WO2020048527A1 - 一种复合材料与量子点发光二极管 - Google Patents

一种复合材料与量子点发光二极管 Download PDF

Info

Publication number
WO2020048527A1
WO2020048527A1 PCT/CN2019/104735 CN2019104735W WO2020048527A1 WO 2020048527 A1 WO2020048527 A1 WO 2020048527A1 CN 2019104735 W CN2019104735 W CN 2019104735W WO 2020048527 A1 WO2020048527 A1 WO 2020048527A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light emitting
composite material
oil
ligand
Prior art date
Application number
PCT/CN2019/104735
Other languages
English (en)
French (fr)
Inventor
覃辉军
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811046064.XA external-priority patent/CN110885674A/zh
Priority claimed from CN201811046126.7A external-priority patent/CN110890470A/zh
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2020048527A1 publication Critical patent/WO2020048527A1/zh
Priority to US17/039,657 priority Critical patent/US20210020858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present disclosure relates to the field of quantum dot light emitting devices, and in particular, to a composite material and a quantum dot light emitting diode.
  • quantum dot materials with photoluminescence efficiency of up to 100%, which are used in biomarkers, sensor devices, and light emitting diodes (LEDs).
  • the external quantum efficiency of the device is very low, and the red, green, and blue devices reportedly have less than 20% efficiency. Why is there such a big difference between the photoluminescence efficiency and electroluminescence efficiency of quantum dot materials? This is mainly due to the use of light excitation for quantum dot materials and electrical excitation for devices.
  • the quantum dot light-emitting layer has higher requirements on other functional layers, such as the electron transport layer and the hole transport layer. It can only be obtained if the other functional layers reach a satisfactory situation in terms of work function, transmission performance, and stability. Higher device efficiency and life.
  • a very important factor that determines the efficiency of a quantum dot device is that the electron transport rate and the hole transport rate are balanced.
  • the conventional device structure generally has an electron transport rate greater than the hole transport rate. It is difficult to achieve a balance between the two, resulting in lower device efficiency and service life. .
  • an object of the present disclosure is to provide a composite material and a quantum dot light emitting diode, which aims to solve the problem of low device efficiency / lifetime.
  • a quantum dot light emitting diode includes an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode, wherein the quantum dot light emitting layer includes a first quantum dot light emitting layer and the first quantum dot.
  • the material of the light-emitting layer is a composite material, and the composite material includes: a light-emitting quantum dot, a halogen ligand and an oil-soluble organic ligand bound on the surface of the light-emitting quantum dot.
  • the surface of the light-emitting quantum dot has a mixed ligand: a halogen ligand and an oil-soluble organic ligand, and the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots and the carrier transmission rate in the light-emitting layer. , Balance the electron and hole transport rates in the light emitting layer of the device, improve the light emitting efficiency of the device, reduce the operating voltage, and increase the service life of the device.
  • FIG. 1 is a schematic structural diagram of a quantum dot light emitting diode according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a quantum dot light emitting layer in FIG. 1.
  • FIG. 3 is a schematic structural diagram of an electron transport layer in FIG. 1.
  • FIG. 4 is a schematic structural diagram of a combination of a quantum dot light emitting layer and an electron transport layer in FIG. 1.
  • FIG. 5 is another schematic structural diagram of the combination of the quantum dot light emitting layer and the electron transport layer in FIG. 1.
  • the present disclosure provides a composite material and a quantum dot light emitting diode.
  • a composite material and a quantum dot light emitting diode.
  • the present disclosure is described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure and are not intended to limit the present disclosure.
  • An embodiment of the present disclosure provides a composite material, including: a light-emitting quantum dot, a halogen ligand and an oil-soluble organic ligand bound to a surface of the light-emitting quantum dot.
  • the surface of the light-emitting quantum dot has a mixed ligand: a halogen ligand and an oil-soluble organic ligand, and the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots and the carrier transmission rate in the light-emitting layer. Therefore, the electron transmission rate and the hole transmission rate in the light emitting layer of the device are balanced, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the luminescent quantum dot is selected from a group II-VI quantum dot, a group III-V quantum dot, or a group IV-VI quantum dot.
  • the light-emitting quantum dots may be selected from the group consisting of single-core quantum dots and alloy quantum dots of Groups II-VI, III-V, IV-VI, II-VI, III-V, and IV-VI One or more of core-shell type quantum dots.
  • the II-VI single-core quantum dots and alloy quantum dots are selected from CdSe, CdS, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe One of CdZnSTe, CdSeSTe, ZnSeSTe, CdZnSeSTe, etc .; III-V single-core quantum dots and alloy quantum dots selected from InP, GaP, GaAs, InAs, InAsP, GaAsP, InGaP, InGaAs, and InGaAsP, etc.
  • Group IV-VI single-core quantum dots and alloy quantum dots are selected from one of PbS, PbSe, PbTe, PbSeS, PbSeTe, and PbSTe; the cores of Groups II-VI, III-V, and IV-VI
  • the shell quantum dot is selected from one of CdZnSe / ZnS, CdZnSeS / ZnS, CdTe / ZnS, CdZnSe / ZnS, CdZnSeS / ZnS, CdTe / ZnS, CdTe / CdSe, CdTe / ZnTe, CdSe / CdS, and CdSe / ZnS. .
  • the light-emitting quantum dot is selected from a core-shell quantum dot with a III-V or II-VI material as a core and a II-VI material as a shell.
  • the core or shell compounds in the above core-shell quantum dots are selected from one or more of the following: II-VI CdSe, CdS, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdSeSTe, ZnSeSTe, CdZnSeSTe; Group III-V InP, GaP, GaAs, InAs, InAsP, GaAsP, InGaP, InGaIV, InVI
  • the light-emitting quantum dot is selected from a core-shell structure using a group II-VI material as a core and a group II-VI material as a shell (the core layer material and the shell layer material are both group II-VI materials).
  • Quantum dots are selected from a core-shell structure using a group II-VI material as a core and a group II-VI material as a shell (the core layer material and the shell layer material are both group II-VI materials).
  • Quantum dots are provided.
  • the core-shell structure quantum dots of group II-VI have high luminous efficiency and narrow half-peak width.
  • the surface cation is generally Zn 2+ or Cd 2+
  • the surface anion is generally Se 2- or S 2- , which is lower than the energy barrier of the material selected by the electron transport layer, such as ZnO, ZnS or SnO.
  • the luminescent quantum dot is selected from the group consisting of CdZnS / ZnS, CdZnSe / ZnSe, CdSeS / CdSeS / CdS, CdSe / CdZnSe / CdZnSe / ZnSe, CdZnSe / CdZnSe / ZnSe, CdS / CdZnS / CdZnS / ZnS, CdSe / ZnS, CdZnSe One or more of / ZnS, CdSe / CdS / ZnS, CdSe / ZnSe / ZnS, and CdZnSe / CdZnS / ZnS.
  • the above quantum dots have excellent light emitting performance, thereby ensuring the effectiveness of electron transport in the quantum dot light emitting material.
  • the halogen ligand is selected from one or more of chloride, bromide, and iodide.
  • the halogen ligand is a chloride ion. Because the atomic radius of chlorine relative to bromine and iodine is small, when the surface of the light emitting quantum dot is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the oil-soluble organic ligand is selected from the group consisting of a linear organic ligand having 8 or more carbon atoms, a secondary or tertiary amine having 4 or more branched carbon atoms, and a substituted or unsubstituted alkylamine.
  • a basic phosphine a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and an alkylphosphine having a branched carbon number of 4 or more, but is not limited thereto.
  • the linear organic ligand having 8 or more carbon atoms is selected from an organic carboxylic acid having 8 or more carbon atoms, a thiol having 8 or more carbon atoms, and 8 or more carbon atoms
  • organic carboxylic acid having 8 or more carbon atoms a thiol having 8 or more carbon atoms
  • 8 or more carbon atoms One or more of organic phosphoric acid and primary amine having a carbon number of 8 or more, but is not limited thereto.
  • the organic carboxylic acid having a carbon number of 8 or more is selected from the group consisting of octanoic acid, nonanoic acid, capric acid, undecyl acid, dodecyl acid, tridecyl acid, tetradecanoic acid, and ten One or more of hexaalkyl acid and octadecanoic acid.
  • the thiol having a carbon number of 8 or more is selected from octyl mercaptan, nonanethiol, decyl mercaptan, dodecyl mercaptan, tetradecyl mercaptan, cetyl mercaptan, octadecyl mercaptan, 1, One or more of 8-octanethiol, 1,10-decanedithiol, and the like.
  • the organic phosphoric acid having a carbon number of 8 or more is selected from one or more of dodecylphosphonic acid, tetradecylphosphoric acid, cetylphosphoric acid, and octadecylphosphoric acid.
  • the primary amine having a carbon number of 8 or more is selected from one or more of octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine and the like.
  • the secondary or tertiary amine having a branched carbon number of 4 or more is selected from the group consisting of dibutylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, di One or more of decylamine, tributylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, and the like.
  • the substituted or unsubstituted alkylaminophosphine is selected from tris (dimethylamino) phosphine, tris (diethylamino) phosphine, tris (dipropylamino) phosphine, tris (dibutyl) (Amino) phosphine, tris (dipentylamino) phosphine, tris (dihexylamino) phosphine, tris (diheptylamino) phosphine, tris (dioctylamino) phosphine, and dibenzyldiethylaminophosphine One or more of them, but not limited thereto.
  • the substituted or unsubstituted alkoxyphosphine is selected from tributylphosphine, tripentylphosphine, trihexylphosphine, triheptylphosphine, trioctylphosphine, tris Nonylphosphine, tridecylphosphine, diphenylmethoxyphosphine, diphenylethoxyphosphine, diphenylpropoxyphosphine, diphenylbutoxyphosphine, dimethylphenylphosphine , Diethylphenylphosphine, dipropylphenylphosphine, dibutylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, propyldiphenylphosphine, butyl One or more of diphenylphosphine and chloro (diisopropylamino) methylphosphin
  • the substituted or unsubstituted silylphosphine is selected from the group consisting of tris (trimethylsilyl) phosphine, tris (triethylsilyl) phosphine, tris (tripropylsilyl) phosphine, and tris (tributylsilane)
  • phosphine tris (tripentylsilyl) phosphine
  • tris (trihexylsilyl) phosphine tris (triheptylsilyl) phosphine
  • tris (trioctylsilyl) phosphine but is not limited to this.
  • the alkyl phosphine having a branched carbon number of 4 or more is selected from one or more of tributylphosphine, triheptylphosphine, and trioctylphosphine, but is not limited thereto.
  • the oil-soluble organic ligand is one of a thiol having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, and a substituted or unsubstituted alkylaminophosphine. Or more.
  • organic phosphoric acid and thiol ligands are combined with cations on the surface of the light-emitting quantum dots by ionic and hydrogen bonds, respectively, the cations in the alkylamino phosphine and the surface of the light-emitting quantum dots can simultaneously be lone electron pairs of P or -NH 2
  • the hydrogen bonding, strong binding ability, not easy to fall off, can ensure the solubility and transportability of the composite material, and these types of ligands and luminescent quantum dot surface ions will not bind with -OH, will not occur hydrolysis.
  • An embodiment of the present disclosure provides a method for preparing a composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow luminescent quantum dots to obtain the composite material, wherein the third temperature is higher than the first temperature and Said second temperature.
  • the halogen-containing cation precursor and the anion precursor react at a high temperature to obtain a light-emitting quantum dot.
  • the halogen ion in the halogen-containing cation precursor and the first oil-soluble organic ligand are bound to the surface of the light-emitting quantum dot.
  • the composite material obtained by the reaction method has a mixed ligand on the surface of the light-emitting quantum dots: a halogen ligand and an oil-soluble organic ligand.
  • the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots, increase the carrier transport rate in the light-emitting layer, and balance The electron transport rate and hole transport rate in the light emitting layer of the device, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the metal halide is one or more of chloride, bromide, and iodide of cadmium element; and / or, the metal halide is chloride, bromide, and lead element One or more of the iodides.
  • the metal halide is CdCl 2, CdBr 2 and CdI 2, one or more; the metal halide is PbCl 2, PbBr 2 PbI2 2 and one or more of the like.
  • the metal halide further comprises one or more of chloride, bromide and iodide of zinc element.
  • the metal halide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2 .
  • the anionic precursor may be selected from one or more of a precursor of S, a precursor of Se, and a precursor of Te.
  • the precursor of S may be selected from one or two of a sulfur simple substance and a thiol having 8 or more carbon atoms.
  • the sulfur simple substance is mixed with a non-coordinating solvent in a sulfur-non-coordinating solvent. Added in the form.
  • the sulfur element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection. It should be noted that, in addition to dispersing sulfur simple substance, the non-coordinating solvent can also be bound to the surface of the light-emitting quantum dot as a ligand.
  • the sulfur-non-coordinating solvent is selected from sulfur-dodecene, sulfur-tetradecene, sulfur-hexadecene, sulfur-octadecene, sulfur-tributylphosphine, sulfur-triheptylphosphine One or more of sulfur-trioctylphosphine.
  • the thiol having a carbon number of 8 or more is selected from octyl mercaptan, nonanethiol, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, tetradecyl mercaptan, fifteen One or more of thiol, hexadecanethiol, heptathiol, octadecylthiol, and the like.
  • the precursor of Se may be a selenium element, and the selenium element is added in the form of selenium-non-coordination solvent after being mixed with the non-coordination solvent.
  • the selenium element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • the non-coordinating solvent can also be bound to the surface of the light-emitting quantum dot as a ligand.
  • the selenium-non-coordinating solvent is selected from selenium-dodecene, selenium-tetradecene, selenium-hexadecene, selenium-octadecene, selenium-tributylphosphine, selenium-triheptylphosphine One or more of selenium-trioctylphosphine.
  • the precursor of Te may be a tellurium simple substance, and the tellurium simple substance is added in the form of tellurium-non-coordination solvent after being mixed with the non-coordination solvent.
  • the tellurium element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • the non-coordinating solvent can also be bound to the surface of the light-emitting quantum dot as a ligand.
  • the tellurium-non-coordinating solvent is selected from one or more of tellurium-dodecene, tellurium-tetradecene, tellurium-hexadecene, tellurium-octadecene.
  • the metal halide is one or more of chloride, bromide, and iodide of indium.
  • the metal halide is one or more of InCl 3 , InBr 3 and InI 3 .
  • the anionic precursor is selected from one or more of a precursor of a P element and a precursor of an As element.
  • the precursor of the P element includes tris (trimethylsilyl) phosphine or alkyl phosphines (for example, triethyl phosphine, tris Tributylphosphine, trioctylphosphine, triphenylphosphine, and tricyclohexylphosphine), but are not limited thereto.
  • the precursor of As element includes at least one of arsenic iodide, aluminumbromide, arsenic chloride, aluminum oxide, and aluminum sulfate. , But not limited to this.
  • the first oil-soluble organic ligand is selected from an organic carboxylic acid having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, a primary amine having 8 or more carbon atoms, and a branched chain.
  • an organic carboxylic acid having 8 or more carbon atoms an organic phosphoric acid having 8 or more carbon atoms
  • a primary amine having 8 or more carbon atoms
  • a branched chain One or more of secondary or tertiary amines having 4 or more carbon atoms.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the particle size of the light-emitting quantum dots is greater than 10 nm.
  • the luminescent quantum dots prepared by nucleating at a relatively high temperature and controlling the particle size have emission peaks in the visible band.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow the light-emitting quantum dots.
  • a third oil-soluble compound is added during the cooling process.
  • the third oil-soluble ligand is bound to the surface of the light-emitting quantum dot to obtain the composite material, wherein the third oil-soluble ligand is a thiol having a carbon number of 8 or more, wherein the third temperature is high At the first temperature and the second temperature.
  • An embodiment of the present disclosure provides a method for preparing a composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow luminescent quantum dots to obtain the composite material, wherein the third temperature is higher than the first temperature and Said second temperature.
  • the halogen-containing cation precursor and the anion precursor react at a high temperature to obtain a light-emitting quantum dot.
  • the halogen ion in the halogen-containing cation precursor and the second oil-soluble organic ligand are bound to the surface of the light-emitting quantum dot.
  • the composite material obtained by the reaction method has a mixed ligand on the surface of the light-emitting quantum dots: a halogen ligand and an oil-soluble organic ligand.
  • the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots, increase the carrier transport rate in the light-emitting layer, and balance The electron transport rate and hole transport rate in the light emitting layer of the device, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the metal halide is one or more of chloride, bromide, and iodide of cadmium element; and / or, the metal halide is chloride, bromide, and lead element One or more of the iodides.
  • the metal halide is CdCl 2, CdBr 2 and CdI 2, one or more; the metal halide is PbCl 2, PbBr 2 PbI2 2 and one or more of the like.
  • the metal halide further comprises one or more of chloride, bromide and iodide of zinc element.
  • the metal halide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2 .
  • the anionic precursor may be selected from one or more of a precursor of S, a precursor of Se, and a precursor of Te.
  • the precursor of S may be selected from one or two of sulfur simple substance and thiol having 8 or more carbon atoms.
  • the sulfur simple substance is mixed with a second oil-soluble organic ligand to form a sulfur ion.
  • And / or thiol react with metal ions in the cation precursor at high temperature to nucleate to obtain luminescent quantum dots.
  • the halogen ion and the second oil-soluble organic ligand in the halogen-containing cation precursor will be combined to emit light. Quantum dot surface.
  • the thiol having a carbon number of 8 or more is selected from octyl mercaptan, nonanethiol, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, tetradecyl mercaptan, fifteen One or more of thiol, hexadecanethiol, heptathiol, octadecylthiol, and the like.
  • the precursor of Se may be a selenium element.
  • the selenium element is mixed with the second oil-soluble organic ligand, the formed selenium ion reacts with the metal ion in the cation precursor at a high temperature and nucleates to obtain luminescence.
  • Quantum dots, halogen ions in the halogen-containing cation precursor and the second oil-soluble organic ligand will bind to the surface of the luminescent quantum dot after nucleation.
  • the precursor of Te may be a tellurium simple substance.
  • the tellurium simple substance is mixed with the second oil-soluble organic ligand, the formed tellurium ion reacts with the metal ion in the cation precursor at a high temperature and nucleates to obtain light Quantum dots, halogen ions in the halogen-containing cation precursor and the second oil-soluble organic ligand will bind to the surface of the luminescent quantum dot after nucleation.
  • the metal halide is one or more of chloride, bromide, and iodide of indium.
  • the metal halide is one or more of InCl 3 , InBr 3 and InI 3 .
  • the anionic precursor is selected from one or more of a precursor of a P element and a precursor of an As element.
  • the precursor of the P element includes tris (trimethylsilyl) phosphine or alkyl phosphines (for example, triethyl phosphine, tris Tributylphosphine, trioctylphosphine, triphenylphosphine, and tricyclohexylphosphine), but are not limited thereto.
  • the precursor of As element includes at least one of arsenic iodide, aluminumbromide, arsenic chloride, aluminum oxide, and aluminum sulfate. , But not limited to this.
  • the second oil-soluble organic ligand is selected from a substituted or unsubstituted alkylaminophosphine, a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and a branched carbon atom
  • a substituted or unsubstituted alkylaminophosphine a substituted or unsubstituted alkoxyphosphine
  • a substituted or unsubstituted silylphosphine a substituted or unsubstituted silylphosphine
  • a branched carbon atom One or more of alkyl phosphine having a number of 4 or more.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the particle size of the light-emitting quantum dots is greater than 10 nm.
  • the luminescent quantum dots prepared by nucleating at a relatively high temperature and controlling the particle size have emission peaks in the visible band.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow the light-emitting quantum dots.
  • a third oil-soluble compound is added during the cooling process.
  • the third oil-soluble ligand is bound to the surface of the light-emitting quantum dot to obtain the composite material, wherein the third oil-soluble ligand is a thiol having a carbon number of 8 or more, wherein the third temperature is high At the first temperature and the second temperature.
  • An embodiment of the present disclosure provides a method for preparing a composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow luminescent quantum dots to obtain the composite material, wherein the third temperature is higher than the first temperature and Said second temperature.
  • the halogen-containing cation precursor and the anion precursor react at a high temperature to obtain a light-emitting quantum dot.
  • the halogen ion, the first oil-soluble organic ligand, and the second oil-soluble organic ligand in the halogen-containing cation precursor Bonded to the surface of a luminescent quantum dot.
  • quantum dots with different ligands can be obtained, the surface defects of the prepared light-emitting quantum dots are small, and emission peaks in the visible band can be achieved by controlling the particle size (preferably 10 nm-20 nm). Can be used as luminescent quantum dots.
  • the composite material obtained by the reaction method has a mixed ligand on the surface of the light-emitting quantum dots: a halogen ligand and an oil-soluble organic ligand.
  • the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots, increase the carrier transport rate in the light-emitting layer, and balance The electron transport rate and hole transport rate in the light emitting layer of the device, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the metal halide is one or more of chloride, bromide, and iodide of cadmium element; and / or, the metal halide is chloride, bromide, and lead element One or more of the iodides.
  • the metal halide is CdCl 2, CdBr 2 and CdI 2, one or more; the metal halide is PbCl 2, PbBr 2 PbI2 2 and one or more of the like.
  • the metal halide further comprises one or more of chloride, bromide and iodide of zinc element.
  • the metal halide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2 .
  • the anionic precursor may be selected from one or more of a precursor of S, a precursor of Se, and a precursor of Te.
  • the precursor of S may be selected from one or two of sulfur simple substance and thiol having 8 or more carbon atoms.
  • the sulfur simple substance is mixed with a second oil-soluble organic ligand to form a sulfur ion.
  • And / or thiol react with metal ions in the cation precursor at high temperature to nucleate to obtain luminescent quantum dots, the halogen ions in the cation precursor containing halogen after nucleation, the first oil-soluble organic ligand and the second Oil-soluble organic ligands bind to the surface of the luminescent quantum dots.
  • the thiol having a carbon number of 8 or more is selected from octyl mercaptan, nonanethiol, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, tetradecyl mercaptan, fifteen One or more of thiol, hexadecanethiol, heptathiol, octadecylthiol, and the like.
  • the precursor of Se may be a selenium element.
  • the selenium element is mixed with the second oil-soluble organic ligand, the formed selenium ion reacts with the metal ion in the cation precursor at a high temperature and nucleates to obtain luminescence.
  • Quantum dots, halogen ions in the halogen-containing cation precursor, the first oil-soluble organic ligand, and the second oil-soluble organic ligand will bind to the surface of the light-emitting quantum dot after nucleation.
  • the precursor of Te may be a tellurium simple substance.
  • the tellurium simple substance is mixed with the second oil-soluble organic ligand, the formed tellurium ion reacts with the metal ion in the cation precursor at a high temperature and nucleates to obtain luminescence.
  • Quantum dots, halogen ions in the halogen-containing cation precursor, the first oil-soluble organic ligand, and the second oil-soluble organic ligand will bind to the surface of the light-emitting quantum dot after nucleation.
  • the metal halide is one or more of chloride, bromide, and iodide of indium.
  • the metal halide is one or more of InCl 3 , InBr 3 and InI 3 .
  • the anionic precursor is selected from one or more of a precursor of a P element and a precursor of an As element.
  • the precursor of the P element includes tris (trimethylsilyl) phosphine or alkyl phosphines (for example, triethyl phosphine, tris Tributylphosphine, trioctylphosphine, triphenylphosphine, and tricyclohexylphosphine), but are not limited thereto.
  • the precursor of As element includes at least one of arsenic iodide, aluminumbromide, arsenic chloride, aluminum oxide, and aluminum sulfate. , But not limited to this.
  • the first oil-soluble organic ligand is selected from an organic carboxylic acid having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, a secondary amine having 4 or more branched carbon atoms, or One or more of tertiary amines and primary amines having 8 or more carbon atoms;
  • the second oil-soluble organic ligand is selected from the group consisting of a substituted or unsubstituted alkylaminophosphine, a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and a branched carbon atom number greater than or equal to One or more of 4 alkyl phosphines.
  • the first temperature is 110-190 ° C; and / or the second temperature is 110-190 ° C.
  • the particle size of the light-emitting quantum dots is greater than 10 nm.
  • the luminescent quantum dots prepared by nucleating at a relatively high temperature and controlling the particle size have emission peaks in the visible band.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow the light-emitting quantum dots.
  • a third oil-soluble compound is added during the cooling process.
  • the third oil-soluble ligand is bound to the surface of the light-emitting quantum dot to obtain the composite material, wherein the third oil-soluble ligand is a thiol having a carbon number of 8 or more, wherein the third temperature is high At the first temperature and the second temperature.
  • An embodiment of the present disclosure provides a method for preparing a composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process to grow light-emitting quantum dots.
  • a third oil-soluble ligand is added in the process of cooling to make the third
  • An oil-soluble ligand is bound to the surface of the light-emitting quantum dot to obtain the composite material, wherein the third oil-soluble ligand is a thiol having 8 or more carbon atoms, and the third temperature is higher than the first temperature. Temperature and said second temperature.
  • the halogen-containing cation precursor and the anion precursor react at a high temperature to obtain a light-emitting quantum dot.
  • the halogen ion and the third oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the light-emitting quantum dot.
  • the composite material obtained by the reaction method has a mixed ligand on the surface of the light-emitting quantum dots: a halogen ligand and an oil-soluble organic ligand.
  • the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots, increase the carrier transport rate in the light-emitting layer, and balance The electron transport rate and hole transport rate in the light emitting layer of the device, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the metal halide is one or more of chloride, bromide, and iodide of cadmium element; and / or, the metal halide is chloride, bromide, and lead element One or more of the iodides.
  • the metal halide is CdCl 2, CdBr 2 and CdI 2, one or more; the metal halide is PbCl 2, PbBr 2 PbI2 2 and one or more of the like.
  • the metal halide further comprises one or more of chloride, bromide and iodide of zinc element.
  • the metal halide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2 .
  • the anionic precursor may be selected from one or more of a precursor of S, a precursor of Se, and a precursor of Te.
  • the precursor of S may be selected from one or two of a sulfur simple substance and a thiol having 8 or more carbon atoms.
  • the sulfur simple substance is mixed with a non-coordinating solvent in a sulfur-non-coordinating solvent. Added in the form.
  • the sulfur element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection. It should be noted that, in addition to dispersing sulfur simple substance, the non-coordinating solvent can also be bound to the surface of the light-emitting quantum dot as a ligand.
  • the sulfur-non-coordinating solvent is selected from one or more of sulfur-dodecene, sulfur-tetradecene, sulfur-hexadecene, and sulfur-octadecene.
  • the thiol having a carbon number of 8 or more is selected from octyl mercaptan, nonanethiol, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, tetradecyl mercaptan, fifteen One or more of thiol, hexadecanethiol, heptathiol, octadecylthiol, and the like.
  • the precursor of Se may be a selenium element, and the selenium element is added in the form of selenium-non-coordination solvent after being mixed with the non-coordination solvent.
  • the selenium element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • the non-coordinating solvent can also be bound to the surface of the light-emitting quantum dot as a ligand.
  • the selenium-non-coordinating solvent is selected from one or more of selenium-dodecene, selenium-tetradecene, selenium-hexadecene, and selenium-octadecene.
  • the precursor of Te may be a tellurium simple substance, and the tellurium simple substance is added in the form of tellurium-non-coordination solvent after being mixed with the non-coordination solvent.
  • the tellurium element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • the non-coordinating solvent can also be bound to the surface of the light-emitting quantum dot as a ligand.
  • the tellurium-non-coordinating solvent is selected from one or more of tellurium-dodecadiene, tellurium-tetradecene, tellurium-hexadecene, tellurium-octadecene.
  • the metal halide is one or more of chloride, bromide, and iodide of indium.
  • the metal halide is one or more of InCl 3 , InBr 3 and InI 3 .
  • the anionic precursor is selected from one or more of a precursor of a P element and a precursor of an As element.
  • the precursor of the P element includes tris (trimethylsilyl) phosphine or alkyl phosphines (for example, triethyl phosphine, tris Tributylphosphine, trioctylphosphine, triphenylphosphine, and tricyclohexylphosphine), but are not limited thereto.
  • the precursor of As element includes at least one of aluminum iodide, aluminum bromide, arsenic chloride, aluminum oxide, and aluminum sulfate. Species, but not limited to this.
  • the first temperature is 110-190 ° C; and / or the second temperature is 110-190 ° C.
  • the particle size of the light-emitting quantum dots is greater than 10 nm.
  • the luminescent quantum dots prepared by nucleating at a relatively high temperature and controlling the particle size have emission peaks in the visible band.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • An embodiment of the present invention provides a composite material, which includes: a light-emitting quantum dot, an oil-soluble organic ligand and a water-soluble ligand bonded to a surface of the light-emitting quantum dot.
  • the water-soluble ligand is selected from the group consisting of a halogen ion ligand, a mercapto alcohol having less than 8 carbon atoms, a mercaptoamine having less than 8 carbon atoms, and a mercapto acid having less than 8 carbon atoms. One or more.
  • An embodiment of the present invention provides a composite material, including: particles, an oil-soluble organic ligand and a water-soluble ligand bound on a surface of the particles, and the particles are inorganic semiconductor nanocrystals.
  • the water-soluble ligand is selected from one selected from the group consisting of a halogen ion ligand, a mercapto alcohol having less than 8 carbon atoms, a mercaptoamine having less than 8 carbon atoms, and a mercapto acid having less than 8 carbon atoms. Or more.
  • An embodiment of the present disclosure provides a quantum dot light emitting diode, including an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode, wherein the quantum dot light emitting layer includes a first quantum dot light emitting layer, and
  • the material of the first quantum dot light-emitting layer is a composite material, and the composite material includes: a light-emitting quantum dot, a halogen ligand and an oil-soluble organic ligand bound on a surface of the light-emitting quantum dot.
  • the surface of the light-emitting quantum dot has a mixed ligand: a halogen ligand and an oil-soluble organic ligand, and the oil-soluble organic ligand makes the composite material still oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots and the carrier transmission rate in the light-emitting layer. Therefore, the electron transmission rate and the hole transmission rate in the light emitting layer of the device are balanced, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the quantum dot light emitting diodes there are various forms of quantum dot light emitting diodes, and the quantum dot light emitting diodes are divided into a formal structure and a trans structure.
  • a quantum dot light emitting diode with a formal structure as shown in FIG. 1 will be mainly used. Introduction.
  • the quantum dot light emitting diode includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a quantum dot light emitting layer 5, and an electron transport layered from bottom to top.
  • the quantum dot light emitting layer 5 includes a first quantum dot light emitting layer
  • the material of the first quantum dot light emitting layer is a composite material
  • the composite material includes: a light emitting quantum dot, which is combined with the light emission Halogen ligands and oil-soluble organic ligands on the surface of quantum dots.
  • the quantum dot light emitting layer 5 is a first quantum dot light emitting layer 51, as shown in structure 1 in FIG. 2.
  • the surface of the light emitting quantum dot has a mixed ligand: a halogen ligand and an oil-soluble organic ligand, and the oil-soluble organic ligand makes the composite material oil-soluble.
  • the halogen ligands can improve the electron transportability of the quantum dots and the carrier transmission rate in the light-emitting layer. Therefore, the electron transmission rate and the hole transmission rate in the light emitting layer of the device are balanced, thereby improving the light emitting efficiency of the device, reducing the operating voltage, and increasing the service life of the device.
  • the quantum dot light emitting layer further includes a second quantum dot light emitting layer, and the material of the second quantum dot light emitting layer is a water-soluble light emitting quantum dot.
  • the first quantum dot light emitting layer and the second quantum dot light emitting layer are The quantum dot light emitting layer is arranged in a stack; when at least one of the first quantum dot light emitting layer and the second quantum dot light emitting layer is a multilayer, the first quantum dot light emitting layer and the second quantum dot The light emitting layers are alternately arranged.
  • At least one of the first quantum dot light emitting layer and the second quantum dot light emitting layer is a multilayer, and the first quantum dot light emitting layer and the second quantum dot light emitting layer are alternately stacked.
  • different functional layers need to be adjacent to water-soluble and oil-soluble, and cannot be both water-soluble or oil-soluble.
  • a water-soluble layer and an oil-soluble layer are alternately stacked, which can further reduce the electron transmission distance and improve the electron transmission efficiency.
  • the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer is 3-6 layers.
  • the case where the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer is 2-6 layers will be described one by one with reference to FIG. 2. It should be noted that the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer may be the same or different.
  • the quantum dot light emitting layer 5 is a two-layer structure composed of a layer of a first quantum dot light emitting layer 521 and a layer of a second quantum dot light emitting layer 522. See the structure in FIG. 2 2 shown.
  • the quantum dot light emitting layer 5 is a three-layer structure composed of a first quantum dot light emitting layer 531, a second quantum dot light emitting layer 532, and a first quantum dot light emitting layer 533, which are sequentially stacked. See structure 3 in Figure 2.
  • the quantum dot light emitting layer 5 emits light from a first quantum dot light emitting layer 541, a second quantum dot light emitting layer 542, a first quantum dot light emitting layer 543, and a second quantum dot.
  • the four-layer structure formed by the layer 544 is shown in structure 4 in FIG. 2.
  • the quantum dot light emitting layer 5 emits light from a first quantum dot light emitting layer 551, a second quantum dot light emitting layer 552, a first quantum dot light emitting layer 553, and a second quantum dot.
  • the five-layer structure composed of the layer 554 and the first quantum dot light-emitting layer 555 is shown in structure 5 in FIG. 2.
  • the quantum dot light emitting layer 5 emits light from a first quantum dot light emitting layer 561, a second quantum dot light emitting layer 562, a first quantum dot light emitting layer 563, and a second quantum dot.
  • the six-layer structure composed of the layer 564, the first quantum dot light emitting layer 565, and the second quantum dot light emitting layer 566 is shown in structure 6 in FIG.
  • the quantum dot light emitting diode when the quantum dot light emitting layer is a first quantum dot light emitting layer, the quantum dot light emitting diode further includes an electron transporting layer laminated with the first quantum dot light emitting layer.
  • the first quantum dot light emitting layer is disposed near the anode side, and the electron transport layer is disposed near the cathode side.
  • the electron transport layer includes a first electron transport layer and a second electron transport layer.
  • Two electron transports are stacked on the first quantum dot light-emitting layer, a first layer of first electron transports is stacked on the first layer of second electron transports, and each subsequent electron transport is stacked on each On the previous different kinds of electron transport layers; wherein the material of the first electron transport layer is a first composite material, the first composite material includes: particles, a first halogen ligand bound on the surface of the particles, and A fourth oil-soluble organic ligand, the particles are inorganic semiconductor nanocrystals, and the second electron transport layer material is a water-soluble electron transport material.
  • the particle surface has a mixed ligand: a first halogen ligand and a fourth oil-soluble organic ligand, and the fourth oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the fourth oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate and
  • the hole transport rate further improves the light emitting efficiency of the light emitting layer.
  • the electron transporting layer 6 in the above embodiment includes a first electron transporting layer and a second electron transporting layer.
  • the first and second electron transporting layers are stacked on the first quantum dot light emitting layer.
  • a first electron transport layer is stacked on the first second electron transport layer, and each subsequent electron transport layer is stacked on each of the preceding different kinds of electron transport layers.
  • different functional layers need to be adjacent to water-soluble and oil-soluble, and cannot be both water-soluble or oil-soluble.
  • the water-soluble layer and the oil-soluble layer are alternately stacked, which can further reduce the electron transmission distance and improve the electron transmission efficiency.
  • the total number of layers of the first electron transport layer and the second electron transport layer is 3-6 layers.
  • the case where the total number of the first electron transport layer and the second electron transport layer is 2-6 layers will be described one by one with reference to FIG. 3. It should be noted that the total number of layers of the first electron transport layer and the second electron transport layer may be the same or different.
  • a first layer of the second electron transport layer 621 is stacked on the first quantum dot light emitting layer, and a first layer of the first electron transport layer 622 is stacked on the first layer.
  • a two-layer laminated structure is formed on the two electron transport layer 621, as shown in Structure 1 in FIG.
  • a first layer of the second electron transport layer 631 is stacked on the first quantum dot light emitting layer, and a first layer of the first electron transport layer 632 is stacked on the first layer.
  • a second layer of the second electron transport layer 633 is stacked on the first layer of the first electron transport layer 632 to form a three-layer stack structure, as shown in Structure 2 in FIG.
  • a first layer of the second electron transport layer 641 is stacked on the first quantum dot light emitting layer, and a first layer of the first electron transport layer 642 is stacked on the first layer.
  • a second second electron transport layer 643 is stacked on the first first electron transport layer 642
  • a second first electron transport layer 644 is stacked on the second first
  • a four-layer laminated structure is formed on the two electron transport layer 643, as shown in Structure 3 in FIG.
  • a first layer of the second electron transport layer 651 is stacked on the first quantum dot light emitting layer, and a first layer of the first electron transport layer 652 is stacked on the first layer.
  • a second second electron transport layer 653 is stacked on the first first electron transport layer 652
  • a second first electron transport layer 654 is stacked on the second first
  • a third layer of the second electron transporting layer 655 is stacked on the second layer of the first electron transporting layer 653 to form a five-layer laminated structure, as shown in structure 4 in FIG.
  • a first layer of the second electron transport layer 661 is stacked on the first quantum dot light emitting layer, and a first layer of the first electron transport layer 662 is stacked on the first layer.
  • a second second electron transport layer 663 is stacked on the first first electron transport layer 662, and a second first electron transport layer 664 is stacked on the second
  • a third second electron transport layer 665 is stacked on the second first electron transport layer 664, and a third first electron transport layer 666 is stacked on the third layer
  • a six-layer stacked structure is formed on the two electron transport layer 665, as shown in structure 5 in FIG.
  • the quantum dot light emitting layer includes a first quantum dot light emitting layer and a second quantum dot light emitting layer.
  • the material of the first quantum dot light emitting layer is a composite material, and the composite material includes: a light emitting quantum dot.
  • the quantum dot light emitting diode further includes an electron transporting layer laminated with the quantum dot light emitting layer.
  • the quantum dot light emitting layer is disposed near the anode side, and the electron transport layer is disposed near the cathode side.
  • the electron transport layer includes at least one first electron transport layer and at least one second electron transport layer.
  • the layer farthest from the anode in the quantum dot light emitting layer is a first quantum dot light emitting layer, and the first layer is second.
  • An electron transport stack is provided on the first quantum dot light-emitting layer, a first first electron transport stack is provided on the first second electron transport layer, and each subsequent electron transport stack is provided on each Different types of electron transport layers on the front; wherein the first electron transport layer material is a first composite material, the first composite material includes: particles, a first halogen ligand bound to the surface of the particles, and a first Four oil-soluble organic ligands, the particles are inorganic semiconductor nanocrystals; the second electron transport layer material is a water-soluble electron transport material.
  • different functional layers need to be adjacent to water-soluble and oil-soluble, and cannot be both water-soluble or oil-soluble. Since there is no organic ligand on the surface of the water-soluble electron transport material, in the same functional layer, the water-soluble layer and the oil-soluble layer are alternately stacked, which can further reduce the electron transmission distance and improve the electron transmission efficiency.
  • the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer is 3-6 layers, and the first electron transport layer and the second electron transport layer The total number of layers is 3-6 layers.
  • the total number of the first quantum dot light-emitting layer and the second quantum dot light-emitting layer is three layers.
  • the total number of layers is four.
  • the quantum dot light-emitting layer 5 is a three-layer structure composed of a first quantum dot light-emitting layer 531, a second quantum dot light-emitting layer 532, and a first quantum dot light-emitting layer 533.
  • the transport layer 6 is a four-layer structure composed of a second electron transport layer 641, a first electron transport layer 642, a second electron transport layer 643, and a first electron transport layer 644, which are stacked in this order.
  • the first electron transport layer 641 is stacked on the first quantum dot light emitting layer 533
  • a first layer of the first electron transport layer 642 is stacked on the first second electron transport layer 641
  • a second layer of the second electron transport layer 643 is stacked
  • the first electron transport layer 642 is disposed on the first layer
  • the first electron transport layer 644 is disposed on the second electron transport layer 643.
  • the quantum dot light emitting layer includes a first quantum dot light emitting layer and a second quantum dot light emitting layer.
  • the material of the first quantum dot light emitting layer is a composite material, and the composite material includes: a light emitting quantum dot. 2.
  • An electron transport layer is arranged in layers, the quantum dot light emitting layer is disposed near the anode side, the electron transport layer is disposed near the cathode side, and the electron transport layer includes at least one first electron transport layer and at least one A second electron transport layer, the layer farthest from the anode of the quantum dot light emitting layer is a second quantum dot light emitting layer, and a first layer of the first electron transport layer is stacked on the second quantum dot light emitting layer A first layer of the second electron transport layer is disposed on the first layer of the first electron transport layer, and each subsequent electron transport layer is provided on each of the preceding different kinds of electron transport layer;
  • the first electron transport layer material is a first composite material, and the first composite material includes particles, a first halogen ligand and a fourth oil-soluble organic ligand bound to the surface of the particles, and the particles are Inorganic semiconductor nanocrystals; the material of the second electron transport layer is a water-soluble electron transport material.
  • the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer is 3-6 layers, and the first electron transport layer and the second electron transport layer The total number of layers is 3-6 layers.
  • the total number of the first quantum dot light-emitting layer and the second quantum dot light-emitting layer is four layers.
  • the total number of layers is 3; specifically, the quantum dot light-emitting layer 5 includes a first quantum dot light-emitting layer 541, a second quantum dot light-emitting layer 542, a first quantum dot light-emitting layer 543, and a second quantum dot light-emitting layer, which are sequentially stacked.
  • the electron transport layer 6 is a three-layer structure composed of a first electron transport layer 631, a second electron transport layer 632, and a first electron transport layer 633.
  • a layer 631 is stacked on the second quantum dot light emitting layer 544, a first layer of the second electron transport layer 632 is stacked on the first layer of the first electron transport layer 631, and a second layer of the first electron transport layer 633 Overlaid on the first second electron transport layer 632.
  • the quantum dot light emitting layer includes a first quantum dot light emitting layer and a second quantum dot light emitting layer.
  • the material of the first quantum dot light emitting layer is a composite material, and the composite material includes: a light emitting quantum dot.
  • the quantum dot light emitting diode further includes an electron transporting layer laminated with the quantum dot light emitting layer.
  • the quantum dot light emitting layer is disposed near the anode side, and the electron transport layer is disposed near the cathode side.
  • the layer of the quantum dot light-emitting layer that is farthest from the anode is a second quantum dot light-emitting layer, the electron transport layer is a first electron transport layer, and the first electron transport layer is stacked on the second quantum dot.
  • the first composite material includes: particles, a first halogen ligand and a fourth oil-soluble organic ligand bound on the surface of the particles
  • the particles are inorganic semiconductor nanocrystals.
  • different functional layers need to be water-soluble and oil-soluble adjacent, and cannot be both water-soluble or oil-soluble.
  • the water-soluble layer and the oil-soluble layer are alternately stacked in the same functional layer, which can also further reduce the electron transmission distance and improve the electron transmission efficiency.
  • the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer is 3-6 layers.
  • the quantum dot light emitting layer includes a first quantum dot light emitting layer and a second quantum dot light emitting layer.
  • the material of the first quantum dot light emitting layer is a composite material, and the composite material includes: a light emitting quantum dot.
  • the quantum dot light emitting diode further includes an electron transporting layer laminated with the quantum dot light emitting layer.
  • the quantum dot light emitting layer is disposed near the anode side, and the electron transport layer is disposed near the cathode side.
  • a layer of the quantum dot light-emitting layer that is disposed furthest away from the anode is a first quantum dot light-emitting layer
  • the electron transport layer is a second electron transport layer
  • the second electron transport layer is stacked on the farthest away from the anode.
  • the anode is provided on a first quantum dot light emitting layer; wherein the material of the second electron transport layer is a water-soluble electron transport material.
  • the total number of the first quantum dot light emitting layer and the second quantum dot light emitting layer is 3-6 layers.
  • the second electron transport layer material may be selected from materials having good electron transport properties, for example, may be selected from, but not limited to, n-type ZnO particles, TiO 2 particles, Ca particles, Ba particles, One or more of ZrO 2 particles, CsF particles, LiF particles, CsCO 3 particles, Alq3 particles, and the like.
  • These water-soluble electron-transporting materials can be dispersed in water, methanol, ethanol, propanol, acetone and other solutions in the form of ions.
  • the size of the nanoparticles is 5-15nm, and there is no surface ligand.
  • the material of the second quantum dot light emitting layer is a light emitting quantum dot having a water-soluble ligand bound to its surface.
  • the water-soluble ligand is selected from the group consisting of a halogen ion ligand, a mercapto alcohol having less than 8 carbon atoms, a mercaptoamine having less than 8 carbon atoms, and a mercapto acid having less than 8 carbon atoms.
  • a halogen ion ligand is selected from one or more of chloride ion, bromine ion and iodine ion.
  • the mercapto alcohol having less than 8 carbon atoms is selected from the group consisting of 2-mercaptoethanol, 3-mercapto-1-propanol, 4-mercapto-1-butanol, 5-mercapto-1-pentanol, and 6-mercapto- One or more of 1-hexanol and the like.
  • the mercaptoamine having less than 8 carbon atoms is selected from the group consisting of 2-mercaptoethylamine, 3-mercaptopropylamine, 4-mercaptobutylamine, 5-mercaptopentylamine, 6-mercaptohexylamine, and 2-amino-3- One or more of mercaptopropionic acid and the like.
  • the mercapto acid having less than 8 carbon atoms is selected from the group consisting of 2-mercaptoacetic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, thiomercaptosuccinic acid, 6-mercaptohexanoic acid, 4-mercaptobenzoic acid, and hemithiomer.
  • cystine one or more of cystine and the like.
  • the material of the second quantum dot light emitting layer of each layer may be the same or multiple.
  • the light emitting quantum dot is selected from the group consisting of Au, Ag, Cu, Pt, C, CdSe, CdS, CdTe, CdS, CdZnSe, CdSeS, PbSeS, ZnCdTe, CdS / ZnS, CdZnS / ZnS, CdZnSe / ZnSe, CdSeS / CdSeS / CdS, CdSe / CdZnSe / CdZnSe / ZnSe, CdZnSe / CdZnSe / ZnSe, CdS / CdZnS / CdZnS / ZnS, NaYF 4 , NaCdF 4 One or more of CdS / ZnS, CdSe / ZnSe / ZnS, CdZnSe / CdZnS / ZnS, NaYF
  • the substrate may be a substrate made of a rigid material, such as glass, or a substrate made of a flexible material, such as one of PET or PI.
  • the anode may be selected from indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), and the like. One or more.
  • ITO indium-doped tin oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the material of the hole transport layer may be one or more selected from the group consisting of NiO, CuO, CuS, TFB, PVK, Poly-TPD, TCTA, and CBP.
  • the thickness of the hole transport layer is 20-40 nm.
  • the thickness of the quantum dot light emitting layer is 20-60 nm.
  • the cathode may be selected from one of an aluminum (Al) electrode, a silver (Ag) electrode, a gold (Au) electrode, and the like. More preferably, the thickness of the cathode is 60-100 nm.
  • the quantum dot light emitting diode may further include one or more of the following functional layers: an electron blocking layer disposed between the quantum dot light emitting layer and the electron transport layer, and an electron transport layer and a cathode Between the electron injection layers.
  • the first composite material in the embodiments of the present disclosure will be described in detail below.
  • the first composite material includes particles, a first halogen ligand and a fourth soluble organic ligand bound on a surface of the particles, and the particles are inorganic semiconductor nanocrystals.
  • the particle surface has a mixed ligand: a first halogen ligand and a fourth oil-soluble organic ligand, and the fourth oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transport performance
  • the fourth oil-soluble organic ligand can effectively reduce the electron transport rate, so that the electron transport performance of the material itself can be adjusted, thereby regulating the electrons in the device.
  • the transmission rate and the hole transport rate further improve the light emitting efficiency of the light emitting layer.
  • the fourth oil-soluble organic ligand connected to the particle surface plays a role of passivating the surface, and has few surface defects.
  • the first composite material has no emission in the visible wave band, thereby ensuring that the first composite material can be used as an electron transport material.
  • the particle diameter of the inorganic semiconductor nanocrystals is 2-7 nm.
  • the inorganic semiconductor nanocrystals have a small size and uniform particles, and have good dispersibility when dispersed in a solvent, and the solution formed by dispersing in the solvent is clear without precipitation.
  • the inorganic semiconductor nanocrystals are metal oxide particles, and the metal oxide particles are selected from ZnO particles, CdO particles, SnO particles, or GeO particles, but are not limited thereto.
  • the inorganic semiconductor nanocrystals are metal sulfide particles, and the metal sulfide particles are selected from ZnS particles, SnS particles, or GeS particles, but are not limited thereto.
  • the inorganic semiconductor nanocrystals composed of the material have no emission in the visible wavelength band and can be used as an electron transport material without affecting the emission color of the light emitting layer of the quantum dot device.
  • the first halogen ligand is selected from one or more of chloride, bromide, and iodide.
  • the first halogen ligand is a chloride ion. Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the fourth oil-soluble organic ligand is selected from a linear organic ligand having 8 or more carbon atoms, a secondary or tertiary amine having 4 or more branched carbon atoms, and substituted or unsubstituted One or more of alkylaminophosphine, substituted or unsubstituted alkoxyphosphine, substituted or unsubstituted silylphosphine, and alkylphosphine having a branched carbon number of 4 or more, but is not limited thereto.
  • the specific types of the substituted or unsubstituted silylphosphine and the alkylphosphine having a branched carbon number of 4 or more are described above, and will not be described here.
  • the fourth oil-soluble organic ligand is one of a thiol having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, and a substituted or unsubstituted alkylaminophosphine. One or more.
  • alkylaminophosphine and cations on the surface of inorganic semiconductor nanocrystals can simultaneously be lone electron pairs of P or -NH 2
  • the hydrogen bonding in the medium has strong binding ability and is not easy to fall off, which can ensure the solubility and transportability of the material of the first electron transport layer, and these types of ligands will not bind with -OH on the surface of the inorganic semiconductor nanocrystals. Hydrolysis occurs.
  • the fourth oil-soluble organic ligand is a substituted or unsubstituted alkylaminophosphine
  • the particles are metal sulfide particles.
  • the substituted or unsubstituted alkylaminophosphine can be combined with the cation on the particle surface by lone electron pair of P or hydrogen bond in -NH 2 at the same time, and the ionic bond of the first halogen ligand is stronger, and the binding with the particle surface is more Strong and not easy to fall off.
  • the non-OH is bound to the surface of the metal sulfide particles and will not cause the hydrolysis or oxidation of the metal sulfide particles.
  • the fourth oil-soluble organic ligand is an organic phosphoric acid having a carbon number of 8 or more, and the particles are metal oxide particles.
  • the organic phosphoric acid and the metal oxide particles are bound by an ionic bond, and the binding ability is strong. Metal oxide particles do not directly bind to -OH and are not easily hydrolyzed.
  • the fourth oil-soluble organic ligand is a thiol having 8 or more carbon atoms
  • the particles are metal sulfide particles.
  • the thiol and the cations on the surface of the metal sulfide particles are bonded by hydrogen bonding, which has a strong binding ability and is not easy to fall off.
  • no -OH is combined with the surface of metal sulfide particles, which does not cause hydrolysis or oxidation of metal sulfide particles.
  • the inorganic semiconductor nanocrystal contains a metal doping element. Due to the presence of the fourth oil-soluble organic ligand, its electron transport performance can be greatly reduced. By further doping the metal element, the injection barrier of the electron transport layer to the light-emitting layer can be reduced or excess free electrons can be formed. Improve the electron transport performance, thereby further adjusting the electron transport rate and hole transport rate in the device, and further improve the luminous efficiency of the light emitting layer.
  • the metal doping element accounts for 0.5-10% of the inorganic semiconductor nanocrystal in terms of mass percentage.
  • the metal doping element is selected from one or more of Mg, Mn, Al, Y, V, and Ni, but is not limited thereto.
  • the inorganic semiconductor nanocrystal is selected from ZnO particles, ZnS particles, or SnO particles, and the metal doping element is Al, V, or Y.
  • the HOMO energy levels of these several types of inorganic semiconductor nanocrystals can better match the HOMO energy levels of the quantum dots of the light-emitting layer.
  • Doping ions can reduce the injection barrier of the electron-transport layer to the light-emitting layer, thereby ensuring the material of the transport layer and light emission. The effectiveness of electron transport between layer materials.
  • the metal doping element is Y.
  • the material of the first quantum dot light-emitting layer may be a second composite material
  • the second composite material includes: a light-emitting quantum dot, an oil-soluble organic ligand combined on a surface of the light-emitting quantum dot, and Water-soluble ligand.
  • the oil-soluble organic ligand makes the second composite material still oil-soluble.
  • the light-emitting quantum dots have a mixed surface of an oil-soluble organic ligand and a water-soluble ligand on the surface, which can balance the electron and hole transport rates in the light-emitting layer of the device, improve the carrier mobility of the light-emitting layer, and thereby improve the light emission of the device. Efficiency and service life.
  • the water-soluble ligand is selected from one or more selected from a halogen ion ligand, a mercapto alcohol having less than 8 carbon atoms, a mercaptoamine having less than 8 carbon atoms, and a mercapto acid having less than 8 carbon atoms.
  • a halogen ion ligand a mercapto alcohol having less than 8 carbon atoms
  • a mercaptoamine having less than 8 carbon atoms
  • a mercapto acid having less than 8 carbon atoms The specific type of the water-soluble ligand is described above, and is not repeated here.
  • the specific types of the light-emitting quantum dots and the oil-soluble organic ligand are also described above, and are not repeated here.
  • the method for preparing the second composite material in the above embodiment is described in detail below.
  • the method for preparing the second composite material includes the following steps:
  • a light-emitting quantum dot solution which includes a light-emitting quantum dot and a first non-polar solvent, wherein an oil-soluble organic ligand is bound to the surface of the light-emitting quantum dot;
  • the luminescent quantum dot solution into a dialysis bag and placing it in an exchange medium to form a ligand exchange reaction system, wherein the exchange medium includes a polar solvent, a second non-polar solvent, and a water-soluble ligand;
  • the oil-soluble organic ligand is separated from the surface of the quantum dot and enters the exchange medium, and the water-soluble ligand in the exchange medium enters the dialysis bag to bind the quantum dot.
  • a light-emitting quantum dot solution is placed in a dialysis bag and then placed in an exchange medium, wherein the light-emitting quantum dot solution contains a light-emitting quantum dot, and an oil-soluble organic ligand is bound to the surface of the light-emitting quantum dot.
  • the exchange medium contains a polar solvent, a second non-polar solvent, and a water-soluble ligand.
  • an oil-soluble organic ligand and a water-soluble ligand mixed ligand are formed on the surface of the quantum dot.
  • the surface of the light-emitting quantum dots undergoing ligand exchange is an oil-soluble organic ligand and a water-soluble ligand mixed ligand, which can balance the electron and hole transport rates in the light-emitting layer of the device and improve the carrier mobility of the light-emitting layer. Improve the luminous efficiency and service life of the device.
  • the method is simple in operation, can effectively perform ligand exchange, does not need to be washed after the exchange, does not need to add a precipitant, and can ensure the yield and luminous efficiency of the luminescent quantum dots.
  • the first non-polar solvent is selected from the group consisting of chloroform, carbon tetrachloride, n-hexane, cyclohexane, heptane, octane, nonane, decane, undecane, ten Dioxane, petroleum ether, anisole, phenyl ether, epoxypropylphenyl ether, benzene, o-dichlorobenzene, p-dichlorobenzene, o-xylene, p-xylene, n-octylbenzene, n-hexylbenzene, One of cyclohexylbenzene, 1,2,4-trichlorobenzene, 1,2,4-trimethylbenzene, 1,2,4-triethylbenzene, 1,2,4-trimethoxybenzene, etc. Or more.
  • the second non-polar solvent is selected from the group consisting of chloroform, carbon tetrachloride, n-hexane, cyclohexane, heptane, octane, nonane, decane, undecane, ten Dioxane, petroleum ether, anisole, phenyl ether, epoxypropylphenyl ether, benzene, o-dichlorobenzene, p-dichlorobenzene, o-xylene, p-xylene, n-octylbenzene, n-hexylbenzene, One of cyclohexylbenzene, 1,2,4-trichlorobenzene, 1,2,4-trimethylbenzene, 1,2,4-triethylbenzene, 1,2,4-trimethoxybenzene, etc. Or more.
  • the type of the non-polar solvent selected by the first non-polar solvent and the type of the non-polar solvent selected by the second non-polar solvent may be the same or different.
  • the type of the non-polar solvent selected by the first non-polar solvent is the same as the type of the non-polar solvent selected by the second non-polar solvent.
  • the polar solvent is selected from the group consisting of water, methanol, ethanol, propanol, butanol, formamide, methylformamide, methylacetamide, dimethylformamide, dimethylacetamide , Propionamide, butanamide, asparagine, pyridineamide, salicylamide, tetrahydrofuran-2-carboxamide, tetrahydrofuran, and the like.
  • the water-soluble ligand in the exchange medium is allowed to enter the dialysis bag to bind the quantum dot.
  • the ligand exchange reaction system The temperature is 20-70 ° C, and the material of the dialysis bag is polyvinylidene fluoride.
  • the particle size of the light-emitting quantum dots is 3.5 nm or more, and the molecular weight cut-off of the dialysis bag is 3500 KD or less.
  • the dialysis bag with a cut-off molecular weight of 3500 KD is available.
  • the particle size of the light-emitting quantum dots is 5 nm or more, and the cut-off molecular weight of the dialysis bag is less than 7000KD.
  • the particle size of the light-emitting quantum dots is 7 nm or more, and the cut-off molecular weight of the dialysis bag is 14,000 KD or less.
  • the cut-off molecular weight of the dialysis bag is 14,000 KD or less.
  • a dialysis bag with a cut-off molecular weight of 3500 KD, 7000 KD, or 14000 KD is available.
  • the first electron transport layer material may also be a third composite material
  • the third composite material includes: particles, a fourth oil-soluble organic ligand bound to the surface of the particles, and water-soluble
  • the ligand is an inorganic semiconductor nanocrystal.
  • the fourth oil-soluble organic ligand makes the third composite material still oil-soluble.
  • the surface of the particles is a mixed ligand of a fourth oil-soluble organic ligand and a water-soluble ligand, which can balance the electron and hole transport rates in the light-emitting layer of the device, improve the carrier mobility of the light-emitting layer, and thereby improve the light-emitting efficiency of the device. And service life.
  • the water-soluble ligand is selected from one or more selected from a halogen ion ligand, a mercapto alcohol having less than 8 carbon atoms, a mercaptoamine having less than 8 carbon atoms, and a mercapto acid having less than 8 carbon atoms.
  • the specific type of the water-soluble ligand is described above, and is not repeated here.
  • the specific types of the particles and the fourth oil-soluble organic ligand are also described above, and will not be repeated here.
  • the method for preparing the third composite material is consistent with the method for preparing the second composite material, except that particles are used instead of the light-emitting quantum dots and a fourth oil-soluble organic ligand is used instead of the oil-soluble organic ligand.
  • An embodiment of the present disclosure further provides a method for manufacturing a quantum dot light emitting diode with a formal structure as shown in FIG. 1, including the following steps:
  • the quantum dot light-emitting layer includes a first quantum dot light-emitting layer.
  • the material of the first quantum dot light-emitting layer is a composite material.
  • the composite material includes: a light-emitting quantum dot, and a halogen compound bonded to a surface of the light-emitting quantum dot. And oil-soluble organic ligands.
  • the method for preparing each layer may be a chemical method or a physical method.
  • the chemical method includes, but is not limited to, one of a chemical vapor deposition method, a continuous ion layer adsorption and reaction method, an anodization method, an electrolytic deposition method, and a co-precipitation method.
  • physical methods include, but are not limited to, solution methods (such as spin coating method, printing method, blade coating method, dipping and pulling method, dipping method, spraying method, roll coating method, casting method, slit coating method Or strip coating method), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion plating method, etc.), deposition method (such as physical vapor deposition method, atomic layer Deposition method, pulsed laser deposition method, etc.).
  • solution methods such as spin coating method, printing method, blade coating method, dipping and pulling method, dipping method, spraying method, roll coating method, casting method, slit coating method Or strip coating method
  • evaporation method such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion plating method, etc.
  • deposition method such as physical vapor deposition method, atomic layer Deposition method, pulsed laser deposition method,
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of inorganic semiconductor nanocrystals to obtain the first composite material, wherein the third temperature is higher than the first composite material.
  • the first temperature and the second temperature are higher than the first composite material.
  • an organic alcohol is used as an anionic precursor.
  • a halogen-containing cationic precursor is subjected to an alcoholysis reaction with an organic alcohol at a high temperature to obtain a metal oxide semiconductor nanocrystal, a halogen ion in the halogen-containing cation precursor, and a fifth
  • An oil-soluble organic ligand is bound to the surface of the metal oxide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the surface of the metal oxide semiconductor nanocrystal has a mixed ligand: a first halogen ligand and a fifth oil-soluble organic ligand, and the fifth oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the fifth oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate in the device.
  • hole transport rate thereby improving the light emitting efficiency of the light emitting layer.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of CdCl 2 , CdBr 2 and CdI 2, etc .; or SnCl 2, SnBr 2, and one or more SnI 2, and the like; or, GeCl 2, GeBr 2, and GeI 2 of one or more of the like.
  • the metal halide is selected from one of ZnCl 2 , CdCl 2 , SnCl 2 and GeCl 2 . Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the fifth oil-soluble organic ligand is selected from the group consisting of an organic carboxylic acid having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, a primary amine having 8 or more carbon atoms, and a branch.
  • an organic carboxylic acid having 8 or more carbon atoms an organic phosphoric acid having 8 or more carbon atoms
  • a primary amine having 8 or more carbon atoms
  • a branch One or more of secondary or tertiary amines having a chain carbon number of 4 or more.
  • the fifth oil-soluble organic ligand is an organic phosphoric acid having a carbon number of 8 or more.
  • the organic phosphoric acid and the metal oxide particles are bound by an ionic bond, and the binding ability is strong. Metal oxide particles do not directly bind to -OH and are not easily hydrolyzed.
  • the organic alcohol is selected from the group consisting of octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, cetyl alcohol, heptadecanol, and ten One or more of octaol and the like.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal oxide particles.
  • the metal oxide particles are selected from ZnO particles, CdO particles, SnO particles, or GeO particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals. After the crystal growth is completed, a seventh is added during the temperature reduction process.
  • the third temperature is higher than the first temperature and the second temperature.
  • the step of dispersing a cation precursor and a fifth oil-soluble organic ligand in a solvent and heating at a first temperature to obtain a first mixture specifically includes: doping a metal salt, a cation
  • the precursor and the fifth oil-soluble organic ligand are dispersed in a solvent and heated at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystal is selected from ZnO particles or SnO particles, and the inorganic semiconductor nanocrystal contains a metal doping element Al, V, or Y.
  • the HOMO energy levels of these several types of inorganic semiconductor nanocrystals can better match the HOMO energy levels of the quantum dots of the light emitting layer.
  • Doping ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer and light The effectiveness of electron transport between layer materials.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals to obtain the first composite material, wherein the third temperature is higher than the first temperature.
  • an organic alcohol is used as an anionic precursor.
  • a halogen-containing cationic precursor is subjected to an alcoholysis reaction with an organic alcohol at a high temperature to obtain a metal oxide semiconductor nanocrystal.
  • the halogen ion in the halogen-containing cation precursor and the sixth An oil-soluble organic ligand is bound to the surface of the metal oxide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the metal oxide semiconductor nanocrystal surface has mixed ligands: a first halogen ligand and a sixth oil-soluble organic ligand, and the sixth oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the sixth oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate in the device.
  • hole transport rate thereby improving the light emitting efficiency of the light emitting layer.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of CdCl 2 , CdBr 2 and CdI 2, etc .; or SnCl 2, SnBr 2, and one or more SnI 2, and the like; or, GeCl 2, GeBr 2, and GeI 2 of one or more of the like.
  • the metal halide is selected from one of ZnCl 2 , CdCl 2 , SnCl 2 and GeCl 2 . Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the sixth oil-soluble organic ligand is selected from a substituted or unsubstituted alkylaminophosphine, a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and a branched carbon One or more of alkyl phosphines having 4 or more atoms.
  • the organic alcohol is selected from the group consisting of octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, cetyl alcohol, heptadecanol, and ten One or more of octaol and the like.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal oxide particles.
  • the metal oxide particles are selected from ZnO particles, CdO particles, SnO particles, or GeO particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals. After the crystal growth is completed, a seventh is added during the temperature reduction process.
  • the third temperature is higher than the first temperature and the second temperature.
  • the step of dispersing a cation precursor in a solvent and heating at a first temperature to obtain a first mixture specifically includes: dispersing a doped metal salt and a cation precursor in a solvent. Heating at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystal is selected from ZnO particles or SnO particles, and the inorganic semiconductor nanocrystal contains a metal doping element Al, V, or Y.
  • the HOMO energy levels of these several types of inorganic semiconductor nanocrystals can better match the HOMO energy levels of the quantum dots of the light-emitting layer.
  • Doping ions can reduce the injection barrier of the electron-transport layer to the light-emitting layer, thereby ensuring the material of the transport layer and light emission. The effectiveness of electron transport between layer materials.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals to obtain the first composite material, wherein the third temperature is higher than the first temperature.
  • an organic alcohol is used as an anionic precursor.
  • a halogen-containing cation precursor is subjected to an alcoholysis reaction with an organic alcohol at a high temperature to obtain a metal oxide semiconductor nanocrystal.
  • the halogen ion in the halogen-containing cation precursor and the fifth The oil-soluble organic ligand and the sixth oil-soluble organic ligand are bound to the surface of the metal oxide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the metal oxide semiconductor nanocrystal surface has mixed ligands: a first halogen ligand, a fifth oil-soluble organic ligand, and a sixth oil-soluble organic ligand.
  • the oil-soluble organic ligand makes the first composite material oil-soluble. .
  • the first halogen ligand can improve the electron transport performance
  • the fifth oil-soluble organic ligand and the sixth oil-soluble organic ligand can effectively reduce the electron transport rate and make the electron transport performance of the material itself adjustable. , Thereby adjusting the electron transport rate and the hole transport rate in the device, thereby improving the luminous efficiency of the light emitting layer.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of CdCl 2 , CdBr 2 and CdI 2, etc .; or SnCl 2, SnBr 2, and one or more SnI 2, and the like; or, GeCl 2, GeBr 2, and GeI 2 of one or more of the like.
  • the metal halide is selected from one of ZnCl 2 , CdCl 2 , SnCl 2 and GeCl 2 . Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the fifth oil-soluble organic ligand is selected from an organic carboxylic acid having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, and a secondary amine having 4 or more branched carbon atoms. Or one or more of a tertiary amine and a primary amine having 8 or more carbon atoms;
  • And / or the sixth oil-soluble organic ligand is selected from the group consisting of a substituted or unsubstituted alkylaminophosphine, a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and a branched carbon atom number greater than or equal to One or more of 4 alkyl phosphines.
  • the fifth oil-soluble organic ligand is an organic phosphoric acid having a carbon number of 8 or more
  • the sixth oil-soluble organic ligand is a substituted or unsubstituted alkylaminophosphine. Because organic phosphoric acid and cations on the surface of inorganic semiconductor nanocrystals are bound by ionic bonds, alkylaminophosphines and cations on the surface of inorganic semiconductor nanocrystals can be simultaneously bound by lone electron pairs of P or hydrogen bonds in -NH 2 , and the binding ability is strong.
  • the organic alcohol is selected from the group consisting of octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, cetyl alcohol, heptadecanol, and ten One or more of octaol and the like.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal oxide particles.
  • the metal oxide particles are selected from ZnO particles, CdO particles, SnO particles, or GeO particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals. After the crystal growth is completed, a seventh is added during the temperature reduction process.
  • an organic alcohol is used as an anionic precursor, and a halogen-containing cationic precursor is subjected to an alcoholysis reaction with an organic alcohol at a high temperature to obtain a metal oxide semiconductor nanocrystal, a halogen ion in the halogen-containing cation precursor,
  • the fifth oil-soluble organic ligand, the sixth oil-soluble organic ligand, and the seventh oil-soluble organic ligand are bound to the surface of the metal oxide semiconductor nanocrystal.
  • the fifth oil-soluble organic ligand is an organic phosphoric acid having a carbon number of 8 or more
  • the sixth oil-soluble organic ligand is a substituted or unsubstituted alkylaminophosphine.
  • the seventh oil-soluble organic ligand is a thiol having 8 or more carbon atoms.
  • alkylaminophosphine and cations on the surface of inorganic semiconductor nanocrystals can simultaneously be lone electron pairs of P or -NH 2
  • the hydrogen bonding in the medium has strong binding ability and is not easy to fall off, which can ensure the solubility and transportability of the first composite material.
  • these types of ligands will not bind with -OH on the surface of inorganic semiconductor nanocrystals, and will not undergo hydrolysis. .
  • the step of dispersing a cation precursor and a fifth oil-soluble organic ligand in a solvent and heating at a first temperature to obtain a first mixture specifically includes: doping a metal salt, a cation
  • the precursor and the fifth oil-soluble organic ligand are dispersed in a solvent and heated at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystal is selected from ZnO particles or SnO particles, and the inorganic semiconductor nanocrystal contains a metal doping element Al, V, or Y.
  • the HOMO energy levels of these several types of inorganic semiconductor nanocrystals can better match the HOMO energy levels of the quantum dots of the light emitting layer.
  • the preferred doped ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer. Effectiveness of electron transport to and from the luminescent layer material.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals.
  • a seventh oil-soluble organic ligand is added in the process of cooling, so that A seventh oil-soluble organic ligand is combined on the surface of the semiconductor nanocrystal to obtain the first composite material, wherein the seventh oil-soluble organic ligand is a thiol having a carbon number of 8 or more, wherein the third temperature Higher than the first temperature and the second temperature.
  • an organic alcohol is used as an anionic precursor, and a halogen-containing cationic precursor is subjected to an alcoholysis reaction with the organic alcohol at a high temperature to obtain a metal oxide semiconductor nanocrystal, a halogen ion in the halogen-containing cation precursor, and a seventh
  • An oil-soluble organic ligand is bound to the surface of the metal oxide semiconductor nanocrystal.
  • the first composite material obtained by this method has small and uniform size and few surface defects. There is no emission peak in the visible wave band, and it will not interfere with the emission of the light-emitting layer in the device structure.
  • the surface of the metal oxide semiconductor nanocrystal has a mixed ligand: a first halogen ligand and a seventh oil-soluble organic ligand, and the seventh oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the seventh oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate in the device.
  • hole transport rate thereby improving the light emitting efficiency of the light emitting layer.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of CdCl 2 , CdBr 2 and CdI 2, etc .; or SnCl 2, SnBr 2, and one or more SnI 2, and the like; or, GeCl 2, GeBr 2, and GeI 2 of one or more of the like.
  • the organic alcohol is selected from the group consisting of octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, cetyl alcohol, heptadecanol, and ten One or more of octaol and the like.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal oxide particles.
  • the metal oxide particles are selected from ZnO particles, CdO particles, SnO particles, or GeO particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the step of dispersing a cation precursor in a solvent and heating at a first temperature to obtain a first mixture specifically includes: dispersing a doped metal salt and a cation precursor in a solvent. Heating at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystal is selected from ZnO particles or SnO particles, and the inorganic semiconductor nanocrystal contains a metal doping element Al, V, or Y.
  • the HOMO energy levels of these several types of inorganic semiconductor nanocrystals can better match the HOMO energy levels of the quantum dots of the light emitting layer.
  • the preferred doped ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer. Effectiveness of electron transport to and from the luminescent layer material.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals to obtain the first composite material, wherein the third temperature is higher than the first temperature.
  • a halogen-containing cationic precursor and a sulfur-containing anion precursor react at a high temperature to obtain a metal sulfide semiconductor nanocrystal.
  • the halogen ion and the fifth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the surface of the metal sulfide semiconductor nanocrystal has a mixed ligand: a first halogen ligand and a fifth oil-soluble organic ligand, and the fifth oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the fifth oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate in the device.
  • hole transport rate thereby improving the light emitting efficiency of the light emitting layer.
  • the anionic precursor is a thiol having 8 or more carbon atoms.
  • a halogen-containing cationic precursor and an thiol undergo an alcoholysis reaction at a high temperature to obtain metal sulfide semiconductor nanocrystals.
  • the halogen ion and the fifth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the anionic precursor is a sulfur element.
  • the sulfur element is added in the form of sulfur-non-coordination solvent after being mixed with the non-coordination solvent.
  • the sulfur element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • a halogen-containing cation precursor reacts with a sulfur element at a high temperature to obtain a metal sulfide semiconductor nanocrystal.
  • the halogen ion and the fifth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the sulfur-non-coordinating solvent is selected from one or more of sulfur-dodecene, sulfur-tetradecene, sulfur-hexadecene, and sulfur-octadecene.
  • the anionic precursor is a thiol and a sulfur element having a carbon number of 8 or more.
  • the sulfur element is added in the form of sulfur-non-coordination solvent after being mixed with the non-coordination solvent.
  • the sulfur element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • the halogen-containing cation precursor reacts with thiol and sulfur element at high temperature to obtain metal sulfide semiconductor nanocrystals.
  • the halogen ion and the fifth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the sulfur-non-coordinating solvent is selected from one or more of sulfur-dodecene, sulfur-tetradecene, sulfur-hexadecene, and sulfur-octadecene.
  • the thiol having a carbon number of 8 or more is selected from the group consisting of octyl mercaptan, nonyl mercaptan, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, and tetradecyl mercaptan
  • octyl mercaptan octyl mercaptan
  • nonyl mercaptan decyl mercaptan
  • undecyl mercaptan dodecyl mercaptan
  • tridecyl mercaptan tridecyl mercaptan
  • tetradecyl mercaptan One or more of an alcohol, pentathiol, hexadecanethiol, heptathiol, and octadecanethiol.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of SnCl 2 , SnBr 2 and SnI 2 etc .; or GeCl one or more of 2, GeBr 2, and GeI 2, and the like.
  • the metal halide is selected from one of ZnCl 2 , SnCl 2 and GeCl 2 . Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the fifth oil-soluble organic ligand is selected from an organic carboxylic acid having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, and a secondary amine having 4 or more branched carbon atoms. Or one or more of a tertiary amine and a primary amine having 8 or more carbon atoms.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal sulfide particles.
  • the metal sulfide particles are selected from ZnS particles, SnS particles, or GeS particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the step of dispersing a cation precursor and a fifth oil-soluble organic ligand in a solvent and heating at a first temperature to obtain a first mixture specifically includes: doping a metal salt, a cation
  • the precursor and the fifth oil-soluble organic ligand are dispersed in a solvent and heated at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystal is selected from ZnS particles, and the inorganic semiconductor nanocrystal contains a metal doping element Al, V, or Y.
  • the HOMO energy level of this inorganic semiconductor nanocrystal can better match the HOMO energy level of the quantum dots of the light emitting layer.
  • Doping ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer and the light emitting layer. Effectiveness of electron transmission between materials.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals to obtain the first composite material, wherein the third temperature is higher than the first temperature.
  • a halogen-containing cationic precursor and a sulfur-containing anion precursor react at a high temperature to obtain a metal sulfide semiconductor nanocrystal.
  • the halogen ion and the sixth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the metal sulfide semiconductor nanocrystal surface has mixed ligands: a first halogen ligand and a sixth oil-soluble organic ligand, and the sixth oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the sixth oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate in the device.
  • hole transport rate thereby improving the light emitting efficiency of the light emitting layer.
  • the anionic precursor is a thiol having 8 or more carbon atoms.
  • a halogen-containing cationic precursor and an thiol undergo an alcoholysis reaction at a high temperature to obtain metal sulfide semiconductor nanocrystals.
  • the halogen ion and the sixth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the anionic precursor is a sulfur element.
  • the sulfur element is mixed with the sixth oil-soluble organic ligand, the formed sulfur ion reacts with the metal ion in the cation precursor at a high temperature to nucleate to obtain sulfide semiconductor nanocrystals, and the halogen-containing cation after nucleation
  • the halogen ions and the sixth oil-soluble organic ligand in the precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the anionic precursor is a thiol and a sulfur element having a carbon number of 8 or more.
  • the sulfur element is mixed with the sixth oil-soluble organic ligand, the sulfur ions and thiols formed react with the metal ions in the cation precursor at a high temperature to nucleate to obtain sulfide semiconductor nanocrystals.
  • the halogen ions and the sixth oil-soluble organic ligand in the cation precursor of the halogen are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the thiol having a carbon number of 8 or more is selected from the group consisting of octyl mercaptan, nonyl mercaptan, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, and tetradecyl mercaptan
  • octyl mercaptan octyl mercaptan
  • nonyl mercaptan decyl mercaptan
  • undecyl mercaptan dodecyl mercaptan
  • tridecyl mercaptan tridecyl mercaptan
  • tetradecyl mercaptan One or more of an alcohol, pentathiol, hexadecanethiol, heptathiol, and octadecanethiol.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of SnCl 2 , SnBr 2 and SnI 2 etc .; or GeCl one or more of 2, GeBr 2, and GeI 2, and the like.
  • the metal halide is selected from one of ZnCl 2 , SnCl 2 and GeCl 2 . Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the sixth oil-soluble organic ligand is selected from a substituted or unsubstituted alkylaminophosphine, a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and a branched carbon One or more of alkyl phosphines having 4 or more atoms.
  • the sixth oil-soluble organic ligand is a substituted or unsubstituted alkylaminophosphine.
  • the substituted or unsubstituted alkylaminophosphine can be combined with the cations on the particle surface by lone electron pairs of P or hydrogen bonds in -NH 2 at the same time, and the ionic bond of the halogen ligand is stronger, and the particle surface is stronger, Not easy to fall off.
  • the non-OH is bound to the surface of the metal sulfide particles and will not cause the hydrolysis or oxidation of the metal sulfide particles.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal sulfide particles.
  • the metal sulfide particles are selected from ZnS particles, SnS particles, or GeS particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the step of dispersing a cation precursor in a solvent and heating at a first temperature to obtain a first mixture specifically includes: dispersing a doped metal salt and a cation precursor in a solvent. Heating at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystal is selected from ZnS particles, and the inorganic semiconductor nanocrystal contains a metal doping element Al, V or Y.
  • the HOMO energy level of this inorganic semiconductor nanocrystal can better match the HOMO energy level of the quantum dots of the light emitting layer.
  • Doping ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer and the light emitting layer. Effectiveness of electron transmission between materials.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals to obtain the first composite material, wherein the third temperature is higher than the first temperature.
  • a halogen-containing cationic precursor and a sulfur-containing anion precursor react at a high temperature to obtain a metal sulfide semiconductor nanocrystal.
  • the halogen ion, the fifth oil-soluble organic ligand, and the sixth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the surface of the metal sulfide semiconductor nanocrystal has mixed ligands: a first halogen ligand, a fifth oil-soluble organic ligand, and a sixth oil-soluble organic ligand; the fifth oil-soluble organic ligand and the sixth oil-soluble organic ligand
  • the ligand makes the first composite material still oil-soluble.
  • the first halogen ligand can improve the electron transport performance
  • the fifth oil-soluble organic ligand and the sixth oil-soluble organic ligand can effectively reduce the electron transport rate and make the electron transportability of the material itself adjustable. , Thereby adjusting the electron transport rate and the hole transport rate in the device, thereby improving the luminous efficiency of the light emitting layer.
  • the anionic precursor is a thiol having 8 or more carbon atoms.
  • a halogen-containing cationic precursor and an thiol undergo an alcoholysis reaction at a high temperature to obtain metal sulfide semiconductor nanocrystals.
  • the halogen ion, the fifth oil-soluble organic ligand, and the sixth oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the anionic precursor is a sulfur element.
  • the sulfur element is mixed with the sixth oil-soluble organic ligand, the formed sulfur ion reacts with the metal ion in the cation precursor at a high temperature to nucleate to obtain sulfide semiconductor nanocrystals, and the halogen-containing cation after nucleation
  • the halogen ions, the fifth oil-soluble organic ligand, and the sixth oil-soluble organic ligand in the precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the anionic precursor is a thiol and a sulfur element having a carbon number of 8 or more.
  • the sulfur element is mixed with the sixth oil-soluble organic ligand, the sulfur ions and thiols formed react with the metal ions in the cation precursor at a high temperature to nucleate to obtain sulfide semiconductor nanocrystals.
  • the halogen ions, the fifth oil-soluble organic ligand, and the sixth oil-soluble organic ligand in the cation precursor of the halogen are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the thiol having a carbon number of 8 or more may be selected from octyl mercaptan, nonanethiol, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, and fourteen One or more of thiols, pentathiols, hexadecanethiols, heptathiols, and octadecanethiols.
  • the fifth oil-soluble organic ligand is selected from an organic carboxylic acid having 8 or more carbon atoms, an organic phosphoric acid having 8 or more carbon atoms, and a secondary amine having 4 or more branched carbon atoms. Or one or more of a tertiary amine and a primary amine having 8 or more carbon atoms;
  • And / or the sixth oil-soluble organic ligand is selected from the group consisting of a substituted or unsubstituted alkylaminophosphine, a substituted or unsubstituted alkoxyphosphine, a substituted or unsubstituted silylphosphine, and a branched carbon atom number greater than or equal to One or more of 4 alkyl phosphines.
  • the fifth oil-soluble organic ligand is an organic phosphoric acid having a carbon number of 8 or more
  • the sixth oil-soluble organic ligand is a substituted or unsubstituted alkylaminophosphine. Because organic phosphoric acid and cations on the surface of inorganic semiconductor nanocrystals are bound by ionic bonds, alkylaminophosphines and cations on the surface of inorganic semiconductor nanocrystals can be simultaneously bound by lone electron pairs of P or hydrogen bonds in -NH 2 , and the binding ability is strong.
  • the anionic precursor is a thiol or a thiol and a sulfur simple substance having a carbon number of 8 or more, and the amount of the added thiol is greater than the amount of semiconductor nanocrystal nucleation
  • the fifth The oil-soluble organic ligand is an organic phosphoric acid having 8 or more carbon atoms
  • the sixth oil-soluble organic ligand is a substituted or unsubstituted alkylaminophosphine.
  • Excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Because organic phosphoric acid and thiol ligands are combined with cations on the surface of inorganic semiconductor nanocrystals by ionic and hydrogen bonds, respectively, alkylaminophosphine and cations on the surface of inorganic semiconductor nanocrystals can simultaneously be lone electron pairs of P or -NH 2 The hydrogen bonding in the medium has strong binding ability and is not easy to fall off, which can ensure the solubility and transportability of the first composite material. Moreover, these types of ligands will not bind with -OH on the surface of inorganic semiconductor nanocrystals, and will not undergo hydrolysis. .
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal sulfide particles.
  • the metal sulfide particles are selected from ZnS particles, SnS particles, or GeS particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the step of dispersing a cation precursor and a fifth oil-soluble organic ligand in a solvent and heating at a first temperature to obtain a first mixture specifically includes: doping a metal salt, a cation
  • the precursor and the fifth oil-soluble organic ligand are dispersed in a solvent and heated at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystals are selected from ZnS particles, and the inorganic semiconductor nanocrystals contain a metal doping element Al, V or Y.
  • the HOMO energy level of this inorganic semiconductor nanocrystal can better match the HOMO energy level of the quantum dots of the light emitting layer.
  • Doping ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer and the light emitting layer. Effectiveness of electron transmission between materials.
  • the metal doping element is Y.
  • An embodiment of the present disclosure provides a method for preparing a first composite material, which includes the following steps:
  • the first mixture is heated at a third temperature, and the second mixture is injected during the heating process for crystal growth of semiconductor nanocrystals.
  • a seventh oil-soluble organic ligand is added in the process of cooling, so that A seventh oil-soluble organic ligand is combined on the surface of the semiconductor nanocrystal to obtain the first composite material, wherein the seventh oil-soluble organic ligand is a thiol having a carbon number of 8 or more, wherein the third temperature Higher than the first temperature and the second temperature.
  • a halogen-containing cationic precursor and a sulfur-containing anion precursor react at a high temperature to obtain a metal sulfide semiconductor nanocrystal.
  • the halogen ion and the seventh oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the surface of the metal sulfide semiconductor nanocrystal has a mixed ligand: a first halogen ligand and a seventh oil-soluble organic ligand, and the seventh oil-soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the seventh oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate in the device.
  • hole transport rate thereby improving the light emitting efficiency of the light emitting layer.
  • the anionic precursor is a thiol having 8 or more carbon atoms.
  • a halogen-containing cationic precursor and an thiol undergo an alcoholysis reaction at a high temperature to obtain metal sulfide semiconductor nanocrystals.
  • the halogen ion and the seventh oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • an excess of thiol can also be bound to the surface of metal sulfide semiconductor nanocrystals as a surface ligand. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the anionic precursor is a sulfur element.
  • the sulfur element is added in the form of sulfur-non-coordination solvent after being mixed with the non-coordination solvent.
  • the sulfur element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • a halogen-containing cation precursor reacts with a sulfur element at a high temperature to obtain a metal sulfide semiconductor nanocrystal.
  • the halogen ion and the seventh oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • the sulfur-non-coordinating solvent is selected from one or more of sulfur-dodecene, sulfur-tetradecene, sulfur-hexadecene, and sulfur-octadecene.
  • the anionic precursor is a thiol and a sulfur element having a carbon number of 8 or more.
  • the sulfur element is added in the form of sulfur-non-coordination solvent after being mixed with the non-coordination solvent.
  • the sulfur element is dispersed in a non-coordinating solvent to form a uniform liquid, which is convenient for subsequent injection.
  • the halogen-containing cation precursor reacts with thiol and sulfur element at high temperature to obtain metal sulfide semiconductor nanocrystals.
  • the halogen ion and the seventh oil-soluble organic ligand in the halogen-containing cation precursor are bound to the surface of the metal sulfide semiconductor nanocrystal.
  • excess thiols can also bind to the surface of metal sulfide semiconductor nanocrystals as surface ligands. Wherein, when the amount of thiol added is greater than the amount of metal sulfide semiconductor nanocrystals grown and nucleated, it means that the amount of thiol is excessive.
  • the sulfur-non-coordinating solvent is selected from one or more of sulfur-dodecene, sulfur-tetradecene, sulfur-hexadecene, and sulfur-octadecene.
  • the thiol having a carbon number of 8 or more may be selected from the group consisting of octyl mercaptan, nonyl mercaptan, decyl mercaptan, undecyl mercaptan, dodecyl mercaptan, tridecyl mercaptan, and fourteen One or more of thiols, pentathiols, hexadecanethiols, heptathiols, and octadecanethiols.
  • the metal halide is selected from one or more of chloride, bromide and iodide of zinc element; or,
  • germanium chloride, bromide and iodide is selected from one or more of ZnCl 2 , ZnBr 2 and ZnI 2, etc .; or one or more of SnCl 2 , SnBr 2 and SnI 2 etc .; or GeCl one or more of 2, GeBr 2, and GeI 2, and the like.
  • the metal halide is selected from one of ZnCl 2 , SnCl 2 and GeCl 2 . Because the atomic radius of chlorine relative to bromine and iodine is small, when the particle surface is used as a surface ligand, the distance that electrons need to travel is short, which can improve the electron transportability.
  • the first temperature is 110-190 ° C.
  • the second temperature is 110-190 ° C.
  • the prepared inorganic semiconductor nanocrystals are metal sulfide particles.
  • the metal sulfide particles are selected from ZnS particles, SnS particles, or GeS particles, but are not limited thereto.
  • the method of this embodiment is used to nucleate at a higher temperature, and by controlling the particle size (preferably 2-7nm), the prepared inorganic semiconductor nanocrystals have small surface defects and achieve no emission peaks in the visible band. Will interfere with the emission of the light emitting layer in the device structure.
  • the higher temperature is the third temperature in this embodiment.
  • the third temperature is 210-350 ° C.
  • the third temperature is 230-300 ° C.
  • the step of dispersing a cation precursor in a solvent and heating at a first temperature to obtain a first mixture specifically includes: dispersing a doped metal salt and a cation precursor in a solvent. Heating at a first temperature to obtain the first mixture.
  • the doped metal salt is selected from one or more of Mg salt, Mn salt, Al salt, Y salt, V salt, and Ni salt, but is not limited thereto.
  • the Mg salt may be selected from one or more of MgCl 2 , MgI 2 , and Mg (NO 3 ) 2 , but is not limited thereto;
  • the Mn salt may be selected from MnCl 2 , MnI 2 , Mn ( NO 3 ) 2 or more, but is not limited thereto;
  • the Al salt may be selected from one or more of AlCl 3 , AlI 3 , Al (CH 3 COO) 3 , but is not limited thereto;
  • the Y salt may be selected from one or more of YCl 2 , Y (CH 3 COO) 2 , Y (NO 3 ) 2 , but is not limited thereto;
  • the V salt may be selected from VCl 2 , V (CH 3 COO) 2 , V (NO 3 ) 2 , but is not
  • the inorganic semiconductor nanocrystals are selected from ZnS particles, and the inorganic semiconductor nanocrystals contain a metal doping element Al, V or Y.
  • the HOMO energy level of this inorganic semiconductor nanocrystal can better match the HOMO energy level of the quantum dots of the light emitting layer.
  • Doping ions can reduce the injection barrier of the electron transport layer to the light emitting layer, thereby ensuring the material of the transport layer and the light emitting layer. Effectiveness of electron transmission between materials.
  • the metal doping element is Y.
  • Example embodiment of the present composite material (the surface ligand is octadecyl phosphate, trioctyl phosphine and Cl - in the CdZnS / ZnS quantum dots) prepared in the following steps:
  • cationic precursor solution 10 mmol of zinc acetate, 1 mmol of cadmium chloride, 10 mmol of octadecyl phosphoric acid, and 30 mL of ODE were mixed, heated to 150 ° C in an Ar atmosphere, and held for 60 minutes to obtain a cationic precursor solution;
  • anionic precursor solution Take 1mmol of S and 3mL of ODE, heat to 140 ° C in Ar atmosphere, and hold for 30min to obtain anionic precursor solution 1. Take 3mmol of S and mix 6mL of trioctylphosphine, and heat to Incubate at 140 ° C for 30 min to obtain anionic precursor solution 2;
  • Preparation of composite materials heating the cationic precursor solution to 230 ° C, injecting the anionic precursor solution 1, and keeping it for 5 minutes; adding the anionic precursor solution 2 to the reaction solution, and reacting for 30 minutes, the surface ligand is octadecyl phosphoric acid, and trioctylphosphine of Cl - CdZnS / ZnS quantum dot, i.e. to obtain a composite material according to the present embodiment.
  • the preparation steps of the composite material of this embodiment are as follows:
  • cationic precursor solution 8 mmol of zinc bromide, 0.8 mmol of cadmium bromide were mixed with 10 mmol of octadecenoic acid, 30 mL of ODE, and heated to 150 ° C. in an Ar atmosphere, and held for 60 minutes to obtain a cationic precursor solution;
  • anion precursor solution Take 1mmol of selenium and 3mL of ODE, heat to 250 °C in Ar atmosphere, and hold for 30min to obtain anion precursor solution 1. Take 4mmol of S and mix 8mL of trioctylphosphine, then heat to Incubate at 140 ° C for 30 min to obtain anionic precursor solution 2;
  • Preparation of composite materials heating the cationic precursor solution to 260 ° C, injecting the anionic precursor solution 1, and incubating for 10 minutes; adding 6 mL of the anionic precursor solution 2 to the reaction solution, reacting for 30 minutes, and then adding 2 mL of the anionic precursor solution 2 to the reaction solution, the reaction 10min, to obtain a surface ligand is oleic acid, trioctylphosphine and Br - of CdZnSe / CdZnS / ZnS quantum dot, i.e. to obtain a composite material according to the present embodiment.
  • the preparation steps of the composite material of this embodiment are as follows:
  • cationic precursor solution 8 mmol of zinc chloride, 0.8 mmol of cadmium chloride, 10 mmol of octadecenoic acid, and 30 mL of ODE were mixed, heated to 150 ° C in an Ar atmosphere, and held for 60 minutes to obtain a cationic precursor solution;
  • anionic precursor solution Take 1mmol of selenium and 3mL of ODE, heat to 250 °C in Ar atmosphere, and hold for 30min to obtain anionic precursor solution 1. Take 4mmol of selenium and 8mL of tris (dimethylamino) phosphine, mix in Ar Heated to 140 ° C under the atmosphere and kept for 30min to obtain anionic precursor solution 2;
  • Preparation of composite materials heating the cationic precursor solution to 280 ° C, injecting the anionic precursor solution 1, and incubating for 10 minutes; adding the anionic precursor solution 2 to the reaction solution, and reacting for 30 minutes, the surface ligands are octadecenoic acid, (dimethylamino) phosphine and of Cl - CdZnSe / ZnSe quantum dot, i.e. to obtain a composite material according to the present embodiment.
  • the preparation steps of the composite material of this embodiment are as follows:
  • cationic precursor solution 0.8 mmol of indium chloride was mixed with 10 mmol of octadecenoic acid and 30 mL of ODE, heated to 150 ° C in an Ar atmosphere, and held for 60 minutes to obtain a cationic precursor solution 1; 4 mmol of zinc chloride and 10 mmol Octadenoic acid and 10 mL of ODE were mixed, heated to 250 ° C in an Ar atmosphere, and held for 60 minutes to obtain a cation precursor solution 2;
  • anionic precursor solution Take 0.8mmol of chloro (diisopropylamino) methoxyphosphine and 3mL of ODE to obtain anionic precursor solution 1; take 4mmol of sulfur and mix with trioctylphosphine, and heat to 140 °C in Ar atmosphere And holding for 30min to obtain anionic precursor solution 2;
  • Preparation of composite material Heat the cationic precursor solution 1 to 300 ° C, inject the anionic precursor solution 1, and incubate for 10 minutes; then add the cationic precursor solution 2 and the anionic precursor solution 2 to the reaction solution at the same time and react for 30 minutes to obtain the surface compound body is octadecenoic acid, chloro (diisopropylamino) methoxyphosphine, trioctylphosphine and Cl - in the InP / ZnS quantum dot, i.e. to obtain a composite material according to the present embodiment.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 35 nm hole transport layer, a 20 nm quantum dot light emitting layer, a 40 nm electron transport layer, and a 100 nm cathode arranged in this order from bottom to top.
  • the quantum dot light-emitting layer is a CdZnS / ZnS quantum dot layer whose surface ligand is octadecyl phosphoric acid and Cl - mixed ligand.
  • the quantum dot light emitting diode device is prepared as follows:
  • a hole injection layer and a 35 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • a 100-nm-thick Ag electrode was prepared on the electron transport layer using a vapor deposition method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 35 nm hole transport layer, a 40 nm quantum dot light emitting layer, a 50 nm electron transport layer, and a 100 nm cathode arranged in this order from bottom to top.
  • the quantum dot light emitting layer is a CdZnSe / ZnSe quantum dot layer and a polar CdZnSe / ZnSe quantum dot light emitting layer whose surface ligands are mixed ligands of octadecyl phosphoric acid and 3-mercaptopropionic acid, and each layer is 20 nm.
  • the quantum dot light emitting diode device is prepared as follows:
  • a hole injection layer and a 35 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • a 20 mg / ml light-emitting quantum dot heptane solution was used on the hole-transporting layer to form a CdZnSe / ZnSe quantum dot light emitting layer. Then, a 20 mg / ml CdZnSe / ZnSe ethanol solution was applied to form a 20 nm polar CdZnSe / ZnSe quantum dot light-emitting layer.
  • the ZnO heptane solution is coated on the quantum dot light-emitting layer by a spin coating method, and the thicknesses of the films are 50 nm, respectively.
  • a 100-nm-thick Ag electrode was prepared on the electron transport layer using a vapor deposition method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 20 nm hole transport layer, a 30 nm quantum dot light emitting layer, a 60 nm electron transport layer, and an 80 nm cathode arranged in this order from bottom to top.
  • the light-emitting layer is a CdZnSe / ZnSe quantum dot layer with a surface ligand of octyl mercaptan and a Br - mixed ligand, and a polar CdZnSe / ZnSe quantum dot light-emitting layer.
  • the surface ligand is a CdZnSe / ZnSe of octyl mercaptan and a Br - mixed ligand.
  • Quantum dot layer, each layer is 10nm.
  • the quantum dot light emitting diode device is prepared as follows:
  • a hole injection layer and a 20 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • An 80-nm-thick Al electrode was prepared on the electron-transporting layer using an evaporation method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 20 nm hole transport layer, a 60 nm quantum dot light emitting layer, a 60 nm electron transport layer, and an 80 nm cathode arranged in this order from bottom to top.
  • the light-emitting layer is a CdZnSe / ZnS quantum dot layer with a surface ligand of tris (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligand, a polar CdZnSe / ZnS quantum dot light-emitting layer, and the surface ligand is CdZnSe / ZnS quantum dot layer with tri (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligand, polar CdZnSe / ZnS quantum dot light-emitting layer, and tri (dimethylamino) phosphine as surface ligand CdZnSe / ZnS quantum dot layer and polar CdZnSe / ZnS quantum dot light-emitting layer mixed with 6-mercapto-1-hexanol ligands, each layer is 10 nm.
  • a hole injection layer and a 20 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • CdZnSe / ZnS quantum dot heptane solution and CdZnSe / ZnS methanol solution with a surface ligand of tris (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligand were used at 20 mg / ml in the cavity.
  • a spin coating method with a rotation speed of 2000 rpm was used to sequentially form a CdZnSe / ZnS quantum dot layer with a surface ligand of a tri (dimethylamino) phosphine and a 6-mercapto-1-hexanol mixed ligand, and a polar CdZnSe / ZnS.
  • Quantum dot light emitting layer CdZnSe / ZnS quantum dot layer with surface ligands of tri (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligand, polar CdZnSe / ZnS quantum dot light emitting layer, surface ligand
  • the CdZnSe / ZnS quantum dot layer and the polar CdZnSe / ZnS quantum dot light-emitting layer are tris (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligands, and each layer is 10 nm.
  • An 80-nm-thick Al electrode was prepared on the electron-transporting layer using an evaporation method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 35 nm hole transport layer, a 20 nm quantum dot light emitting layer, a 50 nm electron transport layer, and a 100 nm cathode arranged in this order from bottom to top.
  • the light-emitting layer and the electron-transporting layer both use mixed-ligand quantum dots.
  • the quantum dot light emitting diode device is prepared as follows:
  • a hole injection layer and a 35 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • a 100-nm-thick Ag electrode was prepared on the electron transport layer using a vapor deposition method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 20 nm hole transport layer, a 30 nm quantum dot light emitting layer, a 50 nm electron transport layer, and an 80 nm cathode arranged in this order from bottom to top.
  • the light-emitting layer and the electron-transporting layer both use mixed-ligand quantum dots.
  • the quantum dot light emitting diode device is prepared as follows:
  • a hole injection layer and a 20 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • An 80-nm-thick Al electrode was prepared on the electron-transporting layer using an evaporation method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the quantum dot light emitting diode structure includes a glass substrate, an ITO anode, a hole injection layer, a 40 nm hole transport layer, a 60 nm quantum dot light emitting layer, a 60 nm electron transport layer, and a 70 nm cathode arranged in this order from bottom to top.
  • the electron transport layer is a mixed ligand transport layer
  • the light emitting layer is a mixed ligand light emitting layer.
  • the quantum dot light emitting diode device is prepared as follows:
  • a hole injection layer and a 40 nm hole transport layer are sequentially coated on the ITO bottom electrode.
  • CdZnSe / ZnS quantum dot heptane solution and CdZnSe / ZnS methanol solution with a surface ligand of tris (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligand were used at 20 mg / ml in the cavity.
  • a spin coating method with a rotation speed of 2000 rpm was used to sequentially form a CdZnSe / ZnS quantum dot layer with a surface ligand of a tri (dimethylamino) phosphine and a 6-mercapto-1-hexanol mixed ligand, and a polar CdZnSe / ZnS.
  • Quantum dot light emitting layer CdZnSe / ZnS quantum dot layer with surface ligands of tri (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligand, polar CdZnSe / ZnS quantum dot light emitting layer, surface ligand
  • the CdZnSe / ZnS quantum dot layer and the polar CdZnSe / ZnS quantum dot light-emitting layer are tris (dimethylamino) phosphine and 6-mercapto-1-hexanol mixed ligands, and each layer is 10 nm.
  • a ZnS Mn heptane solution with a surface ligand of octyl mercaptan and 3-mercaptopropionic acid, a polar ZnO solution, and a surface ligand of octyl mercaptan and 3-mercapto
  • a 70 nm-thick Al electrode was prepared on the electron transport layer using a vapor deposition method.
  • the manufactured quantum dot light emitting diode is packaged with an ultraviolet curing adhesive to obtain a quantum dot light emitting diode device.
  • the present disclosure provides a quantum dot light emitting diode.
  • the material of the first quantum dot light-emitting layer in the present disclosure is a composite material.
  • the surface of the light-emitting quantum dot has a mixed ligand: a halogen ligand and an oil-soluble organic ligand, and the oil-soluble organic ligand makes the composite material still It is oil soluble.
  • the halogen ligand can improve the electron transportability of the quantum dots and the carrier transmission rate in the light-emitting layer.
  • the material of the first electron transport layer is a first composite material, and in the first composite material, the particle surface has a mixed ligand: a first halogen ligand and a fourth oil-soluble organic ligand, and the fourth oil The soluble organic ligand makes the first composite material oil-soluble.
  • the first halogen ligand can improve the electron transmission performance
  • the fourth oil-soluble organic ligand can effectively reduce the electron transmission rate, so that the electron transmission performance of the material itself can be adjusted, thereby adjusting the electron transmission rate and
  • the hole transport rate further improves the light emitting efficiency of the light emitting layer.

Abstract

提供一种复合材料与量子点发光二极管,包括:阳极、阴极及设置在所述阳极和阴极之间的量子点发光层,其中,所述量子点发光层包括第一量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,该油溶性的复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。

Description

一种复合材料与量子点发光二极管 技术领域
本公开涉及量子点发光器件领域,尤其涉及一种复合材料与量子点发光二极管。
背景技术
近年来,由于胶体量子点具有量子效率高、光纯度高、发射波长可调节等特点,成为最具有发展前景的新型显示材料。目前研究者们已经制备出光致发光效率高达100%的量子点材料,应用在生物标记、传感器件以及发光二极管(LED)中。
在量子点发光二极管制备过程中,器件的外量子效率很低,据报道的红绿蓝的器件效率都不足20%。为什么量子点材料的光致发光效率和电致发光效率差别如此之大呢?这主要是由于量子点材料使用光激发,而器件使用电激发。在器件结构中,量子点发光层对其他功能层如电子传输层、空穴传输层的要求较高,需其他功能层在功函数、传输性能、稳定性等各方面达到比较理想的情况才能得到较高的器件效率与寿命。决定量子点器件效率的一个很重要的因素就是电子传输速率与空穴传输速率达到平衡,常规器件结构普遍电子传输速率大于空穴传输速率,两者难达到平衡,导致器件效率和使用寿命较低。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种复合材料与量子点发光二极管,旨在解决器件效率/使用寿命较低的问题。
本公开的技术方案如下:
一种量子点发光二极管,包括:阳极、阴极及设置在所述阳极和阴极之间的量子点发光层,其中,所述量子点发光层包括第一量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。
有益效果:本公开所述复合材料中,发光量子点表面具有混合配体:卤素配 体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开油溶性的复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,平衡器件发光层中的电子传输速率和空穴传输速率,提高器件的发光效率,降低工作电压,提高器件使用寿命。
附图说明
图1为本公开实施例提供的一种量子点发光二极管的结构示意图。
图2为图1中量子点发光层的结构示意图。
图3为图1中电子传输层的结构示意图。
图4为图1中量子点发光层与电子传输层结合的一结构示意图。
图5为图1中量子点发光层与电子传输层结合的另一结构示意图。
具体实施方式
本公开提供一种复合材料与量子点发光二极管,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开实施例提供一种复合材料,其中,包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。
本实施例所述复合材料中,发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开油溶性的复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
在一些实施方式中,所述发光量子点选自II-VI族量子点、III-V族量子点或IV-VI族量子点。具体的,所述发光量子点可以选自II-VI族、III-V族、IV-VI族的单核量子点和合金量子点,II-VI族、III-V族、IV-VI族的核壳型量子点中的一种或多种。作为举例,II-VI族单核量子点和合金量子点选自CdSe、CdS、 ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdSeSTe、ZnSeSTe和CdZnSeSTe等中的一种;III-V族单核量子点和合金量子点选自InP、GaP、GaAs、InAs、InAsP、GaAsP、InGaP、InGaAs和InGaAsP等中的一种;IV-VI族单核量子点和合金量子点选自PbS、PbSe、PbTe、PbSeS、PbSeTe和PbSTe等中的一种;所述II-VI族、III-V族、IV-VI族的核壳型量子点选自CdZnSe/ZnS、CdZnSeS/ZnS、CdTe/ZnS、CdZnSe/ZnS、CdZnSeS/ZnS、CdTe/ZnS、CdTe/CdSe、CdTe/ZnTe、CdSe/CdS和CdSe/ZnS等中的一种。
在一些实施方式中,所述发光量子点选自以III-V族材料或II-VI族材料为核,II-VI族材料为壳的核壳量子点。作为举例,以上核壳量子点中的核或者壳化合物选自以下中的一种或多种:II-VI族的CdSe、CdS、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdSeSTe、ZnSeSTe、CdZnSeSTe;III-V族的InP、GaP、GaAs、InAs、InAsP、GaAsP、InGaP、InGaAs、InGaAsP;IV-VI族的PbS、PbSe、PbTe、PbSeS、PbSeTe、PbSTe。
进一步在一些实施方式中,所述发光量子点选自以II-VI族材料为核,II-VI族材料为壳的核壳(核层材料和壳层材料均为II-VI族材料)结构量子点。II-VI族的核壳结构量子点,其发光效率高,半峰宽窄。其表面阳离子一般为Zn 2+或Cd 2+,表面阴离子一般为Se 2-或S 2-,比电子传输层所选的ZnO、ZnS或SnO等材料能量势垒低。例如,所述发光量子点选自CdZnS/ZnS、CdZnSe/ZnSe、CdSeS/CdSeS/CdS、CdSe/CdZnSe/CdZnSe/ZnSe、CdZnSe/CdZnSe/ZnSe、CdS/CdZnS/CdZnS/ZnS、CdSe/ZnS、CdZnSe/ZnS、CdSe/CdS/ZnS、CdSe/ZnSe/ZnS和CdZnSe/CdZnS/ZnS中的一种或多种。上述量子点的发光性能优异,从而保证量子点发光材料中电子传输的有效性。
在一些实施方式中,所述卤素配体选自氯离子、溴离子和碘离子中的一种或多种。
进一步在一些实施方式中,所述卤素配体为氯离子。因为氯相对于溴、碘的原子半径小,在发光量子点表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一些实施方式中,所述油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种,但不限于此。
进一步在一些实施方式中,所述碳原子数大于等于8的直链有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和碳原子数大于等于8的伯胺中的一种或多种,但不限于此。作为举例,所述碳原子数大于等于8的有机羧酸选自辛酸、壬酸、癸酸、十一烷基酸、十二烷基酸、十三烷基酸、十四烷基酸、十六烷基酸和十八烷基酸等中的一种或多种。作为举例,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十二硫醇、十四硫醇、十六硫醇、十八硫醇、1,8-辛二硫醇和1,10-癸二硫醇等中的一种或多种。作为举例,所述碳原子数大于等于8的有机磷酸选自十二烷基膦酸、十四烷基磷酸、十六烷基磷酸和十八烷基磷酸等中的一种或多种。作为举例,所述碳原子数大于等于8的伯胺选自辛胺、壬胺、癸胺、十二胺、十四胺、十六胺、十八胺等中的一种或多种。
进一步在一些实施方式中,所述支链碳原子数大于等于4的仲胺或叔胺选自二丁基胺、二己基胺、二庚基胺、二辛基胺、二壬基胺、二癸基胺、三丁基胺、三己基胺、三庚基胺、三辛基胺、三壬基胺、三癸基胺等中的一种或多种。
进一步在一些实施方式中,所述取代或未取代的烷胺基膦选自三(二甲胺基)膦、三(二乙胺基)膦、三(二丙胺基)膦、三(二丁胺基)膦、三(二戊胺基)膦、三(二己胺基)膦、三(二庚胺基)膦、三(二辛胺基)膦和二苄基二乙基胺基膦中的一种或多种,但不限于此。
进一步在一些实施方式中,所述取代或未取代的烷氧基膦选自三丁基氧膦、三戊基氧膦、三己基氧膦、三庚基氧膦、三辛基氧膦、三壬基氧膦、三癸基氧膦、二苯基甲氧基膦、二苯基乙氧基膦、二苯基丙氧基膦、二苯基丁氧基膦、二甲基苯基氧膦、二乙基苯基氧膦、二丙基苯基氧膦、二丁基苯基氧膦、甲基二苯基氧膦、乙基二苯基氧膦、丙基二苯基氧膦、丁基二苯基氧膦和氯(二异丙基氨基)甲氧基膦中的一种或多种,但不限于此。
进一步在一些实施方式中,所述取代或未取代的硅烷基膦选自三(三甲硅烷 基)膦、三(三乙硅烷基)膦、三(三丙硅烷基)膦、三(三丁硅烷基)膦、三(三戊硅烷基)膦、三(三己硅烷基)膦、三(三庚硅烷基)膦和三(三辛硅烷基)膦中的一种或多种,但不限于此。
进一步在一些实施方式中,所述支链碳原子数大于等于4的烷基膦选自三丁基膦、三庚基膦和三辛基膦中的一种或多种,但不限于此。
在一种具体的实施方式中,所述油溶性有机配体为碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和取代或未取代的烷胺基膦中的一种或多种。因为有机磷酸和硫醇类配体与发光量子点表面的阳离子分别以离子键和氢键结合,烷胺基膦中与发光量子点表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,结合能力强,不易脱落,能保证复合材料的溶解性和传输性,且这几类配体与发光量子点表面离子不会以-OH结合,不会发生水解。
本公开实施例提供一种复合材料的制备方法,其中,包括步骤:
将阳离子前驱体和第一油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,得到所述复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例含卤素的阳离子前驱物和阴离子前驱体在高温下反应,反应得到发光量子点,含卤素的阳离子前驱物中的卤素离子和第一油溶性有机配体结合到发光量子点表面。采用本实施例方法,可以获得不同配体搭配的量子点,制备得到的所述发光量子点表面缺陷小,并通过控制粒径大小(优选为10nm-20nm)可实现可见波段内有发射峰,可作为发光量子点。采用该方法反应得到的复合材料,其发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
在一些实施方式中,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中 的一种或多种;和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为CdCl 2、CdBr 2和CdI 2中的一种或多种;所述金属卤化物为PbCl 2、PbBr 2和PbI 2等中的一种或多种。进一步在一些实施方式中,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种。再进一步在一些实施方式中,所述阴离子前驱体可以选自S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
其中,所述S的前驱体可以选自硫单质和碳原子数大于等于8的硫醇中的一种或两种,所述硫单质是与非配位溶剂混合后以硫-非配位溶剂的形式加入的。将所述硫单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。需说明的是,所述非配位溶剂除用于分散硫单质之外,还可作为配体结合到发光量子点表面。作为举例,所述硫-非配位溶剂选自硫-十二烯、硫-十四烯、硫-十六烯、硫-十八烯、硫-三丁基膦、硫-三庚基膦、硫-三辛基膦中的一种或多种。作为举例,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇等中的一种或多种。
其中,所述Se的前驱体可以为硒单质,所述硒单质是与非配位溶剂混合后以硒-非配位溶剂的形式加入的。将所述硒单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。需说明的是,所述非配位溶剂除用于分散硒单质之外,还可作为配体结合到发光量子点表面。作为举例,所述硒-非配位溶剂选自硒-十二烯、硒-十四烯、硒-十六烯、硒-十八烯、硒-三丁基膦、硒-三庚基膦、硒-三辛基膦中的一种或多种。
其中,所述Te的前驱体可以为碲单质,所述碲单质是与非配位溶剂混合后以碲-非配位溶剂的形式加入的。将所述碲单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。需说明的是,所述非配位溶剂除用于分散碲单质之外,还可作为配体结合到发光量子点表面。作为举例,所述碲-非配位溶剂选自碲-十二烯、碲-十四烯、碲-十六烯、碲-十八烯中的一种或多种。
在一些实施方式中,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为InCl 3、InBr 3和InI 3等中的一种或多种。
进一步在一些实施方式中,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。作为举例,所述P元素的前驱体包括三(三甲基硅基)磷酸盐(tris(trimethylsilyl)phosphine)或烷基膦类化合物(alkyl phosphines)(例如三乙基磷(triethyl phosphine)、三丁基磷(tributyl phosphine)、三正辛基磷(trioctyl phosphine)、三苯基膦(triphenyl phosphine)和三环己基膦(tricyclohexyl phosphine)),但不限于此。所述As元素的前驱体包括碘化砷(aluminum iodide)、溴化砷(aluminumbromide)、氯化砷(arsenic chloride)、氧化砷(aluminum oxide)和硫酸砷(aluminum sulfate)等中的至少一种,但不限于此。
在一些实施方式中,所述第一油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、碳原子数大于等于8的伯胺和支链碳原子数大于等于4的仲胺或叔胺中的一种或多种。
在一些实施方式中,所述第一温度为110-190℃。
在一些实施方式中,所述第二温度为110-190℃。
在一些实施方式中,所述发光量子点的粒径在10nm以上。本实施例采用在较高的温度下成核,并通过控制粒径大小,制备得到的所述发光量子点,在可见波段有发射峰。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一些实施方式中,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
本公开实施例提供一种复合材料的制备方法,其中,包括步骤:
将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体、第二油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,得到所述复合材料,其中,所述第三温度高于所述第一温度 和所述第二温度。
本实施例含卤素的阳离子前驱物和阴离子前驱体在高温下反应,反应得到发光量子点,含卤素的阳离子前驱物中的卤素离子和第二油溶性有机配体结合到发光量子点表面。采用本实施例方法,可以获得不同配体搭配的量子点,制备得到的所述发光量子点表面缺陷小,并通过控制粒径大小(优选为10nm-20nm)可实现可见波段内有发射峰,可作为发光量子点。采用该方法反应得到的复合材料,其发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
在一些实施方式中,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种;和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为CdCl 2、CdBr 2和CdI 2中的一种或多种;所述金属卤化物为PbCl 2、PbBr 2和PbI 2等中的一种或多种。
进一步在一些实施方式中,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种。
再进一步在一些实施方式中,所述阴离子前驱体可以选自S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
其中,所述S的前驱体可以选自硫单质和碳原子数大于等于8的硫醇中的一种或两种,所述硫单质与第二油溶性有机配体混合后,形成的硫离子和/或硫醇与阳离子前驱物中的金属离子在高温下发生反应,成核得到发光量子点,成核后含卤素的阳离子前驱物中的卤素离子和第二油溶性有机配体会结合到发光量子点表面。作为举例,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇等中的一种或多种。
其中,所述Se的前驱体可以为硒单质,所述硒单质与第二油溶性有机配体混合后,形成的硒离子与阳离子前驱物中的金属离子在高温下发生反应,成核得 到发光量子点,成核后含卤素的阳离子前驱物中的卤素离子和第二油溶性有机配体会结合到发光量子点表面。
其中,所述Te的前驱体可以为碲单质,所述碲单质与第二油溶性有机配体混合后,形成的碲离子与阳离子前驱物中的金属离子在高温下发生反应,成核得到发光量子点,成核后含卤素的阳离子前驱物中的卤素离子和第二油溶性有机配体会结合到发光量子点表面。
在一些实施方式中,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为InCl 3、InBr 3和InI 3等中的一种或多种。
进一步在一些实施方式中,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。作为举例,所述P元素的前驱体包括三(三甲基硅基)磷酸盐(tris(trimethylsilyl)phosphine)或烷基膦类化合物(alkyl phosphines)(例如三乙基磷(triethyl phosphine)、三丁基磷(tributyl phosphine)、三正辛基磷(trioctyl phosphine)、三苯基膦(triphenyl phosphine)和三环己基膦(tricyclohexyl phosphine)),但不限于此。所述As元素的前驱体包括碘化砷(aluminum iodide)、溴化砷(aluminumbromide)、氯化砷(arsenic chloride)、氧化砷(aluminum oxide)和硫酸砷(aluminum sulfate)等中的至少一种,但不限于此。
在一些实施方式中,所述第二油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
在一些实施方式中,所述第一温度为110-190℃。
在一些实施方式中,所述第二温度为110-190℃。
在一些实施方式中,所述发光量子点的粒径在10nm以上。本实施例采用在较高的温度下成核,并通过控制粒径大小,制备得到的所述发光量子点,在可见波段有发射峰。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一些实施方式中,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于 所述第一温度和所述第二温度。
本公开实施例提供一种复合材料的制备方法,其中,包括步骤:
将阳离子前驱体和第一油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体、第二油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,得到所述复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例含卤素的阳离子前驱物和阴离子前驱体在高温下反应,反应得到发光量子点,含卤素的阳离子前驱物中的卤素离子、第一油溶性有机配体和第二油溶性有机配体结合到发光量子点表面。采用本实施例方法,可以获得不同配体搭配的量子点,制备得到的所述发光量子点表面缺陷小,并通过控制粒径大小(优选为10nm-20nm)可实现可见波段内有发射峰,可作为发光量子点。采用该方法反应得到的复合材料,其发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
在一些实施方式中,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种;和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为CdCl 2、CdBr 2和CdI 2中的一种或多种;所述金属卤化物为PbCl 2、PbBr 2和PbI 2等中的一种或多种。
进一步在一些实施方式中,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种。
再进一步在一些实施方式中,所述阴离子前驱体可以选自S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
其中,所述S的前驱体可以选自硫单质和碳原子数大于等于8的硫醇中的一种或两种,所述硫单质与第二油溶性有机配体混合后,形成的硫离子和/或硫醇与阳离子前驱物中的金属离子在高温下发生反应,成核得到发光量子点,成核后含卤素的阳离子前驱物中的卤素离子、第一油溶性有机配体和第二油溶性有机配体会结合到发光量子点表面。作为举例,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇等中的一种或多种。
其中,所述Se的前驱体可以为硒单质,所述硒单质与第二油溶性有机配体混合后,形成的硒离子与阳离子前驱物中的金属离子在高温下发生反应,成核得到发光量子点,成核后含卤素的阳离子前驱物中的卤素离子、第一油溶性有机配体和第二油溶性有机配体会结合到发光量子点表面。
其中,所述Te的前驱体可以为碲单质,所述碲单质与第二油溶性有机配体混合后,形成的碲离子与阳离子前驱物中的金属离子在高温下发生反应,成核得到发光量子点,成核后含卤素的阳离子前驱物中的卤素离子、第一油溶性有机配体和第二油溶性有机配体会结合到发光量子点表面。
在一些实施方式中,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为InCl 3、InBr 3和InI 3等中的一种或多种。
进一步在一些实施方式中,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。作为举例,所述P元素的前驱体包括三(三甲基硅基)磷酸盐(tris(trimethylsilyl)phosphine)或烷基膦类化合物(alkyl phosphines)(例如三乙基磷(triethyl phosphine)、三丁基磷(tributyl phosphine)、三正辛基磷(trioctyl phosphine)、三苯基膦(triphenyl phosphine)和三环己基膦(tricyclohexyl phosphine)),但不限于此。所述As元素的前驱体包括碘化砷(aluminum iodide)、溴化砷(aluminumbromide)、氯化砷(arsenic chloride)、氧化砷(aluminum oxide)和硫酸砷(aluminum sulfate)等中的至少一种,但不限于此。
在一些实施方式中,所述第一油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、支链碳原子数大于等于4的仲胺或叔胺和碳原子数大于等于8的伯胺中的一种或多种;
和/或所述第二油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取 代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
在一些实施方式中,所述第一温度为110-190℃;和/或所述第二温度为110-190℃。
在一些实施方式中,所述发光量子点的粒径在10nm以上。本实施例采用在较高的温度下成核,并通过控制粒径大小,制备得到的所述发光量子点,在可见波段有发射峰。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一些实施方式中,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
本公开实施例提供一种复合材料的制备方法,其中,包括步骤:
将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,晶体生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例含卤素的阳离子前驱物和阴离子前驱体在高温下反应,反应得到发光量子点,含卤素的阳离子前驱物中的卤素离子和第三油溶性有机配体结合到发光量子点表面。采用本实施例方法,可以获得不同配体搭配的量子点,制备得到的所述发光量子点表面缺陷小,并通过控制粒径大小(优选为10nm-20nm)可实现可见波段内有发射峰,可作为发光量子点。采用该方法反应得到的复合材料,其发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合 材料相比,本公开复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
在一些实施方式中,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种;和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为CdCl 2、CdBr 2和CdI 2中的一种或多种;所述金属卤化物为PbCl 2、PbBr 2和PbI 2等中的一种或多种。
进一步在一些实施方式中,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种。
再进一步在一些实施方式中,所述阴离子前驱体可以选自S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
其中,所述S的前驱体可以选自硫单质和碳原子数大于等于8的硫醇中的一种或两种,所述硫单质是与非配位溶剂混合后以硫-非配位溶剂的形式加入的。将所述硫单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。需说明的是,所述非配位溶剂除用于分散硫单质之外,还可作为配体结合到发光量子点表面。作为举例,所述硫-非配位溶剂选自硫-十二烯、硫-十四烯、硫-十六烯、硫-十八烯中的一种或多种。作为举例,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇等中的一种或多种。
其中,所述Se的前驱体可以为硒单质,所述硒单质是与非配位溶剂混合后以硒-非配位溶剂的形式加入的。将所述硒单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。需说明的是,所述非配位溶剂除用于分散硒单质之外,还可作为配体结合到发光量子点表面。作为举例,所述硒-非配位溶剂选自硒-十二烯、硒-十四烯、硒-十六烯、硒-十八烯中的一种或多种。
其中,所述Te的前驱体可以为碲单质,所述碲单质是与非配位溶剂混合后以碲-非配位溶剂的形式加入的。将所述碲单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。需说明的是,所述非配位溶剂除用于分散碲单质之外,还可作为配体结合到发光量子点表面。作为举例,所述碲-非配位溶剂选自碲-十 二烯、碲-十四烯、碲-十六烯、碲-十八烯中的一种或多种。
在一些实施方式中,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物为InCl 3、InBr 3和InI 3等中的一种或多种。
进一步在一些实施方式中,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。作为举例,所述P元素的前驱体包括三(三甲基硅基)磷酸盐(tris(trimethylsilyl)phosphine)或烷基膦类化合物(alkyl phosphines)(例如三乙基磷(triethyl phosphine)、三丁基磷(tributyl phosphine)、三正辛基磷(trioctyl phosphine)、三苯基膦(triphenyl phosphine)和三环己基膦(tricyclohexyl phosphine)),但不限于此。所述As元素的前驱体包括碘化砷(aluminum iodide)、溴化砷(aluminum bromide)、氯化砷(arsenic chloride)、氧化砷(aluminum oxide)和硫酸砷(aluminum sulfate)等中的至少一种,但不限于此。
在一些实施方式中,所述第一温度为110-190℃;和/或所述第二温度为110-190℃。
在一些实施方式中,所述发光量子点的粒径在10nm以上。本实施例采用在较高的温度下成核,并通过控制粒径大小,制备得到的所述发光量子点,在可见波段有发射峰。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
本发明实施例提供一种复合材料,其中,包括:发光量子点、结合在所述发光量子点表面的油溶性有机配体和水溶性配体。
需说明的是,本实施例所述发光量子点和油溶性有机配体的详细细节见上文所述,在此不再赘述。
在一些实施方式中,所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸等中的一种或多种。
本发明实施例提供一种复合材料,其中,包括:颗粒、结合在所述颗粒表面的油溶性有机配体和水溶性配体,所述颗粒为无机半导体纳米晶。
需说明的是,本实施例所述颗粒和油溶性有机配体的详细细节见下文所述,在此不再赘述。
在一些实施方式中,所述水溶性配体选自选自卤素离子配体、碳原子数小于 8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。
本公开实施例提供一种量子点发光二极管,包括:阳极、阴极及设置在所述阳极和阴极之间的量子点发光层,其中,所述量子点发光层包括第一量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。
本公开所述复合材料中,发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开油溶性的复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
需说明的是,本实施例所述复合材料的详细细节见上文所述,在此不再赘述。
本实施例中,量子点发光二极管有多种形式,且所述量子点发光二极管分为正式结构和反式结构,本实施例将主要以如图1所示的正式结构的量子点发光二极管进行介绍。具体地,如图1所示,所述量子点发光二极管包括从下往上层叠设置的衬底1、阳极2、空穴注入层3、空穴传输层4、量子点发光层5、电子传输层6和阴极7;其中所述量子点发光层5包括第一量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。下面对所述量子点发光层5的结构作详细介绍。
在一些实施方式中,所述量子点发光层5为一层第一量子点发光层51,如图2中结构1所示。所述第一量子点发光层材料中,发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本公开油溶性的复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。
在一些实施方式中,所述量子点发光层还包括第二量子点发光层,所述第二量子点发光层材料为水溶性发光量子点。本实施例所述量子点发光层中,当所述第一量子点发光层为一层,所述第二量子点发光层为一层时,所述第一量子点发光层与所述第二量子点发光层层叠设置;当所述第一量子点发光层与所述第二量子点发光层中的至少一种为多层时,所述第一量子点发光层与所述第二量子点发光层交替层叠设置。所述第一量子点发光层与所述第二量子点发光层中的至少一种为多层,所述第一量子点发光层与所述第二量子点发光层交替层叠设置。在器件中,不同的功能层需要水溶性和油溶性相邻,不能同为水溶性或同为油溶性。另外,由于水溶性发光量子点材料表面无有机配体,在同一功能层中,采用水溶性层和油溶性层交替层叠设置,能进一步降低电子传输距离,提高电子传输效率。为保持合适的电子传输距离,且将器件不至于太厚,所述第一量子点发光层与所述第二量子点发光层的总层数为3-6层。下面结合图2对所述第一量子点发光层与所述第二量子点发光层的总层数为2-6层的情形作一一介绍。需说明的是,所述第一量子点发光层与所述第二量子点发光层的总层数可以相同,也可以不同。
在其中的一种实施方式中,所述量子点发光层5由层叠设置的一层第一量子点发光层521和一层第二量子点发光层522构成的两层结构,见图2中结构2所示。
在其中的一种实施方式中,所述量子点发光层5由依次层叠设置的第一量子点发光层531、第二量子点发光层532和第一量子点发光层533构成的三层结构,见图2中结构3所示。
在其中的一种实施方式中,所述量子点发光层5由依次层叠设置的第一量子点发光层541、第二量子点发光层542、第一量子点发光层543和第二量子点发光层544构成的四层结构,见图2中结构4所示。
在其中的一种实施方式中,所述量子点发光层5由依次层叠设置的第一量子点发光层551、第二量子点发光层552、第一量子点发光层553、第二量子点发光层554和第一量子点发光层555构成的五层结构,见图2中结构5所示。
在其中的一种实施方式中,所述量子点发光层5由依次层叠设置的第一量子点发光层561、第二量子点发光层562、第一量子点发光层563、第二量子点发光层564、第一量子点发光层565和第二量子点发光层566构成的六层结构,见 图2中结构6所示。
在一种实施方式中,当所述量子点发光层为一层第一量子点发光层时,所述量子点发光二极管还包括与所述第一量子点发光层层叠设置的电子传输层,所述第一量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述电子传输层包括第一电子传输层和第二电子传输层,第一层第二电子传输层叠设在所述第一量子点发光层上,第一层第一电子传输层叠设在所述第一层第二电子传输层上,在后的每一电子传输层叠设在每一在前的不同种类的电子传输层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料。本实施例所述第一复合材料中,颗粒表面具有混合配体:第一卤素配体和第四油溶性有机配体,该第四油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料,第一卤素配体能够提高电子传输性能,第四油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
结合图1所示,上述实施例中所述电子传输层6包括第一电子传输层和第二电子传输层,第一层第二电子传输层叠设在所述第一量子点发光层上,第一层第一电子传输层叠设在所述第一层第二电子传输层上,在后的每一电子传输层叠设在每一在前的不同种类的电子传输层上。在器件中,不同的功能层需要水溶性和油溶性相邻,不能同为水溶性或同为油溶性。另外,由于水溶性电子传输材料表面无有机配体,在同一功能层中,采用水溶性层和油溶性层交替叠层设置,能进一步降低电子传输距离,提高电子传输效率。进一步在一种实施方式中,为保持合适的电子传输距离,且将器件不至于太厚,所述第一电子传输层与所述第二电子传输层的总层数为3-6层。下面结合图3对所述第一电子传输层与所述第二电子传输层的总层数为2-6层的情形作一一介绍。需说明的是,所述第一电子传输层与所述第二电子传输层的总层数可以相同,也可以不同。
在其中的进一步一种实施方式中,第一层第二电子传输层621叠设在所述第一量子点发光层上,第一层第一电子传输层622叠设在所述第一层第二电子传输层621上形成两层的叠层结构,见图3中结构1所示。
在其中的进一步一种实施方式中,第一层第二电子传输层631叠设在所述第一量子点发光层上,第一层第一电子传输层632叠设在所述第一层第二电子传输层631上,第二层第二电子传输层633叠设在所述第一层第一电子传输层632上形成三层的叠层结构,见图3中结构2所示。
在其中的进一步一种实施方式中,第一层第二电子传输层641叠设在所述第一量子点发光层上,第一层第一电子传输层642叠设在所述第一层第二电子传输层641上,第二层第二电子传输层643叠设在所述第一层第一电子传输层642上,第二层第一电子传输层644叠设在所述第二层第二电子传输层643上形成四层的叠层结构,见图3中结构3所示。
在其中的进一步一种实施方式中,第一层第二电子传输层651叠设在所述第一量子点发光层上,第一层第一电子传输层652叠设在所述第一层第二电子传输层651上,第二层第二电子传输层653叠设在所述第一层第一电子传输层652上,第二层第一电子传输层654叠设在所述第二层第二电子传输层653上,第三层第二电子传输层655叠设在所述第二层第一电子传输层653上形成五层的叠层结构,见图3中结构4所示。
在其中的进一步一种实施方式中,第一层第二电子传输层661叠设在所述第一量子点发光层上,第一层第一电子传输层662叠设在所述第一层第二电子传输层661上,第二层第二电子传输层663叠设在所述第一层第一电子传输层662上,第二层第一电子传输层664叠设在所述第二层第二电子传输层663上,第三层第二电子传输层665叠设在所述第二层第一电子传输层664上,第三层第一电子传输层666叠设在所述第三层第二电子传输层665上形成六层的叠层结构,见图3中结构5所示。
在一种实施方式中,所述量子点发光层包括第一量子点发光层和第二量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体,所述第二量子点发光层材料为水溶性发光量子点;
所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述电子传输层包括至少一层第一电子传输层和至少一层第二电子传输层,所述 量子点发光层中最远离所述阳极的一层为第一量子点发光层,第一层第二电子传输层叠设在所述第一量子点发光层上,第一层第一电子传输层叠设在所述第一层第二电子传输层上,在后的每一电子传输层叠设在每一在前的不同种类的电子传输层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料。在器件中,不同的功能层需要水溶性和油溶性相邻,不能同为水溶性或同为油溶性。由于水溶性电子传输材料表面无有机配体,在同一功能层中,采用水溶性层和油溶性层交替叠层设置,能进一步降低电子传输距离,提高电子传输效率。
进一步在一种实施方式中,所述第一量子点发光层与所述第二量子点发光层的总层数为3-6层,所述第一电子传输层与所述第二电子传输层的总层数为3-6层。作为举例,如图4所示,所述第一量子点发光层与所述第二量子点发光层的总层数为3层,所述第一电子传输层与所述第二电子传输层的总层数为4层;具体地,量子点发光层5由依次层叠设置的第一量子点发光层531、第二量子点发光层532和第一量子点发光层533构成的三层结构,电子传输层6由依次层叠设置的第二电子传输层641、第一电子传输层642、第二电子传输层643和第一电子传输层644构成的四层结构,其中第一层第二电子传输层641叠设在所述第一量子点发光层533上,第一层第一电子传输层642叠设在所述第一层第二电子传输层641上,第二层第二电子传输层643叠设在所述第一层第一电子传输层642上,第二层第一电子传输层644叠设在所述第二层第二电子传输层643上。
在一种实施方式中,所述量子点发光层包括第一量子点发光层和第二量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体,所述第二量子点发光层材料为水溶性发光量子点;所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述电子传输层包括至少一层第一电子传输层和至少一层第二电子传输层,所述量子点发光层中最远离所述阳极的一层为第二量子点发光层,第一层第一电子传输层叠设在所述第二量子点发光层上,第一层第二电子传输层叠设在所述第一层第一电子传输层上,在后的每一电子传输层叠设 在每一在前的不同种类的电子传输层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料。在器件中,不同的功能层需要水溶性和油溶性相邻,不能同为水溶性或同为油溶性。另外,由于水溶性电子传输材料表面无有机配体,在同一功能层中,采用水溶性层和油溶性层交替叠层设置,能进一步降低电子传输距离,提高电子传输效率。
进一步在一种实施方式中,所述第一量子点发光层与所述第二量子点发光层的总层数为3-6层,所述第一电子传输层与所述第二电子传输层的总层数为3-6层。作为举例,如图5所示,所述第一量子点发光层与所述第二量子点发光层的总层数为4层,所述第一电子传输层与所述第二电子传输层的总层数为3层;具体地,量子点发光层5由依次层叠设置的第一量子点发光层541、第二量子点发光层542、第一量子点发光层543和第二量子点发光层544构成的四层结构,电子传输层6由依次层叠设置的第一电子传输层631、第二电子传输层632和第一电子传输层633构成的三层结构,其中第一层第一电子传输层631叠设在所述第二量子点发光层544上,第一层第二电子传输层632叠设在所述第一层第一电子传输层631上,第二层第一电子传输层633叠设在所述第一层第二电子传输层632上。
在一种实施方式中,所述量子点发光层包括第一量子点发光层和第二量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体,所述第二量子点发光层材料为水溶性发光量子点;
所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述量子点发光层中最远离所述阳极的一层为第二量子点发光层,所述电子传输层为一层第一电子传输层,所述第一电子传输层叠设在所述第二量子点发光层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶。在器件中,不同的功能层需要水溶性和油溶性相邻,不能同为水溶 性或同为油溶性。同时,由于水溶性量子点材料表面无有机配体,在同一功能层中,采用水溶性层和油溶性层交替叠层设置,同样能进一步降低电子传输距离,提高电子传输效率。
进一步在一种实施方式中,所述第一量子点发光层与所述第二量子点发光层的总层数为3-6层。
在一种实施方式中,所述量子点发光层包括第一量子点发光层和第二量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体,所述第二量子点发光层材料为水溶性发光量子点;
所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述量子点发光层中最远离所述阳极设置的一层为第一量子点发光层,所述电子传输层为一层第二电子传输层,所述第二电子传输层叠设在所述最远离所述阳极设置的第一量子点发光层上;其中,所述第二电子传输层材料为水溶性电子传输材料。在器件中,不同的功能层需要水溶性和油溶性相邻,不能同为水溶性或同为油溶性。同时,由于水溶性量子点材料表面无有机配体,在同一功能层中,采用水溶性层和油溶性层交替叠层设置,同样能进一步降低电子传输距离,提高电子传输效率。
进一步在一种实施方式中,所述第一量子点发光层与所述第二量子点发光层的总层数为3-6层。
进一步在一种实施方式中,所述第二电子传输层材料可以选自具有良好电子传输性能的材料,例如可以选自但不限于n型的ZnO颗粒、TiO 2颗粒、Ca颗粒、Ba颗粒、ZrO 2颗粒、CsF颗粒、LiF颗粒、CsCO 3颗粒和Alq3颗粒等中的一种或多种。这些水溶性电子传输材料以离子形式可以分散在水、甲醇、乙醇、丙醇、丙酮等溶液中,纳米颗粒大小为5-15nm,无表面配体。
进一步在一种实施方式中,所述第二量子点发光层材料为表面结合水溶性配体的发光量子点。
再进一步在一种实施方式中,所述水溶性配体选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种 或多种。作为举例,所述卤素离子配体选氯离子、溴离子和碘离子中的一种或多种。作为举例,所述碳原子数小于8的巯基醇选自2-巯基乙醇、3-巯基-1-丙醇、4-巯基-1-丁醇、5-巯基-1-戊醇和6-巯基-1-己醇等中的一种或多种。作为举例,所述碳原子数小于8的巯基胺选自2-巯基乙胺、3-巯基丙胺、4-巯基丁胺、5-巯基戊胺、6-巯基己胺和2-氨基-3-巯基丙酸等中的一种或多种。作为举例,所述碳原子数小于8的巯基酸选自2-巯基乙酸、3-巯基丙酸、4-巯基丁酸、巯基丁二酸、6-巯基己酸、4-巯基苯甲酸和半胱氨酸等中的一种或多种。需说明的是,在一个量子点发光二极管中,量子点发光层包括多层第二量子点发光层时,每层的第二量子点发光层材料可以为同一种,也可以为多种。
再进一步在一种实施方式中,所述发光量子点选自Au、Ag、Cu、Pt、C、CdSe、CdS、CdTe、CdS、CdZnSe、CdSeS、PbSeS、ZnCdTe、CdS/ZnS、CdZnS/ZnS、CdZnSe/ZnSe、CdSeS/CdSeS/CdS、CdSe/CdZnSe/CdZnSe/ZnSe、CdZnSe/CdZnSe/ZnSe、CdS/CdZnS/CdZnS/ZnS、NaYF 4、NaCdF 4、CdZnSeS、CdSe/ZnS、CdZnSe/ZnS、CdSe/CdS/ZnS、CdSe/ZnSe/ZnS、CdZnSe/CdZnS/ZnS和InP/ZnS等中的一种或多种。
在一种实施方式中,所述衬底可以为刚性材质的衬底,如玻璃等,也可以为柔性材质的衬底,如PET或PI等中的一种。
在一种实施方式中,所述阳极可以选自铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)等中的一种或多种。
在一种实施方式中,所述空穴传输层材料可以选自NiO、CuO、CuS、TFB、PVK、Poly-TPD、TCTA和CBP等中的一种或多种。所述空穴传输层的厚度为20-40nm。
在一种实施方式中,所述量子点发光层的厚度为20-60nm。
在一种实施方式中,所述阴极可选自铝(Al)电极、银(Ag)电极和金(Au)电极等中的一种。更优选的,所述阴极的厚度为60-100nm。
需说明的是,本公开实施例量子点发光二极管还可以包含以下功能层的一层或者多层:设置于量子点发光层和电子传输层之间的电子阻挡层,设置于电子传输层与阴极之间的电子注入层。
下面对本公开实施例中第一复合材料进行详细说明。
所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四溶性有机配体,所述颗粒为无机半导体纳米晶。
本实施例所述第一复合材料中,颗粒表面具有混合配体:第一卤素配体和第四油溶性有机配体,该第四油溶性有机配体使得第一复合材料为油溶性。所述油溶性的第一复合材料,第一卤素配体能够提高电子传输性能,第四油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。颗粒表面连接的第四油溶性有机配体,起到钝化表面的作用,表面缺陷少。
在一种实施方式中,所述第一复合材料在可见波段无发射,从而确保了所述第一复合材料可以作为电子传输材料。
在一种实施方式中,所述无机半导体纳米晶的粒径为2-7nm。所述无机半导体纳米晶尺寸小,颗粒均匀,其分散于溶剂中具有较好的分散性,且分散于溶剂中形成的溶液澄清无沉淀。
在一种实施方式中,所述无机半导体纳米晶为金属氧化物颗粒,所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒,但不限于此。在另一种实施方式中,所述无机半导体纳米晶为金属硫化物颗粒,所述金属硫化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒,但不限于此。本公开实施方式中,采用所述材料组成的无机半导体纳米晶,在可见波段无发射,可作为电子传输材料,不会影响量子点器件发光层的发射颜色。
在一种实施方式中,所述第一卤素配体选自氯离子、溴离子和碘离子中的一种或多种。
进一步在一种实施方式中,所述第一卤素配体为氯离子。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第四油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种,但不限于此。所述碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或 未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦的具体种类见上文所述,在此不再记载。在一种具体的实施方式中,所述第四油溶性有机配体为碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和取代或未取代的烷胺基膦中的一种或多种。因为有机磷酸和硫醇类配体与无机半导体纳米晶表面的阳离子分别以离子键和氢键结合,烷胺基膦与无机半导体纳米晶表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,结合能力强,不易脱落,能保证第一电子传输层材料的溶解性和传输性,且这几类配体与无机半导体纳米晶表面离子不会以-OH结合,不会发生水解。
在一种具体的实施方式中,所述第四油溶性有机配体为取代或未取代的烷胺基膦,所述颗粒为金属硫化物颗粒。其中取代或未取代的烷胺基膦与颗粒表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,且第一卤素配体的离子键较强,与颗粒表面结合较强,不易脱落。另外烷胺基膦、碘配体与金属硫化物颗粒结合时,无-OH与金属硫化物颗粒表面结合,不会造成金属硫化物颗粒的水解或氧化。
在一种具体的实施方式中,所述第四油溶性有机配体为碳原子数大于等于8的有机磷酸,所述颗粒为金属氧化物颗粒。其中有机磷酸与金属氧化物颗粒以离子键结合,结合能力较强。金属氧化物颗粒不会直接和-OH结合,不易水解变质。
在一种具体的实施方式中,所述第四油溶性有机配体为碳原子数大于等于8的硫醇,所述颗粒为金属硫化物颗粒。其中硫醇与金属硫化物颗粒表面的阳离子以氢键结合,结合能力较强,不易脱落。另外硫醇与金属硫化物颗粒结合时,无-OH与金属硫化物颗粒表面结合,不会造成金属硫化物颗粒的水解或氧化。
在一种实施方式中,所述无机半导体纳米晶中含有金属掺杂元素。由于第四油溶性有机配体的存在,能较大幅度的降低其电子传输性能,通过进一步掺杂金属元素,能降低电子传输层向发光层的注入势垒或形成多余的自由电子,可以适当提高电子传输性能,从而进一步调节器件中电子传输速率与空穴传输速率,进而进一步提高发光层的发光效率。优选地,按质量百分比计,所述金属掺杂元素占所述无机半导体纳米晶的0.5-10%。
在一种实施方式中,所述金属掺杂元素选自Mg、Mn、Al、Y、V和Ni中的一种或多种,但不限于此。
进一步在一种实施方式中,所述无机半导体纳米晶选自ZnO颗粒、ZnS颗粒或SnO颗粒,所述金属掺杂元素为Al、V或Y。这几种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
在另一些实施方式中,所述第一量子点发光层材料可以为第二复合材料,所述第二复合材料包括:发光量子点、结合在所述发光量子点表面的油溶性有机配体和水溶性配体。该油溶性有机配体使得第二复合材料依然为油溶性。所述发光量子点,表面为油溶性有机配体和水溶性配体混合配体,能平衡器件发光层中电子与空穴传输速率,提高发光层的载流子迁移率,从而提高器件的发光效率和使用寿命。所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。所述水溶性配体的具体种类在上文中有记载,在此不再赘述。所述发光量子点和油溶性有机配体的具体种类在上文中同样有记载,在此不再赘述。
下面对上述实施例中所述第二复合材料的制备方法进行详细说明,所述第二复合材料的制备方法包括以下步骤:
提供发光量子点溶液,所述发光量子点溶液包括发光量子点和第一非极性溶剂,其中,所述发光量子点表面结合有油溶性有机配体;
将所述发光量子点溶液装入透析袋中后,置于交换介质中,形成配体交换反应体系,其中所述交换介质包括极性溶剂、第二非极性溶剂和水溶性配体;
使油溶性有机配体脱离量子点表面后进入交换介质中,使交换介质中的水溶性配体进入透析袋中与量子点结合。
上述制备方法通过将发光量子点溶液置于透析袋中,然后放置在交换介质中,其中所述发光量子点溶液中含有发光量子点,所述发光量子点表面结合有油溶性有机配体,所述交换介质中含有极性溶剂、第二非极性溶剂和水溶性配体。利用透析袋里外的配体溶液浓度差,透析袋中发光量子点原表面的油溶性有机配体会部分进到透析袋外的交换介质中,而交换介质中的水溶性配体会进到透析袋中与发光量子点表面的阳离子结合,在量子点表面形成油溶性有机配体、水溶性配体混合配体。这样经过配体交换的发光量子点,表面为油溶性有机配体和水溶性配 体混合配体,能平衡器件发光层中电子与空穴传输速率,提高发光层的载流子迁移率,从而提高器件的发光效率和使用寿命。另外,该方法操作简单,能有效地进行配体交换,且交换后不需要进行清洗,不需要加入沉淀剂,能保证发光量子点的产率和发光效率。
在一种实施方式中,所述第一非极性溶剂选自三氯甲烷、四氯化碳、正己烷、环己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、石油醚、苯甲醚、苯乙醚、环氧丙基苯基醚、苯、邻二氯苯、对二氯苯、邻二甲苯、对二甲苯、正辛基苯、正己基苯、环己基苯、1,2,4-三氯苯、1,2,4-三甲基苯、1,2,4-三乙基苯和1,2,4-三甲氧基苯等中的一种或多种。
在一种实施方式中,所述第二非极性溶剂选自三氯甲烷、四氯化碳、正己烷、环己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、石油醚、苯甲醚、苯乙醚、环氧丙基苯基醚、苯、邻二氯苯、对二氯苯、邻二甲苯、对二甲苯、正辛基苯、正己基苯、环己基苯、1,2,4-三氯苯、1,2,4-三甲基苯、1,2,4-三乙基苯和1,2,4-三甲氧基苯等中的一种或多种。
需说明的是,所述第一非极性溶剂所选的非极性溶剂种类与所述第二非极性溶剂所选的非极性溶剂种类可以相同,也可以不同。所述第一非极性溶剂所选的非极性溶剂种类与所述第二非极性溶剂所选的非极性溶剂种类相同。
在一种实施方式中,所述极性溶剂选自水、甲醇、乙醇、丙醇、丁醇、甲酰胺、甲基甲酰胺、甲基乙酰胺、二甲基甲酰胺、二甲基乙酰胺、丙酰胺、丁酰胺、天冬酰胺、吡啶酰胺、水杨酰胺、四氢呋喃-2-甲酰胺和四氢呋喃等中的一种或多种。
在一种实施方式中,在20-70℃条件下,使油溶性有机配体脱离量子点表面后,使交换介质中的水溶性配体进入透析袋中与量子点结合。
进一步在一种实施方式中,所述使油溶性有机配体脱离量子点表面,使交换介质中的水溶性配体进入透析袋中与量子点结合的步骤中,所述配体交换反应体系的温度为20-70℃,所述透析袋的材料为聚偏二氟乙烯。
进一步在一种实施方式中,所述发光量子点的粒径为3.5nm以上,所述透析袋的截留分子量为3500KD以下,如可用规格为截留分子量为3500KD的透析袋;
或者,所述发光量子点的粒径为5nm以上,所述透析袋的截留分子量为7000KD以下,如可用规格为截留分子量为3500KD或7000KD的透析袋;
或者,所述发光量子点的粒径为7nm以上,所述透析袋的截留分子量为14000KD以下,如可用规格为截留分子量为3500KD、7000KD或14000KD的透析袋。
在另一些实施方式中,所述第一电子传输层材料也可以为第三复合材料,所述第三复合材料包括:颗粒、结合在所述颗粒表面的第四油溶性有机配体和水溶性配体,所述颗粒为无机半导体纳米晶。该第四油溶性有机配体使得第三复合材料依然为油溶性。所述颗粒表面为第四油溶性有机配体和水溶性配体混合配体,能平衡器件发光层中电子与空穴传输速率,提高发光层的载流子迁移率,从而提高器件的发光效率和使用寿命。所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。所述水溶性配体的具体种类在上文中有记载,在此不再赘述。所述颗粒和第四油溶性有机配体的具体种类在上文中同样有记载,在此不再赘述。其中,除了采用颗粒替代发光量子点,第四油溶性有机配体替代油溶性有机配体之外,所述第三复合材料的制备方法与所述第二复合材料的制备方法一致。
本公开实施例还提供一种如图1所述正式结构的量子点发光二极管的制备方法,包括以下步骤:
提供一衬底,在所述衬底上形成阳极;
在所述阳极上制备空穴传输层;
在所述空穴传输层上制备量子点发光层;
在所述量子点发光层上制备电子传输层;
在所述电子传输层上制备阴极,得到所述量子点发光二极管;
其中,所述量子点发光层包括第一量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。
本公开中,各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、 浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、原子层沉积法、脉冲激光沉积法等)中的一种或多种。
需说明的是,本实施例所述复合材料的制备方法在上文中有记载,在此不再赘述。
下面对本公开实施例所述第一复合材料的制备方法作详细介绍:
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为有机醇;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行无机半导体纳米晶的晶体生长,得到所述第一复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例用有机醇作为阴离子前驱物,含卤素的阳离子前驱物在高温下与有机醇发生醇解反应,反应得到金属氧化物半导体纳米晶,含卤素的阳离子前驱物中的卤素离子和第五油溶性有机配体结合到金属氧化物半导体纳米晶表面。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属氧化物半导体纳米晶表面具有混合配体:第一卤素配体和第五油溶性有机配体,该第五油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第五油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
镉元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤 化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,CdCl 2、CdBr 2和CdI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、CdCl 2、SnCl 2和GeCl 2等中的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第五油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、碳原子数大于等于8的伯胺和支链碳原子数大于等于4的仲胺或叔胺中的一种或多种。
进一步在一种实施方式中,所述第五油溶性有机配体为碳原子数大于等于8的有机磷酸。其中有机磷酸与金属氧化物颗粒以离子键结合,结合能力较强。金属氧化物颗粒不会直接和-OH结合,不易水解变质。
在一种实施方式中,所述有机醇选自辛醇、壬醇、癸醇、十一醇、十二醇、十三醇、十四醇、十五醇、十六醇、十七醇和十八醇等中的一种或多种。在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属氧化物颗粒。所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,晶体生长完成后,在降温的过程中加入第七油溶性有机配体,使第七油溶性有机配体结合在半导体纳米晶表面,得到所述第一复合材料,其中所述第七油溶性有机配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
在一种实施方式中,所述将阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳 离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
进一步在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
再进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnO颗粒或SnO颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这几种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体、第六油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为有机醇;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,得到所述第一复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例用有机醇作为阴离子前驱物,含卤素的阳离子前驱物在高温下与有机醇发生醇解反应,反应得到金属氧化物半导体纳米晶,含卤素的阳离子前驱物中的卤素离子和第六油溶性有机配体结合到金属氧化物半导体纳米晶表面。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属氧化物半导体纳米晶表面具有混合配体: 第一卤素配体和第六油溶性有机配体,该第六油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第六油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
镉元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,CdCl 2、CdBr 2和CdI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、CdCl 2、SnCl 2和GeCl 2等中的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第六油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
在一种实施方式中,所述有机醇选自辛醇、壬醇、癸醇、十一醇、十二醇、十三醇、十四醇、十五醇、十六醇、十七醇和十八醇等中的一种或多种。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属氧化物颗粒。所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,在第三温度下加热所述第一混合物,在加热过程中注入 所述第二混合物进行半导体纳米晶的晶体生长,晶体生长完成后,在降温的过程中加入第七油溶性有机配体,使第七油溶性有机配体结合在半导体纳米晶表面,得到所述第一复合材料,其中所述第七油溶性有机配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
在一种实施方式中,所述将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
进一步在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
再进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnO颗粒或SnO颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这几种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体、第六油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为有机醇;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,得到所述第一复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例用有机醇作为阴离子前驱物,含卤素的阳离子前驱物在高温下与有 机醇发生醇解反应,反应得到金属氧化物半导体纳米晶,含卤素的阳离子前驱物中的卤素离子、第五油溶性有机配体和第六油溶性有机配体结合到金属氧化物半导体纳米晶表面。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属氧化物半导体纳米晶表面具有混合配体:第一卤素配体、第五油溶性有机配体和第六油溶性有机配体,该油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第五油溶性有机配体和第六油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
镉元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,CdCl 2、CdBr 2和CdI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、CdCl 2、SnCl 2和GeCl 2等中的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第五油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、支链碳原子数大于等于4的仲胺或叔胺和碳原子数大于等于8的伯胺中的一种或多种;
和/或所述第六油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
进一步在一种实施方式中,所述第五油溶性有机配体为碳原子数大于等于8的有机磷酸,所述第六油溶性有机配体为取代或未取代的烷胺基膦。因为有机磷 酸与无机半导体纳米晶表面的阳离子以离子键结合,烷胺基膦与无机半导体纳米晶表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,结合能力强,不易脱落,能保证第以复合材料的溶解性和传输性,且这两类配体与无机半导体纳米晶表面离子不会以-OH结合,不会发生水解。
在一种实施方式中,所述有机醇选自辛醇、壬醇、癸醇、十一醇、十二醇、十三醇、十四醇、十五醇、十六醇、十七醇和十八醇等中的一种或多种。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属氧化物颗粒。所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,晶体生长完成后,在降温的过程中加入第七油溶性有机配体,使第七油溶性有机配体结合在半导体纳米晶表面,得到所述第一复合材料,其中所述第七油溶性有机配体为碳原子数大于等于8的硫醇。本实施例中,用有机醇作为阴离子前驱物,含卤素的阳离子前驱物在高温下与有机醇发生醇解反应,反应得到金属氧化物半导体纳米晶,含卤素的阳离子前驱物中的卤素离子、第五油溶性有机配体、第六油溶性有机配体和第七油溶性有机配体结合到金属氧化物半导体纳米晶表面。
进一步在一种实施方式中,所述第五油溶性有机配体为碳原子数大于等于8的有机磷酸,所述第六油溶性有机配体为取代或未取代的烷胺基膦,所述第七油溶性有机配体为碳原子数大于等于8的硫醇。因为有机磷酸和硫醇类配体与无机半导体纳米晶表面的阳离子分别以离子键和氢键结合,烷胺基膦与无机半导体纳米晶表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,结合能力强,不易脱落,能保证第一复合材料的溶解性和传输性,且这几类配体与无机半导体纳米晶表面离子不会以-OH结合,不会发生水解。
在一种实施方式中,所述将阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
进一步在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
再进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnO颗粒或SnO颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这几种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,优选的掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为有机醇;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,晶体生长完成后,在降温的过程中加入第七油溶性有机配体,使第七油溶性有机配体结合在半导体纳米晶表面,得到所述第一复合材料,其中所述第七油溶性有机配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例用有机醇作为阴离子前驱物,含卤素的阳离子前驱物在高温下与有 机醇发生醇解反应,反应得到金属氧化物半导体纳米晶,含卤素的阳离子前驱物中的卤素离子和第七油溶性有机配体结合到金属氧化物半导体纳米晶表面。采用该方法反应得到的第一复合材料,尺寸小且均匀、表面缺陷少,在可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属氧化物半导体纳米晶表面具有混合配体:第一卤素配体和第七油溶性有机配体,该第七油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第七油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
镉元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,CdCl 2、CdBr 2和CdI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、CdCl 2、SnCl 2和GeCl 2等中的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述有机醇选自辛醇、壬醇、癸醇、十一醇、十二醇、十三醇、十四醇、十五醇、十六醇、十七醇和十八醇等中的一种或多种。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属氧化物颗粒。所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温 度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,所述将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
进一步在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
再进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnO颗粒或SnO颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这几种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,优选的掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体、第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为碳原子数大于等于8的硫醇和/或硫单质;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,得到所述第一复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例中,含卤素的阳离子前驱物与含硫的阴离子前驱体在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第五油溶性有机配体结合到金属硫化物半导体纳米晶表面。采用本实施例方法在较高 的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属硫化物半导体纳米晶表面具有混合配体:第一卤素配体和第五油溶性有机配体,该第五油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第五油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇。含卤素的阳离子前驱物与硫醇在高温下发生醇解反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第五油溶性有机配体结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在另一些实施方式中,所述阴离子前驱体为硫单质。其中所述硫单质是与非配位溶剂混合后以硫-非配位溶剂的形式加入的。将所述硫单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。含卤素的阳离子前驱物与硫单质在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第五油溶性有机配体结合到金属硫化物半导体纳米晶表面。
在一种实施方式中,所述硫-非配位溶剂选自硫-十二烯、硫-十四烯、硫-十六烯、硫-十八烯中的一种或多种。
在又一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇和硫单质。其中所述硫单质是与非配位溶剂混合后以硫-非配位溶剂的形式加入的。将所述硫单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。含卤素的阳离子前驱物与硫醇和硫单质在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第五油溶性有机配体结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在一种实施方式中,所述硫-非配位溶剂选自硫-十二烯、硫-十四烯、硫-十 六烯、硫-十八烯中的一种或多种。
在一种实施方式中,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇中的一种或多种。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、SnCl 2和GeCl 2等中的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第五油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、支链碳原子数大于等于4的仲胺或叔胺和碳原子数大于等于8的伯胺中的一种或多种。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属硫化物颗粒。所述金属硫化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,所述将阳离子前驱体、第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体、第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
进一步在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y 盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
再进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnS颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体和第六油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为碳原子数大于等于8的硫醇和/或硫单质;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,得到所述第一复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例中,含卤素的阳离子前驱物与含硫的阴离子前驱体在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第六油溶性有机配体结合到金属硫化物半导体纳米晶表面。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属硫化物半导体纳米晶表面具有混合配体:第一卤素配体和第六油溶性有机配体,该第六油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第六油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电 子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇。含卤素的阳离子前驱物与硫醇在高温下发生醇解反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第六油溶性有机配体结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在另一些实施方式中,所述阴离子前驱体为硫单质。其中所述硫单质与第六油溶性有机配体混合后,形成的硫离子与阳离子前驱物中的金属离子在高温下发生反应,成核得到硫化物半导体纳米晶,成核后含卤素的阳离子前驱物中的卤素离子和第六油溶性有机配体会结合到金属硫化物半导体纳米晶表面。
在又一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇和硫单质。其中所述硫单质与第六油溶性有机配体混合后,形成的硫离子和硫醇与阳离子前驱物中的金属离子在高温下发生反应,成核得到硫化物半导体纳米晶,成核后含卤素的阳离子前驱物中的卤素离子和第六油溶性有机配体会结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在一种实施方式中,所述碳原子数大于等于8的硫醇选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇中的一种或多种。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、SnCl 2和GeCl 2等中的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子 传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第六油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
进一步在一种具体实施方式中,所述第六油溶性有机配体为取代或未取代的烷胺基膦。其中取代或未取代的烷胺基膦与颗粒表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,且卤素配体的离子键较强,与颗粒表面结合较强,不易脱落。另外烷胺基膦、碘配体与金属硫化物颗粒结合时,无-OH与金属硫化物颗粒表面结合,不会造成金属硫化物颗粒的水解或氧化。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属硫化物颗粒。所述金属硫化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,所述将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选 自ZnS颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体和第六油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为碳原子数大于等于8的硫醇和/或硫单质;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,得到所述第一复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例中,含卤素的阳离子前驱物与含硫的阴离子前驱体在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子、第五油溶性有机配体和第六油溶性有机配体结合到金属硫化物半导体纳米晶表面。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属硫化物半导体纳米晶表面具有混合配体:第一卤素配体、第五油溶性有机配体和第六油溶性有机配体,该第五油溶性有机配体和第六油溶性有机配体使得第一复合材料依然为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第五油溶性有机配体和第六油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇。含卤素的阳离子前驱物与硫醇在高温下发生醇解反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子、第五油溶性有机配体和第六油溶性有机配体结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在另一些实施方式中,所述阴离子前驱体为硫单质。其中所述硫单质与第六油溶性有机配体混合后,形成的硫离子与阳离子前驱物中的金属离子在高温下发生反应,成核得到硫化物半导体纳米晶,成核后含卤素的阳离子前驱物中的卤素离子、第五油溶性有机配体和第六油溶性有机配体会结合到金属硫化物半导体纳米晶表面。
在又一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇和硫单质。其中所述硫单质与第六油溶性有机配体混合后,形成的硫离子和硫醇与阳离子前驱物中的金属离子在高温下发生反应,成核得到硫化物半导体纳米晶,成核后含卤素的阳离子前驱物中的卤素离子、第五油溶性有机配体和第六油溶性有机配体会结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在一种实施方式中,所述碳原子数大于等于8的硫醇可以选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇中的一种或多种。
在一种实施方式中,所述第五油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、支链碳原子数大于等于4的仲胺或叔胺和碳原子数大于等于8的伯胺中的一种或多种;
和/或所述第六油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
进一步在一种实施方式中,所述第五油溶性有机配体为碳原子数大于等于8的有机磷酸,所述第六油溶性有机配体为取代或未取代的烷胺基膦。因为有机磷酸与无机半导体纳米晶表面的阳离子以离子键结合,烷胺基膦与无机半导体纳米晶表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,结合能力强,不易脱落,能保证第一复合材料的溶解性和传输性,且这两类配体与无机半导体纳米晶表面离子不会以-OH结合,不会发生水解。
进一步在一种实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇或硫醇和硫单质,加入的硫醇的使用量大于半导体纳米晶成核的使用量,所述第 五油溶性有机配体为碳原子数大于等于8的有机磷酸,所述第六油溶性有机配体为取代或未取代的烷胺基膦。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。因为有机磷酸和硫醇类配体与无机半导体纳米晶表面的阳离子分别以离子键和氢键结合,烷胺基膦与无机半导体纳米晶表面的阳离子能同时以P的孤电子对或-NH 2中的氢键结合,结合能力强,不易脱落,能保证第一复合材料的溶解性和传输性,且这几类配体与无机半导体纳米晶表面离子不会以-OH结合,不会发生水解。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属硫化物颗粒。所述金属硫化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒,但不限于此。上述无机半导体纳米晶在小粒径时(2-7nm),主要靠缺陷态发光。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,所述将阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体和第五油溶性有机配体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
在一种优选的实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnS颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。优选的,所述金属掺杂元素为Y。
本公开实施例提供一种第一复合材料的制备方法,其中,包括步骤:
将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物,所述阴离子前驱体为碳原子数大于等于8的硫醇和/或硫单质;
在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行半导体纳米晶的晶体生长,晶体生长完成后,在降温的过程中加入第七油溶性有机配体,使第七油溶性有机配体结合在半导体纳米晶表面,得到所述第一复合材料,其中所述第七油溶性有机配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
本实施例中,含卤素的阳离子前驱物与含硫的阴离子前驱体在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第七油溶性有机配体结合到金属硫化物半导体纳米晶表面。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。所述金属硫化物半导体纳米晶表面具有混合配体:第一卤素配体和第七油溶性有机配体,该第七油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料中,第一卤素配体能够提高电子传输性能,第七油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
在一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇。含卤素的阳离子前驱物与硫醇在高温下发生醇解反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第七油溶性有机配体结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面 作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在另一些实施方式中,所述阴离子前驱体为硫单质。其中所述硫单质是与非配位溶剂混合后以硫-非配位溶剂的形式加入的。将所述硫单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。含卤素的阳离子前驱物与硫单质在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第七油溶性有机配体结合到金属硫化物半导体纳米晶表面。
在一种优选的实施方式中,所述硫-非配位溶剂选自硫-十二烯、硫-十四烯、硫-十六烯、硫-十八烯中的一种或多种。
在又一些实施方式中,所述阴离子前驱体为碳原子数大于等于8的硫醇和硫单质。其中所述硫单质是与非配位溶剂混合后以硫-非配位溶剂的形式加入的。将所述硫单质分散在非配位溶剂中,以形成均匀液体,方便后续注入。含卤素的阳离子前驱物与硫醇和硫单质在高温下发生反应,得到金属硫化物半导体纳米晶。含卤素的阳离子前驱物中的卤素离子和第七油溶性有机配体结合到金属硫化物半导体纳米晶表面。此外,过量的硫醇也能结合到金属硫化物半导体纳米晶表面作为表面配体。其中,当加入的硫醇使用量大于金属硫化物半导体纳米晶生长成核的使用量时,表示硫醇过量。
在一种优选的实施方式中,所述硫-非配位溶剂选自硫-十二烯、硫-十四烯、硫-十六烯、硫-十八烯中的一种或多种。
在一种实施方式中,所述碳原子数大于等于8的硫醇可以选自辛硫醇、壬硫醇、癸硫醇、十一硫醇、十二硫醇、十三硫醇、十四硫醇、十五硫醇、十六硫醇、十七硫醇和十八硫醇中的一种或多种。
在一种实施方式中,所述金属卤化物选自:锌元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锡元素的氯化物、溴化物和碘化物中的一种或多种;或者,
锗元素的氯化物、溴化物和碘化物中的一种或多种。作为举例,所述金属卤化物选自:ZnCl 2、ZnBr 2和ZnI 2等中的一种或多种;或者,SnCl 2、SnBr 2和SnI 2等中的一种或多种;或者,GeCl 2、GeBr 2和GeI 2等中的一种或多种。
进一步在一种实施方式中,所述金属卤化物选自ZnCl 2、SnCl 2和GeCl 2等中 的一种。因为氯相对于溴、碘的原子半径小,在颗粒表面作为表面配体时,电子传输需要经过的距离短,这样可以提高电子传输性。
在一种实施方式中,所述第一温度为110-190℃。
在一种实施方式中,所述第二温度为110-190℃。
本实施例中,制备得到的无机半导体纳米晶为金属硫化物颗粒。所述金属硫化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒,但不限于此。采用本实施例方法在较高的温度下成核,并通过控制粒径大小(优选为2-7nm),制备得到的所述无机半导体纳米晶,表面缺陷小,实现可见波段没有发射峰,不会干涉器件结构中发光层的发射。其中,所述较高的温度即为本实施例中的第三温度。所述第三温度为210-350℃。所述第三温度为230-300℃。
在一种实施方式中,所述将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物的步骤,具体包括:将掺杂金属盐、阳离子前驱体分散到溶剂中,在第一温度下加热,得到所述第一混合物。
在一种实施方式中,所述掺杂金属盐选自Mg盐、Mn盐、Al盐、Y盐、V盐和Ni盐中的一种或多种,但不限于此。作为举例,所述Mg盐可以选自MgCl 2、MgI 2、Mg(NO 3) 2中的一种或多种,但不限于此;所述Mn盐可以选自MnCl 2、MnI 2、Mn(NO 3) 2中的一种或多种,但不限于此;所述Al盐可以选自AlCl 3、AlI 3、Al(CH 3COO) 3中的一种或多种,但不限于此;所述Y盐可以选自YCl 2、Y(CH 3COO) 2、Y(NO 3) 2中的一种或多种,但不限于此;所述V盐可以选自VCl 2、V(CH 3COO) 2、V(NO 3) 2中的一种或多种,但不限于此;所述Ni盐可以选自NiCl 2、Ni(CH 3COO) 2、Ni(NO 3) 2中的一种或多种,但不限于此。
进一步在一种实施方式中,所述第一复合材料中,所述无机半导体纳米晶选自ZnS颗粒,所述无机半导体纳米晶中含有金属掺杂元素Al、V或Y。这种无机半导体纳米晶的HOMO能级能更好地与发光层量子点的HOMO能级相匹配,掺杂离子能降低电子传输层向发光层的注入势垒,从而保证传输层材料与发光层材料之间电子传输的有效性。所述金属掺杂元素为Y。
下面通过实施例对本公开进行详细说明。
实施例1
本实施例复合材料(表面配体为十八烷基磷酸、三辛基膦和Cl -的CdZnS/ZnS 量子点)的制备步骤如下:
阳离子前驱体溶液制备:取10mmol醋酸锌、1mmol氯化镉与10mmol十八烷基磷酸、30mL ODE混合,在Ar气氛下加热到150℃,保温60min,得到阳离子前驱体溶液;
阴离子前驱体溶液制备:取1mmol S与3mL ODE混合,在Ar气氛下加热到140℃,保温30min,得到阴离子前驱体溶液1;取3mmol S与6mL三辛基膦混合,在Ar气氛下加热到140℃,保温30min,得到阴离子前驱体溶液2;
复合材料制备:将阳离子前驱体溶液加热到230℃,注入阴离子前驱体溶液1,保温5min;再将阴离子前驱体溶液2加入反应液中,反应30min,得到表面配体为十八烷基磷酸、三辛基膦和Cl -的CdZnS/ZnS量子点,即得到本实施例的复合材料。
实施例2
本实施例复合材料(表面配体为十八烯酸、三辛基膦和Br -的CdZnSe/CdZnS/ZnS量子点)的制备步骤如下:
阳离子前驱体溶液制备:取8mmol溴化锌、0.8mmol溴化镉与10mmol十八烯酸、30mL ODE混合,在Ar气氛下加热到150℃,保温60min,得到阳离子前驱体溶液;
阴离子前驱体溶液制备:取1mmol硒与3mL ODE混合,在Ar气氛下加热到250℃,保温30min,得到阴离子前驱体溶液1;取4mmol S与8mL三辛基膦混合,在Ar气氛下加热到140℃,保温30min,得到阴离子前驱体溶液2;
复合材料制备:将阳离子前驱体溶液加热到260℃,注入阴离子前驱体溶液1,保温10min;再将6mL阴离子前驱体溶液2加入反应液中,反应30min,再将2mL阴离子前驱体溶液2加入反应液中,反应10min,得到表面配体为十八烯酸、三辛基膦和Br -的CdZnSe/CdZnS/ZnS量子点,即得到本实施例的复合材料。
实施例3
本实施例复合材料(表面配体为十八烯酸、三(二甲胺基)膦和Cl -的CdZnSe/ZnSe量子点)的制备步骤如下:
阳离子前驱体溶液制备:取8mmol氯化锌、0.8mmol氯化镉与10mmol十八 烯酸、30mL ODE混合,在Ar气氛下加热到150℃,保温60min,得到阳离子前驱体溶液;
阴离子前驱体溶液制备:取1mmol硒与3mL ODE混合,在Ar气氛下加热到250℃,保温30min,得到阴离子前驱体溶液1;取4mmol硒与8mL三(二甲胺基)膦混合,在Ar气氛下加热到140℃,保温30min,得到阴离子前驱体溶液2;
复合材料制备:将阳离子前驱体溶液加热到280℃,注入阴离子前驱体溶液1,保温10min;再将阴离子前驱体溶液2加入反应液中,反应30min,得到表面配体为十八烯酸、三(二甲胺基)膦和Cl -的CdZnSe/ZnSe量子点,即得到本实施例的复合材料。
实施例4
本实施例复合材料(表面配体为十八烯酸、氯(二异丙基氨基)甲氧基膦、三辛基膦和Cl -的InP/ZnS量子点)的制备步骤如下:
阳离子前驱体溶液制备:取0.8mmol氯化铟与10mmol十八烯酸、30mL ODE混合,在Ar气氛下加热到150℃,保温60min,得到阳离子前驱体溶液1;再取4mmol氯化锌与10mmol十八烯酸、10mL ODE混合,在Ar气氛下加热到250℃,保温60min,得到阳离子前驱体溶液2;
阴离子前驱体溶液制备:取0.8mmol氯(二异丙基氨基)甲氧基膦与3mL ODE混合得到阴离子前驱体溶液1;取4mmol硫与三辛基膦混合,在Ar气氛下加热到140℃,保温30min,得到阴离子前驱体溶液2;
复合材料制备:将阳离子前驱体溶液1加热到300℃,注入阴离子前驱体溶液1,保温10min;再将阳离子前驱体溶液2和阴离子前驱体溶液2同时加入反应液中,反应30min,得到表面配体为十八烯酸、氯(二异丙基氨基)甲氧基膦、三辛基膦和Cl -的InP/ZnS量子点,即得到本实施例的复合材料。
实施例5
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、35nm的空穴传输层、20nm的量子点发光层、40nm电子传输层和100nm阴极。该量子点发光层为表面配体为十八烷基磷酸和Cl -混合配体的CdZnS/ZnS量子点层。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、35nm的空穴传输层。
2)使用表面配体为十八烷基磷酸和Cl -混合配体的CdZnS/ZnS量子点庚烷溶液,在空穴传输层上使用转速为2000rpm的旋涂法形成20nm量子点发光层。
3)在量子点发光层上使用旋涂法涂布ZnO甲醇溶液,厚度为40nm。
4)在电子传输层上使用蒸镀法制备100nm厚的Ag电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
实施例6
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、35nm的空穴传输层、40nm的量子点发光层、50nm电子传输层和100nm阴极。该量子点发光层为表面配体为十八烷基磷酸和3-巯基丙酸混合配体的CdZnSe/ZnSe量子点层和极性CdZnSe/ZnSe量子点发光层,各层为20nm。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、35nm的空穴传输层。
2)使用20mg/ml的发光量子点庚烷溶液,在空穴传输层上使用转速为2000rpm的旋涂法形成表面配体为十八烷基磷酸和3-巯基丙酸混合配体的CdZnSe/ZnSe量子点发光层。再用20mg/ml的CdZnSe/ZnSe乙醇溶液,涂布形成20nm的极性CdZnSe/ZnSe量子点发光层。
3)在量子点发光层上使用旋涂法涂布ZnO庚烷溶液,薄膜厚度分别为50nm。
4)在电子传输层上使用蒸镀法制备100nm厚的Ag电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
实施例7
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、20nm的空穴传输层、30nm的量子点发光层、60nm电子传输层和80nm阴极。该发光层为表面配体为辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点层、极性CdZnSe/ZnSe量子点发光层,表面配体为辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点层,各层10nm。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、20nm的空穴传输层。
2)使用20mg/ml的辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点庚烷溶液,在空穴传输层上使用转速为2000rpm的旋涂法形成表面配体为辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点层,再用20mg/ml的CdZnSe/ZnSe乙醇溶液,涂布形成10nm的极性CdZnSe/ZnSe量子点发光层,再用20mg/ml的辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点庚烷溶液,形成表面配体为辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点层。
3)在量子点发光层上使用旋涂法涂布ZnO甲醇溶液,薄膜厚度分别为60nm。
4)在电子传输层上使用蒸镀法制备80nm厚的Al电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
实施例8
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、20nm的空穴传输层、60nm的量子点发光层、60nm电子传输层和80nm阴极。该发光层为表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层、表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层、表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层,各层为10nm。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、20nm的空穴传输层。
2)使用20mg/ml的表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点庚烷溶液和CdZnSe/ZnS甲醇溶液,在空穴传输层上使用转速为2000rpm的旋涂法依次形成表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层、表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层、表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层,各层为10nm。
3)在量子点发光层上使用旋涂法涂布ZnO甲醇溶液,薄膜厚度分别为60nm。
4)在电子传输层上使用蒸镀法制备80nm厚的Al电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
实施例9
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、35nm的空穴传输层、20nm的量子点发光层、50nm电子传输层和100nm阴极。该发光层和电子传输层均采用混合配体量子点。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、35nm的空穴传输层。
2)使用表面配体为十八烷基磷酸和Cl -混合配体的CdZnS/ZnS量子点庚烷溶液,在空穴传输层上使用转速为2000rpm的旋涂法形成20nm量子点发光层。
3)在量子点发光层上使用旋涂法依次涂布ZnO甲醇溶液、表面配体为十八烷基磷酸和Cl -的ZnO庚烷溶液、ZnO甲醇溶液、表面配体为十八烷基磷酸和Cl -的ZnO庚烷溶液、ZnO甲醇溶液,其各层薄膜厚度分别为10nm。
4)在电子传输层上使用蒸镀法制备100nm厚的Ag电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
实施例10
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、20nm的空穴传输层、30nm的量子点发光层、50nm电子传输层和80nm阴极。该发光层和电子传输层均采用混合配体量子点。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、20nm的空穴传输层。
2)使用20mg/ml的辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点庚烷溶液,在空穴传输层上使用转速为2000rpm的旋涂法形成表面配体为辛硫醇和Br -混合配体的CdZnSe/ZnSe量子点层,再用20mg/ml的CdZnSe/ZnSe乙醇溶液,涂布形成10nm的极性CdZnSe/ZnSe量子点发光层,再用20mg/ml的辛硫醇和Br -混 合配体的CdZnSe/ZnSe量子点庚烷溶液,形成表面配体为辛硫醇和Br-混合配体的CdZnSe/ZnSe量子点层,每层10nm。
3)在量子点发光层上使用旋涂法依次涂布ZnO甲醇溶液、表面配体为十八烷基磷酸和Cl -的ZnO庚烷溶液、ZnO甲醇溶液、表面配体为十八烷基磷酸和Cl -的ZnO庚烷溶液、ZnO甲醇溶液,其各层薄膜厚度分别为10nm。
4)在电子传输层上使用蒸镀法制备80nm厚的Al电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
实施例11
量子点发光二极管结构从下往上包括依次设置的玻璃衬底、ITO阳极、空穴注入层、40nm的空穴传输层、60nm的量子点发光层、60nm电子传输层和70nm阴极。该电子传输层为混合配体传输层,发光层为混合配体发光层。该量子点发光二极管器件的制备方法如下:
1)在该ITO底电极上依次涂布空穴注入层、40nm的空穴传输层。
2)使用20mg/ml的表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点庚烷溶液和CdZnSe/ZnS甲醇溶液,在空穴传输层上使用转速为2000rpm的旋涂法依次形成表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层、表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层、表面配体为三(二甲胺基)膦和6-巯基-1-己醇混合配体的CdZnSe/ZnS量子点层、极性CdZnSe/ZnS量子点发光层,各层为10nm。
3)在量子点发光层上使用旋涂法依次涂布表面配体为辛硫醇和3-巯基丙酸的ZnS:Mn庚烷溶液、极性ZnO溶液、表面配体为辛硫醇和3-巯基丙酸的ZnS:Mn庚烷溶液、极性ZnO溶液、表面配体为辛硫醇和3-巯基丙酸的ZnS:Mn庚烷溶液,各层薄膜厚度为10nm。
4)在电子传输层上使用蒸镀法制备70nm厚的Al电极。
5)最后对制成的量子点发光二极管,用紫外固化胶进行封装,得到量子点发光二极管器件。
综上所述,本公开提供一种量子点发光二极管。本公开所述第一量子点发光 层材料为复合材料,所述复合材料中,发光量子点表面具有混合配体:卤素配体和油溶性有机配体,该油溶性有机配体使得复合材料依然为油溶性。与现有表面为单纯油溶性有机配体的油溶性复合材料相比,本发明油溶性的复合材料中,卤素配体能够提高量子点的电子传输性,提高发光层中载流子的传输速率,从而平衡器件发光层中的电子传输速率和空穴传输速率,进而提高器件的发光效率,降低工作电压,提高器件使用寿命。进一步地,所述第一电子传输层材料为第一复合材料,所述第一复合材料中,颗粒表面具有混合配体:第一卤素配体和第四油溶性有机配体,该第四油溶性有机配体使得第一复合材料为油溶性。所述第一复合材料,第一卤素配体能够提高电子传输性能,第四油溶性有机配体能够有效降低电子传输速率,使材料本身的电子传输性能可调节,从而调节器件中电子传输速率与空穴传输速率,进而提高发光层的发光效率。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (76)

  1. 一种复合材料,其特征在于,包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体。
  2. 根据权利要求1所述的复合材料,其特征在于,所述发光量子点选自II-VI族量子点、III-V族量子点或IV-VI族量子点。
  3. 根据权利要求2所述的复合材料,其特征在于,所述发光量子点选自以III-V族材料或II-VI族材料为核,II-VI族材料为壳的核壳量子点;
  4. 根据权利要求3所述的复合材料,其特征在于,所述发光量子点选自以II-VI族材料为核,II-VI族材料为壳的核壳量子点。
  5. 根据权利要求4所述的复合材料,其特征在于,所述发光量子点选自CdZnS/ZnS、CdZnSe/ZnSe、CdSeS/CdSeS/CdS、CdSe/CdZnSe/CdZnSe/ZnSe、CdZnSe/CdZnSe/ZnSe、CdS/CdZnS/CdZnS/ZnS、CdSe/ZnS、CdZnSe/ZnS、CdSe/CdS/ZnS、CdSe/ZnSe/ZnS和CdZnSe/CdZnS/ZnS中的一种或多种。
  6. 根据权利要求1所述的复合材料,其特征在于,所述发光量子点的粒径为10-20nm;
    和/或,所述卤素配体选自氯离子、溴离子和碘离子中的一种或多种;
    和/或,所述油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
  7. 根据权利要求6所述的复合材料,其特征在于,所述碳原子数大于等于8的直链有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和碳原子数大于等于8的伯胺中的一种或多种;
    或者,所述取代或未取代的烷胺基膦选自三(二甲胺基)膦、三(二乙胺基)膦、三(二丙胺基)膦、三(二丁胺基)膦、三(二戊胺基)膦、三(二己胺基)膦、三(二更胺基)膦、三(二辛胺基)膦和二苄基二乙基胺基膦中的一种或多种;
    或者,所述取代或未取代的烷氧基膦选自三丁基氧膦、三戊基氧膦、三己基氧膦、三更基氧膦、三辛基氧膦、三壬基氧膦、三癸基氧膦、二苯基甲氧基膦、 二苯基乙氧基膦、二苯基丙氧基膦、二苯基丁氧基膦、二甲基苯基氧膦、二乙基苯基氧膦、二丙基苯基氧膦、二丁基苯基氧膦、甲基二苯基氧膦、乙基二苯基氧膦、丙基二苯基氧膦、丁基二苯基氧膦和氯(二异丙基氨基)甲氧基膦中的一种或多种;
    或者,所述取代或未取代的硅烷基膦选自三(三甲硅烷基)膦、三(三乙硅烷基)膦、三(三丙硅烷基)膦、三(三丁硅烷基)膦、三(三戊硅烷基)膦、三(三己硅烷基)膦、三(三更硅烷基)膦和三(三辛硅烷基)膦中的一种或多种;
    或者,所述支链碳原子数大于等于4的烷基膦选自三丁基膦、三庚基膦和三辛基膦中的一种或多种。
  8. 根据权利要求1所述的复合材料,其特征在于,所述油溶性有机配体选自碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和取代或未取代的烷胺基膦中的一种或多种。
  9. 一种复合材料的制备方法,其特征在于,包括步骤:
    将阳离子前驱体和第一油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
    将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物;
    在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,得到所述复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
  10. 根据权利要求9所述的复合材料的制备方法,其特征在于,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述第一油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、碳原子数大于等于8的伯胺和支链碳原子数大于等于4的仲胺或叔胺中的一种或多种。
  11. 根据权利要求10所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
  12. 根据权利要求9所述的复合材料的制备方法,其特征在于,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。
  13. 根据权利要求9所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。
  14. 根据权利要求9所述的复合材料的制备方法,其特征在于,所述第一温度为110-190℃;
    和/或,所述第二温度为110-190℃;
    和/或,所述第三温度为210-350℃。
  15. 根据权利要求9所述的复合材料的制备方法,其特征在于,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
  16. 一种复合材料的制备方法,其特征在于,包括步骤:
    将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
    将阴离子前驱体、第二油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物;
    在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,得到所述复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
  17. 根据权利要求16所述的复合材料的制备方法,其特征在于,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述第二油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
  18. 根据权利要求17所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
  19. 根据权利要求16所述的复合材料的制备方法,其特征在于,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。
  20. 根据权利要求16所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。
  21. 根据权利要求16所述的复合材料的制备方法,其特征在于,所述第一温度为110-190℃;
    和/或,所述第二温度为110-190℃;
    和/或,所述第三温度为210-350℃。
  22. 根据权利要求16所述的复合材料的制备方法,其特征在于,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
  23. 一种复合材料的制备方法,其特征在于,包括步骤:
    将阳离子前驱体和第一油溶性有机配体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
    将阴离子前驱体、第二油溶性有机配体分散到溶剂中,在第二温度下加热,得到第二混合物;
    在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的晶体生长,得到所述复合材料,其中,所述第三温度高于所述第一温度和所述第二温度。
  24. 根据权利要求23所述的复合材料的制备方法,其特征在于,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述第一油溶性有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的有机磷酸、支链碳原子数大于等于4的仲胺或叔胺和碳原子数大于等于8的伯胺中的一种或多种;
    和/或所述第二油溶性有机配体选自取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
  25. 根据权利要求24所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
  26. 根据权利要求23所述的复合材料的制备方法,其特征在于,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。
  27. 根据权利要求23所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。
  28. 根据权利要求23所述的复合材料的制备方法,其特征在于,所述第一温度为110-190℃;
    和/或,所述第二温度为110-190℃;
    和/或,所述第三温度为210-350℃。
  29. 根据权利要求23所述的复合材料的制备方法,其特征在于,在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
  30. 一种复合材料的制备方法,其特征在于,包括步骤:
    将阳离子前驱体分散到溶剂中,在第一温度下加热,得到第一混合物,所述阳离子前驱体为金属卤化物;
    将阴离子前驱体分散到溶剂中,在第二温度下加热,得到第二混合物;
    在第三温度下加热所述第一混合物,在加热过程中注入所述第二混合物进行 发光量子点的生长,生长完成后,在降温的过程中加入第三油溶性配体,使第三油溶性配体结合在发光量子点表面,得到所述复合材料,其中所述第三油溶性配体为碳原子数大于等于8的硫醇,其中,所述第三温度高于所述第一温度和所述第二温度。
  31. 根据权利要求30所述的复合材料的制备方法,其特征在于,所述金属卤化物为镉元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种;
    和/或,所述金属卤化物为铅元素的氯化物、溴化物和碘化物中的一种或多种,进一步的,所述金属卤化物中还包括锌元素的氯化物、溴化物和碘化物中的一种或多种。
  32. 根据权利要求31所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:S的前驱体、Se的前驱体和Te的前驱体中的一种或多种。
  33. 根据权利要求30所述的复合材料的制备方法,其特征在于,所述金属卤化物为铟的氯化物、溴化物和碘化物中的一种或多种。
  34. 根据权利要求30所述的复合材料的制备方法,其特征在于,所述阴离子前驱体选自:P元素的前驱体和As元素的前驱体中的一种或多种。
  35. 根据权利要求30所述的复合材料的制备方法,其特征在于,所述第一温度为110-190℃;
    和/或,所述第二温度为110-190℃;
    和/或,所述第三温度为210-350℃。
  36. 一种复合材料,其特征在于,包括:发光量子点、结合在所述发光量子点表面的油溶性有机配体和水溶性配体。
  37. 根据权利要求36所述的复合材料,其特征在于,所述发光量子点选自II-VI族量子点、III-V族量子点或IV-VI族量子点;或者,
    所述发光量子点选自以III-V族材料或II-VI族材料为核,II-VI族材料为壳的核壳量子点。
  38. 根据权利要求37所述的复合材料,其特征在于,所述发光量子点选自以II-VI族材料为核,II-VI族材料为壳的核壳量子点。
  39. 根据权利要求38所述的复合材料,其特征在于,所述发光量子点选自 CdZnS/ZnS、CdZnSe/ZnSe、CdSeS/CdSeS/CdS、CdSe/CdZnSe/CdZnSe/ZnSe、CdZnSe/CdZnSe/ZnSe、CdS/CdZnS/CdZnS/ZnS、CdSe/ZnS、CdZnSe/ZnS、CdSe/CdS/ZnS、CdSe/ZnSe/ZnS和CdZnSe/CdZnS/ZnS中的一种或多种。
  40. 根据权利要求36所述的复合材料,其特征在于,所述发光量子点的粒径为10-20nm。
  41. 根据权利要求36所述的复合材料,其特征在于,所述油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
  42. 根据权利要求41所述的复合材料,其特征在于,所述碳原子数大于等于8的直链有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和碳原子数大于等于8的伯胺中的一种或多种。
  43. 根据权利要求36所述的复合材料,其特征在于,所述复合材料中,所述油溶性有机配体选自碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和取代或未取代的烷胺基膦中的一种或多种。
  44. 根据权利要求36所述的复合材料,其特征在于,所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。
  45. 一种复合材料,其特征在于,包括:颗粒、结合在所述颗粒表面的油溶性有机配体和水溶性配体,所述颗粒为无机半导体纳米晶。
  46. 根据权利要求45所述的复合材料,其特征在于,所述油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
  47. 根据权利要求46所述的复合材料,其特征在于,所述碳原子数大于等于8的直链有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和碳原子数大于等于8的伯胺中的一种或多种。
  48. 根据权利要求45所述的复合材料,其特征在于,所述无机半导体纳米晶为金属氧化物颗粒,所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒;或者,
    所述无机半导体纳米晶为金属硫化物颗粒,所述金属氧化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒。
  49. 根据权利要求45所述的复合材料,其特征在于,所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。
  50. 一种量子点发光二极管,包括:阳极、阴极及设置在所述阳极和阴极之间的量子点发光层,其特征在于,所述量子点发光层包括第一量子点发光层,所述第一量子点发光层材料为复合材料,所述复合材料包括:发光量子点、结合在所述发光量子点表面的卤素配体和油溶性有机配体;
    或者,所述第一量子点发光层材料为第二复合材料,所述第二复合材料包括:发光量子点、结合在所述发光量子点表面的油溶性有机配体和水溶性配体。
  51. 根据权利要求50所述的量子点发光二极管,其特征在于,所述发光量子点选自II-VI族量子点、III-V族量子点或IV-VI族量子点;或者,
    所述发光量子点选自以III-V族材料或II-VI族材料为核,II-VI族材料为壳的核壳量子点。
  52. 根据权利要求51所述的量子点发光二极管,其特征在于,所述发光量子点选自以II-VI族材料为核,II-VI族材料为壳的核壳量子点。
  53. 根据权利要求52所述的量子点发光二极管,其特征在于,所述发光量子点选自CdZnS/ZnS、CdZnSe/ZnSe、CdSeS/CdSeS/CdS、CdSe/CdZnSe/CdZnSe/ZnSe、CdZnSe/CdZnSe/ZnSe、CdS/CdZnS/CdZnS/ZnS、CdSe/ZnS、CdZnSe/ZnS、CdSe/CdS/ZnS、CdSe/ZnSe/ZnS和CdZnSe/CdZnS/ZnS中的一种或多种。
  54. 根据权利要求50所述的量子点发光二极管,其特征在于,所述发光量子点的粒径为10-20nm。
  55. 根据权利要求50所述的量子点发光二极管,其特征在于,所述卤素配体选自氯离子、溴离子和碘离子中的一种或多种。
  56. 根据权利要求50所述的量子点发光二极管,其特征在于,所述油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多种。
  57. 根据权利要求56所述的量子点发光二极管,其特征在于,所述碳原子数大于等于8的直链有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和碳原子数大于等于8的伯胺中的一种或多种。
  58. 根据权利要求50所述的量子点发光二极管,其特征在于,所述复合材料中,所述油溶性有机配体选自碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和取代或未取代的烷胺基膦中的一种或多种。
  59. 根据权利要求50所述的量子点发光二极管,其特征在于,所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。
  60. 根据权利要求50所述的量子点发光二极管,其特征在于,当所述量子点发光层为一层第一量子点发光层时,所述量子点发光二极管还包括与所述第一量子点发光层层叠设置的电子传输层,所述第一量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述电子传输层包括至少一层第一电子传输层和至少一层第二电子传输层,第一层第二电子传输层叠设在所述第一量子点发光层上,第一层第一电子传输层叠设在所述第一层第二电子传输层上,在后的每一电子传输层叠设在每一在前的不同种类的电子传输层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料。
  61. 根据权利要求50所述的量子点发光二极管,其特征在于,所述量子点发光层还包括第二量子点发光层,所述第二量子点发光层材料为水溶性发光量子点。
  62. 根据权利要求61所述的量子点发光二极管,其特征在于,当所述第一量子点发光层与所述第二量子点发光层中的至少一种为多层时,所述第一量子点 发光层与所述第二量子点发光层交替层叠设置。
  63. 根据权利要求62所述的量子点发光二极管,其特征在于,所述第一量子点发光层与所述第二量子点发光层的总层数为3-6层。
  64. 根据权利要求61所述的量子点发光二极管,其特征在于,所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述电子传输层包括至少一层第一电子传输层和至少一层第二电子传输层,当所述量子点发光层中最远离所述阳极设置的一层为第一量子点发光层时,第一层第二电子传输层叠设在所述最远离所述阳极设置的第一量子点发光层上,第一层第一电子传输层叠设在所述第一层第二电子传输层上,在后的每一电子传输层叠设在每一在前的不同种类的电子传输层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料;
    或者,所述第一电子传输层材料为第三复合材料,所述第三复合材料包括:颗粒、结合在所述颗粒表面的第四油溶性有机配体和水溶性配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料。
  65. 根据权利要求61所述的量子点发光二极管,其特征在于,所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述电子传输层包括至少一层第一电子传输层和至少一层第二电子传输层,当所述量子点发光层中最远离所述阳极的一层为第二量子点发光层时,第一层第一电子传输层叠设在所述最远离所述阳极设置的第二量子点发光层上,第一层第二电子传输层叠设在所述第一层第一电子传输层上,在后的每一电子传输层叠设在每一在前的不同种类的电子传输层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;所述第二电子传输层材料为水溶性电子传输材料。
  66. 根据权利要求60、64或65所述的量子点发光二极管,其特征在于,所 述第一电子传输层与所述第二电子传输层的总层数为3-6层。
  67. 根据权利要求61所述的量子点发光二极管,其特征在于,所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述量子点发光层中最远离所述阳极设置的一层为第二量子点发光层,所述电子传输层为一层第一电子传输层,所述第一电子传输层叠设在所述最远离所述阳极设置的第二量子点发光层上;其中,所述第一电子传输层材料为第一复合材料,所述第一复合材料包括:颗粒、结合在所述颗粒表面的第一卤素配体和第四油溶性有机配体,所述颗粒为无机半导体纳米晶;
    或者,所述量子点发光二极管还包括与所述量子点发光层层叠设置的电子传输层,所量子点发光层靠近所述阳极一侧设置,所述电子传输层靠近所述阴极一侧设置,所述量子点发光层中最远离所述阳极设置的一层为第一量子点发光层,所述电子传输层为一层第二电子传输层,所述第二电子传输层叠设在所述最远离所述阳极设置的第一量子点发光层上;其中,所述第二电子传输层材料为水溶性电子传输材料。
  68. 根据权利要求60、64、65或67所述的量子点发光二极管,其特征在于,所述无机半导体纳米晶的粒径为2-7nm;和/或,所述第二复合材料在可见波段无发射。
  69. 根据权利要求60、64、65或67所述的量子点发光二极管,其特征在于,所述无机半导体纳米晶为金属氧化物颗粒,所述金属氧化物颗粒选自ZnO颗粒、CdO颗粒、SnO颗粒或GeO颗粒;或者,
    所述无机半导体纳米晶为金属硫化物颗粒,所述金属氧化物颗粒选自ZnS颗粒、SnS颗粒或GeS颗粒。
  70. 根据权利要求60、64、65或67所述的量子点发光二极管,其特征在于,所述第一卤素配体选自氯离子、溴离子和碘离子中的一种或多种。
  71. 根据权利要求60、64、65或67所述的量子点发光二极管,其特征在于,所述第四油溶性有机配体选自碳原子数大于等于8的直链有机配体、支链碳原子数大于等于4的仲胺或叔胺、取代或未取代的烷胺基膦、取代或未取代的烷氧基膦、取代或未取代的硅烷基膦和支链碳原子数大于等于4的烷基膦中的一种或多 种。
  72. 根据权利要求71所述的量子点发光二极管,其特征在于,所述碳原子数大于等于8的直链有机配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和碳原子数大于等于8的伯胺中的一种或多种。
  73. 根据权利要求60、64、65或67所述的量子点发光二极管,其特征在于,所述第一复合材料中,所述第四油溶性有机配体为碳原子数大于等于8的硫醇、碳原子数大于等于8的有机磷酸和取代或未取代的烷胺基膦中的多种;
    或者,所述第一复合材料中,所述第四油溶性有机配体为取代或未取代的烷胺基膦,所述颗粒为金属硫化物颗粒;
    或者,所述第一复合材料中,所述第四油溶性有机配体为碳原子数大于等于8的有机磷酸,所述颗粒为金属氧化物颗粒;
    或者,所述第一复合材料中,所述第四油溶性有机配体为碳原子数大于等于8的硫醇,所述颗粒为金属硫化物颗粒;
    或者,所述第一复合材料中,所述无机半导体纳米晶中含有金属掺杂元素。
  74. 根据权利要求73所述的量子点发光二极管,其特征在于,所述金属掺杂元素选自Mg、Mn、Al、Y、V和Ni中的一种或多种;或者,所述无机半导体纳米晶选自ZnO颗粒、ZnS颗粒或SnO颗粒。
  75. 根据权利要求64所述的量子点发光二极管,其特征在于,所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。
  76. 根据权利要求61至65任一项所述的量子点发光二极管,其特征在于,所述第二量子点发光层材料为表面结合水溶性配体的发光量子点,所述水溶性配体选自选自卤素离子配体、碳原子数小于8的巯基醇、碳原子数小于8的巯基胺和碳原子数小于8的巯基酸中的一种或多种。
PCT/CN2019/104735 2018-09-07 2019-09-06 一种复合材料与量子点发光二极管 WO2020048527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/039,657 US20210020858A1 (en) 2018-09-07 2020-09-30 Composite material and quantum dot light emitting diode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811046064.X 2018-09-07
CN201811046126.7 2018-09-07
CN201811046064.XA CN110885674A (zh) 2018-09-07 2018-09-07 一种复合材料及其制备方法
CN201811046126.7A CN110890470A (zh) 2018-09-07 2018-09-07 一种量子点发光二极管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/039,657 Continuation US20210020858A1 (en) 2018-09-07 2020-09-30 Composite material and quantum dot light emitting diode

Publications (1)

Publication Number Publication Date
WO2020048527A1 true WO2020048527A1 (zh) 2020-03-12

Family

ID=69722995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104735 WO2020048527A1 (zh) 2018-09-07 2019-09-06 一种复合材料与量子点发光二极管

Country Status (2)

Country Link
US (1) US20210020858A1 (zh)
WO (1) WO2020048527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974495A3 (en) * 2020-09-28 2022-04-20 Samsung Display Co., Ltd. Quantum dot composition and method of manufacturing light-emitting device using the quantum dot composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994629B (zh) * 2017-12-29 2021-01-29 Tcl科技集团股份有限公司 复合薄膜及其制备方法和应用
US11254863B2 (en) * 2019-02-15 2022-02-22 Samsung Electronics Co., Ltd. Quantum dots and quantum dot solutions
WO2020245924A1 (ja) * 2019-06-04 2020-12-10 シャープ株式会社 発光素子、発光デバイス
TW202111082A (zh) * 2019-07-11 2021-03-16 美商納諾西斯有限公司 具立方形狀及氟化物鈍化的藍光發射奈米晶體
EP3809474B1 (en) * 2019-10-18 2023-07-19 Samsung Electronics Co., Ltd. Quantum dot light-emitting device and electronic device
WO2023168684A1 (zh) * 2022-03-11 2023-09-14 京东方科技集团股份有限公司 量子点的制备方法、量子点、以及显示装置
WO2023157170A1 (ja) * 2022-02-17 2023-08-24 シャープディスプレイテクノロジー株式会社 表示装置およびその製造方法
WO2024042572A1 (ja) * 2022-08-22 2024-02-29 シャープディスプレイテクノロジー株式会社 発光素子および発光デバイス

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191052A (zh) * 2005-11-30 2008-06-04 北京大学 CdSeS量子点纳米颗粒的制备方法
CN106531860A (zh) * 2016-12-22 2017-03-22 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN106601925A (zh) * 2016-12-22 2017-04-26 Tcl集团股份有限公司 一种量子点发光层、量子点发光二极管及其制备方法
CN106701076A (zh) * 2016-11-23 2017-05-24 苏州星烁纳米科技有限公司 一种InP量子点的制备方法及InP量子点
CN106753333A (zh) * 2016-12-20 2017-05-31 Tcl集团股份有限公司 一种量子点复合材料及其制备方法与量子点led
CN107098324A (zh) * 2017-05-08 2017-08-29 苏州星烁纳米科技有限公司 一种磷化铟量子点的制备方法
CN107216869A (zh) * 2016-11-09 2017-09-29 浙江新诺科安全设备有限公司 具有晶界缺陷最小化的连续的结晶成长结构的量子点制备方法以及由此制备的量子点
CN107236536A (zh) * 2017-02-22 2017-10-10 浙江新诺科安全设备有限公司 形成金属氧化膜外壳的连续的结晶成长结构的量子点制备方法以及由此制备的量子点
CN107760307A (zh) * 2016-08-17 2018-03-06 苏州星烁纳米科技有限公司 一种量子点及其制备方法、背光模组和显示装置
CN108239535A (zh) * 2016-12-23 2018-07-03 苏州星烁纳米科技有限公司 具有核-壳结构的Ga掺杂的InP量子点及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424941B1 (en) * 2009-05-01 2017-05-31 Nanosys, Inc. Functionalized matrixes for dispersion of nanostructures
US11214732B2 (en) * 2017-05-31 2022-01-04 Tcl Technology Group Corporation Quantum dot surface ligand exchange method
US10738520B2 (en) * 2017-06-26 2020-08-11 Ford Global Technologies, Llc Door hinge with integrated detent and stop
WO2020048534A1 (zh) * 2018-09-07 2020-03-12 Tcl集团股份有限公司 一种复合材料及其制备方法与量子点发光二极管

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191052A (zh) * 2005-11-30 2008-06-04 北京大学 CdSeS量子点纳米颗粒的制备方法
CN107760307A (zh) * 2016-08-17 2018-03-06 苏州星烁纳米科技有限公司 一种量子点及其制备方法、背光模组和显示装置
CN107216869A (zh) * 2016-11-09 2017-09-29 浙江新诺科安全设备有限公司 具有晶界缺陷最小化的连续的结晶成长结构的量子点制备方法以及由此制备的量子点
CN106701076A (zh) * 2016-11-23 2017-05-24 苏州星烁纳米科技有限公司 一种InP量子点的制备方法及InP量子点
CN106753333A (zh) * 2016-12-20 2017-05-31 Tcl集团股份有限公司 一种量子点复合材料及其制备方法与量子点led
CN106531860A (zh) * 2016-12-22 2017-03-22 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN106601925A (zh) * 2016-12-22 2017-04-26 Tcl集团股份有限公司 一种量子点发光层、量子点发光二极管及其制备方法
CN108239535A (zh) * 2016-12-23 2018-07-03 苏州星烁纳米科技有限公司 具有核-壳结构的Ga掺杂的InP量子点及其制备方法
CN107236536A (zh) * 2017-02-22 2017-10-10 浙江新诺科安全设备有限公司 形成金属氧化膜外壳的连续的结晶成长结构的量子点制备方法以及由此制备的量子点
CN107098324A (zh) * 2017-05-08 2017-08-29 苏州星烁纳米科技有限公司 一种磷化铟量子点的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974495A3 (en) * 2020-09-28 2022-04-20 Samsung Display Co., Ltd. Quantum dot composition and method of manufacturing light-emitting device using the quantum dot composition
US11859116B2 (en) 2020-09-28 2024-01-02 Samsung Display Co., Ltd. Quantum dot composition and method of manufacturing light-emitting device using the quantum dot composition

Also Published As

Publication number Publication date
US20210020858A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020048527A1 (zh) 一种复合材料与量子点发光二极管
CN110890470A (zh) 一种量子点发光二极管
WO2020048534A1 (zh) 一种复合材料及其制备方法与量子点发光二极管
TWI805548B (zh) 量子點材料及量子點材料之製造方法
CN110890467A (zh) 一种量子点发光二极管
KR102181060B1 (ko) 금속 이온 표면 처리된 금속 산화물 나노입자, 이것을 포함하는 양자점-발광 소자 및 그 제조 방법
JP5689575B2 (ja) 青色発光半導体ナノクリスタル物質
KR101819573B1 (ko) 향상된 안정성 및 발광 효율을 갖는 양자점 나노입자들
KR20140121351A (ko) 아연 셀레나이드 양자점 기반의 청색 발광 다이오드
JP2007528612A5 (zh)
EP2721633B1 (en) Stabilized nanocrystals
US20110175030A1 (en) Preparing large-sized emitting colloidal nanocrystals
CN113122231B (zh) 一种量子点及其制备方法与量子点发光二极管
CN109233801A (zh) 表面修饰的量子点及其制备方法、应用与qled器件
JP7202352B2 (ja) 量子ドット及び量子ドットの製造方法
CN109935722B (zh) 一种qled器件
US9376616B2 (en) Nanoparticle phosphor and method for manufacturing the same, semiconductor nanoparticle phosphor and light emitting element containing semiconductor nanoparticle phosphor, wavelength converter and light emitting device
KR102584733B1 (ko) 퀀텀닷
US20210210706A1 (en) Quantum dot and manufacturing method thereof, quantum dot light emitting diode and display panel
CN110885674A (zh) 一种复合材料及其制备方法
CN109119543B (zh) 异质结结构量子点及其合成方法与应用
CN110890469A (zh) 一种复合材料及其制备方法
CN108269933A (zh) 一种反置底发射qled器件及其制备方法
CN110890468A (zh) 一种复合材料及其制备方法
CN108269929A (zh) 一种正置顶发射qled器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857119

Country of ref document: EP

Kind code of ref document: A1