WO2023088022A1 - 发光器件、发光器件的制备方法及显示装置 - Google Patents

发光器件、发光器件的制备方法及显示装置 Download PDF

Info

Publication number
WO2023088022A1
WO2023088022A1 PCT/CN2022/126313 CN2022126313W WO2023088022A1 WO 2023088022 A1 WO2023088022 A1 WO 2023088022A1 CN 2022126313 W CN2022126313 W CN 2022126313W WO 2023088022 A1 WO2023088022 A1 WO 2023088022A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
nanosheets
nanoneedles
zno
light
Prior art date
Application number
PCT/CN2022/126313
Other languages
English (en)
French (fr)
Inventor
罗强
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023088022A1 publication Critical patent/WO2023088022A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • the present application relates to the field of optoelectronic technology, in particular to a light-emitting device, a method for preparing the light-emitting device, and a display device.
  • Light-emitting devices include but are not limited to organic light-emitting diodes (Organic Light-Emitting Diode, OLED) and quantum dot light-emitting diodes (Quantum Dot Light Emitting Diodes, QLED). layer and cathode.
  • OLED Organic Light-Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • layer and cathode The light-emitting principle of the light-emitting device is: electrons are injected from the cathode of the device to the light-emitting layer, holes are injected from the anode of the device to the light-emitting layer, electrons and holes recombine in the light-emitting layer to form excitons, and the recombined excitons pass through the form of radiation transitions Photons are released, thereby emitting light.
  • an electron transport layer is usually provided between the cathode and the light-emitting layer, and metal oxide nanoparticles are one of the materials used to prepare the electron transport layer. Since in the electron transport layer made of metal oxide nanoparticles, the nanocrystal array formed by the metal oxide nanoparticles has the characteristics of loose arrangement, so the film density of the electron transport layer is low and the specific surface area is small. The effective contact area between the electron transport layer and the light-emitting layer is small, which leads to the difficulty of injecting electrons into the light-emitting layer, reduces the electron injection efficiency of the light-emitting device, and causes problems such as reduced luminous efficiency, reduced luminous brightness, and shortened service life. Phenomenon.
  • the present application provides a light-emitting device, a method for preparing a light-emitting device, and a display device, by optimizing the material of the electron transport layer in the light-emitting device to include metal oxide nanosheets and metal oxide nanoneedles to improve electron transport The effective contact area between the layer and the emitting layer.
  • the present application provides a light emitting device, comprising:
  • the material of the electron transport layer includes metal oxide nanosheets and metal oxide nanoneedles.
  • the metal oxide nanosheets are selected from ZnO nanosheets, SnO 2 nanosheets, ITO nanosheets, Fe 2 O 3 nanosheets, CrO 3 nanosheets, TiO 2 nanosheets, WO 3 nanosheets, CdO nanosheets
  • the metal oxide nanoneedle is from ZnO nanoneedle, SnO2 nanoneedle, ITO nanoneedle, Fe2O3 nanoneedle, CrO3 nanoneedle , TiO 2 nanoneedles, WO 3 nanoneedles, CdO nanoneedles, CuO nanoneedles and MoO 2 nanoneedles in one or more.
  • the metal oxide nanosheets are ZnO nanosheets, and the metal oxide nanoneedles are ZnO nanoneedles; the ZnO nanosheets and the ZnO nanoneedles are staggered, and the ZnO nanoneedles are set in the gaps between adjacent ZnO nanosheets.
  • the metal oxide nanosheets are ZnO nanosheets
  • the metal oxide nanoneedles are ZnO nanoneedles
  • the ZnO nanosheets and the ZnO nanoneedles are in a disordered hybrid arrangement.
  • the number ratio of the ZnO nanosheets: the ZnO nanoneedles is (0.5 ⁇ 0.6):1.
  • the material of the light-emitting layer is an organic light-emitting material or a quantum dot
  • the organic light-emitting material is selected from diarylanthracene derivatives, stilbene aromatic derivatives, pyrene derivatives or fluorene derivatives, blue One or more of colored TBPe fluorescent materials, green-emitting TTPA fluorescent materials, orange-emitting TBRb fluorescent materials, and red-emitting DBP fluorescent materials
  • the quantum dots are selected from II-VI group compounds, III -One or more of Group V compounds, Group IV-VI compounds and Group I-III-VI compounds, wherein the Group II-VI compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO , HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgS
  • the light-emitting device further includes a hole transport layer, the hole transport layer is arranged between the anode and the light-emitting layer, and the material of the hole transport layer is selected from poly(9,9- Dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), 3-hexyl-substituted polythiophene, poly(9-vinylcarbazole), poly[bis(4-phenyl)(4-butyl phenyl)amine], poly(N,N'-bis(4-butylphenyl)-N,N'-diphenyl-1,4-phenylenediamine-CO-9,9-dioctyl fluorene), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, N,N'-diphenyl-N,N '-Bis
  • the present application also provides a method for preparing a light-emitting device, the preparation method comprising the steps of: providing a stacked structure, and preparing and forming a metal oxide nanosheet and a metal oxide on one side of the stacked structure.
  • the stacked structure is a substrate including an anode and a light-emitting layer, and the electron transport layer is formed on the side of the light-emitting layer away from the anode;
  • the stacked structure is a substrate including a cathode, and the electron transport layer is formed on a side of the cathode away from the substrate.
  • the preparation method includes the steps of: providing a laminated structure, preparing and forming an electron transport layer comprising metal oxide nanosheets and metal oxide nanoneedles on one side of the laminated structure;
  • the stacked structure is a substrate including an anode and a light-emitting layer, and the electron transport layer is formed on the side of the light-emitting layer away from the anode;
  • the stacked structure is a substrate including a cathode, and the electron transport layer is formed on a side of the cathode away from the substrate.
  • the first precursor solution is a ZnO precursor solution with a concentration of 1.25mol/L to 2.25mol/L
  • the second precursor solution is a ZnO solution with a concentration of 0.4mol/L to 0.5mol/L. precursor solution.
  • the preparation method of the ZnO precursor solution whose concentration is 1.25mol/L to 2.25mol/L comprises the steps of: providing an alkaline solution and a zinc source solution, adding the zinc source solution to the alkaline In the solution, mix to obtain a ZnO precursor solution; the molar ratio of zinc ions in the zinc source solution: hydroxide ions in the alkaline solution is 1: (2-4);
  • the preparation method of the ZnO precursor solution whose concentration is 0.4mol/L to 0.5mol/L comprises the steps of: providing an alkaline solution and a zinc source solution, adding the zinc source solution to the alkaline solution, mixing A ZnO precursor solution is obtained; the molar ratio of zinc ions in the zinc source solution: hydroxide ions in the alkaline solution is 1: (8-10).
  • the solute of the zinc source solution is selected from zinc oleate, zinc stearate, zinc dodecanoate, zinc myristate, zinc hexadecanoate, zinc acetate, zinc acetylacetonate, zinc iodide , one or more of zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate and zinc sulfate;
  • the solute in the alkaline solution is selected from one or both of sodium hydroxide and potassium hydroxide.
  • the applying the first precursor solution on one side of the laminated structure includes the step of: placing the laminated structure in the first precursor solution and standing for a first preset time;
  • the applying of the second precursor solution on the side where the first metal oxide nanostructure is formed on the stacked structure includes the step of: placing the stacked structure on which the first metal oxide nanostructure is formed on the surface In the second precursor solution, stand still for a second preset time.
  • the first preset time is 1 min to 3 min; the second preset time is 10 min to 30 min.
  • an electron transport layer comprising metal oxide nanosheets and metal oxide nanoneedles is formed on one side of the laminated structure, comprising the following steps:
  • the mixture is coated on one side of the laminated structure, and then dried to obtain an electron transport layer.
  • the adhesion promoter is terpineol.
  • the number ratio of the metal oxide nanosheets: the metal oxide nanoneedles is (0.5 ⁇ 0.6):1.
  • the present application also provides a display device, the display device includes a light emitting device, and the light emitting device includes:
  • the material of the electron transport layer includes metal oxide nanosheets and metal oxide nanoneedles.
  • the metal oxide nanosheets are selected from ZnO nanosheets, SnO 2 nanosheets, ITO nanosheets, Fe 2 O 3 nanosheets, CrO 3 nanosheets, TiO 2 nanosheets, WO 3 nanosheets, CdO nanosheets
  • the metal oxide nanoneedle is from ZnO nanoneedle, SnO2 nanoneedle, ITO nanoneedle, Fe2O3 nanoneedle, CrO3 nanoneedle , TiO 2 nanoneedles, WO 3 nanoneedles, CdO nanoneedles, CuO nanoneedles and MoO 2 nanoneedles in one or more.
  • the number ratio of the ZnO nanosheets: the ZnO nanoneedles is (0.5 ⁇ 0.6):1.
  • the material of the electron transport layer includes metal oxide nanosheets and metal oxide nanoneedles, and the metal oxide nanosheets and metal oxide nanoneedles can fill the structural gaps of each other.
  • the electron transport layer of metal oxide nanoparticles, the electron transport layer of the light-emitting device in the embodiment of the present application has the advantages of high film density and large specific surface area, thereby increasing the effective contact area between the electron transport layer and the light-emitting layer , to promote electron injection, thereby improving the photoelectric performance and service life of light-emitting devices.
  • the steps include: providing a laminated structure, forming an electron transport layer comprising metal oxide nanosheets and metal oxide nanoneedles on one side of the laminated structure, wherein the metal oxide nanosheets Sheets and/or metal oxide nanoneedles can be formed by chemical solution deposition, and the corresponding electron transport layer is a composite array film layer; the method can also be used: first prepare a mixture containing metal oxide nanosheets and metal oxide nanoneedles slurry, and then apply the mixed slurry on one side of the laminated structure, and dry to form an electron transport layer.
  • the corresponding electron transport layer is a mixed powder film layer.
  • the preparation method of the light-emitting device of the present application has a simple process and is suitable for Advantages of industrial production.
  • Applying the light-emitting device or the light-emitting device prepared by the method for preparing the light-emitting device to a display device is beneficial to improving the display effect and service life of the display device. .
  • Fig. 1 is a schematic structural diagram of a first light emitting device provided in an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a second light emitting device provided in an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a third light emitting device provided in an embodiment of the present application.
  • FIG. 4 is a scanning electron microscope image of the electron transport layer of the light emitting device provided in Example 1.
  • FIG. 4 is a scanning electron microscope image of the electron transport layer of the light emitting device provided in Example 1.
  • FIG. 5 is a schematic structural view of the electron transport layer of the light-emitting device provided in Example 1.
  • FIG. 5 is a schematic structural view of the electron transport layer of the light-emitting device provided in Example 1.
  • FIG. 6 is an X-ray diffraction pattern of the electron transport layer of the light-emitting device provided in Example 1.
  • FIG. 7 is a scanning electron microscope image of the electron transport layer of the light-emitting device provided in Example 2.
  • FIG. 8 is a schematic structural view of the electron transport layer of the light emitting device provided in Example 2.
  • FIG. 8 is a schematic structural view of the electron transport layer of the light emitting device provided in Example 2.
  • FIG. 9 is a scanning electron micrograph of the electron transport layer of the light emitting device provided in Comparative Example 5.
  • FIG. 10 is a graph showing current density-voltage characteristics of the light emitting devices of Example 1, Example 2, and Comparative Examples 1 to 5.
  • FIG. 10 is a graph showing current density-voltage characteristics of the light emitting devices of Example 1, Example 2, and Comparative Examples 1 to 5.
  • FIG. 11 is a luminance-voltage characteristic curve of the light emitting devices of Example 1, Example 2 and Comparative Examples 1 to 5.
  • FIG. 11 is a luminance-voltage characteristic curve of the light emitting devices of Example 1, Example 2 and Comparative Examples 1 to 5.
  • Embodiments of the present application provide a light emitting device, a method for manufacturing the light emitting device, and a display device. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • a description of a range from 1 to 6 should be considered to have specifically disclosed subranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., and Single numbers within the stated ranges, eg 1, 2, 3, 4, 5 and 6, apply regardless of the range.
  • a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • the term "and/or” is used to describe the relationship between associated objects, indicating that there may be three relationships, for example, "A and/or B" may indicate three situations: the first situation is that A exists alone ; The second case is the presence of A and B at the same time; the third case is the case of B alone, wherein A and B can be singular or plural respectively.
  • the term "at least one” means one or more, and “multiple” means two or more.
  • the terms "at least one (unit)”, “at least one (unit) below” or similar expressions refer to any combination of these species (units), including single species (units) or plural species (units) random combination.
  • "at least one (one) of a, b, or c" or "at least one (one) of a, b, and c” can be expressed as: a, b, c, a-b (that is, a and b ), a-c, b-c or a-b-c, wherein, a, b and c can be single (one) or multiple (one) respectively.
  • the embodiment of the present application provides a light-emitting device.
  • the light-emitting device 1 includes an anode 11, a cathode 12, a light-emitting layer 13, and an electron transport layer 14.
  • the anode 11 is arranged opposite to the cathode 12, and the light-emitting layer 13 is arranged on the anode.
  • an electron transport layer 14 is disposed between the light-emitting layer 13 and the cathode 12, wherein the material of the electron transport layer 14 includes metal oxide nanosheets and metal oxide nanoneedles.
  • composite metal oxide nanosheets and metal oxide nanoneedles are used as the material of the electron transport layer 14, and the metal oxide nanosheets and metal oxide nanoneedles can fill the structural gaps of each other. Because the material is the electron transport layer 14 of metal oxide nanoparticles, the electron transport layer 14 of the light-emitting device in the embodiment of the present application has the advantages of high film density and large specific surface area, thereby increasing the electron transport layer 14 and the light-emitting layer. The effective contact area between 13 promotes electron injection, which is beneficial to improving the photoelectric performance and service life of the light emitting device 1 .
  • the materials of the anode 11 and the cathode 12 can be common materials in the art, for example: the materials of the anode 11 and the cathode 12 are independently selected from one or more of metals, carbon materials and metal oxides
  • the metal is selected from one or more of Al, Ag, Cu, Mo, Au, Ba, Ca and Mg
  • the carbon material is selected from one or more of graphite, carbon nanotubes, graphene and carbon fibers
  • the metal oxide can be a doped or non-doped metal oxide, selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO and AMO.
  • the anode 11 or the cathode 12 can also be independently selected from composite electrodes sandwiching metal between doped or non-doped transparent metal oxides.
  • the composite electrodes include but are not limited to AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ One or more of ZnS, TiO 2 /Ag/TiO 2 and TiO 2 /Al/TiO 2 .
  • the thickness of the anode 11 is 40 nm to 160 nm
  • the thickness of the cathode 12 is 20 nm to 120 nm.
  • the metal oxide nanosheets are selected from ZnO nanosheets, SnO 2 nanosheets, ITO nanosheets, Fe 2 O 3 nanosheets, CrO 3 nanosheets, TiO 2 nanosheets, WO 3 nanosheets , CdO nanosheets, CuO nanosheets and MoO2 nanosheets in one or more, the metal oxide nanoneedles from ZnO nanoneedles, SnO2 nanoneedles , ITO nanoneedles, Fe2O3 nanoneedles, CrO One or more of 3 nanoneedles, TiO 2 nanoneedles, WO 3 nanoneedles, CdO nanoneedles, CuO nanoneedles and MoO 2 nanoneedles.
  • the metal oxide nanosheets are ZnO nanosheets, and the metal oxide nanoneedles are ZnO nanoneedles; the ZnO nanosheets and ZnO nanoneedles are staggered, and the ZnO nanoneedles are arranged on adjacent ZnO nanoneedles. In the gaps between the sheets, the ZnO nanosheets and ZnO nanoneedles can fill the structural gaps of each other.
  • the metal oxide nanosheets are ZnO nanosheets
  • the metal oxide nanoneedles are ZnO nanoneedles
  • ZnO nanosheets and ZnO nanoneedles are arranged in disorder, so that ZnO nanosheets and ZnO The nanoneedles can fill in each other's structural gaps.
  • the number ratio of ZnO nanosheets:ZnO nanoneedles is (0.5 ⁇ 0.6):1.
  • the number of ZnO nanosheets has limited effect on increasing the effective contact area between the electron transport layer and the light-emitting layer. If the number of ZnO nanosheets is too high, some structural voids of ZnO nanosheets cannot It is effectively filled by ZnO nanoneedles; if the number of ZnO nanosheets is too low, some structural gaps of ZnO nanoneedles cannot be effectively filled by ZnO nanosheets.
  • the material of the light-emitting layer 13 is an organic light-emitting material or a quantum dot
  • the organic light-emitting material includes but is not limited to a diarylanthracene derivative, a stilbene aromatic derivative, a pyrene derivative or a fluorene
  • quantum dots include but are not limited to II -one or more of group VI compound, III-V group compound, IV-VI group compound and I-III-VI group compound, wherein, II-VI group compound is selected from CdS, CdSe, CdTe, ZnS, ZnSe C dZnSeS, CdZnSeTe , CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, H
  • the light emitting device 1 further includes a hole transport layer 15 disposed between the anode 11 and the light emitting layer 13 .
  • the material of the hole transport layer 15 is selected from poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (abbreviated as TFB, CAS No. 220797-16-0), 3-hexyl substituted polythiophene (CAS No. 104934-50-1), poly(9-vinylcarbazole) (referred to as PVK, CAS No.
  • poly[bis(4-phenyl) ( 4-butylphenyl)amine] (abbreviated as Poly-TPD, CAS No. 472960-35-3), poly(N,N'-bis(4-butylphenyl)-N,N'-diphenyl Base-1,4-phenylenediamine-CO-9,9-dioctylfluorene) (referred to as PFB, CAS No. 223569-28-6), 4,4',4"-tri(carbazole-9 -yl) triphenylamine (abbreviated as TCTA, CAS No.
  • CBP 4,4'-bis(9-carbazole) biphenyl
  • TPD N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine
  • NPB N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine
  • the material of the hole transport layer 15 can also be selected from inorganic materials with hole transport capability, including but not limited to one of NiO, WO 3 , MoO 3 and CuO
  • the thickness of the hole transport layer 15 is 10 nm to 50 nm.
  • the light-emitting device in the embodiment of the present application may also include other layer structures, for example, the light-emitting device may also include an electron injection layer, the electron injection layer is arranged between the electron transport layer and the cathode, and the material of the electron injection layer includes but not One or more of alkali metal halides, alkali metal organic complexes and organic phosphine compounds, alkali metal halides include but not limited to LiF, alkali metal organic complexes include but not limited to 8-hydroxy Lithium quinolate, organophosphine compounds include but not limited to one or more of organophosphorus oxides, organothiophosphine compounds and organophosphine selenides.
  • alkali metal halides include but not limited to LiF
  • alkali metal organic complexes include but not limited to 8-hydroxy Lithium quinolate
  • organophosphine compounds include but not limited to one or more of organophosphorus oxides, organothiophosphine compounds and
  • the embodiment of the present application also provides a method for preparing a light-emitting device.
  • the preparation method includes the steps of: providing a laminated structure, and forming a metal oxide nanosheet and a metal oxide nanoneedle on one side of the laminated structure.
  • Electron transport layer ; Wherein, when the light-emitting device is an upright structure, the stacked structure is a substrate including an anode and a light-emitting layer, and the electron transport layer is formed on the side of the light-emitting layer away from the anode; when the light-emitting device is an inverted structure, the stacked
  • the layer structure is a substrate including a cathode, and the electron transport layer is formed on the side of the cathode away from the substrate.
  • an electron transport layer comprising metal oxide nanosheets and metal oxide nanoneedles is formed on one side of the stacked structure, comprising the following steps:
  • the first precursor solution and the second precursor solution are different to form nano-metal oxides with different crystal structures.
  • One of the first metal oxide nanostructure and the second metal oxide nanostructure is a metal oxide nanosheet, and the other is a metal oxide nanoneedle; in an example of the present application, the first metal oxide nanostructure The structure is a metal oxide nanosheet, and the second metal oxide nanostructure is a metal oxide nanoneedle; in another example of the present application, the first metal oxide nanostructure is a metal oxide nanoneedle, and the second metal oxide nanostructure is a metal oxide nanoneedle.
  • the nanostructures are metal oxide nanosheets.
  • the electron transport layer includes, but is not limited to, the first metal oxide nanostructure and the second metal oxide nanostructure, for example, the electron transport layer may also include a metal oxide nanorod structure.
  • drying treatment includes all processes that can make the wet film obtain higher energy and convert it into a dry film, including but not limited to heat treatment and standing to dry naturally, wherein “heat treatment” can be constant temperature heat treatment , can also be a non-isothermal heat treatment (for example, the temperature changes in a gradient manner). In an example of the present application, “drying treatment” refers to a constant temperature heat treatment at 200° C. to 400° C. for 15 minutes to 30 minutes.
  • the laminated structure can be soaked in the first precursor solution or the second precursor solution, and the solution method can be used to coat the first precursor solution or the second precursor solution
  • solution methods include but not limited to spin coating, coating, inkjet printing, blade coating, dipping, soaking, spray coating, roll coating or casting.
  • the first precursor solution is a ZnO precursor solution with a concentration of 1.25mol/L to 2.25mol/L
  • the second precursor solution is a ZnO precursor solution with a concentration of 0.4mol/L to 0.5mol/L.
  • the ZnO precursor solution corresponds to the first metal oxide nanostructure being ZnO nanosheets, and the second metal oxide nanostructure being ZnO nanoneedles.
  • the preparation method of the ZnO precursor solution with a concentration of 1.25mol/L to 2.25mol/L is as follows: providing an alkaline solution and a zinc source solution, adding the zinc source solution to the alkaline solution, Mix to obtain a ZnO precursor solution, wherein the molar ratio of zinc ions (Zn 2+ ) in the zinc source solution: hydroxide ions (OH - ) in the alkaline solution is 1: (2-4).
  • the solute in the alkaline solution is selected from sodium hydroxide and/or potassium hydroxide
  • the zinc source is selected from zinc oleate, zinc stearate, zinc dodecanoate, zinc myristate, zinc hexadecanoate, acetic acid
  • the solvents of the alkaline solution and the zinc source solution are both water
  • the solute in the alkaline solution is sodium hydroxide
  • the zinc source is zinc nitrate hexahydrate
  • Zn 2+ in the zinc source solution alkaline
  • the molar ratio of OH - in the solution is 9:20
  • the concentration of the ZnO precursor solution is 2.25mol/L.
  • the preparation method of the ZnO precursor solution with a concentration of 0.4mol/L to 0.5mol/L is as follows: providing an alkaline solution and a zinc source solution, adding the zinc source solution to the alkaline solution, Mix to obtain a ZnO precursor solution, wherein the molar ratio of Zn 2+ in the zinc source solution: OH - in the alkaline solution is 1: (8-10).
  • the solute in the alkaline solution is selected from sodium hydroxide and/or potassium hydroxide
  • the zinc source is selected from zinc oleate, zinc stearate, zinc dodecanoate, zinc myristate, zinc hexadecanoate, acetic acid
  • the solvents of the alkaline solution and the zinc source solution are both water
  • the solute in the alkaline solution is potassium hydroxide
  • the zinc source is zinc nitrate hexahydrate
  • the molar ratio of OH - in the solution is 1:8, and the concentration of the ZnO precursor solution is 0.5mol/L.
  • step S11 includes the steps of: placing the laminated structure in the first precursor solution, and standing for a first preset time and/or, in step S12, "applying a second precursor solution on the side where the first metal oxide nanostructure is formed on the stacked structure” includes the step of: forming a stacked structure with the first metal oxide nanostructure on the surface Placed in the second precursor solution, standing still for a second preset time, that is, the first metal oxide nanostructure and/or the second metal oxide nanostructure is prepared by chemical solution deposition.
  • the first preset time is 1 min to 3 min
  • the second preset time is 10 min to 30 min.
  • the chemical solution deposition method is used to prepare the first metal oxide nanostructure and the second metal oxide nanostructure, the layered structure with the first metal oxide nanostructure formed on the surface is obtained from the first precursor solution After being taken out, it needs to be cleaned and dried before being put into the second precursor solution.
  • the chemical solution deposition method is mainly suitable for preparing the electron transport layer of the inverted structure light-emitting device, and the obtained electron transport layer is a composite array film layer, that is: ZnO nanosheets and ZnO nanoneedles are arranged in a staggered manner, and the ZnO nanoneedles are arranged in adjacent in the gaps between the ZnO nanosheets.
  • one side of the laminate structure forms an electron transport layer comprising metal oxide nanosheets and metal oxide nanoneedles, comprising the following steps:
  • step S12' coating the mixture in step S11' on one side of the laminated structure, and then drying to obtain an electron transport layer.
  • the above alternative embodiments are not only applicable to the preparation of the electron transport layer of the upright structure light emitting device, but also suitable for the preparation of the electron transport layer of the inverted structure light emitting device.
  • the obtained electron transport layer can be, for example, a mixed powder film layer, that is: ZnO nanometer
  • the flakes and nO nanoneedles are in a disordered hybrid arrangement.
  • the coating methods of "coating the mixture in step S11 on one side of the laminated structure” include but are not limited to spin coating, coating, inkjet printing, blade coating, dipping and pulling, soaking, Spraying, rolling or casting, "drying treatment” all the processes that can make the wet film obtain higher energy and convert it into a dry film, including but not limited to heat treatment and standing to dry naturally, where “heat treatment” can be constant temperature
  • the heat treatment may also be non-isothermal heat treatment (for example, the temperature changes in a gradient manner).
  • Metal oxide nanosheets and metal oxide nanoneedles may be in solid powder form, for example.
  • the number ratio of metal oxide nanosheets: metal oxide nanoneedles is (0.5-0.6):1.
  • the adhesion promoter in step S11' is a transparent material, and the adhesion promoter can be, for example, terpineol.
  • the amount of terpineol added is: metal oxide nanosheets and metal oxide nanoneedles are collectively referred to as nano metal oxides, and for every 2g to 3g of nano metal oxides, correspondingly add 0.2mL to 0.25 mL of terpineol, the mass ratio of metal oxide nanosheets: metal oxide nanoneedles can be 1:1, for example.
  • the preparation method of ZnO nanosheets includes the steps of: preparing a ZnO precursor with a concentration of 1.25mol/L to 2.25mol/L according to the method described above body solution, wherein the zinc source is zinc acetate dihydrate, and then the ZnO precursor solution is sealed and placed at 80°C to precipitate precipitates, solid-liquid separation and precipitates are collected, and then the precipitates are dried to obtain ZnO nanosheets.
  • solid-liquid separation includes, but is not limited to, one or more operations of sedimentation, centrifugation, decantation, filtration and gravity sedimentation.
  • the ZnO nanosheets are dispersed in ethanol, and then centrifuged one or more times, and the precipitate obtained by the centrifugation is collected to be the purified ZnO nanosheets.
  • the amount of ethanol added is, for example, greater than or equal to 50 mL.
  • the metal oxide nanosheet is a ZnO nanoneedle
  • the preparation method of the ZnO nanoneedle includes the steps of: preparing a ZnO precursor with a concentration of 0.6mol/L to 0.8mol/L according to the method described above solution, wherein the zinc source is zinc acetate dihydrate, and then the ZnO precursor solution is sealed and placed at 80° C. to precipitate precipitates, solid-liquid separation, and precipitates are collected, and then the precipitates are dried to obtain ZnO nano needles.
  • solid-liquid separation includes, but is not limited to, one or more operations of sedimentation, centrifugation, decantation, filtration and gravity sedimentation.
  • the ZnO nanosheets are dispersed in ethanol, and then centrifuged one or more times, and the precipitate obtained by the centrifugation is collected to be the purified ZnO nanoneedles.
  • the amount of ethanol added is, for example, greater than or equal to 50 mL.
  • the preparation methods of other layers in the light emitting device include but not limited to solution method and deposition method
  • the solution method includes but not limited to spin coating, coating, inkjet printing, blade coating , immersion pulling, soaking, spraying, rolling or casting
  • deposition methods include chemical methods and physical methods
  • chemical methods include but not limited to chemical vapor deposition, continuous ion layer adsorption and reaction methods, anodic oxidation methods, electrolytic deposition methods Or co-precipitation method
  • physical methods include but not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, atomic layer deposition method or pulsed laser deposition method.
  • a drying process needs to be added to convert the wet film prepared by the solution method into a dry film.
  • An embodiment of the present application further provides a display device, the display device comprising any one of the electroluminescent devices described in the embodiments of the present application.
  • the display device can be any electronic product with a display function, including but not limited to smart phones, tablet computers, notebook computers, digital cameras, digital video cameras, smart wearable devices, smart weighing electronic scales, vehicle displays, televisions Or an e-book reader, wherein the smart wearable device may be, for example, a smart bracelet, a smart watch, a virtual reality (Virtual Reality, VR) helmet, and the like.
  • the light-emitting device is a quantum dot light-emitting diode with an inverted structure. As shown in FIG. 3 , in the direction from bottom to top, the light-emitting device 1 includes a substrate Bottom 10 , cathode 12 , electron transport layer 14 , light emitting layer 13 , hole transport layer 15 , hole injection layer 16 and anode 11 .
  • each layer in the light emitting device 1 is as follows:
  • the material of the substrate 10 is glass with a thickness of 0.5mm;
  • the material of the anode 11 is ITO, and the thickness is 120nm;
  • the material of the cathode 12 is Ag, and the thickness is 35nm;
  • the light-emitting layer 13 is made of CdSe/ZnS quantum dots with a thickness of 60nm;
  • the material of electron transport layer 14 is made up of ZnO nanosheet and ZnO nanoneedle, and ZnO nanosheet and ZnO nanoneedle are arranged alternately, and ZnO nanoneedle is arranged in the space between adjacent ZnO nanosheet, the thickness of electron transport layer 14 60nm;
  • the hole transport layer 15 is made of TFB with a thickness of 100nm;
  • the material of the hole injection layer 16 is PEDOT:PSS, and the thickness is 50nm;
  • step S1.6 Evaporate ITO on the side of the hole injection layer away from the hole transport layer in step S1.5 to obtain an anode, and then package to obtain a light-emitting device.
  • the electron transport layer prepared in step S1.2 is subjected to X-ray diffraction (Diffraction of X-rays, XRD) detection, and the XRD spectrum shown in Figure 6 is obtained, as can be seen from Figure 6, the ZnO nanoneedles in the electron transport layer
  • This embodiment provides a light-emitting device and a preparation method thereof. Compared with the light-emitting device in Example 1, the light-emitting device in this embodiment is only different in that: the composite of ZnO nanosheets and ZnO nanoneedles in the electron transport layer The structures are different. In the electron transport layer of this embodiment, ZnO nanosheets and ZnO nanoneedles are arranged in a disordered manner.
  • step S1.2 replaces step S1.2 with "provide sodium hydroxide solution (solvent is water) and dihydrate zinc acetate solution (solvent is water), the dihydrate zinc acetate solution is added to the sodium hydroxide solution, and the ZnO precursor solution that is 2.25mol/L and the ZnO precursor solution that the concentration is 0.6mol/L are prepared respectively; the concentration is 2.25mol/L L of ZnO precursor solution and ZnO precursor solution with a concentration of 0.6mol/L were sealed and placed at 80°C for 12h to precipitate precipitates, and the precipitates were collected by filtration respectively to obtain ZnO nanosheets and ZnO nanoneedles.
  • This comparative example provides a light-emitting device and its preparation method. Compared with the light-emitting device of Example 1, the difference between the light-emitting device of this comparative example is that the material of the electron transport layer is replaced by "ZnO nanoneedles" .
  • step S1.2 replaces step S1.2 with "provide sodium hydroxide solution (solvent is water) and hexahydrate zinc nitrate solution (solvent is water), zinc nitrate hexahydrate solution was added to the sodium hydroxide solution (the molar ratio of Zn 2+ : OH - was 1:8), mixed to obtain a ZnO precursor solution with a concentration of 0.5mol/L, and then the cathode containing The substrate was soaked in the ZnO precursor solution with a concentration of 0.5mol/L, the standing time was 3min, cleaned, and placed in a constant temperature heat treatment at 400°C to obtain an electron transport layer".
  • This comparative example provides a light-emitting device and its preparation method. Compared with the light-emitting device of Example 1, the difference between the light-emitting device of this comparative example is that the material of the electron transport layer is replaced by "ZnO nanosheets" .
  • step S1.2 replaces step S1.2 with "provide sodium hydroxide solution (solvent is water) and hexahydrate zinc nitrate solution (solvent is water), zinc nitrate hexahydrate solution was added to the sodium hydroxide solution (the molar ratio of Zn 2+ : OH - was 9:20), mixed to obtain a ZnO precursor solution with a concentration of 2.25mol/L, and then the The substrate was soaked in the ZnO precursor solution with a concentration of 2.25mol/L, the standing time was 13min, cleaned, and then heat-treated at a constant temperature of 400°C to obtain an electron transport layer.”
  • This comparative example provides a light-emitting device and its preparation method. Compared with the light-emitting device of Example 1, the difference between the light-emitting device of this comparative example is that the material of the electron transport layer is replaced by "ZnO nanoneedles" .
  • step S1.2 replaces step S1.2 with "provide sodium hydroxide solution (solvent is water) and dihydrate zinc acetate solution (solvent is water), zinc acetate dihydrate solution was added to the sodium hydroxide solution to obtain a ZnO precursor solution with a concentration of 0.6mol/L, the ZnO precursor solution was sealed and placed at 80°C for 12h to precipitate out, and filtered Collect the precipitate, disperse the precipitate in ethanol, and then perform several centrifugation operations to take the precipitate, combine the precipitates collected by each centrifugation and dry them at 120°C to obtain powdered purified ZnO nanoneedles, take 3.0g of purified ZnO nanoneedles and 0.25mL of terpineol were mixed to obtain a mixed slurry, which was spin-coated on the side of the cathode away from the substrate, and dried to obtain an electron transport layer".
  • This comparative example provides a light-emitting device and its preparation method. Compared with the light-emitting device of Example 1, the difference between the light-emitting device of this comparative example is that the material of the electron transport layer is replaced by "ZnO nanosheets" .
  • step S1.2 replaces step S1.2 with "provide sodium hydroxide solution (solvent is water) and dihydrate zinc acetate solution (solvent is water), zinc acetate dihydrate solution was added to the sodium hydroxide solution to obtain a ZnO precursor solution with a concentration of 2.25mol/L, and the ZnO precursor solution was sealed and placed at 80°C for 12h to precipitate out, filtered Collect the precipitate, disperse the precipitate in ethanol, and then perform several centrifugation operations to take the precipitate, combine the precipitates collected by each centrifugation and dry them at 120°C to obtain powdered purified ZnO nanosheets, take 3.0g of purified ZnO nanosheets and 0.25mL of terpineol were mixed to obtain a mixed slurry, which was spin-coated on the side of the cathode away from the substrate, and dried to obtain an electron transport layer".
  • This comparative example provides a light-emitting device and its preparation method. Compared with the light-emitting device of Example 1, the difference between the light-emitting device of this comparative example is that the material of the electron transport layer is replaced by "particle size distribution range 5nm to 10nm ZnO nanoparticles", wherein, the surface morphology of the electron transport layer is shown in Figure 9.
  • step S1.2 replaces step S1.2 with "spin-coat ZnO nanoparticles with a concentration of 30 mg/mL on the side of the cathode away from the substrate - ethanol solution, and then placed at 120° C. for constant temperature heat treatment to form an electron transport layer in a dry film state.
  • the performance testing of the light-emitting devices of Example 1, Example 2, and Comparative Example 1 to Comparative Example 5 was carried out by using the Forsta FPD optical characteristic measuring equipment.
  • the Forstar FPD optical characteristic measuring equipment is a QE-PRO spectrometer controlled by LabView , Keithley 2400 and Keithley 6485 to build the efficiency test system, can measure the voltage, current, brightness, luminescence spectrum and other parameters of the light-emitting device, and obtain the key parameters such as external quantum dot efficiency and power efficiency through calculation, and use the life test equipment to test
  • the above-mentioned service life of each light-emitting device, the current density-voltage characteristic curve and the brightness-voltage characteristic curve of each light-emitting device are shown in Figure 10 and Figure 11, and the maximum luminous efficiency (CE@max, cd/ A), luminous efficiency at 1000nit brightness (CE@1knit,cd/A), brightness at current density of 10mA/cm 2 (La@10mA/cm 2 ,cd/m
  • Example 1 the overall performance of the light-emitting devices of Example 1 and Example 2 is significantly better than that of the light-emitting devices of Comparative Examples 1 to 5, which fully demonstrates the use of composite metal oxide nanosheets and metal oxide nanoneedles as electronic materials.
  • the material of the transport layer, metal oxide nanosheets and metal oxide nanoneedles can fill the structural gaps of each other, and has the advantages of high film density and large specific surface area, thereby increasing the gap between the electron transport layer and the light-emitting layer.
  • the effective contact area can promote electron injection, thereby improving the photoelectric performance and service life of the light-emitting device.
  • the light-emitting device in Example 1 has the best overall performance.
  • the photoelectric performance and service life of the light-emitting device in Example 1 are better, because: the electron transport layer of the light-emitting device in Example 2 is a powder film, and the powder film has a microscopic The crystal is in an agglomerated state, and there will still be a small amount of gaps between the agglomerates. Therefore, the increase in the effective contact area between the electron transport layer and the light-emitting layer is limited, thereby affecting the photoelectric performance and service life of the light-emitting device. improvement is limited.
  • a light-emitting device, a method for preparing a light-emitting device, and a display device provided in the embodiments of the present application are described above in detail.
  • specific examples are used to illustrate the principles and implementation methods of the present application.
  • the description of the above embodiments is only It is used to help understand the method and its core idea of this application; at the same time, for those skilled in the art, according to the idea of this application, there will be changes in the specific implementation and application scope.
  • this specification The content should not be construed as a limitation of the application.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种发光器件、发光器件的制备方法及显示装置,所述发光器件中电子传输层的材料包括金属氧化物纳米片和金属氧化物纳米针,金属氧化物纳米片与金属氧化物纳米针能够彼此填补对方的结构空隙,从而增大电子传输层与发光层之间的有效接触面积,促进电子注入,进而提高发光器件的光电性能和使用寿命。

Description

发光器件、发光器件的制备方法及显示装置
本申请要求于2021年11月19日在中国专利局提交的、申请号为
202111408607.X、申请名称为“发光器件、发光器件的制备方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,具体涉及一种发光器件、发光器件的制备方法及显示装置。
背景技术
发光器件包括但不限于是有机发光二极管(Organic Light-Emitting Diode,OLED)和量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED),发光器件通常为“三明治”结构,包括依次设置的阳极、发光层和阴极。发光器件的发光原理是:电子从器件的阴极注入至发光层,空穴从器件的阳极注入至发光层,电子和空穴在发光层复合形成激子,复合后的激子通过辐射跃迁的形式释放光子,从而发光。
技术问题
在发光器件中,阴极与发光层之间通常还会设置电子传输层,金属氧化物纳米颗粒是用于制备电子传输层的材料之一。由于在采用金属氧化物纳米颗粒制得的电子传输层中,由金属氧化物纳米颗粒形成的纳米晶体阵列具有排列疏松的特性,所以电子传输层的膜层致密性较低且比表面积较小,使得电子传输层与发光层之间的有效接触面积较小,导致电子向发光层注入困难的问题,降低了发光器件的电子注入效率,从而引起发光效率降低、发光亮度降低以及使用寿命缩短等不良现象。
因此,如何提高电子传输层与发光层之间的有效接触面积以改善发光器件的光电性能和使用寿命,对发光器件的应用与发展具有重要意义。
技术解决方案
鉴于此,本申请提供了一种发光器件、发光器件的制备方法及显示装置,通过将发光器件中电子传输层的材料优化为包括金属氧化物纳米片和金属氧化物纳米针,以提高电子传输层与发光层之间的有效接触面积。
第一方面,本申请提供了一种发光器件,包括:
阳极;
阴极,与所述阳极相对设置;
发光层,设置于所述阳极与所述阴极之间;以及
电子传输层,设置于所述发光层与所述阴极之间;
其中,所述电子传输层的材料包括金属氧化物纳米片和金属氧化物纳米针。
可选地,所述金属氧化物纳米片选自ZnO纳米片、SnO 2纳米片、ITO纳米片、Fe 2O 3纳米片、CrO 3纳米片、TiO 2纳米片、WO 3纳米片、CdO纳米片、CuO纳米片以及MoO 2纳米片中的一种或多种,所述金属氧化物纳米针自ZnO纳米针、SnO 2纳米针、ITO纳米针、Fe 2O 3纳米针、CrO 3纳米针、TiO 2纳米针、WO 3纳米针、CdO纳米针、CuO纳米针以及MoO 2纳米针中的一种或多种。
可选地,所述金属氧化物纳米片为ZnO纳米片,且所述金属氧化物纳米针为ZnO纳米针;所述ZnO纳米片与所述ZnO纳米针交错排列,且所述ZnO纳米针设置于相邻的所述ZnO纳米片之间的空隙中。
可选地,所述金属氧化物纳米片为ZnO纳米片,且所述金属氧化物纳米针为ZnO纳米针;所述ZnO纳米片与所述ZnO纳米针呈无序混杂排列。
可选地,在所述电子传输层中,所述ZnO纳米片:所述ZnO纳米针的数量比为(0.5~0.6):1。
可选地,所述发光层的材料为有机发光材料或量子点,所述有机发光材料选自二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物或芴衍生物、发蓝色光的TBPe荧光材料、发绿色光的TTPA荧光材料、发橙色光的TBRb荧光材料及发红色光的DBP荧光材料中的一种或多种;所述量子点选自II-VI族化合物、III-V族化合物、IV-VI族化合物和I-III-VI族化合物中的一种或多种,其中,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、 HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe以及HgZnSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs以及InAlPSb中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe以及SnPbSTe中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2和AgInS 2中的一种或多种。
可选地,所述发光器件还包括空穴传输层,所述空穴传输层设置于所述阳极与所述发光层之间,所述空穴传输层的材料选自聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、3-己基取代聚噻吩、聚(9-乙烯咔唑)、聚[双(4-苯基)(4-丁基苯基)胺]、聚(N,N'-二(4-丁基苯基)-N,N'-二苯基-1,4-苯二胺-CO-9,9-二辛基芴)、4,4',4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、NiO、WO 3、MoO 3以及CuO中的一种或多种。
第二方面,本申请还提供了一种发光器件的制备方法,所述制备方法包括步骤:提供叠层结构,在所述叠层结构的一侧制备形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层;
其中,当所述发光器件为正置型结构时,所述叠层结构为包含阳极和发光层的基板,所述电子传输层形成于所述发光层远离所述阳极的一侧;当所述发光器件为倒置型结构时,所述叠层结构为包含阴极的基板,所述电子传输层形成于所述阴极远离所述基板的一侧。
可选地,所述制备方法包括步骤:提供叠层结构,在所述叠层结构的一侧制备形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层;
其中,当所述发光器件为正置型结构时,所述叠层结构为包含阳极和发光层的基板,所述电子传输层形成于所述发光层远离所述阳极的一侧;当所述发光器件为倒置型结构时,所述叠层结构为包含阴极的基板,所述电子传输层形成于所述阴极远离所述基板的一侧。
可选地,所述第一前驱体溶液为浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液,所述第二前驱体溶液为浓度是0.4mol/L至0.5mol/L的ZnO前驱体溶液。
可选地,所述浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液的制备方法,包括步骤:提供碱性溶液和锌源溶液,将所述锌源溶液加入至所述碱性溶液中,混合获得ZnO前驱体溶液;所述锌源溶液中锌离子:所述碱性溶液中氢氧根离子的摩尔比为1:(2~4);
所述浓度是0.4mol/L至0.5mol/L的ZnO前驱体溶液的制备方法,包括步骤:提供碱性溶液和锌源溶液,将所述锌源溶液加入至所述碱性溶液中,混合获得ZnO前驱体溶液;所述锌源溶液中锌离子:所述碱性溶液中氢氧根离子的摩尔比为1:(8~10)。
可选地,所述锌源溶液的溶质选自油酸锌、硬脂酸锌、十二烷酸锌、十四烷酸锌、十六烷酸锌、醋酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌以及硫酸锌中的一种或多种;
所述碱性溶液中的溶质选自氢氧化钠以及氢氧化钾中的一种或两种。
可选地,所述在所述叠层结构的一侧施加第一前驱体溶液,包括步骤:将所述叠层结构放置于所述第一前驱体溶液中,静置第一预设时间;
所述在所述叠层结构形成有第一金属氧化物纳米结构的一侧施加第二前驱体溶液,包括步骤:将表面形成有所述第一金属氧化物纳米结构的所述叠层结构放置于所述第二前驱体溶液中,静置第二预设时间。
可选地,所述第一预设时间为1min至3min;所述第二预设时间为10min至30min。
可选地,所述叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层,包括如下步骤:
提供混合物,所述混合物包括金属氧化物纳米片、金属氧化物纳米针和助粘剂;以及
将所述混合物涂覆于所述叠层结构的一侧,然后干燥处理,获得电子传输层。
可选地,所述助粘剂为松油醇。
可选地,在所述混合物中,所述金属氧化物纳米片:所述金属氧化物纳米针的数量比为(0.5~0.6):1。
第三方面,本申请还提供了一种显示装置,所述显示装置包括发光器件,所述发光器件包括:
阳极;
阴极,与所述阳极相对设置;
发光层,设置于所述阳极与所述阴极之间;以及
电子传输层,设置于所述发光层与所述阴极之间;
其中,所述电子传输层的材料包括金属氧化物纳米片和金属氧化物纳米针。
可选地,所述金属氧化物纳米片选自ZnO纳米片、SnO 2纳米片、ITO纳米片、Fe 2O 3纳米片、CrO 3纳米片、TiO 2纳米片、WO 3纳米片、CdO纳米片、CuO纳米片以及MoO 2纳米片中的一种或多种,所述金属氧化物纳米针自ZnO纳米针、SnO 2纳米针、ITO纳米针、Fe 2O 3纳米针、CrO 3纳米针、TiO 2纳米针、WO 3纳米针、CdO纳米针、CuO纳米针以及MoO 2纳米针中的一种或多种。
可选地,在所述电子传输层中,所述ZnO纳米片:所述ZnO纳米针的数量比为(0.5~0.6):1。
有益效果
在本申请的发光器件中,电子传输层的材料包括金属氧化物纳米片和金属氧化物纳米针,金属氧化物纳米片与金属氧化物纳米针能够彼此填补对方的结构空隙,相较于材料为金属氧化物纳米颗粒的电子传输层,本申请实施例中发光器件的电子传输层具有膜层致密性高且比表面积较大的优点,从而增大电子传输层与发光层之间的有效接触面积,促进电子注入,进而提高发光器件的光 电性能和使用寿命。
在本申请的发光器件的制备方法中,包括步骤:提供叠层结构,在叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层,其中,金属氧化物纳米片和/或金属氧化物纳米针可以采用化学溶液沉积法制备形成,对应的电子传输层为复合阵列膜层;也可以采用方法:先制备包含金属氧化物纳米片和金属氧化物纳米针的混合浆料,然后将混合浆料涂覆于叠层结构的一侧,干燥形成电子传输层,对应的电子传输层为混合粉体膜层,本申请的发光器件的制备方法具有工序简单、适用于工业化生产的优点。
将所述发光器件或所述发光器件的制备方法制得的发光器件应用于显示装置中,有利于提高显示装置的显示效果和使用寿命。。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中提供的第一种发光器件的结构示意图。
图2为本申请实施例中提供的第二种发光器件的结构示意图。
图3为本申请实施例中提供的第三种发光器件的结构示意图。
图4为实施例1中提供的发光器件的电子传输层的扫描电镜图。
图5为实施例1中提供的发光器件的电子传输层的结构示意图。
图6为实施例1中提供的发光器件的电子传输层的X射线衍射图谱。
图7为实施例2中提供的发光器件的电子传输层的扫描电镜图。
图8为实施例2中提供的发光器件的电子传输层的结构示意图。
图9为对比例5中提供的发光器件的电子传输层的扫描电镜图。
图10为实施例1、实施例2以及对比例1至对比例5的发光器件的电流密度-电压特性曲线图。
图11为实施例1、实施例2以及对比例1至对比例5的发光器件的亮度-电压特性曲线图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供一种发光器件、发光器件的制备方法及显示装置。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
另外,在本申请的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,术语“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示三种情况:第一种情况是单独存在A;第二种情况是同时存在A和B;第三种情况是单独存在B的情况,其中,A和B分别可以是单数或者复数。
在本申请中,术语“至少一种”是指一种或多种,“多种”是指两种或两种以上。术语“至少一种(个)”、“以下至少一种(个)”或其类似表达,指的是这些种(个)中的任意组合,包括单种(个)或复数种(个)的任意组合。例如,“a、b或c中的至少一种(个)”或“a,b和c中的至少一种(个)”均可表示为:a、b、c、a-b(即a和b)、a-c、b-c或a-b-c,其中,a,b和c分别可以是单种(个)或多种(个)。
本申请实施例提供了一种发光器件,如图1所示,发光器件1包括阳极11、阴极12、发光层13以及电子传输层14,阳极11与阴极12相对设置,发光层13设置于阳极11与阴极12之间,电子传输层14设置于发光层13与阴 极12之间,其中,电子传输层14的材料包括金属氧化物纳米片和金属氧化物纳米针。
在本申请实施例中,采用复合的金属氧化物纳米片和金属氧化物纳米针作为电子传输层14的材料,金属氧化物纳米片与金属氧化物纳米针能够彼此填补对方的结构空隙,相较于材料为金属氧化物纳米颗粒的电子传输层14,本申请实施例中发光器件的电子传输层14具有膜层致密性高且比表面积较大的优点,从而增大电子传输层14与发光层13之间的有效接触面积,促进电子注入,有利于提高发光器件1的光电性能和使用寿命。
在本申请实施例中,阳极11和阴极12的材料可以是本领域常见的材料,例如:阳极11和阴极12的材料彼此独立地选自金属、碳材料以及金属氧化物中的一种或多种,金属选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;碳材料选自石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;金属氧化物可以是掺杂或非掺杂金属氧化物,选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种。阳极11或阴极12也可以彼此独立地选自掺杂或非掺杂透明金属氧化物之间夹着金属的复合电极,复合电极包括但不限于是AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2以及TiO 2/Al/TiO 2中的一种或多种。在本申请的一示例中,阳极11的厚度为40nm至160nm,阴极12的厚度为20nm至120nm。
在本申请的一些实施例中,金属氧化物纳米片选自ZnO纳米片、SnO 2纳米片、ITO纳米片、Fe 2O 3纳米片、CrO 3纳米片、TiO 2纳米片、WO 3纳米片、CdO纳米片、CuO纳米片以及MoO 2纳米片中的一种或多种,所述金属氧化物纳米针自ZnO纳米针、SnO 2纳米针、ITO纳米针、Fe 2O 3纳米针、CrO 3纳米针、TiO 2纳米针、WO 3纳米针、CdO纳米针、CuO纳米针以及MoO 2纳米针中的一种或多种。
在本申请的一示例中,金属氧化物纳米片为ZnO纳米片,且金属氧化物纳米针为ZnO纳米针;ZnO纳米片与ZnO纳米针交错排列,且ZnO纳米针设置于相邻的ZnO纳米片之间的空隙中,以使ZnO纳米片与ZnO纳米针能彼此填补对方的结构空隙。
在本申请的另一示例中,金属氧化物纳米片为ZnO纳米片,且金属氧化物纳米针为ZnO纳米针;ZnO纳米片与ZnO纳米针呈无序混杂排列,以使ZnO纳米片与ZnO纳米针能彼此填补对方的结构空隙。
进一步地,在电子传输层中,ZnO纳米片:ZnO纳米针的数量比为(0.5~0.6):1。其中,ZnO纳米片的数量过高或过低均对电子传输层与发光层之间的有效接触面积的增大效果有限,若ZnO纳米片的数量过高,则ZnO纳米片的部分结构空隙无法通过ZnO纳米针有效填充;若ZnO纳米片的数量过低,则ZnO纳米针的部分结构空隙无法通过ZnO纳米片有效填充。
在本申请的一些实施例中,发光层13的材料为有机发光材料或量子点,有机发光材料包括但不限于是二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物或芴衍生物、发蓝色光的TBPe荧光材料、发绿色光的TTPA荧光材料、发橙色光的TBRb荧光材料及发红色光的DBP荧光材料中的一种或多种;量子点包括但不限于是II-VI族化合物、III-V族化合物、IV-VI族化合物和I-III-VI族化合物中的一种或多种,其中,II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe以及HgZnSTe中的一种或多种,III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs以及InAlPSb中的一种或多种,IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe以及SnPbSTe中的一种或多种,I-III-VI族化合物选自CuInS 2、CuInSe 2和AgInS 2中的一种或多种。在本申请的一示例中,发光层13的厚度为60nm至80nm。
在本申请的一些实施例中,如图2所示,发光器件1还包括空穴传输层15,空穴传输层15设置于阳极11与发光层13之间。空穴传输层15的材料选自聚(9,9- 二辛基芴-CO-N-(4-丁基苯基)二苯胺)(简称为TFB,CAS号为220797-16-0)、3-己基取代聚噻吩(CAS号为104934-50-1)、聚(9-乙烯咔唑)(简称为PVK,CAS号为25067-59-8)、聚[双(4-苯基)(4-丁基苯基)胺](简称为Poly-TPD,CAS号为472960-35-3)、聚(N,N'-二(4-丁基苯基)-N,N'-二苯基-1,4-苯二胺-CO-9,9-二辛基芴)(简称为PFB,CAS号为223569-28-6)、4,4',4”-三(咔唑-9-基)三苯胺(简称为TCTA,CAS 5号为139092-78-7)、4,4'-二(9-咔唑)联苯(简称为CBP,CAS号为58328-31-7)、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺(简称TPD,CAS号为 65181-78-4)以及N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(简称NPB,CAS号为123847-85-8)中的一种或多种,此外,空穴传输层15的材料还可以选自具有空穴传输能力的无机材料,包括但不限于是NiO、WO 3、MoO 3以及CuO中的一种或多种。在本申请的一示例中,空穴传输层15的厚度为10nm至50nm。
需要说明的是,本申请实施例的发光器件还可以包括其他层结构,例如发光器件还可以包括电子注入层,电子注入层设置于电子传输层与阴极之间,电子注入层的材料包括但不限于是碱金属卤化物、碱金属有机络合物以及有机膦化合物中的一种或多种,碱金属卤化物包括但不限于是LiF,碱金属有机络合物包括但不限于是8-羟基喹啉锂,有机膦化合物包括但不限于是有机氧化磷、有机硫代膦化合物以及有机硒代膦化合物中的一种或多种。
本申请实施例还提供了一种发光器件的制备方法,所述制备方法包括步骤:提供叠层结构,在所述叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层;其中,当发光器件为正置型结构时,叠层结构为包含阳极和发光层的基板,电子传输层形成于发光层远离阳极的一侧;当发光器件为倒置型结构时,叠层结构为包含阴极的基板,电子传输层形成于阴极远离基板的一侧。
在本申请的一些实施例中,所述叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层,包括如下步骤:
S11、提供第一前驱体溶液,在叠层结构的一侧施加第一前驱体溶液,然后干燥处理,获得表面形成有第一金属氧化物纳米结构的叠层结构;
S12、提供第二前驱体溶液,在叠层结构形成有第一金属氧化物纳米结构 的一侧施加第二前驱体溶液,然后干燥处理,获得表面形成有第一金属氧化物纳米结构和第二金属氧化物纳米结构的叠层结构。
对上述制备方法需要说明的是,第一前驱体溶液和第二前驱体溶液不相同以形成不同晶体结构的纳米金属氧化物。第一金属氧化物纳米结构和第二金属氧化物纳米结构中的一者为金属氧化物纳米片,另一者为金属氧化物纳米针;在本申请的一示例中,第一金属氧化物纳米结构为金属氧化物纳米片,第二金属氧化物纳米结构为金属氧化物纳米针;在本申请的另一示例中,第一金属氧化物纳米结构为金属氧化物纳米针,第二金属氧化物纳米结构为金属氧化物纳米片。可以理解的是,电子传输层包括不限于是第一金属氧化物纳米结构和第二金属氧化物纳米结构,例如电子传输层还可以包括金属氧化物纳米棒结构。
如本申请所用,“干燥处理”包括所有能使湿膜获得更高能量而转变为干膜的工序,包括但不限于是热处理和静置自然晾干,其中,“热处理”可以是恒温式热处理,也可以是非恒温式热处理(例如温度呈梯度式变化),在本申请的一示例中,“干燥处理”是指在200℃至400℃下恒温热处理15min至30min。
对于“在叠层结构的一侧施加第一前驱体溶液”和“在叠层结构形成有第一金属氧化物纳米结构的一侧施加第二前驱体溶液”,施加第一前驱体溶液或第二前驱体溶液的方式不作具体限定,例如可以将叠层结构浸泡于第一前驱体溶液或第二前驱体溶液中,又如可以采用溶液法将第一前驱体溶液或第二前驱体溶液涂覆于叠层结构的一侧,溶液法包括但不限于是旋涂、涂布、喷墨打印、刮涂、浸渍提拉、浸泡、喷涂、滚涂或浇铸。
在本申请的一些实施例中,第一前驱体溶液为浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液,第二前驱体溶液为浓度是0.4mol/L至0.5mol/L的ZnO前驱体溶液,对应第一金属氧化物纳米结构为ZnO纳米片,第二金属氧化物纳米结构为ZnO纳米针。
在本申请的一些实施例中,浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液的制备方法为:提供碱性溶液和锌源溶液,将锌源溶液加入至碱性溶液中,混合获得ZnO前驱体溶液,其中,锌源溶液中锌离子(Zn 2+):碱性溶液中氢氧根离子(OH -)的摩尔比为1:(2~4)。碱性溶液中的溶质选自氢氧化钠和/或氢氧化钾,锌源选自油酸锌、硬脂酸锌、十二烷酸锌、十四烷酸锌、十六烷酸锌、 醋酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌以及硫酸锌中的一种或多种。在本申请的一示例中,碱性溶液和锌源溶液的溶剂均为水,碱性溶液中的溶质为氢氧化钠,锌源为六水合硝酸锌,锌源溶液中Zn 2+:碱性溶液中OH -的摩尔比为9:20,ZnO前驱体溶液的浓度为2.25mol/L。
在本申请的一些实施例中,浓度是0.4mol/L至0.5mol/L的ZnO前驱体溶液的制备方法为:提供碱性溶液和锌源溶液,将锌源溶液加入至碱性溶液中,混合获得ZnO前驱体溶液,其中,锌源溶液中Zn 2+:碱性溶液中OH -的摩尔比为1:(8~10)。碱性溶液中的溶质选自氢氧化钠和/或氢氧化钾,锌源选自油酸锌、硬脂酸锌、十二烷酸锌、十四烷酸锌、十六烷酸锌、醋酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌以及硫酸锌中的一种或多种。在本申请的一示例中,碱性溶液和锌源溶液的溶剂均为水,碱性溶液中的溶质为氢氧化钾,锌源为六水合硝酸锌,锌源溶液中Zn 2+:碱性溶液中OH -的摩尔比为1:8,ZnO前驱体溶液的浓度为0.5mol/L。
在本申请的一些实施例中,步骤S11中“在叠层结构的一侧施加第一前驱体溶液”包括步骤:将叠层结构放置于第一前驱体溶液中,静置第一预设时间;和/或,步骤S12中“在叠层结构形成有第一金属氧化物纳米结构的一侧施加第二前驱体溶液”包括步骤:将表面形成有第一金属氧化物纳米结构的叠层结构放置于第二前驱体溶液中,静置第二预设时间,即采用化学溶液沉积法制备第一金属氧化物纳米结构和/或第二金属氧化物纳米结构。
在本申请的一些实施例中,第一预设时间为1min至3min,且第二预设时间为10min至30min。
需要说明的是,当采用化学溶液沉积法制备第一金属氧化物纳米结构和第二金属氧化物纳米结构时,将表面形成有第一金属氧化物纳米结构的叠层结构从第一前驱体溶液中取出之后,需清洗干净并完成干燥处理工序后再放入第二前驱体溶液中。所述化学溶液沉积法主要适用于制备倒置型结构发光器件的电子传输层,获得电子传输层为复合阵列膜层,即:ZnO纳米片与ZnO纳米针交错排列,且ZnO纳米针设置于相邻的ZnO纳米片之间的空隙中。
作为替代性实施方案,所述叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层,包括如下步骤:
S11’、提供混合物,所述混合物包括金属氧化物纳米片、金属氧化物纳米针和助粘剂;
S12’、将步骤S11’的混合物涂覆于叠层结构的一侧,然后干燥处理,获得电子传输层。
上述替代性实施方案既适用于制备正置型结构发光器件的电子传输层,又适用于制备倒置型结构发光器件的电子传输层,获得电子传输层例如可以是混合粉体膜层,即:ZnO纳米片与nO纳米针呈无序混杂排列。在步骤S12’中,“将步骤S11的混合物涂覆于叠层结构的一侧”的涂覆方式包括但不限于是旋涂、涂布、喷墨打印、刮涂、浸渍提拉、浸泡、喷涂、滚涂或浇铸,“干燥处理”所有能使湿膜获得更高能量而转变为干膜的工序,包括但不限于是热处理和静置自然晾干,其中,“热处理”可以是恒温式热处理,也可以是非恒温式热处理(例如温度呈梯度式变化)。金属氧化物纳米片和金属氧化物纳米针例如可以是固态粉末状。
在本申请的一些实施例中,在步骤S11’的混合物中,金属氧化物纳米片:金属氧化物纳米针的数量比为(0.5~0.6):1。
在本申请的一些实施例中,步骤S11’中的助粘剂为透明的材料,助粘剂例如可以是松油醇。在本申请的一示例中,松油醇的添加量为:将金属氧化物纳米片和金属氧化物纳米针统称纳米金属氧化物,每2g至3g的纳米金属氧化物,对应加入0.2mL至0.25mL的松油醇,金属氧化物纳米片:金属氧化物纳米针的质量比例如可以是1:1。
在本申请的一些实施例中,当金属氧化物纳米片为ZnO纳米片,ZnO纳米片的制备方法包括步骤:依照前文所述的方法制备浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液,其中,锌源为二水合醋酸锌,然后将所述ZnO前驱体溶液密封置于80℃下以析出沉淀,固液分离并收集沉淀,然后对沉淀进行干燥处理,获得ZnO纳米片。其中,“固液分离”包括但不限于是沉淀、离心、倾析、过滤以及重力沉降中的一种或多种操作。为了进一步地提纯ZnO纳米片,将ZnO纳米片分散于乙醇中,然后进行一次或多次离心,收集离心获得的沉淀 物即为提纯的ZnO纳米片,乙醇的添加量例如大于等于50mL。
在本申请的另一示例中,金属氧化物纳米片为ZnO纳米针,ZnO纳米针的制备方法包括步骤:依照前文所述的方法制备浓度是0.6mol/L至0.8mol/L的ZnO前驱体溶液,其中,锌源为二水合醋酸锌,然后将所述ZnO前驱体溶液密封置于80℃下以析出沉淀,固液分离并收集沉淀,然后对沉淀进行干燥处理,获得ZnO纳米针。其中,“固液分离”包括但不限于是沉淀、离心、倾析、过滤以及重力沉降中的一种或多种操作。为了进一步地提纯ZnO纳米针,将ZnO纳米片分散于乙醇中,然后进行一次或多次离心,收集离心获得的沉淀物即为提纯的ZnO纳米针,乙醇的添加量例如大于等于50mL。
需要说明的是,除了电子传输层之外,发光器件中其他层的制备方法包括但不限于是溶液法和沉积法,溶液法包括但不限于是旋涂、涂布、喷墨打印、刮涂、浸渍提拉、浸泡、喷涂、滚涂或浇铸;沉积法包括化学法和物理法,化学法包括但不限于是化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法或共沉淀法,物理法包括但不限于是热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法或脉冲激光沉积法。其中,若采用溶液法制备膜层,需增设干燥处理工序,以使溶液法制得的湿膜转变为干膜。
本申请实施例还提供了一种显示装置,所述显示装置包括本申请实施例中任意一种所述的电致发光器件。所述显示装置可以是任何具有显示功能的电子产品,包括但不限于是智能手机、平板电脑、笔记本电脑、数码相机、数码摄像机、智能可穿戴设备、智能称重电子秤、车载显示器、电视机或电子书阅读器,其中,智能可穿戴设备例如可以是智能手环、智能手表、虚拟现实(Virtual Reality,VR)头盔等。
下面通过具体实施例、对比例和实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例提供了一种发光器件及其制备方法,所述发光器件为倒置型结构的量子点发光二极管,如图3所示,在由下至上的方向上,发光器件1包括依 次设置的衬底10、阴极12、电子传输层14、发光层13、空穴传输层15、空穴注入层16以及阳极11。
发光器件1中各个层的材料与厚度如下:
衬底10的材料为玻璃,厚度为0.5mm;
阳极11的材料为ITO,厚度为120nm;
阴极12的材料为Ag,厚度为35nm;
发光层13的材料为CdSe/ZnS量子点,厚度为60nm;
电子传输层14的材料由ZnO纳米片和ZnO纳米针组成,ZnO纳米片与ZnO纳米针交错排列,且ZnO纳米针设置于相邻的ZnO纳米片之间的空隙中,电子传输层14的厚度为60nm;
空穴传输层15的材料为TFB,厚度为100nm;
空穴注入层16的材料为PEDOT:PSS,厚度为50nm;
本实施例中发光器件的制备方法包括如下步骤:
S1.1、提供衬底,在衬底的一侧蒸镀Ag,获得包含阴极的衬底;
S1.2、提供氢氧化钠溶液(溶剂为水)和六水合硝酸锌溶液(溶剂为水),将六水合硝酸锌溶液加入至氢氧化钠溶液中(Zn 2+:OH -的摩尔比为9:20),混合获得浓度为2.25mol/L的ZnO前驱体溶液;同时,将六水合硝酸锌溶液加入至氢氧化钠溶液中(Zn 2+:OH -的摩尔比为1:8),混合获得浓度为0.5mol/L的ZnO前驱体溶液;然后,将包含阴极的衬底浸泡于浓度为2.25mol/L的ZnO前驱体溶液中,静置时间为3min,清洗干净,并置于400℃下恒温热处理,获得表面形成有ZnO纳米片的叠层结构;接着,将表面形成有ZnO纳米片的叠层结构浸泡于浓度为0.5mol/L的ZnO前驱体溶液中,静置时间为10min,并置于400℃下恒温热处理,形成ZnO纳米针,获得如图4和图5所示的电子传输层;
S1.3、在步骤S1.2的电子传输层远离阴极的一侧旋涂浓度为30mg/mL的CdSe/ZnS量子点-正辛烷溶液,然后置于80℃下热处理20min,获得发光层;
S1.4、在步骤S1.3的发光层远离电子传输层的一侧旋涂浓度为8mg/mL的TFB(CAS号为223569-31-1)-氯苯溶液,然后置于150℃下恒温热处理30min,获得空穴传输层;
S1.5、在步骤S1.4的空穴传输层远离发光层的一侧旋涂PEDOT:PSS水溶 液(CAS号为155090-83-8),然后置于150℃下热处理15min,获得空穴注入层;
S1.6、在步骤S1.5的空穴注入层远离空穴传输层的一侧蒸镀ITO,获得阳极,然后封装获得发光器件。
其中,将步骤S1.2制得的电子传输层进行X射线衍射(Diffraction of X-rays,XRD)检测,获得如图6所示的XRD图谱,由图6可知,电子传输层中ZnO纳米针与ZnO纳米片的衍射峰强度之比为Z1:Z2=530:330,即电子传输层中ZnO纳米针:ZnO纳米片的数量比值约为5:3。
实施例2
本实施例提供了一种发光器件及其制备方法,相较于实施例1的发光器件,本实施例的发光器件的区别之处仅在于:电子传输层中ZnO纳米片和ZnO纳米针的复合结构不相同,在本实施例的电子传输层中,ZnO纳米片与ZnO纳米针呈无序混杂排列。
相较于实施例1的制备方法,本实施例的制备方法的区别之处仅在于:将步骤S1.2替换为“提供氢氧化钠溶液(溶剂为水)和二水合醋酸锌溶液(溶剂为水),将二水合醋酸锌溶液加入至氢氧化钠溶液中,分别制备获得浓度为2.25mol/L的ZnO前驱体溶液和浓度为0.6mol/L的ZnO前驱体溶液;将浓度为2.25mol/L的ZnO前驱体溶液和浓度为0.6mol/L的ZnO前驱体溶液分别密封置于80℃下12h以析出沉淀,分别过滤收集沉淀,获得ZnO纳米片和ZnO纳米针,将ZnO纳米片和ZnO纳米针分别分散于乙醇中,然后分别进行数次离心并取沉淀的操作,接着将分别获得的沉淀置于120℃下烘干,分别获得粉末状的提纯ZnO纳米片和提纯ZnO纳米针;取1.5g的提纯ZnO纳米片、1.5g的提纯ZnO纳米针以及0.25mL的松油醇进行混合,获得混合浆料,在阴极远离衬底的一侧旋涂所述混合浆料,干燥处理获得如图7和图8所示的电子传输层”。
对比例1
本对比例提供了一种发光器件及其制备方法,相较于实施例1的发光器件,本对比例的发光器件的区别之处仅在于:将电子传输层的材料替换为“ZnO纳米针”。
相较于实施例1的制备方法,本对比例的制备方法的区别之处仅在于:将 步骤S1.2替换为“提供氢氧化钠溶液(溶剂为水)和六水合硝酸锌溶液(溶剂为水),将六水合硝酸锌溶液加入至氢氧化钠溶液中(Zn 2+:OH -的摩尔比为1:8),混合获得浓度为0.5mol/L的ZnO前驱体溶液,然后将包含阴极的衬底浸泡于浓度为0.5mol/L的ZnO前驱体溶液中,静置时间为3min,清洗干净,并置于400℃下恒温热处理,获得电子传输层”。
对比例2
本对比例提供了一种发光器件及其制备方法,相较于实施例1的发光器件,本对比例的发光器件的区别之处仅在于:将电子传输层的材料替换为“ZnO纳米片”。
相较于实施例1的制备方法,本对比例的制备方法的区别之处仅在于:将步骤S1.2替换为“提供氢氧化钠溶液(溶剂为水)和六水合硝酸锌溶液(溶剂为水),将六水合硝酸锌溶液加入至氢氧化钠溶液中(Zn 2+:OH -的摩尔比为9:20),混合获得浓度为2.25mol/L的ZnO前驱体溶液,然后将包含阴极的衬底浸泡于浓度为2.25mol/L的ZnO前驱体溶液中,静置时间为13min,清洗干净,并置于400℃下恒温热处理,获得电子传输层”。
对比例3
本对比例提供了一种发光器件及其制备方法,相较于实施例1的发光器件,本对比例的发光器件的区别之处仅在于:将电子传输层的材料替换为“ZnO纳米针”。
相较于实施例1的制备方法,本对比例的制备方法的区别之处仅在于:将步骤S1.2替换为“提供氢氧化钠溶液(溶剂为水)和二水合醋酸锌溶液(溶剂为水),将二水合醋酸锌溶液加入至氢氧化钠溶液中以制得浓度为0.6mol/L的ZnO前驱体溶液,将所述ZnO前驱体溶液密封置于80℃下12h以析出沉淀,过滤收集沉淀,将沉淀分散于乙醇中,然后进行数次离心并取沉淀的操作,合并每次离心收集的沉淀置于120℃下烘干,获得粉末状的提纯ZnO纳米针,取3.0g的提纯ZnO纳米针以及0.25mL的松油醇进行混合,获得混合浆料,在阴极远离衬底的一侧旋涂所述混合浆料,干燥处理获得电子传输层”。
对比例4
本对比例提供了一种发光器件及其制备方法,相较于实施例1的发光器 件,本对比例的发光器件的区别之处仅在于:将电子传输层的材料替换为“ZnO纳米片”。
相较于实施例1的制备方法,本对比例的制备方法的区别之处仅在于:将步骤S1.2替换为“提供氢氧化钠溶液(溶剂为水)和二水合醋酸锌溶液(溶剂为水),将二水合醋酸锌溶液加入至氢氧化钠溶液中以制得浓度为2.25mol/L的ZnO前驱体溶液,将所述ZnO前驱体溶液密封置于80℃下12h以析出沉淀,过滤收集沉淀,将沉淀分散于乙醇中,然后进行数次离心并取沉淀的操作,合并每次离心收集的沉淀置于120℃下烘干,获得粉末状的提纯ZnO纳米片,取3.0g的提纯ZnO纳米片以及0.25mL的松油醇进行混合,获得混合浆料,在阴极远离衬底的一侧旋涂所述混合浆料,干燥处理获得电子传输层”。
对比例5
本对比例提供了一种发光器件及其制备方法,相较于实施例1的发光器件,本对比例的发光器件的区别之处仅在于:将电子传输层的材料替换为“粒径分布范围为5nm至10nm的ZnO纳米颗粒”,其中,电子传输层的表面形貌如图9所示。
相较于实施例1的制备方法,本对比例的制备方法的区别之处仅在于:将步骤S1.2替换为“在阴极远离衬底的一侧旋涂浓度为30mg/mL的ZnO纳米颗粒-乙醇溶液,然后置于120℃下恒温热处理,形成干膜状态的电子传输层。
实验例
采用弗士达FPD光学特性测量设备对实施例1、实施例2、对比例1至对比例5的发光器件进行性能检测,其中,弗士达FPD光学特性测量设备是由LabView控制QE-PRO光谱仪、Keithley 2400以及Keithley 6485搭建的效率测试系统,能够测量获得发光器件的电压、电流、亮度、发光光谱等参数,并通过计算获得外量子点效率、功率效率等关键参数,并采用寿命测试设备测试上述的各个发光器件的使用寿命,各个发光器件的电流密度-电压特性曲线图和亮度-电压特性曲线图如图10和图11所示,各个发光器件的最大发光效率(CE@max,cd/A)、1000nit亮度下的发光效率(CE@1knit,cd/A)、电流密度为10mA/cm 2时的亮度(L-a@10mA/cm 2,cd/m 2)、最高亮度(L-a@max,cd/m 2)以及在1000nit的亮度下亮度由100%衰减至95%所需的时间(LT95@1000nit,h)详见下 表1:
表1实施例1、实施例2、对比例1至对比例5的的发光器件的性能检测结果
Figure PCTCN2022126313-appb-000001
由表1可知,实施例1和实施例2的发光器件的综合性能明显优于对比例1至对比例5的发光器件,充分说明采用复合的金属氧化物纳米片和金属氧化物纳米针作为电子传输层的材料,金属氧化物纳米片与金属氧化物纳米针能够彼此填补对方的结构空隙,具有膜层致密性高且比表面积较大的优点,从而增大电子传输层与发光层之间的有效接触面积,促进电子注入,进而提高发光器件的光电性能和使用寿命,其中,实施例1的发光器件的综合性能最佳。相较于实施例2的发光器件,实施例1的发光器件的光电性能和使用寿命更优,原因在于:实施例2中发光器件的电子传输层为粉体膜,粉体膜在微观下的晶体为团聚状态,团聚体与团聚体之间仍会存在微量的间隙,因此,对电子传输层与发光层之间的有效接触面积的增大幅度有限,从而对发光器件的光电性能和使用寿命的改善程度有限。
由图10可知,在测试电压不高于3.5V的范围内下,随着测试电压的升高,各个发光器件的电流密度均随之升高,但实施例1和实施例2的发光器件的电流密度升高幅度高于对比例1至对比例5的发光器件,其中,实施例1的发光 器件的电流密度最佳。由图11可知,在测试电压为2.0V至3.2V的范围内,随着测试电压的升高,各个发光器件的亮度均随之升高,但实施例1和实施例2的发光器件的亮度升高幅度高于对比例1至对比例5的发光器件,其中,实施例1的发光器件的亮度最佳。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种发光器件、发光器件的制备方法及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种发光器件,其中,包括:
    阳极;
    阴极,与所述阳极相对设置;
    发光层,设置于所述阳极与所述阴极之间;以及
    电子传输层,设置于所述发光层与所述阴极之间;
    其中,所述电子传输层的材料包括金属氧化物纳米片和金属氧化物纳米针。
  2. 根据权利要求1所述的发光器件,其中,所述金属氧化物纳米片选自ZnO纳米片、SnO 2纳米片、ITO纳米片、Fe 2O 3纳米片、CrO 3纳米片、TiO 2纳米片、WO 3纳米片、CdO纳米片、CuO纳米片以及MoO 2纳米片中的一种或多种,所述金属氧化物纳米针自ZnO纳米针、SnO 2纳米针、ITO纳米针、Fe 2O 3纳米针、CrO 3纳米针、TiO 2纳米针、WO 3纳米针、CdO纳米针、CuO纳米针以及MoO 2纳米针中的一种或多种。
  3. 根据权利要求1或2所述的发光器件,其中,所述金属氧化物纳米片为ZnO纳米片,且所述金属氧化物纳米针为ZnO纳米针;所述ZnO纳米片与所述ZnO纳米针交错排列,且所述ZnO纳米针设置于相邻的所述ZnO纳米片之间的空隙中。
  4. 根据权利要求1或2所述的发光器件,其中,所述金属氧化物纳米片为ZnO纳米片,且所述金属氧化物纳米针为ZnO纳米针;所述ZnO纳米片与所述ZnO纳米针呈无序混杂排列。
  5. 根据权利要求1至4任一项中所述的发光器件,其中,在所述电子传输层中,所述ZnO纳米片:所述ZnO纳米针的数量比为(0.5~0.6):1。
  6. 根据权利要求1至5任一项中所述的发光器件,其中,所述发光层的材料为有机发光材料或量子点,所述有机发光材料选自二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物或芴衍生物、发蓝色光的TBPe荧光材料、发绿色光的TTPA荧光材料、发橙色光的TBRb荧光材料及发红色光的DBP荧光材料中的一种或多种;所述量子点选自II-VI族化合物、III-V族化合物、IV-VI 族化合物和I-III-VI族化合物中的一种或多种,其中,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe以及HgZnSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs以及InAlPSb中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe以及SnPbSTe中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2和AgInS 2中的一种或多种。
  7. 根据权利要求1至6任一项中所述的发光器件,其中,所述发光器件还包括空穴传输层,所述空穴传输层设置于所述阳极与所述发光层之间,所述空穴传输层的材料选自聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、3-己基取代聚噻吩、聚(9-乙烯咔唑)、聚[双(4-苯基)(4-丁基苯基)胺]、聚(N,N'-二(4-丁基苯基)-N,N'-二苯基-1,4-苯二胺-CO-9,9-二辛基芴)、4,4',4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、NiO、WO 3、MoO 3以及CuO中的一种或多种。
  8. 一种发光器件的制备方法,其中,所述制备方法包括步骤:提供叠层结构,在所述叠层结构的一侧制备形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层;
    其中,当所述发光器件为正置型结构时,所述叠层结构为包含阳极和发光层的基板,所述电子传输层形成于所述发光层远离所述阳极的一侧;当所述发光器件为倒置型结构时,所述叠层结构为包含阴极的基板,所述电子传输层形成于所述阴极远离所述基板的一侧。
  9. 根据权利要求8所述的制备方法,其中,所述叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层,包括如下步骤:
    提供第一前驱体溶液,在所述叠层结构的一侧施加第一前驱体溶液,然后干燥处理,获得表面形成有第一金属氧化物纳米结构的叠层结构;
    提供第二前驱体溶液,在所述叠层结构形成有第一金属氧化物纳米结构的一侧施加第二前驱体溶液,然后干燥处理,获得表面形成有第一金属氧化物纳米结构和第二金属氧化物纳米结构的叠层结构;
    其中,所述第一前驱体溶液和所述第二前驱体溶液不相同;所述第一金属氧化物纳米结构和所述第二金属氧化物纳米结构中的一者为金属氧化物纳米片,另一者为金属氧化物纳米针。
  10. 根据权利要求9所述的制备方法,其中,所述第一前驱体溶液为浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液,所述第二前驱体溶液为浓度是0.4mol/L至0.5mol/L的ZnO前驱体溶液。
  11. 根据权利要求10所述的制备方法,其中,所述浓度是1.25mol/L至2.25mol/L的ZnO前驱体溶液的制备方法,包括步骤:提供碱性溶液和锌源溶液,将所述锌源溶液加入至所述碱性溶液中,混合获得ZnO前驱体溶液;所述锌源溶液中锌离子:所述碱性溶液中氢氧根离子的摩尔比为1:(2~4);
    所述浓度是0.4mol/L至0.5mol/L的ZnO前驱体溶液的制备方法,包括步骤:提供碱性溶液和锌源溶液,将所述锌源溶液加入至所述碱性溶液中,混合获得ZnO前驱体溶液;所述锌源溶液中锌离子:所述碱性溶液中氢氧根离子的摩尔比为1:(8~10)。
  12. 根据权利要求11所述的制备方法,其中,所述锌源溶液的溶质选自油酸锌、硬脂酸锌、十二烷酸锌、十四烷酸锌、十六烷酸锌、醋酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌以及硫酸锌中的一种或多种;
    所述碱性溶液中的溶质选自氢氧化钠以及氢氧化钾中的一种或多种。
  13. 根据权利要求9至12任一项中所述的制备方法,其中,所述在所述叠层结构的一侧施加第一前驱体溶液,包括步骤:将所述叠层结构放置于所述第一前驱体溶液中,静置第一预设时间;
    所述在所述叠层结构形成有第一金属氧化物纳米结构的一侧施加第二前驱体溶液,包括步骤:将表面形成有所述第一金属氧化物纳米结构的所述叠层结构放置于所述第二前驱体溶液中,静置第二预设时间。
  14. 根据权利要求13所述的制备方法,其中,所述第一预设时间为1min至3min;所述第二预设时间为10min至30min。
  15. 根据权利要求8所述的制备方法,其中,所述叠层结构的一侧形成包含金属氧化物纳米片和金属氧化物纳米针的电子传输层,包括如下步骤:
    提供混合物,所述混合物包括金属氧化物纳米片、金属氧化物纳米针和助粘剂;以及
    将所述混合物涂覆于所述叠层结构的一侧,然后干燥处理,获得电子传输层。
  16. 根据权利要求15所述的制备方法,其中,所述助粘剂为松油醇。
  17. 根据权利要求15或16所述的制备方法,其中,在所述混合物中,所述金属氧化物纳米片:所述金属氧化物纳米针的数量比为(0.5~0.6):1。
  18. 一种显示装置,其中,所述显示装置包括发光器件,所述发光器件包括:
    阳极;
    阴极,与所述阳极相对设置;
    发光层,设置于所述阳极与所述阴极之间;以及
    电子传输层,设置于所述发光层与所述阴极之间;
    其中,所述电子传输层的材料包括金属氧化物纳米片和金属氧化物纳米针。
  19. 根据权利要求18所述的显示装置,其中,所述金属氧化物纳米片选自ZnO纳米片、SnO 2纳米片、ITO纳米片、Fe 2O 3纳米片、CrO 3纳米片、TiO 2纳米片、WO 3纳米片、CdO纳米片、CuO纳米片以及MoO 2纳米片中的一种或多种,所述金属氧化物纳米针自ZnO纳米针、SnO 2纳米针、ITO纳米针、Fe 2O 3纳米针、CrO 3纳米针、TiO 2纳米针、WO 3纳米针、CdO纳米针、CuO纳米针以及MoO 2纳米针中的一种或多种。
  20. 根据权利要求18或19所述的显示装置,其中,在所述电子传输层中, 所述ZnO纳米片:所述ZnO纳米针的数量比为(0.5~0.6):1。
PCT/CN2022/126313 2021-11-19 2022-10-20 发光器件、发光器件的制备方法及显示装置 WO2023088022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111408607.X 2021-11-19
CN202111408607.XA CN116156920A (zh) 2021-11-19 2021-11-19 发光器件、发光器件的制备方法及显示装置

Publications (1)

Publication Number Publication Date
WO2023088022A1 true WO2023088022A1 (zh) 2023-05-25

Family

ID=86358779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126313 WO2023088022A1 (zh) 2021-11-19 2022-10-20 发光器件、发光器件的制备方法及显示装置

Country Status (2)

Country Link
CN (1) CN116156920A (zh)
WO (1) WO2023088022A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374953A (zh) * 2015-12-24 2016-03-02 Tcl集团股份有限公司 一种量子点发光二极管及制备方法、发光模组与显示装置
US20160293346A1 (en) * 2015-04-05 2016-10-06 Purdue Research Foundation Pseudocapacitive electrodes and methods of forming
CN107492587A (zh) * 2017-08-10 2017-12-19 青岛海信电器股份有限公司 一种qled显示器件、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160293346A1 (en) * 2015-04-05 2016-10-06 Purdue Research Foundation Pseudocapacitive electrodes and methods of forming
CN105374953A (zh) * 2015-12-24 2016-03-02 Tcl集团股份有限公司 一种量子点发光二极管及制备方法、发光模组与显示装置
CN107492587A (zh) * 2017-08-10 2017-12-19 青岛海信电器股份有限公司 一种qled显示器件、制备方法及应用

Also Published As

Publication number Publication date
CN116156920A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
WO2023088022A1 (zh) 发光器件、发光器件的制备方法及显示装置
CN116987298A (zh) 薄膜、发光器件与显示装置
WO2023056838A1 (zh) 薄膜及其制备方法、光电器件
WO2023197658A1 (zh) 发光器件、发光器件的制备方法及显示装置
WO2023116207A1 (zh) 组合物、组合物的制备方法及发光器件
WO2024099114A1 (zh) 光电器件的制备方法、光电器件与电子设备
WO2023078138A1 (zh) 一种光电器件及其制备方法、显示装置
WO2023197659A1 (zh) 发光器件的制备方法、发光器件与显示装置
WO2024093747A1 (zh) 复合材料、复合材料的制备方法与包含复合材料的光电器件
WO2023082964A1 (zh) 复合物、复合物的制备方法及电致发光器件
WO2024109340A1 (zh) 薄膜的制备方法、发光器件与电子设备
CN116367578A (zh) 发光器件、发光器件的制备方法以及显示装置
CN113130788B (zh) 复合材料、薄膜、量子点发光二极管
CN117222244A (zh) 复合材料、薄膜、发光器件与显示装置
CN116425711A (zh) 化合物、发光器件及其制备方法与显示装置
CN117430092A (zh) 复合材料、复合材料的制备方法、光电器件与电子设备
CN116156919A (zh) 发光器件及其制备方法、显示装置
CN117135980A (zh) 发光器件的制备方法、发光器件与显示装置
CN117998949A (zh) 复合材料及包含其的发光器件与显示设备
CN116981310A (zh) 发光器件的制备方法、发光器件与显示装置
CN117998885A (zh) 金属氧化物及包含其的发光器件与显示设备
CN116437690A (zh) 发光器件的制备方法、发光器件及显示装置
CN117580385A (zh) 发光器件、发光器件的制备方法与显示装置
CN116981311A (zh) 发光器件的制备方法、发光器件与显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894559

Country of ref document: EP

Kind code of ref document: A1