利于电荷的界面传输。另外,金属电极在真空蒸镀沉积时,由于蒸发源是一个点状的独立源,在散射状的金属原子束流的边缘浓度相对较低,致使掩膜版边缘的器件上沉积的金属原子较中间少,器件之间的电极厚度差异会导致器件性能的差异。
因此,如何通过优化金属电极在功能层上的沉积过程,来提高金属电极的致密性、与功能之间的界面接触,以及缩短或者消除器件在提高性能时所需正向老化的时间,成了改善器件性能和缩短器件后处理的时间成本关键。
技术问题
本申请实施例的目的之一在于:提供一种发光器件及其制备方法,一种显示器件,旨在解决相关技术中真空蒸镀方式制备的金属电极致密性差的问题的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供一种发光器件的制备方法,包括以下步骤:
获取待蒸镀金属电极层的半器件;
在预设温度条件下,在所述半器件的待蒸镀表面进行蒸镀沉积金属电极层,得到发光器件。
第二方面,提供一种发光器件,所述发光器件由上述的制备方法制得。
第三方面,提供一种显示器件,包含有上述的发光器件。
本申请实施例提供的发光器件的制备方法的有益效果在于:在预设温度条件下,在所述半器件的待蒸镀表面进行蒸镀沉积金属电极层,得到发光器件。一方面,在制备金属电极的同时半器件处于预设温度的加热环境中,即达到金属电极动态沉积下的原位热处理作用,金属蒸气达到在半器件表面时半器件表面有一定的温度,减少因金属蒸气骤冷沉积产生的金属颗粒无规则运动所引发的针孔和大凸起。同时,边沉积边在预设温度的加热环境中也能让金属原子保持更高的迁移性活性,不但能使表面晶粒的排列更加紧密均匀,形成更加致密厚度均一的金属电极层,而且能促进金属粒子向半器件功能层界面扩散,使金属粒子更好地沉积填充在半器件的待蒸镀表面形成光滑致密的界面接触,有利于载流子在界面传输。另一方面,在制备金属电极的同时半器件处于预设温度的加热环境中,能结合蒸镀沉积时的环境更好地去除半器件功能层表面附着的气体,从而降低金属蒸气在功能层表面沉积的表面应力,降低功能层表面附着气体分子对金属粒子沉积的影响。再一方面,在预设温度的加热环境中沉积金属电极,可直接促进金属粒子在界面功能层扩散,优化接触界面,而不需要在形成金属电极薄膜后再通过加热处理促进界面融合,缩短甚至消除器件在提高性能时所需正向老化的时间,减少了后期老化处理的时间成本。
本申请实施例提供的发光器件的有益效果在于:由采用了上述在金属电极动态沉积的同时,半器件在预设温度的加热环境中进行原位热处理的方式进行制备,不但使金属电极膜层致密性好,厚度均一;而且促进了界面层粒子的扩散,从而优化了功能层界面接触,有利于载流子迁移传输,提高了载流子迁移传输效率,提高了发光器件稳定性。
本申请实施例提供的显示器件的有益效果在于:由于包含有上述载流子迁移传输效率高,发光稳定性的发光器件,因而显示器件发光效率高,光电性能稳定。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的发光器件的制备方法的流程示意图;
图2是本申请实施例提供的发光器件蒸镀金属电极的示意图;
图3是本申请实施例提供的加热源沿固定盘中心向边缘温度递增示意图;
图4是本申请实施例提供的发光器件结构示意图;
图5是本申请实施例2提供的加热温度随蒸镀时间的变化关系图;
图6是本申请实施例和对比例提供的发光器件的电流密度测试图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“ a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
如附图1所示,本申请实施例第一方面提供一种发光器件的制备方法,包括以下步骤:
S10. 获取待蒸镀金属电极层的半器件;
S20. 在预设温度条件下,在半器件的待蒸镀表面进行蒸镀沉积金属电极层,得到发光器件。
本申请第一方面提供的发光器件的制备方法,在预设温度条件下,在半器件的待蒸镀表面进行蒸镀沉积金属电极层,得到发光器件。一方面,在制备金属电极的同时半器件处于预设温度的加热环境中,即达到金属电极动态沉积下的原位热处理作用,金属蒸气达到在半器件表面时半器件表面有一定的温度,减少因金属蒸气骤冷沉积产生的金属颗粒无规则运动所引发的针孔和大凸起。同时,边沉积边在预设温度的加热处理也能让金属原子保持更高的迁移性活性,不但能使表面晶粒的排列更加紧密均匀,形成更加致密厚度均一的金属电极层,而且能促进金属粒子向半器件功能层界面扩散,使金属粒子更好地沉积填充在半器件的待蒸镀表面形成光滑致密的界面接触,有利于载流子在界面传输。另一方面,在制备金属电极的同时半器件处于预设温度的加热环境中,能结合蒸镀沉积时的环境更好地去除功能层表面附着的气体,从而降低金属蒸气在功能层表面沉积的表面应力,降低功能层表面附着气体分子对金属粒子沉积的影响。再一方面,在预设温度的加热环境中沉积金属电极,可直接促进金属粒子在界面功能层扩散,优化接触界面,而不需要在形成金属电极薄膜后再通过加热处理促进界面融合,缩短甚至消除器件在提高性能时所需正向老化的时间,减少了后期老化处理的时间成本。
本申请实施例在预设温度条件下,半器件的待蒸镀表面温度接近或等同于预设温度。
在一些实施例中,步骤S20中,预设温度为50℃~150℃,在该温度的加热环境中最有利于金属粒子沉积形成膜层致密厚度均一,可有效优化接触界面的金属电极层。若加热环境温度低于50℃,则加热环境对金属粒子的沉积影响较小,对形成的金属电极的薄膜质量改善不明显;当提供的加热能量达到一定程度时金属原子的沉积重排效果更加明显,而当加热环境温度超过150℃时,由于量子点发光材料自身热稳定性有限,在温度过高时容易分解,因而可能会影响器件光电性能。
本申请实施例预设温度条件可通过设置加热源实现,加热源的具体设置方式不做具体限定,只要能使半器件在蒸镀时具有合适的温度即可。在一些具体实施例中,对半器件进行加热的步骤包括:在半器件的衬底一侧设置加热源,加热源靠近半器件的衬底一侧设置,在金属真空蒸镀沉积到半器件的电子功能层表面的同时,从半器件的衬底一侧对半器件进行加热,达到金属电极动态沉积下的原位热处理效果,既有利于金属粒子沉积,又能优化界面接触。
在一些实施例中,预设温度条件通过设置加热源实现,其中加热源靠近半器件的衬底一侧设置,使半器件的待蒸镀表面达到预设温度范围50℃~150℃,该预设温度既确保了对半器件的加热效果,又避免了温度过高对半器件功能层材料的影响破坏作用。
在一些具体实施例中,如附图2所示,半器件设置在真空蒸镀装置的固定转盘上,加热源设置在半器件与固定转盘之间。在一些具体实施例中,将半器件设置在掩膜版内,然后放置在有加热装置的固定托盘上,抽真空的同时对半器件进行加热至预设温度,到达一定真空度后开始蒸镀沉积金属电极,在半器件的待蒸镀表面形成金属电极层。本申请实施例对固定转盘的形状大小不做具体限定,可以是圆形、矩形等形状,其大小可根据实际需要处理的半器件数量而定。其中,掩膜版是用于固定半器件,从而使半器件能更好的固定在固定转盘上。在一些具体实施例中,加热源的具体设置位置只要能使半器件在蒸镀时达到预设温度即可,加热源可以直接与固定转盘一体设计,也可以设置在掩膜版上。
在一些实施例中,预设温度沿半器件的中心向边缘方向呈递增趋势。本申请实施例为了消除半器件由于蒸镀过程中不同掩膜版位置边缘和中间器件的金属电极厚度的差异,在引入金属电极动态沉积下的原位热处理的同时,使加热源的加热温度沿半器件的径向依次升高,使蒸镀时掩膜版上边缘温度高中间温度低,中间向边缘温度呈梯度上升,从而使掩膜版边缘位置器件表面沉积的金属粒子有更高的活性,可更好的形成厚度均一且致密的金属电极层,降低半器件不同掩膜版位置边缘和中间器件的金属电极厚度的差异。
在一些实施例中,沿所述半器件的中心向边缘方向,将所述半器件划分成若干个同中心区域,越靠近中心的区域预设温度越低。在一些具体实施例中,沿半器件的中心向边缘方向,将半器件划分成2~5个等面积或不等面积的同中心区域,各区域的预设温度沿中心向边缘方向按梯度递增,越靠近中心的区域预设温度越低。在一些具体实施例中,沿固定转盘中心向边缘的方向,将固定转盘划分成2~5个等面积区域,各区域的预设温度沿固定转盘中心向边缘的方向梯度递增。
在一些具体实施例中,各区域的预设温度沿半器件的中心向边缘方向以30℃~50℃的幅度递增。例如:如附图3所示,沿固定转盘中心向边缘的方向,将固定转盘划分成3等面积区域,从而形成中心区、中环区和外环区三个同中心的区域,这三个区域的预设温度从中心区、中环区到外环区温度可依次为50℃~80℃、80℃~100℃和100℃~150℃。
在另一些实施例中,预设温度与金属电极层的沉积厚度呈线性或非线性递增的趋势。本申请实施例为了应对由于电极沉积过程中,随着金属电极厚度不断增加,在预设温度不变的情况下,会由于温度不够而影响电极沉积效果。因而在引入金属电极动态沉积下的原位热处理的同时,在蒸镀时采用随金属电极厚度增加不断升高预设温度的温控程序,使半器件表面的预设温度随沉积的金属电极层的厚度增加而增加,从而提高金属电极沉积厚度增厚时温度对电极层的调控作用。在一些具体实施例中,预设温度与金属电极层的沉积厚度可以是呈线性的递增的关系,如,5~20℃/5nm,即金属电极层厚度每增加5nm,预设温度可以增加5~20℃。
在一些实施例中,蒸镀沉积金属电极层的条件包括:在10 -2Pa~10 -4Pa压力下蒸发金属,金属蒸发源与半器件的间距为10~50cm。其中,10 -2Pa~10 -4Pa压力的真空度下,既有利于金属粒子蒸发,使粒子具有分子流动性,以直线运动;又保证金属蒸汽分子到达半器件表面的速率高于残余气体分子到达的速率,以减少残余气体分子对半器件表面膜层的撞击和污染,提高形成的金属电极膜层的纯度和均匀性。其中,10~50cm的蒸镀间距,兼顾金属粒子沉积均匀性和气相粒子平均自由程,蒸发出的原子是自由、无碰撞的,沉积速度快。若蒸发距离过大,则增加了金属原子的热运动距离,增加了散射机率,降低了沉积效率;若蒸发间距过小,则影响沉积的散射覆盖面。本申请真空蒸镀的温度根据实际使用的金属材料性能而定,只要产生的热量能使蒸发材料的分子或原子获得足够大的动能而蒸发即可,在一些具体实施例中,蒸发温度可以是1000~2000℃。蒸发时间由待制备的金属电极层厚度决定。
在一些实施例中,金属电极层中包括Al、Ag、Cu、Mo、Au中的至少一种金属材料。金属材料的形态包括但不限于致密薄膜、纳米线、纳米球、纳米棒、纳米锥、纳米空心球或它们的混合物。在一些具体实施例中,金属电极层中包括Ag、Al。在一些实施例中,金属电极层的厚度为10nm~100nm。
在一些实施例中,半器件包括依次叠层贴合设置的阳极、空穴功能层、量子点发光层和电子功能层。本申请实施例器件量子点发光二极管,由于QLED中的发光层是由量子点纳米颗粒成膜而成,其表面的粗糙度和平整性相较于有机发光二极管中OLED中采用有机溶液结晶形成的膜差,导致QLED的量子点纳米颗粒层与其他各功能层界面接触致密性不佳。本申请实施例方法在蒸镀时通过预设温度达到同时加热的目的,更好地促进功能层中溶剂的挥发,并使金属电极原子更好地扩散和分散在量子点纳米颗粒层表面,形成更加光滑致密的接触界面。而OLED用蒸镀或者溶液旋涂的方式形成的薄膜表面更加光滑平整,其与电极之间的界面接触性能更优。因此,本申请实施例方法对于QLED器件产生性能提升的效果要比OLED器件更明显。
在一些实施例中,待蒸镀表面为电子传输层背离发光层的表面,电子传输层材料热稳定性好,有利于金属电极的蒸镀沉积。
在一些实施例中,获取待蒸镀半器件的方法包括步骤:在衬底上依次叠层制备阳极、空穴功能层、发光层和电子功能层,得到待蒸镀半器件。具体包括步骤:
S11. 获取沉积有阳极的基板;
S12. 在阳极表面制备空穴功能层;
S13. 在空穴功能层表面制备发光层;
S14. 在发光层表面制备电子传输层,得到半器件。
在一些实施例中,为了得到高质量的发光器件,衬底往往需要经过预处理过程,预处理步骤包括:将ITO导电玻璃等衬底用清洁剂清洗,初步去除表面存在的污渍,随后依次在去离子水、丙酮、无水乙醇、去离子水中分别超声清洗20 min,以除去表面存在的杂质,最后用高纯氮气吹干,即可得到ITO正极。
在一些实施例中,衬底的选用不受限制,可以采用刚性基板,也可以采用柔性基板。在一些具体实施例中,刚性基板包括但不限于玻璃、金属箔片中的一种或多种。在一些具体实施例中,柔性基板包括但不限于聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯乙烯(PS)、聚醚砜(PES)、聚碳酸酯(PC)、聚芳基酸酯(PAT)、聚芳酯(PAR)、聚酰亚胺(PI)、聚氯乙烯(PV)、聚乙烯(PE)、聚乙烯吡咯烷酮(PVP)、纺织纤维中的一种或多种。
在一些实施例中,阳极材料的选用不受限制,可选自掺杂金属氧化物,包括但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)、镓掺杂氧化锌(GZO)、铟掺杂氧化锌(IZO)、镁掺杂氧化锌(MZO)、铝掺杂氧化镁(AMO)中的一种或多种。也可以选自掺杂或非掺杂的透明金属氧化物之间夹着金属的复合电极,包括但不限于AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2中的一种或多种。
在一些实施例中,步骤S12中,在阳极背离衬底的表面制备空穴功能层的步骤包括:在ITO等基板上,将配制好的空穴注入或空穴传输材料的溶液通过滴涂、旋涂、浸泡、涂布、打印、蒸镀等工艺沉积成膜;通过调节溶液的浓度、沉积速度和沉积时间来控制膜厚,然后在适当温度下热退火处理。
在一些实施例中,空穴功能层包括空穴传输层和空穴注入层。
在一些实施例中,空穴注入层包括但不限于有机空穴注入材料、掺杂或非掺杂的过渡金属氧化物、掺杂或非掺杂的金属硫系化合物中的一种或多种。在一些具体实施例中,有机空穴注入材料包括但不限于聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、酞菁铜(CuPc)、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(F4-TCNQ)、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)中的一种或多种。在一些具体实施例中,过渡金属氧化物包括但不限于MoO 3、VO 2、WO 3、CrO 3、CuO中的一种或多种。在一些具体实施例中,金属硫系化合物包括但不限于MoS 2、MoSe 2、WS 2、WSe 2、CuS中的一种或多种。
在一些实施例中,空穴传输层可选自具有空穴传输能力的有机材料和/或具有空穴传输能力的无机材料。在一些具体实施例中,具有空穴传输能力的有机材料包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4,4’’-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或多种。在一些具体实施例中,具有空穴传输能力的无机材料包括但不限于掺杂石墨烯、非掺杂石墨烯、C60、掺杂或非掺杂的MoO 3、VO 2、WO 3、CrO 3、CuO、MoS 2、MoSe 2、WS 2、WSe 2、CuS中的一种或多种。
在一些实施例中,步骤S13中,在空穴传输层表面制备发光层的步骤包括:在已沉积上空穴传输层的基片上,将配制好一定浓度的发光物质溶液通过滴涂、旋涂、浸泡、涂布、打印、蒸镀等工艺沉积成膜,通过调节溶液的浓度、沉积速度和沉积时间来控制发光层的厚度,约20~60 nm,在适当温度下干燥。
在一些实施例中,量子点发光层中包括量子点材料,量子点材料包括但不限于:元素周期表II-IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族半导体化合物中的至少一种,或上述半导体化合物中至少两种组成的核壳结构半导体化合物。在一些具体实施例中,量子点功能层材料选自CdSe、CdS、CdTe、ZnO、ZnSe、ZnS、ZnTe、HgS、HgSe、HgTe、CdZnSe中的至少一种半导体纳米晶化合物,或至少两种组成的混合类型、梯度混合类型、核壳结构类型或联合类型等结构的半导体纳米晶化合物。在另一些具体实施例中,量子点功能层材料选自InAs、InP、InN、GaN、InSb、InAsP、InGaAs、GaAs、GaP、GaSb、AlP、AlN、AlAs、AlSb、CdSeTe、ZnCdSe中的至少一种半导体纳米晶化合物,或至少两种组成的混合类型、梯度混合类型、核壳结构类型或联合类型等结构的半导体纳米晶化合物。在另一些实施例中,量子点功能层材料选自钙钛矿纳米粒子材料(特别是发光钙钛矿纳米粒子材料)、金属纳米粒子材料、金属氧化物纳米粒子材料中的至少一种。上述各量子点材料具有量子点的特性,光电性能好。
在一些实施例中,量子点材料的粒径范围为2~10 nm,粒径过小,量子点材料成膜性变差,且量子点颗粒之间的能量共振转移效应显著,不利于材料的应用,粒径过大,量子点材料的量子效应减弱,导致材料的光电性能下降。
在一些实施例中,步骤S14中,在发光层表面制备电子传输层的步骤包括:在已沉积上量子点发光层的基片上,将配制好一定浓度的金属氧化物传输材料溶液通过滴涂、旋涂、浸泡、涂布、打印、蒸镀等工艺沉积成膜,通过调节溶液的浓度、沉积速度(例如,转速在3000~5000rpm之间)和沉积时间来控制电子传输层的厚度,约20~60 nm,然后在150℃~200℃的条件下退火成膜,充分去除溶剂。
在一些实施例中,电子传输层的材料包括但不限于ZnO、TiO 2、SnO、Ta 2O 3、AlZnO、ZnSnO、InSnO、Alq 3、Ca、Ba、CsF、LiF、CsCO 3等。
在一些实施例中,将得到的发光器件进行封装处理,封装处理可采用常用的机器封装,也可以采用手动封装。封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证器件的稳定性。
本申请实施例第二方面提供一种发光器件,发光器件由上述的制备方法制得。
本申请第二方面提供的发光器件,由采用了上述在金属电极动态沉积的同时,半器件在预设温度的加热环境中进行原位热处理的方式进行制备,不但使金属电极膜层致密性好,厚度均一;而且促进了界面层粒子的扩散,从而优化了功能层界面接触,有利于载流子迁移传输,提高了载流子迁移传输效率,提高了发光器件稳定性。
在一些实施例中,如附图4所示,发光器件包括设置在衬底上的阳极,沉积在阳极表面的空穴注入层,沉积在空穴注入层表面的空穴传输层,沉积在空穴传输层表面的发光层,沉积在发光层表面的电子传输层和沉积在电子传输层表面的阴极。
第三方面,本申请提供一种显示器件,包含有上述的发光器件。
本申请第三方面提供的显示器件,由于包含有上述载流子迁移传输效率高,发光稳定性的发光器件,因而显示器件发光效率高,光电性能稳定。
为使本申请上述实施细节和操作能清楚地被本领域技术人员理解,以及本申请实施例发光器件及其制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种发光器件,其制备包括步骤:
① 在ITO衬底上,旋涂PEDOT:PSS,转速5000 rpm,时间30秒,随后150°C加热15分钟,厚度20nm,形成空穴注入层;
② 旋涂TFB(8mg/mL),转速3000rpm,时间30秒,随后150°C加热30分钟,厚度30nm,形成空穴传输层;
③ 旋涂量子点(20mg/mL),转速2000 rpm,时间30秒,厚度30nm,形成量子点发光层;
④ 旋涂ZnO(30mg/mL),转速3000 rpm,时间30秒,随后80°C加热30分钟,厚度40nm,形成电子传输层,得到半器件;
⑤ 通过热蒸发,真空度不高于3×10 -4 Pa,蒸镀Al,速度为1埃/秒,时间100秒;将固定转盘与半器件之间的加热板加热温度设置为100℃,在半器件表面温度约为100℃的环境中动态沉积的电极直至厚度达到100nm。
实施例2
一种发光器件,其制备包括步骤:
① 在ITO衬底上,旋涂PEDOT:PSS,转速5000 rpm,时间30秒,随后150°C加热15分钟,厚度20nm,形成空穴注入层;
② 旋涂TFB(8mg/mL),转速3000rpm,时间30秒,随后150°C加热30分钟,厚度30nm,形成空穴传输层;
③ 旋涂量子点(20mg/mL),转速2000 rpm,时间30秒,厚度30nm,形成量子点发光层;
④ 旋涂ZnO(30mg/mL),转速3000 rpm,时间30秒,随后80°C加热30分钟,厚度40nm,形成电子传输层,得到半器件;
⑤ 通过热蒸发,真空度不高于3×10 -4 Pa,蒸镀Al,速度为1埃/秒,时间100秒;将固定转盘与半器件之间的加热板的加热温度设置成随蒸镀时间递增的温控程序,具体如附图5所示,直至金属电极层厚度达到100nm。
实施例3
一种发光器件,其制备包括步骤:
① 在ITO衬底上,旋涂PEDOT:PSS,转速5000 rpm,时间30秒,随后150°C加热15分钟,厚度20nm,形成空穴注入层;
② 旋涂TFB(8mg/mL),转速3000rpm,时间30秒,随后150°C加热30分钟,厚度30nm,形成空穴传输层;
③ 旋涂量子点(20mg/mL),转速2000 rpm,时间30秒,厚度30nm,形成量子点发光层;
④ 旋涂ZnO(30mg/mL),转速3000 rpm,时间30秒,随后80°C加热30分钟,厚度40nm,形成电子传输层,得到半器件;
⑤ 通过热蒸发,真空度不高于3×10 -4 Pa,蒸镀Al,速度为1埃/秒,时间100秒;由固定转盘的中心向径向边缘,划分成中心区、中环区和外环区三个等面积区域,其中,中心区、中环区和外环区的温度分别是80℃、90℃和100℃,如附图3所示,直至金属电极层厚度达到100nm。
对比例1
一种发光器件,其制备包括步骤:
① 在ITO衬底上,旋涂PEDOT:PSS,转速5000 rpm,时间30秒,随后150°C加热15分钟,厚度20nm,形成空穴注入层;
② 旋涂TFB(8mg/mL),转速3000rpm,时间30秒,随后150°C加热30分钟,厚度30nm,形成空穴传输层;
③ 旋涂量子点(20mg/mL),转速2000 rpm,时间30秒,厚度30nm,形成量子点发光层;
④ 旋涂ZnO(30mg/mL),转速3000 rpm,时间30秒,随后80°C加热30分钟,厚度40nm,形成电子传输层,得到半器件;
⑤ 通过热蒸发,真空度不高于3×10 -4 Pa,蒸镀Al,速度为1埃/秒,时间100秒;在不额外加热的环境中沉积的电极直至厚度达到100nm。
对比例2
一种发光器件,其制备包括步骤:
① 在ITO衬底上,旋涂PEDOT:PSS,转速5000 rpm,时间30秒,随后150°C加热15分钟,厚度20nm,形成空穴注入层;
② 旋涂TFB(8mg/mL),转速3000rpm,时间30秒,随后150°C加热30分钟,厚度30nm,形成空穴传输层;
③ 旋涂量子点(20mg/mL),转速2000 rpm,时间30秒,厚度30nm,形成量子点发光层;
④ 旋涂ZnO(30mg/mL),转速3000 rpm,时间30秒,随后80°C加热30分钟,厚度40nm,形成电子传输层,得到半器件;
⑤ 通过热蒸发,真空度不高于3×10 -4 Pa,蒸镀Al,速度为1埃/秒,时间100秒;将固定转盘与半器件之间的加热板加热温度设置为180℃,在加热的环境中动态沉积的电极直至厚度达到100nm。
为了验证本申请实施例的进步性,对实施例1~3和对比例1~2制备的发光器件的电流密度进行了测试,测试结果如附图6所示。
由附图测试结果可知,对比例1在不额外加热的环境下真空蒸镀沉积金属电极层,其制备的发光器件的电流密度显著低于实施例1~3在适当加热环境中制备的发光器件。其中,实施例2在引入金属电极动态沉积下的原位热处理的同时,采用随蒸镀时间(即电极厚度)增加不断升高预设温度的温控程序,使加热源的预设温度随沉积的金属电极层的厚度增加而增加,从而提高金属电极沉积厚度增厚时温度对电极层的调控作用,提高了发光器件的电流密度。实施例3在引入金属电极动态沉积下的原位热处理的同时,使加热源的预设温度沿固定转盘中心向边缘的方向依次升高,利用温度梯度,更好的提高薄膜厚度均匀性,且电极致密性和平整性都得到了明显的改善,同样也使得器件电流密度得到了明显的提升。而对比例2,由于预设温度过高(180℃),导致发光材料的热分解,损害器件的光电性能,造成器件漏电严重。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

  1. 一种发光器件的制备方法,其特征在于,包括以下步骤:
    获取待蒸镀金属电极层的半器件;
    在预设温度条件下,在所述半器件的待蒸镀表面进行蒸镀沉积金属电极层,得到发光器件。
  2. 如权利要求1所述的发光器件的制备方法,其特征在于,所述预设温度范围为50℃~150℃。
  3. 如权利要求1所述的发光器件的制备方法,其特征在于,所述预设温度与所述金属电极层的沉积厚度呈线性或非线性递增的趋势。
  4. 如权利要求2所述的发光器件的制备方法,其特征在于,所述预设温度沿所述半器件的中心向边缘方向呈递增趋势。
  5. 如权利要求4所述的发光器件的制备方法,其特征在于,沿所述半器件的中心向边缘方向,将所述半器件划分成若干个同中心区域,越靠近中心的区域预设温度越低。
  6. 如权利要求5所述的发光器件的制备方法,其特征在于,各区域的预设温度沿所述半器件的中心向边缘方向以30℃~50℃的幅度递增。
  7. 如权利要求6所述的发光器件的制备方法,其特征在于,沿所述半器件的中心向边缘方向,将所述半器件划分成中心区、中环区和外环区三个同中心区域。
  8. 如权利要求7所述的发光器件的制备方法,其特征在于,从所述中心区、所述中环区到所述外环区温度可依次为50℃~80℃、80℃~100℃和100℃~150℃。
  9. 如权利要求1~7任一项所述的发光器件的制备方法,其特征在于,所述蒸镀沉积金属电极层的条件包括:在10 -2Pa~10 -4Pa压力下蒸发金属,金属蒸发源与所述半器件的间距为10~50cm。
  10. 如权利要求9所述的发光器件的制备方法,其特征在于,所述蒸发金属的蒸发温度为1000~2000℃。
  11. 如权利要求9所述的发光器件的制备方法,其特征在于,所述金属电极层中包括Al、Ag、Cu、Mo、Au中的至少一种金属材料。
  12. 如权利要求9所述的发光器件的制备方法,其特征在于,所述金属电极层的厚度为10nm~100nm。
  13. 如权利要求1所述的发光器件的制备方法,其特征在于,所述半器件包括依次叠层贴合设置的阳极、空穴功能层、量子点发光层和电子功能层。
  14. 如权利要求1所述的发光器件的制备方法,其特征在于,所述待蒸镀表面为电子传输层背离所述发光层的表面。
  15. 一种发光器件,其特征在于,所述发光器件由如权利要求1~14任一所述的制备方法制得。
  16. 一种显示器件,其特征在于,所述显示器件包含有如权利要求15所述的发光器件。
PCT/CN2021/141735 2021-06-03 2021-12-27 发光器件及其制备方法、显示器件 WO2022252594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110620486.9A CN115440919A (zh) 2021-06-03 2021-06-03 发光器件及其制备方法、显示器件
CN202110620486.9 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022252594A1 true WO2022252594A1 (zh) 2022-12-08

Family

ID=84272027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141735 WO2022252594A1 (zh) 2021-06-03 2021-12-27 发光器件及其制备方法、显示器件

Country Status (2)

Country Link
CN (1) CN115440919A (zh)
WO (1) WO2022252594A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305314A1 (en) * 2007-06-05 2008-12-11 Nihon Dempa Kogyo Co., Ltd. Optical thin-film-forming methods and apparatus, and optical elements formed using same
CN102443786A (zh) * 2011-11-08 2012-05-09 上海华力微电子有限公司 一种改进等离子体增强化学汽相沉积薄膜均匀度的方法
CN104233195A (zh) * 2014-08-28 2014-12-24 京东方科技集团股份有限公司 一种蒸镀设备及蒸镀方法
CN111430684A (zh) * 2020-01-19 2020-07-17 蜂巢能源科技有限公司 复合负极及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305314A1 (en) * 2007-06-05 2008-12-11 Nihon Dempa Kogyo Co., Ltd. Optical thin-film-forming methods and apparatus, and optical elements formed using same
CN102443786A (zh) * 2011-11-08 2012-05-09 上海华力微电子有限公司 一种改进等离子体增强化学汽相沉积薄膜均匀度的方法
CN104233195A (zh) * 2014-08-28 2014-12-24 京东方科技集团股份有限公司 一种蒸镀设备及蒸镀方法
CN111430684A (zh) * 2020-01-19 2020-07-17 蜂巢能源科技有限公司 复合负极及其制备方法和应用

Also Published As

Publication number Publication date
CN115440919A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2020134162A1 (zh) 量子点发光二极管及其制备方法
CN110265564B (zh) 量子点发光二极管及其制备方法和显示屏
CN112151648B (zh) 一种量子点发光二极管及其制备方法
US10270055B2 (en) Flexible display device and method of manufacturing the same
WO2022143566A1 (zh) 发光器件及其制备方法
WO2022252594A1 (zh) 发光器件及其制备方法、显示器件
CN114039002B (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
CN110190199B (zh) 空穴注入薄膜及其制备方法和有机发光二极管及其制备方法
CN114203941A (zh) 薄膜的制备方法和发光二极管
WO2022242178A1 (zh) 电子传输材料及其制备方法、显示器件的制备方法
WO2022143554A1 (zh) 发光器件及其制备方法
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
CN113130776B (zh) 一种量子点发光二极管及其制备方法
WO2023078233A1 (zh) 发光器件的制备方法、发光器件及显示装置
CN115377314A (zh) 光电器件及其制备方法
WO2023142570A1 (zh) 一种掺杂材料及其制备方法、发光二极管
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2019010997A1 (zh) 发光二极管及其制备方法
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置
WO2023083098A1 (zh) 一种发光二极管及其制备方法
WO2022143827A1 (zh) 光电器件
WO2022143826A1 (zh) 光电器件
WO2022143823A1 (zh) 光电器件
WO2022143829A1 (zh) 光电器件
WO2022143830A1 (zh) 光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE