WO2022242178A1 - 电子传输材料及其制备方法、显示器件的制备方法 - Google Patents

电子传输材料及其制备方法、显示器件的制备方法 Download PDF

Info

Publication number
WO2022242178A1
WO2022242178A1 PCT/CN2021/141736 CN2021141736W WO2022242178A1 WO 2022242178 A1 WO2022242178 A1 WO 2022242178A1 CN 2021141736 W CN2021141736 W CN 2021141736W WO 2022242178 A1 WO2022242178 A1 WO 2022242178A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron transport
transport material
capping agent
metal salt
preparation
Prior art date
Application number
PCT/CN2021/141736
Other languages
English (en)
French (fr)
Inventor
姚振垒
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US18/274,341 priority Critical patent/US20240090255A1/en
Publication of WO2022242178A1 publication Critical patent/WO2022242178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of display technology, in particular to an electron transport material and a preparation method thereof, and a preparation method of a display device.
  • Quantum dots Quantum dots, QDs
  • QLEDs Quantum dots
  • QLEDs due to their unique optical and physical properties such as continuously adjustable light-emitting spectrum, high brightness, and high color purity, have become a strong competitor in the field of next-generation display and lighting.
  • the commonly used synthesis method of electron transport layer materials is usually sol-gel method.
  • the current synthesis process there are often mutual mergers between nanoparticles of electron transport materials such as zinc oxide, and they tend to combine with large-sized particles, resulting in a wide particle size distribution of electron transport materials, and the solution of electron transport materials such as zinc oxide
  • the film-forming property of the device is poor, so the conductivity of the electron transport layer film in the device is poor.
  • One of the purposes of the embodiments of the present application is to provide an electron transport material and its preparation method, as well as a preparation method of a display device, aiming to solve the problem of wide particle size distribution of electron transport materials such as zinc oxide prepared by related technologies, and the difficulty in film formation. Poor, which affects the conductivity of the electron transport film.
  • a method for preparing an electron transport material comprising the following steps:
  • the capping agent is at least one selected from alkanes containing N atoms or halogen atoms, cycloalkanes containing N atoms or halogen atoms, and polymers containing N atoms or halogen atoms.
  • an electron transport material in a second aspect, includes a metal oxide and a capping agent bound to the surface of the metal oxide, the capping agent is selected from alkanes containing N atoms or halogen atoms, At least one of cycloalkanes containing N atoms or halogen atoms, and polymers containing N atoms or halogen atoms.
  • a method for manufacturing a display device comprising the following steps:
  • the hole functional layer and the light-emitting layer are sequentially stacked;
  • a light-emitting layer, a hole functional layer and an anode are sequentially stacked on the surface of the electron transport layer to obtain a display device.
  • the beneficial effect of the preparation method of the electron transport material provided in the embodiment of the present application is that: after mixing the metal salt solution and the alkaline solution, during the synthesis process of the metal oxide electron transport material, adding a capping agent to continue the reaction , the end-capping agent combines with active groups such as oxygen vacancies or hydroxyl groups on the surface of metal oxides through N atoms or halogen atoms, so as to coat the surface of nano-metal oxides, and obtain metal oxide electron transport materials with end-capping agents on the surface .
  • the beneficial effect of the electron transport material provided by the embodiment of the present application is that it includes metal oxides, and capping agents such as alkanes, cycloalkanes, and polymers bonded to the surface of the metal oxides through N atoms or halogen atoms.
  • the agent has no effect on the passivation of the surface of metal oxide nanomaterials, which not only makes the particle size of the electron transport material more uniform, but also improves the stability of the metal oxide material, reduces the damage of environmental factors to the metal oxide material, and thus improves the electronic properties.
  • the carrier transfer efficiency of transport materials is not only makes the particle size of the electron transport material more uniform, but also improves the stability of the metal oxide material, reduces the damage of environmental factors to the metal oxide material, and thus improves the electronic properties.
  • the beneficial effect of the preparation method of the display device is: after depositing the above-mentioned electron transport material on the surface of the light-emitting layer or the surface of the cathode of the semi-device, vacuum annealing treatment is performed to remove the end caps bound to the surface of the metal oxide nanomaterial agent to obtain a metal oxide electron transport layer, and then continue to prepare a cathode or sequentially prepare a light emitting layer, a hole functional layer and an anode on the surface of the electron transport layer to obtain a display device.
  • the display device prepared by the present application adopts the above-mentioned small and uniform electron transport material, so the prepared electron transport layer has good compactness and good stability, and the contact interface with the adjacent functional layer is optimized to improve the loading capacity.
  • the migration and transport of current flow in the device is optimized to improve the loading capacity.
  • Fig. 1 is a schematic flow chart of the preparation method of the electron transport material provided in the embodiment of the present application;
  • FIG. 2 is a schematic diagram of the positive structure of the quantum dot light-emitting diode provided in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of an inverse structure of a quantum dot light-emitting diode provided in an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of the electron transport material provided by the embodiment of the present application, wherein X-R is a capping agent, and X is one of N, F, Cl, Br, and I.
  • a and/or B describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone Happening. Among them, A and B can be singular or plural.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (unit) of a, b, or c or “at least one item (unit) of a, b, and c” can mean: a, b, c, a-b( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the first aspect of the embodiment of the present application provides a method for preparing an electron transport material, comprising the following steps:
  • the preparation method of the electron transport material provided in the first aspect of the present application, after mixing the metal salt solution and the alkaline solution, in the synthesis process of the metal oxide electron transport material, add an end-capping agent to continue the reaction, and the end-capping agent passes through the N atom Or the halogen atoms are combined with active groups such as oxygen vacancies or hydroxyl groups on the surface of the metal oxide, thereby covering the surface of the nanometer metal oxide, and separating to obtain a metal oxide electron transport material with a capping agent bound to the surface.
  • the metal oxide nanoparticles coated by the capping agent lose their active sites, and the probability of collision and aggregation between the nanoparticles is reduced, which reduces the aggregation of the nanoparticles and ensures the uniformity and dispersion stability of the metal oxide nanoparticles , so as to improve the film-forming property of the electron transport material, and the film layer is more compact, which is conducive to improving the efficiency of carrier transport and migration.
  • the metal salt in the metal salt solution is selected from at least one of zinc salt, titanium salt, tin salt, zirconium salt, and indium salt.
  • the zinc salt includes at least one of zinc acetate and zinc chloride.
  • the titanium salt includes at least one of titanium acetate and titanium chloride.
  • the tin salt includes at least one of tin acetate and tin chloride.
  • the metal salt is selected from at least one of zinc salts, titanium salts, tin salts, zirconium salts, and indium salts, and the metal salts also include: at least one of magnesium salts, aluminum salts, calcium salts, and lithium salts.
  • the metal salts also include: at least one of magnesium salts, aluminum salts, calcium salts, and lithium salts.
  • a sort of. In the embodiment of the present application, by adding magnesium salt, aluminum salt, calcium salt, lithium salt, etc. to the reaction system, metal elements such as magnesium, aluminum, calcium, and lithium are doped in the metal oxide, which can improve the Electron migration to performance.
  • the solvent in the metal salt solution is selected from at least one of dimethyl sulfoxide, N,N-dimethylformamide, and tetrahydrofuran. These organic solvents have good solubility for the metal salt of this application. , to provide a suitable solvent system for the reaction between metal salts and basic substances.
  • the alkaline substance in the alkaline solution is selected from at least one of tetramethylammonium hydroxide, lithium hydroxide, potassium hydroxide, and sodium hydroxide; these alkaline substances can all react with metal salts to form Metal oxide nanosemiconductor materials.
  • the solvent in the alkaline solution is selected from at least one of ethanol, methanol, propanol, isopropanol, and butanol, and these solvents have a good dissolution effect on alkaline substances.
  • step S20 after the metal salt reacts with the basic substance for 0.5 to 5 hours, ZnO, TiO 2 , SnO, ZrO 2 , The particle size of In 2 O 3 , ZnMgO, AlZnO and other metal oxide nanoparticles is relatively small.
  • add a capping agent and continue the reaction for 15 to 20 hours.
  • the oxides continue to nucleate and grow, and reduce the aggregation phenomenon between nanoparticles, ensure the uniformity and dispersion stability of metal oxide nanoparticles, thereby improving the film-forming properties of electron transport materials, and the film layer is more compact, which is conducive to improving Carrier transport migration efficiency.
  • the metal salt solution and the alkaline solution are mixed and reacted for 0.5 hours before adding the capping agent, adding the capping agent after 1 hour, adding the capping agent after 1.5 hours, adding the capping agent after 2 hours, and adding the capping agent after 2.5 hours.
  • the capping agent was added after 1 hour, the capping agent was added after 3 hours, the capping agent was added after 3.5 hours, the capping agent was added after 4 hours, the capping agent was added after 4.5 hours, or the capping agent was added after 5 hours.
  • the sooner the capping agent is added the smaller and uniform the particle size of the prepared metal oxide will be. If the capping agent is added too early, it will reduce the efficiency of the reaction between the metal salt and the alkaline substance to form a metal oxide. If the capping agent is added too much If it is too late, the generated metal oxide particles are already too large, which is not conducive to the regulation of the particle size of nanoparticles.
  • the end-capping agent used in the embodiment of the present application is at least one selected from alkanes containing N atoms or halogen atoms, cycloalkanes containing N atoms or halogen atoms, and polymers containing N atoms or halogen atoms.
  • these capping agents contain N atoms and halogen atoms, which can combine with the oxygen vacancies on the surface of the metal oxide generated in the solution system, or because a large number of hydroxyl groups are connected to the surface of the metal oxide prepared by the sol-gel, the capping agent It can form a hydrogen bond with the hydroxyl group on the surface of the metal oxide to combine on the surface of the metal oxide nanoparticle to form a metal oxide electron transport material with a capping agent bound to the surface.
  • these capping agents can be removed from the film layer by vacuum annealing, so as to avoid the effect of the capping agent on the carrier transport performance.
  • the number of carbon atoms of the alkanes containing N atoms or halogen atoms is 2-16; the number of carbon atoms of the cycloalkanes containing N atoms or halogen atoms is 3-16.
  • the alkanes contain branched chains.
  • the number of carbon atoms of the alkane end-capping agent is selected from 2-16, and the number of carbon atoms of cycloalkane is selected from 3-16. Under this condition, the end-capping agent can effectively block the growth and aggregation of metal oxides, thereby obtaining a particle size Small and uniform metal oxides.
  • the carbon chain of the capping agent is too long, the viscosity of the capping agent is too high, or it cannot be fully dissolved in the reaction system. In addition, it is also unfavorable for the capping agent to be removed by vacuum annealing in the subsequent device fabrication process.
  • polymers containing N atoms or halogen atoms can be better dissolved in the reaction system, and have a low boiling point, not higher than 300° C., which is beneficial for removal by vacuum annealing in the subsequent device fabrication process.
  • the blocking agent is selected from at least one of diethylamine, chlorobenzene, bromobenzene, and polyvinylpyrrolidone. These blocking agents have good solubility, good binding performance with the surface of metal oxides, and are easily Removed by vacuum annealing.
  • the molar ratio of the metal salt to the alkaline substance in the mixed solution is 1: (1.2 to 1.8). Substances can react well to form metal oxides. If the ratio of alkaline substances is too high, the excess alkaline substances will combine with metal elements to form alkali metal precipitation, which reduces the generation efficiency of metal oxide nanomaterials, and the low purity will also affect the effect of subsequent end-capping agents on metal oxides. Encapsulation of nanomaterials.
  • the molar ratio of the metal salt to the alkaline substance in the mixed solution can be 1:1.2, 1:1.5, 1:1.6, 1:1.8, etc.
  • the step of mixing the metal salt solution and the alkaline solution includes: adding the alkaline solution dropwise to the metal salt solution at a temperature of 40° C. to 60° C. for mixing, so that the added alkaline substance and the metal salt The reaction produces metal oxides. If too much alkaline substance is added at one time or the addition speed is too fast, the excessively added alkaline substance at one time will not have time to react with metal salt to form metal oxide, and it will easily combine with metal elements to form alkali metal precipitation.
  • the preparation method of the electron transport material in the examples of the present application can be used to prepare the electron transport materials in the following examples.
  • the second aspect of the embodiment of the present application provides an electron transport material, including a metal oxide and a capping agent bound to the surface of the metal oxide, the capping agent is selected from alkanes containing N atoms or halogen atoms , at least one of cycloalkanes containing N atoms or halogen atoms, and polymers containing N atoms or halogen atoms.
  • the electron transport material provided by the second aspect of the present application includes metal oxides, and capping agents such as alkanes, cycloalkanes, and polymers that are bonded to the surface of metal oxides through N atoms or halogen atoms.
  • the passivation of the surface of the material does not work, which not only makes the particle size of the electron transport material more uniform, but also improves the stability of the metal oxide material, reduces the damage of environmental factors to the metal oxide material, and thus increases the carrier density of the electron transport material. Migration transfer efficiency.
  • the particle size of the electron transport material is 1-25 ⁇ m, and the particle size is small and uniform, which can improve the film density and uniformity of the electron transport layer, thereby improving the stability of the film layer.
  • the metal oxide includes: at least one of ZnO, TiO 2 , SnO, ZrO 2 , In 2 O 3 , ZnMgO, and AlZnO, and these metal oxide electron transport materials have high electron transfer efficiency .
  • the blocking agent is at least one selected from diethylamine, chlorobenzene, bromobenzene, and polyvinylpyrrolidone.
  • the third aspect of the embodiment of the present application provides a method for manufacturing a display device, including the following steps:
  • vacuum annealing treatment is performed to remove the end-capping agent bound to the surface of the metal oxide nanomaterial to obtain A metal oxide electron transport layer, and then continue to prepare a cathode on the surface of the electron transport layer or sequentially prepare a light emitting layer, a hole functional layer and an anode to obtain a display device.
  • the display device prepared in the embodiment of the present application adopts the above-mentioned electron transport material with small particle size and uniformity, so the prepared electron transport layer has good compactness and good stability, and the contact interface with the adjacent functional layer is optimized, improving transport of carriers within the device.
  • the step of preparing the electron transport layer includes: on the surface of the light-emitting layer or the cathode, the solution of the above-mentioned electron transport material prepared at a certain concentration is subjected to processes such as drop coating, spin coating, soaking, coating, printing, and evaporation.
  • the deposition speed for example, the rotation speed is between 3000-5000rpm
  • the deposition time to control the thickness of the electron transport layer, about 20-60nm, and then at a temperature of 70 ° C to 90 ° C, vacuum Annealing for 0.5-2 hours under the condition that the pressure is not higher than 0.0001Pa, the film is formed, and the solvent and the surface-bound end-capping agent are fully removed.
  • the metal oxide includes at least one of ZnO, TiO 2 , SnO, ZrO 2 , In 2 O 3 , ZnMgO, and AlZnO, and the particle size is 1 ⁇ 25 ⁇ m.
  • the substrate in order to obtain a high-quality light-emitting device, the substrate often needs to undergo a pretreatment process.
  • the pretreatment step includes: cleaning the substrate such as ITO conductive glass with a cleaning agent to initially remove the stains on the surface, and then sequentially. Deionized water, acetone, absolute ethanol, and deionized water were ultrasonically cleaned for 20 minutes to remove impurities on the surface, and finally dried with high-purity nitrogen to obtain the ITO positive electrode.
  • the selection of the substrate is not limited, and a rigid substrate or a flexible substrate may be used.
  • the rigid substrate includes, but is not limited to, one or more of glass and metal foil.
  • flexible substrates include, but are not limited to, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polyether ether ketone (PEEK), polystyrene (PS), polyethersulfone (PES), polycarbonate (PC), polyarylate (PAT), polyarylate (PAR), polyimide (PI), polyvinyl chloride (PV), poly One or more of ethylene (PE), polyvinylpyrrolidone (PVP), and textile fibers.
  • PET polyethylene terephthalate
  • PEN polyethylene terephthalate
  • PEEK polyether ether ketone
  • PS polystyrene
  • PS polyethersulfone
  • PC polycarbonate
  • PAT polyarylate
  • PAR polyarylate
  • PI polyimide
  • the choice of anode material is not limited, and can be selected from doped metal oxides, including but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony Doped tin oxide (ATO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), indium doped zinc oxide (IZO), magnesium doped zinc oxide (MZO), aluminum doped magnesium oxide ( One or more of AMO).
  • ITO indium doped tin oxide
  • FTO fluorine doped tin oxide
  • ATO antimony Doped tin oxide
  • gallium doped zinc oxide GZO
  • indium doped zinc oxide IZO
  • MZO magnesium doped zinc oxide
  • aluminum doped magnesium oxide One or more of AMO.
  • the hole functional layer includes a hole transport layer and a hole injection layer.
  • the hole injection layer includes, but is not limited to, one or more of organic hole injection materials, doped or undoped transition metal oxides, doped or undoped metal chalcogenide compounds .
  • organic hole injection materials include, but are not limited to, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), copper phthalocyanine (CuPc), 2,3, 5,6-tetrafluoro-7,7',8,8'-tetracyanoquinone-dimethyl (F4-TCNQ), 2,3,6,7,10,11-hexacyano-1,4,5 , one or more of 8,9,12-hexaazatriphenylene (HATCN).
  • PDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid
  • CuPc copper phthalocyanine
  • F4-TCNQ 2,3,6,7,10,11-hexacyano-1,
  • the transition metal oxide includes, but is not limited to, one or more of MoO 3 , VO 2 , WO 3 , CrO 3 , and CuO.
  • the metal chalcogenides include, but are not limited to, one or more of MoS 2 , MoSe 2 , WS 2 , WSe 2 , and CuS.
  • the hole transport layer may be selected from organic materials with hole transport capability and/or inorganic materials with hole transport capability.
  • organic materials with hole transport capabilities include, but are not limited to, poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (TFB), poly Vinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine)(poly-TPD), poly(9,9-dioctyl fluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4,4"-tris(carbazol-9-yl)triphenylamine (TCTA), 4, 4'-bis(9-carbazole)biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methylpheny
  • inorganic materials with hole transport capabilities include but are not limited to doped graphene, undoped graphene, C60, doped or undoped MoO 3 , VO 2 One or more of , WO 3 , CrO 3 , CuO, MoS 2 , MoSe 2 , WS 2 , WSe 2 , CuS.
  • the step of preparing the light-emitting layer includes: on the surface of the hole transport layer or the electron transport layer, the solution of the light-emitting substance prepared at a certain concentration is drip-coated, spin-coated, soaked, coated, Printing, evaporation and other processes are deposited to form a film, and the thickness of the light-emitting layer is controlled by adjusting the concentration of the solution, deposition speed and deposition time, about 20-60nm, and dried at an appropriate temperature.
  • quantum dot materials are included in the light-emitting layer, and quantum dot materials include but are not limited to: Group II-IV, Group II-VI, Group II-V, Group III-V, Group III-VI, At least one of Group IV-VI, Group I-III-VI, Group II-IV-VI, Group II-IV-V semiconductor compounds, or a core-shell semiconductor compound composed of at least two of the above semiconductor compounds.
  • the quantum dot functional layer material is selected from at least one semiconductor nanocrystalline compound in CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, or at least two compositions Semiconductor nanocrystalline compounds with mixed type, gradient mixed type, core-shell structure type or joint type and other structures.
  • the quantum dot functional layer material is selected from at least one of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe A semiconductor nanocrystalline compound, or a semiconductor nanocrystalline compound of a mixed type, a gradient mixed type, a core-shell structure type or a joint type of at least two compositions.
  • the quantum dot functional layer material is selected from at least one of perovskite nanoparticle materials (especially luminescent perovskite nanoparticle materials), metal nanoparticle materials, and metal oxide nanoparticle materials. Each of the above quantum dot materials has the characteristics of quantum dots and has good photoelectric performance.
  • the particle size of the quantum dot material ranges from 2 to 10 nm. If the particle size is too small, the film-forming properties of the quantum dot material will deteriorate, and the energy resonance transfer effect between quantum dot particles is significant, which is not conducive to the application of the material. , the particle size is too large, the quantum effect of the quantum dot material is weakened, resulting in a decrease in the photoelectric performance of the material.
  • the obtained display device is packaged, and the package can be packaged by a common machine or manually.
  • the oxygen content and water content are both lower than 0.1ppm to ensure the stability of the device.
  • the display device is a positive structure, including an anode disposed on a substrate, and hole functional layers such as a hole injection layer and a hole transport layer deposited on the surface of the anode, A light-emitting layer deposited on the surface of the hole functional layer, an electronic functional layer such as an electron transport layer deposited on the surface of the light-emitting layer, and a cathode deposited on the surface of the electronic functional layer.
  • hole functional layers such as a hole injection layer and a hole transport layer deposited on the surface of the anode
  • a light-emitting layer deposited on the surface of the hole functional layer
  • an electronic functional layer such as an electron transport layer deposited on the surface of the light-emitting layer
  • a cathode deposited on the surface of the electronic functional layer.
  • the display device is an inverse structure, including a substrate, a cathode deposited on the surface of the substrate, an electronic functional layer such as an electron transport layer deposited on the surface of the cathode, deposited on the electron The luminescent layer on the surface of the functional layer, the hole functional layers such as the hole transport layer and the hole injection layer deposited on the surface of the luminescent layer, and the anode deposited on the surface of the hole functional layer.
  • the embodiment of the present application also provides a display device, which is manufactured by the above method for manufacturing a display device.
  • the display device provided by the embodiment of the present application includes an anode, a hole functional layer, a light-emitting layer, an electronic functional layer and an anode that are stacked and laminated in sequence, wherein the electronic functional layer adopts the above-mentioned electron transport material with small particle size and uniformity, so
  • the prepared electron transport layer has good compactness and good stability, and the contact interface with the adjacent functional layer is optimized to improve the migration and transmission of carriers in the device.
  • a kind of electron transport material its preparation comprises the following steps:
  • TMAH tetramethylammonium hydroxide
  • Example 9 Spin-coat the ethanol solution of zinc oxide (30 mg/mL) in Example 1 at a rotational speed of 3000 rpm for 30 seconds, and then treat it on a vacuum annealing table at 80° C. and 0.001 Pa for 2 hours with a thickness of 40 nm to form an electron transport layer;
  • Example 2 An electron transport material, the difference between its preparation steps and that of Example 1 is that chlorobenzene is added as an end-capping agent in step 4, and the specific addition time and molar ratio are shown in Table 2.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Example 2 is used in step 9.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Example 3 is used in step 9.
  • An electron transport material the difference between its preparation steps and that of Example 1 is that in step 4, the capping agent is added after stirring and reacting for 10 hours and 15 hours respectively, as shown in Table 1 for details.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Comparative Example 1 is used in step 9.
  • step 4 An electron transport material, the difference between its preparation steps and that of Example 2 is that in step 4, the capping agent is added after stirring and reacting for 10 hours and 15 hours respectively, as shown in Table 2 for details.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Comparative Example 2 is used in step 9.
  • step 4 An electron transport material, the difference between its preparation steps and that of Example 3 is that in step 4, the capping agent is added after stirring and reacting for 10 hours and 15 hours, respectively, as shown in Table 3.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Comparative Example 3 is used in step 9.
  • An electron transport material the difference between its preparation steps and that of Example 4 is that in step 4, the capping agent is added after stirring and reacting for 10 hours and 15 hours respectively, as shown in Table 4 for details.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Comparative Example 4 is used in step 9.
  • An electron transport material the difference between its preparation steps and Example 1 is that no end-capping agent is added in step 4, and the direct reaction is 0.5 hours, 1 hour, 2 hours, 5 hours, 10 hours, 15 hours, 20 hours Proceed to step 5 after 1 hour.
  • a display device which is prepared differently from Example 1 in that: the electron transport material prepared in Comparative Example 5 is used in step 9.
  • the particles without end-capping agent have higher surface energy, which makes the materials aggregate together during storage and film formation, resulting in particle growth, uneven distribution of particles, and large particle size.
  • the existence of particles affects the film-forming quality of the material, reduces the photoelectric performance of the device, and even causes a short circuit of the device, causing serious leakage of the device and deteriorating the performance of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种电子传输材料及其制备方法,以及一种显示器件的制备方法。其中,电子传输材料的制备方法,包括步骤:获取金属盐溶液和碱性溶液;将所述金属盐溶液和所述碱性溶液混合后,在金属盐与碱性物质的反应过程中添加封端剂继续反应,得到表面结合有封端剂的金属氧化物电子传输材料;所述封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。本申请制备方法,制得表面结合有封端剂的金属氧化物,降低纳米颗粒的聚集现象,保证金属氧化物纳米颗粒的均一性和分散稳定性,从而提高电子传输材料的成膜性,膜层更加致密性,有利于提高载流子传输迁移效率。

Description

电子传输材料及其制备方法、显示器件的制备方法
本申请要求于2021年05月17日在中国专利局提交的、申请号为202110533104.9、发明名称为“电子传输材料及其制备方法、显示器件的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种电子传输材料及其制备方法,以及一种显示器件的制备方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。量子点(quantum dots,QDs)是一类粒径尺寸大小在量子限域效应内的一种典型的纳米材料,不仅继承了体相半导体的特性,同时又表现出自身独特的光学性能,具体表现为:宽吸收、窄发射、荧光量子点产率高、光热稳定性好等。这些独特的优势使得其在在显示、激光、光伏、生物标记等领域具有广泛的应用前景。量子点发光二极管(QLED),由于具有连续可调的发光光谱、亮度高、色纯度高等的独特光学物理特性,成为下一代显示和照明领域的有力竞争者。QLED器件,广泛采用由阳极、有机空穴传输层、发光层、无机电子传输层和金属阴极构成的三明治结构。基于溶液工艺法制备的QLED显示技术,在下一代显示应用领域的竞争中表现出巨大的优势和潜力。
目前,常用的电子传输层材料的合成方法通常为溶胶-凝胶法。但目前的合成过程,常常存在着氧化锌等电子传输材料纳米颗粒间的互相合并,而且倾向于与大尺寸颗粒的结合,导致电子传输材料的粒径分布较宽,氧化锌等电子传输材料溶液的成膜性较差,从而器件中电子传输层薄膜的导电性较差。
技术问题
本申请实施例的目的之一在于:提供一种电子传输材料及其制备方法,以及一种显示器件的制备方法,旨在解决相关技术制备的氧化锌等电子传输材料粒径分布宽,成膜差,影响电子传输薄膜的导电性的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种电子传输材料的制备方法,包括以下步骤:
获取金属盐溶液和碱性溶液;
将所述金属盐溶液和所述碱性溶液混合后,在金属盐与碱性物质的反应过程中添加封 端剂继续反应,得到表面结合有封端剂的金属氧化物电子传输材料;
所述封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。
第二方面,提供一种电子传输材料,所述电子传输材料包括金属氧化物和结合在所述金属氧化物表面的封端剂,所述封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。
第三方面,提供一种显示器件的制备方法,包括以下步骤:
在含有阳极的衬底上依次叠层制备空穴功能层和发光层;
在所述发光层背离所述空穴功能层的表面沉积上述方法制备的电子传输材料或者上述的电子传输材料后,进行真空退火处理,得到金属氧化物电子传输层;
在所述电子传输层表面制备阴极,得到显示器件;
或者,
在衬底的阴极表面沉积上述方法制备的电子传输材料或者上述的电子传输材料后,进行真空退火处理,得到金属氧化物电子传输层;
在所述电子传输层表面依次叠层制备发光层、空穴功能层和阳极,得到显示器件。
本申请实施例提供的电子传输材料的制备方法的有益效果在于:将所述金属盐溶液和所述碱性溶液混合后,在金属氧化物电子传输材料的合成过程中,添加封端剂继续反应,封端剂通过N原子或卤素原子与金属氧化物表面的氧空位或羟基等活性基团结合,从而包覆在纳米金属氧化物表面,得到表面结合有封端剂的金属氧化物电子传输材料。被封端剂包覆的金属氧化物纳米颗粒失去活性位,纳米颗粒间碰撞聚集在一起的概率减小,降低了纳米颗粒的聚集现象,保证了金属氧化物纳米颗粒的均一性和分散稳定性,从而提高电子传输材料的成膜性,膜层更加致密性,有利于提高载流子传输迁移效率。
本申请实施例提供的电子传输材料的有益效果在于:包括金属氧化物,和通过N原子或卤素原子结合在所述金属氧化物表面的烷烃、环烷烃、聚合物等封端剂,通过封端剂对金属氧化物纳米材料表面的钝化不作用,不但使得电子传输材料粒径更均一,而且提高了金属氧化物材料的稳定性,降低环境因素对金属氧化物材料的破坏作用,从而提高电子传输材料的载流子迁移传输效率。
本申请实施例提供的显示器件的制备方法的有益效果在于:在半器件的发光层表面或者阴极表面沉积上述的电子传输材料后,进行真空退火处理,除去金属氧化物纳米材料表面结合的封端剂,得到金属氧化物电子传输层,再在电子传输层表面继续制备阴极或者依次制备发光层、空穴功能层和阳极,得到显示器件。本申请制备的显示器件,由于采用了 上述粒径小且均一的电子传输材料,因而制备的电子传输层致密性好,稳定性好,并优化了与相邻功能层的接触界面,提高了载流子在器件内的迁移传输。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的电子传输材料的制备方法的流程示意图;
图2是本申请实施例提供的量子点发光二极管的正型结构示意图;
图3是本申请实施例提供的量子点发光二极管的反型结构示意图;
图4是本申请实施例提供的电子传输材料的结构示意图,其中X-R为封端剂,X为N、F、Cl、Br、I中的一种。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
如附图1所示,本申请实施例第一方面提供一种电子传输材料的制备方法,包括以下 步骤:
S10.获取金属盐溶液和碱性溶液;
S20.将金属盐溶液和碱性溶液混合后,在金属盐与碱性物质的反应过程中添加封端剂继续反应,得到表面结合有封端剂的金属氧化物电子传输材料;
封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。
本申请第一方面提供的电子传输材料的制备方法,将金属盐溶液和碱性溶液混合后,在金属氧化物电子传输材料的合成过程中,添加封端剂继续反应,封端剂通过N原子或卤素原子与金属氧化物表面的氧空位或羟基等活性基团结合,从而包覆在纳米金属氧化物表面,分离得到表面结合有封端剂的金属氧化物电子传输材料。被封端剂包覆的金属氧化物纳米颗粒失去活性位,纳米颗粒间碰撞聚集在一起的概率减小,降低了纳米颗粒的聚集现象,保证了金属氧化物纳米颗粒的均一性和分散稳定性,从而提高电子传输材料的成膜性,膜层更加致密性,有利于提高载流子传输迁移效率。
在一些实施例中,上述步骤S10中,金属盐溶液中金属盐选自锌盐、钛盐、锡盐、锆盐、铟盐中的至少一种。在一些具体实施例中,锌盐包括醋酸锌、氯化锌中的至少一种。在一些具体实施例中,钛盐包括醋酸钛、氯化钛中的至少一种。在一些具体实施例中,锡盐包括醋酸锡、氯化锡中的至少一种。本申请上述实施例中采用的金属盐在有机溶剂中均有较好的溶解性,且都能与碱性物质反应原位生产金属氧化物纳米材料。
在一些实施例中,金属盐选自锌盐、钛盐、锡盐、锆盐、铟盐中的至少一种,且金属盐还包括:镁盐、铝盐、钙盐、锂盐中的至少一种。本申请实施例通过在反应体系中添加镁盐、铝盐、钙盐、锂盐等,从而在金属氧化物中掺杂镁、铝、钙、锂等金属元素,可提高金属氧化物纳米材料的电子迁移传到性能。
在一些实施例中,金属盐溶液中溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、四氢呋喃中的至少一种,这些有机溶剂对本申请金属盐均有较好的溶解性,为金属盐和碱性物质之间的反应提供合适的溶剂体系。
在一些实施例中,碱性溶液中碱性物质选自四甲基氢氧化铵、氢氧化锂、氢氧化钾、氢氧化钠中的至少一种;这些碱性物质均能够与金属盐反应生成金属氧化物纳米半导体材料。
在一些实施例中,碱性溶液中溶剂选自乙醇、甲醇、丙醇、异丙醇、丁醇中的至少一种,这些溶剂对碱性物质均有较好的溶解作用。
在一些实施例中,上述步骤S20中,在金属盐与碱性物质反应0.5~5小时后,在该反 应时间段内金属盐与碱性物质反应生成的ZnO、TiO 2、SnO、ZrO 2、In 2O 3、ZnMgO、AlZnO等金属氧化物纳米颗粒的粒径较小,在该反应阶段添加封端剂继续反应15~20小时,通过封端剂结合在金属氧化物纳米颗粒表面,抑制金属氧化物继续成核长大,并降低纳米颗粒间的聚集现象,保证金属氧化物纳米颗粒的均一性和分散稳定性,从而提高电子传输材料的成膜性,膜层更加致密性,有利于提高载流子传输迁移效率。在一些具体实施例中,将金属盐溶液和碱性溶液混合反应0.5小时后添加封端剂、1小时后添加封端剂、1.5小时后添加封端剂、2小时后添加封端剂、2.5小时后添加封端剂、3小时后添加封端剂、3.5小时后添加封端剂、4小时后添加封端剂、4.5小时后添加封端剂或者5小时后添加封端剂。封端剂添加时间越早制备的金属氧化物粒径越小且均一,若封端剂添加过早,则会降低金属盐与碱性物质反应生成金属氧化物的效率,若封端剂添加过晚,则生成的金属氧化物颗粒已经过大,不利于对纳米颗粒粒径的调控。
本申请实施例采用的封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。一方面,这些封端剂含有N原子和卤素原子,可与溶液体系中生成的金属氧化物表面的氧空位结合,或者由于溶胶凝胶制备的金属氧化物表面连接有大量的羟基,封端剂可与金属氧化物表面的羟基形成氢键从而结合在金属氧化物纳米颗粒表面,形成表面结合有封端剂的金属氧化物电子传输材料。另一方面,在本申请实施例电子传输材料沉积成膜后,这些封端剂可通过真空退火的方式从膜层中去除,避免封端剂对载流子迁移传输性能的影响。
在一些实施例中,封端剂中,含有N原子或卤素原子的烷烃的碳原子数为2~16;含有N原子或卤素原子的环烷烃的碳原子数为3~16。在一些实施例中,烷烃包含支链。本申请实施例烷烃封端剂的碳原子数选择2-16,环烷烃碳原子数选择3-16,在该条件下封端剂可有效的阻隔金属氧化物的生长和聚集,从而得到粒径小且均一的金属氧化物。若封端剂的碳链过长,则封端剂粘度过大,或不能充分溶解在反应体系中。另外,也不利于封端剂在后续的器件制作过程中通过真空退火去除。
在一些实施例中,含有N原子或卤素原子的聚合物可较好的溶于反应体系中,且沸点较低,不高于300℃,有利于后续再器件制作过程中通过真空退火去除。
在一些具体实施例中,封端剂选自二乙胺、氯苯、溴苯、聚乙烯吡咯烷酮中的至少一种,这些封端剂溶解性好,与金属氧化物表面结合性能好,且容易通过真空退火去除。
在一些实施例中,将金属盐溶液和碱性溶液混合后,混合溶液中金属盐与碱性物质的摩尔比为1:(1.2~1.8),在该摩尔配比条件下金属盐与碱性物质之间能够较好的反应生成金属氧化物。若碱性物质配比过高,则过量的碱性物质会与金属元素结合生成碱金属沉 淀,降低了金属氧化物纳米材料的生成效率,纯度低,也会影响后续封端剂对金属氧化物纳米材料的包覆作用。在一些具体实施例中,将金属盐溶液和碱性溶液混合后,混合溶液中金属盐与碱性物质的摩尔比可以是1:1.2、1:1.5、1:1.6和1:1.8等。
在一些实施例中,将金属盐溶液和碱性溶液混合的步骤包括:将碱性溶液滴加到温度为40℃~60℃的金属盐溶液中进行混合,使添加的碱性物质与金属盐反应生成金属氧化物。若碱性物质一次性添加过多或者添加速度过快,则一次性过量添加的碱性物质来不及与金属盐反应生成金属氧化物,容易与金属元素结合形成碱金属沉淀。
本申请实施例电子传输材料的制备方法可用于制备以下实施例电子传输材料。
如附图4所示,本申请实施例第二方面提供一种电子传输材料,包括金属氧化物和结合在金属氧化物表面的封端剂,封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。
本申请第二方面提供的电子传输材料包括金属氧化物,和通过N原子或卤素原子结合在金属氧化物表面的烷烃、环烷烃、聚合物等封端剂,通过封端剂对金属氧化物纳米材料表面的钝化不作用,不但使得电子传输材料粒径更均一,而且提高了金属氧化物材料的稳定性,降低环境因素对金属氧化物材料的破坏作用,从而提高电子传输材料的载流子迁移传输效率。
在一些实施例中,电子传输材料的粒径为1~25μm,粒径小且均一,可提高电子传输层的成膜致密性和均匀性,从而提高膜层稳定性。
在一些实施例中,金属氧化物包括:ZnO、TiO 2、SnO、ZrO 2、In 2O 3、ZnMgO、AlZnO中的至少一种,这些金属氧化物电子传输材料均有较高的电子迁移效率。
在一些实施例中,封端剂选自二乙胺、氯苯、溴苯、聚乙烯吡咯烷酮中的至少一种。
本申请实施例第三方面提供一种显示器件的制备方法,包括以下步骤:
S30.在含有阳极的衬底上依次叠层制备空穴功能层和发光层;
S40.在发光层背离空穴功能层的表面沉积上述的电子传输材料后,进行真空退火处理,得到金属氧化物电子传输层;
S50.在电子传输层表面制备阴极,得到显示器件;
或者,
S60.在衬底的阴极表面沉积上述的电子传输材料后,进行真空退火处理,得到金属氧化物电子传输层;
S70.在电子传输层表面依次叠层制备发光层、空穴功能层和阳极,得到显示器件。
本申请第三方面提供的显示器件的制备方法,在半器件的发光层表面或者阴极表面沉 积上述的电子传输材料后,进行真空退火处理,除去金属氧化物纳米材料表面结合的封端剂,得到金属氧化物电子传输层,再在电子传输层表面继续制备阴极或者依次制备发光层、空穴功能层和阳极,得到显示器件。本申请实施例制备的显示器件,由于采用了上述粒径小且均一的电子传输材料,因而制备的电子传输层致密性好,稳定性好,并优化了与相邻功能层的接触界面,提高了载流子在器件内的迁移传输。
在一些实施例中,制备电子传输层的步骤包括:在发光层或者阴极表面,将配制好一定浓度的上述电子传输材料溶液通过滴涂、旋涂、浸泡、涂布、打印、蒸镀等工艺沉积成膜,通过调节溶液的浓度、沉积速度(例如,转速在3000~5000rpm之间)和沉积时间来控制电子传输层的厚度,约20~60nm,然后在温度为70℃~90℃,真空度不高于0.0001Pa的条件下退火0.5~2小时,成膜,充分去除溶剂和表面结合的封端剂。
在一些实施例中,金属氧化物包括ZnO、TiO 2、SnO、ZrO 2、In 2O 3、ZnMgO、AlZnO中的至少一种,粒径为1~25μm。
在一些实施例中,为了得到高质量的发光器件,衬底往往需要经过预处理过程,预处理步骤包括:将ITO导电玻璃等衬底用清洁剂清洗,初步去除表面存在的污渍,随后依次在去离子水、丙酮、无水乙醇、去离子水中分别超声清洗20min,以除去表面存在的杂质,最后用高纯氮气吹干,即可得到ITO正极。
在一些实施例中,衬底的选用不受限制,可以采用刚性基板,也可以采用柔性基板。在一些具体实施例中,刚性基板包括但不限于玻璃、金属箔片中的一种或多种。在一些具体实施例中,柔性基板包括但不限于聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯乙烯(PS)、聚醚砜(PES)、聚碳酸酯(PC)、聚芳基酸酯(PAT)、聚芳酯(PAR)、聚酰亚胺(PI)、聚氯乙烯(PV)、聚乙烯(PE)、聚乙烯吡咯烷酮(PVP)、纺织纤维中的一种或多种。
在一些实施例中,上述步骤中,阳极材料的选用不受限制,可选自掺杂金属氧化物,包括但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)、镓掺杂氧化锌(GZO)、铟掺杂氧化锌(IZO)、镁掺杂氧化锌(MZO)、铝掺杂氧化镁(AMO)中的一种或多种。也可以选自掺杂或非掺杂的透明金属氧化物之间夹着金属的复合电极,包括但不限于AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2中的一种或多种。
在一些实施例中,上述步骤中,制备空穴功能层的步骤包括:在ITO等基板或者发光层表面,将配制好的空穴注入或空穴传输材料的溶液通过滴涂、旋涂、浸泡、涂布、打印、 蒸镀等工艺沉积成膜;通过调节溶液的浓度、沉积速度和沉积时间来控制膜厚,然后在适当温度下热退火处理。
在一些实施例中,空穴功能层包括空穴传输层和空穴注入层。
在一些实施例中,空穴注入层包括但不限于有机空穴注入材料、掺杂或非掺杂的过渡金属氧化物、掺杂或非掺杂的金属硫系化合物中的一种或多种。在一些具体实施例中,有机空穴注入材料包括但不限于聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、酞菁铜(CuPc)、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(F4-TCNQ)、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)中的一种或多种。在一些具体实施例中,过渡金属氧化物包括但不限于MoO 3、VO 2、WO 3、CrO 3、CuO中的一种或多种。在一些具体实施例中,金属硫系化合物包括但不限于MoS 2、MoSe 2、WS 2、WSe 2、CuS中的一种或多种。
在一些实施例中,空穴传输层可选自具有空穴传输能力的有机材料和/或具有空穴传输能力的无机材料。在一些具体实施例中,具有空穴传输能力的有机材料包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种或多种。在一些具体实施例中,具有空穴传输能力的无机材料包括但不限于掺杂石墨烯、非掺杂石墨烯、C60、掺杂或非掺杂的MoO 3、VO 2、WO 3、CrO 3、CuO、MoS 2、MoSe 2、WS 2、WSe 2、CuS中的一种或多种。
在一些实施例中,上述步骤中,制备发光层的步骤包括:在空穴传输层或者电子传输层的表面,将配制好一定浓度的发光物质溶液通过滴涂、旋涂、浸泡、涂布、打印、蒸镀等工艺沉积成膜,通过调节溶液的浓度、沉积速度和沉积时间来控制发光层的厚度,约20~60nm,在适当温度下干燥。
在一些实施例中,发光层中包括量子点材料,量子点材料包括但不限于:元素周期表II-IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族半导体化合物中的至少一种,或上述半导体化合物中至少两种组成的核壳结构半导体化合物。在一些具体实施例中,量子点功能层材料选自CdSe、CdS、CdTe、ZnO、ZnSe、ZnS、ZnTe、HgS、HgSe、HgTe、CdZnSe中的至少一种半导体纳米晶化合物,或至少两种组成的混合类型、梯度混合类型、核壳结构类型或联合类型等结构的半导体纳米晶化合物。在另一些具体实施例中,量子点功能层材料选自InAs、InP、InN、GaN、InSb、InAsP、InGaAs、GaAs、GaP、GaSb、AlP、AlN、AlAs、AlSb、CdSeTe、ZnCdSe中的至少一种半导体纳米 晶化合物,或至少两种组成的混合类型、梯度混合类型、核壳结构类型或联合类型等结构的半导体纳米晶化合物。在另一些实施例中,量子点功能层材料选自钙钛矿纳米粒子材料(特别是发光钙钛矿纳米粒子材料)、金属纳米粒子材料、金属氧化物纳米粒子材料中的至少一种。上述各量子点材料具有量子点的特性,光电性能好。
在一些实施例中,量子点材料的粒径范围为2~10nm,粒径过小,量子点材料成膜性变差,且量子点颗粒之间的能量共振转移效应显著,不利于材料的应用,粒径过大,量子点材料的量子效应减弱,导致材料的光电性能下降。
在一些实施例中,将得到的显示器件进行封装处理,封装处理可采用常用的机器封装,也可以采用手动封装。封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证器件的稳定性。
在一些具体实施例中,如附图2所示,显示器件为正型结构,包括设置在衬底上的阳极,沉积在阳极表面的空穴注入层、空穴传输层等空穴功能层,沉积在空穴功能层表面的发光层,沉积在发光层表面的电子传输层等电子功能层和沉积在电子功能层表面的阴极。
在另一些具体实施例中,如附图3所示,显示器件为反型结构,包括衬底,沉积在衬底表面的阴极,沉积在阴极表面的电子传输层等电子功能层,沉积在电子功能层表面的发光层,沉积在发光层表面的空穴传输层、空穴注入层等空穴功能层,沉积在空穴功能层表面的阳极。
另外,本申请实施例还提供一种显示器件,由上述显示器件的制备方法制得。
本申请实施例提供的显示器件包括依次叠层贴合设置的阳极、空穴功能层、发光层、电子功能层和阳极,其中电子功能层采用了上述粒径小且均一的电子传输材料,因而制备的电子传输层致密性好,稳定性好,并优化了与相邻功能层的接触界面,提高了载流子在器件内的迁移传输。
为使本申请上述实施细节和操作能清楚地被本领域技术人员理解,以及本申请实施例电子传输材料及其制备方法、显示器件的制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种电子传输材料,其制备包括以下步骤:
①称取醋酸锌二水合物3mmol置于三口瓶中,加入30ml超干溶剂DMSO,溶解得到金属盐溶液;
②称取四甲基氢氧化铵(TMAH)5mmol置于塑料烧杯,加入10ml超干乙醇,溶解得 到碱性溶液;
③将醋酸锌溶液置于50℃水浴锅中,搅拌,等温度恒定,利用恒压滴液管将TMAH溶液以滴入醋酸锌溶液;
④分别在搅拌反应0.5小时、1小时、2小时、5小时后,添加二乙胺,锌元素与二乙胺的摩尔比分别为1:5、1:20、1:50,继续反应至20小时;具体如表1所示;
⑤停止搅拌,将溶液倒入离心管,加入过量乙酸乙酯得到浑浊溶液,3000rpm下离心,倒掉上层清液,加入适量超干乙醇,将沉淀重新溶解,即得到氧化锌乙醇溶液。
一种显示器件,其制备包括步骤:
⑥在ITO衬底上,旋涂PEDOT:PSS,转速5000rpm,时间30秒,随后150℃加热15分钟,厚度20nm,形成空穴注入层;
⑦旋涂TFB(8mg/mL),转速3000rpm,时间30秒,随后150℃加热30分钟,厚度30nm,形成空穴传输层;
⑧旋涂量子点(20mg/mL),转速2000rpm,时间30秒,厚度30nm,形成量子点发光层;
⑨旋涂实施例1氧化锌乙醇溶液(30mg/mL),转速3000rpm,时间30秒,随后在真空退火台,80℃,0.001Pa下处理2h,厚度40nm,形成电子传输层;
⑩在ETL层上蒸镀电极,封装,得到显示器件。
实施例2
一种电子传输材料,其制备步骤与实施例1的不同之处分别在于:步骤④中添加氯苯作为封端剂,具体添加时间和摩尔比如表2所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用实施例2制备的电子传输材料。
实施例3
一种电子传输材料,其制备步骤与实施例1的不同之处分别在于:步骤④中添加溴苯作为封端剂,具体添加时间和摩尔比如表3所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用实施例3制备的电子传输材料。
实施例4
一种电子传输材料,其制备步骤与实施例1的不同之处分别在于:步骤④中添加PVP聚乙烯吡咯烷酮作为封端剂,具体添加时间和摩尔比如表3所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用实施例4制备的电 子传输材料。
对比例1
一种电子传输材料,其制备步骤与实施例1的不同之处分别在于:步骤④中封端剂分别在搅拌反应10小时和15小时后再添加,具体如表1所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用对比例1制备的电子传输材料。
对比例2
一种电子传输材料,其制备步骤与实施例2的不同之处分别在于:步骤④中封端剂分别在搅拌反应10小时和15小时后再添加,具体如表2所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用对比例2制备的电子传输材料。
对比例3
一种电子传输材料,其制备步骤与实施例3的不同之处分别在于:步骤④中封端剂分别在搅拌反应10小时和15小时后再添加,具体如表3所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用对比例3制备的电子传输材料。
对比例4
一种电子传输材料,其制备步骤与实施例4的不同之处分别在于:步骤④中封端剂分别在搅拌反应10小时和15小时后再添加,具体如表4所示。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用对比例4制备的电子传输材料。
对比例5
一种电子传输材料,其制备步骤与实施例1的不同之处分别在于:步骤④中不添加封端剂,直接反应0.5小时、1小时、2小时、5小时、10小时、15小时、20小时后进行步骤⑤。
一种显示器件,其制备与实施例1的不同之处在于:步骤⑨中采用对比例5制备的电子传输材料。
为了验证本申请实施例的进步性,对实施例1~4和对比例1~4制备的显示器件电子传输层中金属氧化物颗粒的粒径进行了测量,测试结果如下表1~4所示。
表1
Figure PCTCN2021141736-appb-000001
表2
Figure PCTCN2021141736-appb-000002
表3
Figure PCTCN2021141736-appb-000003
Figure PCTCN2021141736-appb-000004
表4
Figure PCTCN2021141736-appb-000005
由上述表1~4测试结果可知,本申请实施例1~4和对比例1~4添加封端剂后制备的电子传输材料粒径小,且粒径分布窄。未添加封端剂的对比例5则制备的电子传输材料粒径分布宽,均一度差,且粒径更大。
本申请对实施例1~4和对比例1~5中部分显示器件的外量子效率(EQE)和寿命T95@1000nit分别进行了测试,测试结果如下表所示:
表5
Figure PCTCN2021141736-appb-000006
Figure PCTCN2021141736-appb-000007
由上述表5测试结果可知,实施例1~4电子传输材料制备的显示器件的外量子效率和器件寿命并没有因为封端剂的添加而受影响,反而由于电子传输膜层致密性等的提高,在一定程度上提升了器件的光电性能。而在合成后期(10小时、15小时)加入封端剂的对比例1-4,由于合成后期颗粒已经发生了熟化长大的过程,材料粒径在20-30nm左右,较大粒径的电子传输膜层会导致电子传输层导电性的增大,造成器件电子严重过量,从而降低了器件的效率与器件寿命。而对比例5由于在不同合成时间均没有加封端剂,电子传输材料在成膜后,粒径分布较宽,相对于实施例1~4合成过程中加入封端剂的电子传输材料粒径变大。这是由于没有加封端剂的颗粒具有较高的表面能,使得材料在存放过程中,以及成膜过程中发生了相互聚集的现象,导致颗粒长大,颗粒的不均匀分布,以及大粒径颗粒的存在,影响了材料的成膜质量,降低器件光电性能,甚至导致器件的短路,引起器件漏电严重,使得器件性能变差。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (18)

  1. 一种电子传输材料的制备方法,其特征在于,包括以下步骤:
    获取金属盐溶液和碱性溶液;
    将所述金属盐溶液和所述碱性溶液混合后,在金属盐与碱性物质的反应过程中添加封端剂继续反应,得到表面结合有封端剂的金属氧化物电子传输材料;
    所述封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。
  2. 如权利要求1所述的电子传输材料的制备方法,其特征在于,所述封端剂中,所述烷烃的碳原子数为2~16;所述环烷烃的碳原子数为3~16。
  3. 如权利要求1所述的电子传输材料的制备方法,其特征在于,所述烷烃包含支链。
  4. 如权利要求1所述的电子传输材料的制备方法,其特征在于,所述聚合物的沸点不高于300℃。
  5. 如权利要求2~4任一项所述的电子传输材料的制备方法,其特征在于,所述封端剂选自二乙胺、氯苯、溴苯、聚乙烯吡咯烷酮中的至少一种。
  6. 如权利要求1所述的电子传输材料的制备方法,其特征在于,在所述金属盐与所述碱性物质的反应过程中添加封端剂继续反应的步骤包括:在所述金属盐与所述碱性物质反应0.5~5小时后,添加所述封端剂继续反应15~20小时。
  7. 如权利要求1所述的电子传输材料的制备方法,其特征在于,所述金属盐中金属元素与所述封端剂的摩尔比为1:(5~50)。
  8. 如权利要求6或7所述的电子传输材料的制备方法,其特征在于,所述金属盐选自锌盐、钛盐、锡盐、锆盐、铟盐中的至少一种;
    和/或,所述金属盐溶液中溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、四氢呋喃中的至少一种;
    和/或,所述碱性物质选自四甲基氢氧化铵、氢氧化锂、氢氧化钾、氢氧化钠中的至少一种;
    和/或,所述碱性溶液中溶剂选自乙醇、甲醇、丙醇、异丙醇、丁醇中的至少一种。
  9. 如权利要求8所述的电子传输材料的制备方法,其特征在于,将所述金属盐溶液和所述碱性溶液混合的步骤包括:将所述碱性溶液滴加到温度为40℃~60℃的所述金属盐溶液中进行混合。
  10. 如权利要求8所述的电子传输材料的制备方法,其特征在于,将所述金属盐溶液 和所述碱性溶液混合后,混合溶液中所述金属盐与所述碱性物质的摩尔比为1:(1.2~1.8)。
  11. 如权利要求8所述的电子传输材料的制备方法,其特征在于,所述金属盐还包括:镁盐、铝盐、钙盐、锂盐中的至少一种。
  12. 一种电子传输材料,其特征在于,所述电子传输材料包括金属氧化物和结合在所述金属氧化物表面的封端剂,所述封端剂选自含有N原子或卤素原子的烷烃、含有N原子或卤素原子的环烷烃、含有N原子或卤素原子的聚合物中的至少一种。
  13. 如权利要求12所述的电子传输材料,其特征在于,所述电子传输材料的粒径为1~25μm。
  14. 如权利要求12所述的电子传输材料,其特征在于,所述金属氧化物包括:ZnO、TiO 2、SnO、ZrO 2、In 2O 3、ZnMgO、AlZnO中的至少一种。
  15. 如权利要求12所述的电子传输材料,其特征在于,所述封端剂选自二乙胺、氯苯、溴苯、聚乙烯吡咯烷酮中的至少一种。
  16. 如权利要求12所述的电子传输材料,其特征在于,所述封端剂通过N原子或卤素原子结合在所述金属氧化物表面。
  17. 一种显示器件的制备方法,其特征在于,包括以下步骤:
    在含有阳极的衬底上依次叠层制备空穴功能层和发光层;
    在所述发光层背离所述空穴功能层的表面沉积如权利要求1~11任一所述方法制备的电子传输材料或者如权利要求12~16任一所述的电子传输材料后,进行真空退火处理,得到金属氧化物电子传输层;
    在所述电子传输层表面制备阴极,得到显示器件;
    或者,
    在衬底的阴极表面沉积如权利要求1~11任一所述方法制备的电子传输材料或者如权利要求12~16任一所述的电子传输材料后,进行真空退火处理,得到金属氧化物电子传输层;
    在所述电子传输层表面依次叠层制备发光层、空穴功能层和阳极,得到显示器件。
  18. 如权利要求17所述的显示器件的制备方法,其特征在于,所述真空退火处理的条件包括:在温度为70℃~90℃,真空度不高于0.0001Pa的条件下退火0.5~2小时。
PCT/CN2021/141736 2021-05-17 2021-12-27 电子传输材料及其制备方法、显示器件的制备方法 WO2022242178A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/274,341 US20240090255A1 (en) 2021-05-17 2021-12-27 Electron transport material and preparation method therefor, and manufacturing method for display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110533104.9 2021-05-17
CN202110533104.9A CN115377300A (zh) 2021-05-17 2021-05-17 电子传输材料及其制备方法、显示器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2022242178A1 true WO2022242178A1 (zh) 2022-11-24

Family

ID=84058656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141736 WO2022242178A1 (zh) 2021-05-17 2021-12-27 电子传输材料及其制备方法、显示器件的制备方法

Country Status (3)

Country Link
US (1) US20240090255A1 (zh)
CN (1) CN115377300A (zh)
WO (1) WO2022242178A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962179A (zh) * 2017-12-26 2019-07-02 Tcl集团股份有限公司 一种薄膜及其制备方法与qled器件
CN109980099A (zh) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 载流子传输材料及其制备方法和qled器件
US20200259110A1 (en) * 2019-02-13 2020-08-13 Sharp Kabushiki Kaisha Quantum dots with salt ligands with charge transporting properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962179A (zh) * 2017-12-26 2019-07-02 Tcl集团股份有限公司 一种薄膜及其制备方法与qled器件
CN109980099A (zh) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 载流子传输材料及其制备方法和qled器件
US20200259110A1 (en) * 2019-02-13 2020-08-13 Sharp Kabushiki Kaisha Quantum dots with salt ligands with charge transporting properties

Also Published As

Publication number Publication date
US20240090255A1 (en) 2024-03-14
CN115377300A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2020140760A1 (zh) 量子点发光二极管器件及其制备方法
CN209515741U (zh) 一种以Al2O3薄膜为缓冲层的量子点发光二极管
WO2020134162A1 (zh) 量子点发光二极管及其制备方法
US20220328781A1 (en) Composite material, quantum dot light-emitting diode and preparation method thereof
CN113838985B (zh) 氧化锌纳米材料及其制备方法、发光器件
JP2023517364A (ja) ナノ材料、その製造方法及び量子ドット発光ダイオード
CN109326743B (zh) 一种基于纳米钨青铜的发光二极管的制备方法
WO2022242178A1 (zh) 电子传输材料及其制备方法、显示器件的制备方法
CN110739408B (zh) 量子点发光二极管及其制备方法
CN114039002B (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
WO2022143822A1 (zh) 光电器件
CN113707777B (zh) 复合材料及其制备方法、发光器件
CN112531123B (zh) 电子传输膜层的制备方法和量子点发光二极管的制备方法
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
US20240107791A1 (en) Optoelectronic device
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
WO2022252594A1 (zh) 发光器件及其制备方法、显示器件
WO2022143827A1 (zh) 光电器件
WO2022143823A1 (zh) 光电器件
WO2023083098A1 (zh) 一种发光二极管及其制备方法
WO2022143821A1 (zh) 光电器件
WO2022143829A1 (zh) 光电器件
WO2022143826A1 (zh) 光电器件
WO2022143830A1 (zh) 光电器件
WO2022143831A1 (zh) 光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940620

Country of ref document: EP

Kind code of ref document: A1