WO2018110653A1 - ポリシリコン破砕物の付着樹脂の分析方法 - Google Patents

ポリシリコン破砕物の付着樹脂の分析方法 Download PDF

Info

Publication number
WO2018110653A1
WO2018110653A1 PCT/JP2017/044936 JP2017044936W WO2018110653A1 WO 2018110653 A1 WO2018110653 A1 WO 2018110653A1 JP 2017044936 W JP2017044936 W JP 2017044936W WO 2018110653 A1 WO2018110653 A1 WO 2018110653A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polysilicon
crushed
temperature
organic volatile
Prior art date
Application number
PCT/JP2017/044936
Other languages
English (en)
French (fr)
Inventor
真人 滑川
美貴枝 武本
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP17881490.1A priority Critical patent/EP3557246B1/en
Priority to CN201780074177.8A priority patent/CN110036293A/zh
Priority to US16/469,202 priority patent/US11428685B2/en
Priority to JP2018530933A priority patent/JP6413047B1/ja
Priority to KR1020197015305A priority patent/KR20190096339A/ko
Publication of WO2018110653A1 publication Critical patent/WO2018110653A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0059Avoiding interference of a gas with the gas to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample
    • G01N2030/128Thermal desorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/885Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Definitions

  • the present invention relates to a method for analyzing resin adhering to the surface of a crushed polysilicon. Specifically, the present invention provides an analysis method capable of quantifying the adhered resin of the crushed polysilicon with high sensitivity and qualitatively and with high accuracy.
  • Polycrystalline silicon is used as a raw material for silicon single crystal growth necessary for manufacturing semiconductor devices and the like, and the demand for purity thereof is increasing.
  • Polycrystalline silicon is often produced by the Siemens method.
  • the Siemens method is a method in which polycrystalline silicon is vapor-phase grown on the surface of a core rod by bringing a silane source gas such as trichlorosilane into contact with a heated silicon core rod.
  • Polycrystalline silicon produced by the Siemens method is obtained in the form of a rod.
  • This rod-shaped polycrystalline silicon has a diameter of 80 to 150 mm and a length of 1000 mm or more. Therefore, when this rod-shaped polycrystalline silicon is used in another process, for example, a silicon single crystal growing facility by the CZ method, it is cut into rods of a predetermined length or crushed into an appropriate lump. The These crushed polysilicon are classified by a sieve or the like as necessary.
  • a cleaning process for example, a method such as bringing hydrofluoric acid or an acidic solution containing hydrofluoric acid and nitric acid into contact with polycrystalline silicon, It is shipped in a high purity packing bag in the packing process.
  • a highly chemical-resistant resin member such as polypropylene, polyethylene, PTFE, polyfluoride, etc. Vinylidene (PVDF) is used as a container for immersing the crushed polysilicon in an acidic solution containing hydrofluoric acid and nitric acid.
  • a highly chemical-resistant resin member such as polypropylene, polyethylene, PTFE, polyfluoride, etc. Vinylidene (PVDF) is used as a container for immersing the crushed polysilicon in an acidic solution containing hydrofluoric acid and nitric acid.
  • PVDF Vinylidene
  • resin gloves such as polyvinyl chloride, nitrile rubber, polyethylene, and polyurethane are used in the packing process.
  • polyethylene, polyethylene terephthalate, or polypropylene is used as the packaging bag. These may come into contact with the crushed polysilicon and the resin may adhere.
  • the contamination source can be identified, and it is possible to improve the contamination source to prevent adhesion.
  • the crushed polysilicon material obtained by crushing the polycrystalline silicon rod is heat-treated in an inert gas atmosphere at a temperature of 350 to 600 ° C., and the generated carbon dioxide is reddish.
  • the above qualitative analysis results are easy to detect with respect to resin components adhering in large quantities, there is room for improvement in terms of detection sensitivity with respect to small amounts of resin components.
  • the heating temperature has an upper limit of 350 ° C., and there is a high possibility that it will be used in the manufacturing process of polysilicon, such as fluorine resin, PEEK, etc. There is no awareness of the analysis for resins with decomposition onset temperatures above.
  • JP 2013-170122 A Japanese Unexamined Patent Publication No. 2016-56066
  • the present invention has been made in view of such problems, and the object of the present invention is to identify with high sensitivity the type of resin that adheres to the surface of the crushed polysilicon material that could not be grasped by the prior art. Furthermore, it is another object of the present invention to provide an analysis method capable of quantifying the adhesion amount of each resin with high accuracy as required.
  • the process for producing the crushed polysilicon is performed in a clean room environment having a clean room filter having a PTFE membrane.
  • the partition material, curtain, partition, and floor material of the clean room are made of polyvinyl chloride, epoxy, etc. Resin is used.
  • the resin contains a plurality of additives such as a plasticizer, a lubricant, a solvent, and a colorant.
  • a plasticizer such as polyvinyl chloride
  • a lubricant such as a lubricant, a solvent, and a colorant.
  • organic volatile components those having volatility (hereinafter also referred to as organic volatile components) are relatively low temperature in the atmosphere. It is thought that it will be released gradually.
  • the present invention removes organic volatile components from the crushed polysilicon, then raises the temperature of the crushed polysilicon under the flow of inert gas, and collects the resin decomposed material generated at the heating temperature. And analyzing the degradation product specific to the resin contained in the degradation product of the resin to identify the type of resin adhering to the crushed polysilicon product, and analyzing the surface organic impurities of the crushed polysilicon product Is to provide.
  • the removal of the organic volatile component is performed at 180 ° C. or higher while maintaining a temperature lower than the decomposition start temperature of the resin that is assumed to be in contact with the polysilicon in the manufacturing process of the crushed polysilicon. This is preferable for reliably removing organic volatile components.
  • the temperature of the crushed polysilicon after the removal of the organic volatile components is increased in stages, and each heating temperature decomposes the resin that is supposed to come into contact with the polysilicon in the manufacturing process of the crushed polysilicon. It is preferable to raise the temperature stepwise in the temperature range from the start temperature to 800 ° C. in accordance with the decomposition start temperature of the resin, because a decomposition product unique to the attached resin can be reliably detected.
  • the type of resin adhering to the surface of the crushed polysilicon can be identified with higher accuracy, and the amount of adhering resin can be accurately determined for each type of resin. .
  • the polysilicon crushed material to be analyzed is obtained by crushing rod-shaped polycrystalline silicon produced by the Siemens method, and includes the following crushing steps. All of the processing steps, that is, (a) crushing step, (b) washing step, and (c) packing step, which have undergone any step, are included.
  • (A) Crushing process Polycrystalline silicon is produced by the Siemens method, fluidized bed method or the like. Among them, the polycrystalline silicon obtained by the Siemens method is usually obtained in a rod shape, so that it can be easily put into a crucible for producing single crystal silicon, for example. As described above, the rod-like polycrystalline silicon is crushed to an appropriate size after being cut as necessary. The crushing is processed into a polysilicon crushed material, for example, by crushing with a crusher such as a jaw crusher or a roll crusher, or by crushing manually with a hammer or a chisel.
  • a crusher such as a jaw crusher or a roll crusher
  • the shape of the polysilicon crushed material obtained by the above crushing is not particularly limited, but an indeterminate (non-uniform direction state) lump obtained by crushing or the like is common.
  • the size of the crushed polysilicon is generally 0.1 to 20 cm, preferably 1 to 10 cm in particle size represented by the maximum length of the crushed pieces.
  • the crushed pieces may be sized by a sieve or the like as necessary to adjust the particle size.
  • the silicon crushed material may come into contact with the resin such as the resin cover of the crusher and the resin cover of the crushing stand, and may be contaminated.
  • the polysilicon crushed material obtained from the crushing process is a process of removing the metal, oil, etc. adhering to the surface during crushing and handling, and purifying the polysilicon crushed material. Is done. For example, what was provided with the pickling process by an acid solution and the subsequent water-washing process by a pure water is mentioned.
  • the pickling step the surface of the polysilicon crushed material is dissolved to remove the contaminants by immersing the cleaning basket holding the crushed polysilicon in advance in a chemical bath containing an acid solution. Examples of the acid solution used in the pickling step include a mixed solution of hydrofluoric acid and nitric acid.
  • the water washing step after the pickling step it is preferable to use ultrapure water.
  • the polycrystalline silicon after washing with ultrapure water is preferably dried by blow drying (aeration drying), and this drying is preferably performed at a temperature of 80 to 150 ° C. for 0.5 to 24 hours.
  • the silicon crushed material may come into contact with the cleaning basket and the resin of the conveyor and may be contaminated.
  • the packing step is a step of packing the polysilicon crushed material with a resin packing material typified by polyethylene, and a known method is also used without particular limitation for such a packing method.
  • the packing material made from polyethylene is used as a packing material
  • the method of filling this with the polysilicon crushed material manually or using a filling apparatus is mentioned to this.
  • shapes, such as a flat bag and a gusset bag, are generally employ
  • the inside of the package is reduced in pressure or vacuum.
  • the packaging bag may be double wrapped.
  • the crushed silicon may come into contact with packing materials such as packaging bags and resin such as inspection gloves.
  • the crushing process, the cleaning process, and the packing process are usually performed in a clean room, but are released from volatile organic substances that are slightly present in the clean room, for example, polyvinyl chloride curtains and flooring materials in the clean room.
  • the crushed polysilicon is contaminated by the additive.
  • the organic volatile component is removed from the polysilicon crushed material obtained in any of the above steps, and then the temperature of the polysilicon crushed material is increased under the flow of an inert gas. This is carried out by collecting the resin decomposition products generated in the above process and analyzing the decomposition products specific to the resin contained in the resin decomposition products, thereby specifying the type of resin adhered to the polysilicon crushed material.
  • the heating temperature in removing these organic volatile components is preferably 180 ° C. or more in order to effectively remove the organic volatile components.
  • the organic volatile component in the present invention means, for example, a low molecular weight compound that vaporizes at a normal pressure of 250 ° C. or lower.
  • the upper limit of the heating temperature is set to be lower than the decomposition start temperature of the resin having the lowest decomposition temperature among the resins expected to adhere to the crushed polysilicon in the above process. Accordingly, the heating temperature may be, for example, 300 ° C. or lower, 280 ° C. or lower, 250 ° C. or lower, or 200 ° C. or lower. At low temperature, it is held for a sufficient time to remove organic volatile components.
  • the organic volatile component in the present invention does not include a resin component.
  • the heating for removing the organic volatile component is performed in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas or the like in order to prevent the attached resin from burning.
  • an inert gas atmosphere such as helium gas, argon gas, nitrogen gas or the like.
  • helium is most preferable as the inert gas.
  • a furnace having a mechanism for heating the crushed polysilicon to a predetermined temperature and a mechanism for extracting the vaporized organic volatile component is used. Is done.
  • the extraction is preferably performed using the inert gas as a carrier gas.
  • a closed furnace equipped with an external heater and heating means such as high-frequency heating and having an inert gas supply port and a gas discharge port is preferably used.
  • the polysilicon crushed material may be stored in a setter and set in the furnace.
  • the setter is made of a material that is stable even at a heating temperature for removing the organic volatile component, preferably at a heating temperature for decomposition of the subsequent resin, for example, heat-resistant ceramics such as quartz and alumina.
  • heat-resistant ceramics such as quartz and alumina.
  • the setter or the furnace is pre-baked at a temperature equal to or higher than the maximum heating temperature in the analysis.
  • the apparatus having the above structure can also be used for heating for subsequent decomposition of the resin. Generally, after the organic volatile component is removed, the temperature is continuously raised to the decomposition temperature of the resin. Done.
  • the heating time for removing the organic volatile component is preferably until the organic volatile component is substantially absent in the extracted gas, and generally 30 to 100 minutes is appropriate. Yes, at 250 ° C., 60 minutes or less is sufficient. By such heat treatment, 90% or more of organic volatile components adhering to the crushed polysilicon are removed.
  • the higher the removal rate of organic volatile components the higher the sensitivity. Therefore, the organic volatile components are preferably removed by 95% or more, more preferably 97% or more, and particularly preferably 99% or more.
  • the removal rate of organic volatile components is determined by the following method. That is, first, a measurement sample collected from crushed polysilicon is heated in a temperature range of 180 ° C.
  • the generated organic volatile components are adsorbent. Adsorb to. Thereafter, the components separated by heating the adsorbent are measured with a GC / MS apparatus, and the peak areas of the organic volatile components adhering to the measurement sample are summed from the obtained chromatogram, and the peak areas of the organic volatile components attached to the measurement sample Find the area value (A all ). Next, the same amount of another measurement sample is taken from the crushed polysilicon, and subjected to a heat treatment for removing the organic volatile component (n hours). The organic volatile component generated at that time is the same as described above.
  • the peak area value of organic volatile components were removed by heating (an) determined from a n / a all, determine the removal rate of organic volatile components. At this time, record the time and the peak area value of the organic volatile component, create a calibration curve for obtaining the peak area value of the organic volatile component at any time for each heating temperature, from the heating temperature and the heating time, It is preferable to estimate the removal rate of organic volatile components. In actual operation, conditions until the peak of the organic volatile component is not detected may be obtained in advance, and the organic volatile component may be removed according to the condition.
  • the polysilicon crushed material is heated to 250 ° C., the generated organic volatile components are adsorbed on the adsorbent, and then the adsorbent is heated to remove the desorbed components by GC / MS (quadrupole mass spectrometry type).
  • GC / MS quadrature mass spectrometry type
  • the crushed polysilicon material from which the organic volatile components have been removed is then raised in temperature of the polysilicon crushed material under the flow of an inert gas, and the resin decomposed material generated at the heating temperature is collected. .
  • the heating temperature may be set to a temperature equal to or higher than the decomposition start temperature of the resin assumed in the manufacturing process of the crushed polysilicon product and less than a temperature at which the generated resin decomposition product is not further modified.
  • the temperature is preferably set stepwise to a temperature 25 to 100 ° C. higher than the decomposition start temperature.
  • the heating temperature is appropriately set according to the type of resin to be measured and the resin decomposition temperature. By setting the heating temperature according to each resin, it is possible to measure with high accuracy. Become.
  • the heating time at the heating temperature is preferably performed until the generation of the decomposition product of the resin is substantially eliminated at the temperature for accurate determination. Such time is preferably determined appropriately by conducting an experiment in advance. According to confirmation by the present inventors, the heating time may be 30 minutes or more, and particularly 60 minutes is sufficient.
  • the resin decomposition product obtained at the above heating temperature is collected and collected as a gas, and the contained decomposition product specific to the resin is analyzed.
  • the inert gas is used as a carrier, the resin decomposed product is taken out as a gas, and this is collected by an adsorbent and used for analysis.
  • the adsorbent used for collecting the decomposition product can be appropriately used depending on the target resin.
  • Non-limiting specific examples include, in addition to polymer-based adsorbents such as Tenax TA, carbon-based adsorbents such as Carboxen 1000 (trade name: manufactured by Sigma-Aldrich), and Carbo Siveve SIII (trade name: Sigma-aldrich). Activated carbon).
  • the adsorbent that adsorbs the organic volatile component and the adsorbent that adsorbs the resin decomposition product may be the same, or may be appropriately selected from the adsorbents described above.
  • the column can be appropriately selected and used depending on the resin to be measured.
  • a capillary column having a polysiloxane-based stationary phase such as ZB-1MS (trade name: manufactured by Agilent)
  • a silica particle-based plot column for example, GC-GasPro (trade name: manufactured by Phenomenex)
  • the length of the column is not limited as long as the above-mentioned resin decomposition product can be separated, and is preferably 20 to 60 m, more preferably 30 m or more.
  • a known method can be adopted as a method for desorbing and analyzing the decomposition product of the resin from the adsorbent.
  • a general method is a method in which a resin decomposed product desorbed by heating the adsorbent is concentrated and collected in a cooled secondary adsorbent in the GC apparatus and introduced into the column after the heat desorption of the secondary adsorbent. .
  • the kind of resin adhered to the polysilicon crushed material is specified from the analysis result of the resin decomposed material obtained at each heating temperature.
  • Table 2 below shows typical decomposition products specific to the resin, and is attached to the crushed polysilicon by comparing the compounds identified by the above analysis with the following decomposition products specific to the resin.
  • the resin can be specified.
  • the adhered resin can be similarly identified from the decomposition product.
  • preferable decomposition products for the determination of each resin are 1-pentadecene for polyethylene, 2-isocyanate-1,3-bis (1-methylethyl) benzene for polyurethane, and 2,4-dimethyl- for polypropylene.
  • a calibration curve for a unique characteristic decomposition product can be created for each resin, and the amount of adhered resin can be obtained based on the calibration curve.
  • FIG. 2 shows that 200 ⁇ g of polyethylene as a resin is weighed, a resin decomposition product generated when the temperature is raised from 250 ° C. to 450 ° C. is adsorbed to the adsorbent, and then the adsorbent is heated to remove components separated by the GC / MS apparatus. It is an example of the chromatogram measured by. 5) From the chromatographic chart, obtain the peak area value of the degradation product characteristic of the resin. 6) The above measurements are performed on the resin samples having different weights, and the peak area value of the decomposition product characteristic of the resin is obtained.
  • a graph of “resin weight” and “peak area value of characteristic decomposition product” is created, and a slope and R 2 are obtained from a linear approximation expression without an intercept.
  • R 2 is a coefficient of determination, and is used as a measure of the goodness of fit of the linear approximate expression obtained from the sample value. 8) If R 2 is less than 0.9, the plot is increased by changing the weight of the resin sample until R 2 becomes 0.9 or more, and a calibration curve is obtained.
  • the type of resin adhering to the surface of the crushed polysilicon can be identified with higher sensitivity, and the amount of adhering resin can be accurately determined for each type of resin. Is possible. Therefore, the following examination was performed to confirm the accuracy of quantification.
  • a rod-shaped polycrystalline silicon having a diameter of 150 mm and a length of 1000 mm manufactured by the Siemens method is placed on a crushing table lined with silicon in a clean room, and crushed with a tungsten carbide hammer, A polysilicon crushed material containing 95% by weight of crushed material having a maximum piece length of 10 mm to 100 mm was obtained.
  • the material of the gloves used for handling was polyurethane. Twenty pieces of the obtained crushed polysilicon, about 500 g, are taken out, and a polyethylene piece as a resin is weighed into the crushed material so that it becomes 100 ppbw per weight of the crushed polysilicon. Held on.
  • the resin decomposition product generated when the temperature is raised from 250 ° C. to 450 ° C. is adsorbed to the adsorbent, and then The components separated by heating the adsorbent were measured with a GC / MS apparatus.
  • the crushed polysilicon material containing the polyethylene piece is adsorbed to the adsorbent by the resin decomposition product generated when the temperature is raised directly to 450 ° C. without desorbing organic volatile components, and then the adsorbent is heated.
  • the component released after the measurement was measured with a GC / MS apparatus. In addition, this operation was performed 5 times in each condition in order to confirm reproducibility.
  • the adhering polyethylene was quantified using a calibration curve obtained in advance, and it was confirmed that any sample from which organic volatile components were desorbed could be quantified with a high accuracy of 90 to 110 ppbw.
  • the peaks specific to polyethylene could be confirmed, there were samples in which the peaks of the organic volatile components overlapped and could not be separated. Further, the quantified value was greatly varied from 90 to 300 ppbw.
  • the type of the resin adhering to the surface of the crushed polysilicon can be specified with higher sensitivity, and the amount of the adhering resin can be accurately obtained for each type of the resin. It was.
  • the outline of the present invention is as follows. (1) After removing organic volatile components from the crushed polysilicon, raise the temperature of the crushed polysilicon under the flow of inert gas, collect the resin decomposed material generated at the heating temperature, A method for analyzing surface impurities of a crushed polysilicon product, wherein the kind of resin adhered to the crushed polysilicon product is specified by analyzing a decomposed product unique to the resin contained in the resin decomposed product.
  • Heating device The muffle furnace which connected the gas flow path to the heating device was used.
  • a quartz container was used as a setter for storing the crushed polysilicon.
  • Tenax TA which is a polymer-based adsorbent, was used to collect degradation products of polyethylene, polyurethane, polypropylene, and PEEK.
  • Carboxene 1000 was used to collect PTFE and PVDF degradation products.
  • the heating temperature was 250 ° C. for the purpose of removing organic volatile components, and was maintained for 49 minutes. Further, heating for the purpose of decomposing the adhered resin was performed at 400 to 650 ° C., and held at the temperature described in the examples described later for 49 minutes.
  • Helium is used as a carrier gas and aerated at a flow rate of 100 mL / min. The heating conditions are summarized in Table 3 below.
  • Example 1 As a crushing process, rod-shaped polycrystalline silicon with a diameter of 150 mm and a length of 1000 mm manufactured by the Siemens method is placed on a crushing table lined with silicon and crushed with a tungsten carbide hammer. A polysilicon crushed material containing 95% by weight of crushed material having a length of 10 to 110 mm was obtained. Polyethylene gloves were used for handling.
  • Example 2 In the above-described cleaning process, the material of the cleaning basket was changed to polypropylene, and the same conditions as in Example 1 were performed. The results are shown in Table 5.
  • Example 3 In the above-described cleaning process, the material of the cleaning basket was changed to PTFE, and the heating temperature was held at 400 ° C. for 49 minutes, and then, further maintained at 650 ° C. for 49 minutes. . The results are shown in Table 5.
  • Example 4 In the crushing step, the same conditions as in Example 1 were used except that the material of the gloves used for handling was changed to polyurethane. The results are shown in Table 5.
  • Example 5 In the above crushing process, after crushing with a hammer, the crushed material with a maximum piece length of 10 mm to 110 mm is classified into a maximum piece length of 10 mm to 30 mm with a PEEK sieve, held at a heating temperature of 400 ° C. for 49 minutes, and then further 650 Except for holding at 49 ° C. for 49 minutes, it was carried out under the same conditions as in Example 1 except that. The results are shown in Table 5.
  • Example 6 In Example 1 above, after crushing with a hammer to obtain a crushed polysilicon material containing 95% by weight of a crushed material having a maximum piece length of 10 mm to 110 mm, directly into the polyethylene packaging bag without manual cleaning. The test was performed under the same conditions as in Example 1 except that The results are shown in Table 5.
  • Comparative Example 1 As a comparative example, the polysilicon crushed material that has undergone the crushing process, the cleaning process, and the packing process shown in Example 1 is held in a quartz chamber in a heating apparatus, and they are not subjected to the removal operation of organic volatile components, and helium gas The mixture was held at 400 ° C. for 49 minutes in an atmosphere with a flow rate of 100 mL / min, and the generated resin decomposition product was collected and an analysis chart was obtained in the same manner as in Example 1. However, as shown in Table 5, polyethylene could not be separated due to overlap of organic volatile components and peaks, and accurate quantification was not possible. Further, PVDF was buried in noise and no peak could be detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】 ポリシリコン破砕物の付着樹脂を高い感度で定性、更には、高い精度で定量することが可能な分析方法を提供する。 【解決手段】 ポリシリコン破砕物より有機揮発成分を加熱により除去した後、不活性ガスの流通下、該ポリシリコン破砕物の温度を上昇せしめ、上記加熱温度において発生する樹脂分解物を捕集して、該樹脂分解物に含まれる前記樹脂固有の分解物を分析することにより、前記ポリシリコン破砕物の付着樹脂の種類を特定する。更には、前記樹脂固有の分解物についてそれぞれ検量線を作成し、該検量線に基づいて前記付着樹脂毎の付着量を定量することもできる。

Description

ポリシリコン破砕物の付着樹脂の分析方法
 本発明は、ポリシリコン破砕物の表面に付着する樹脂の分析方法に関する。詳しくは、ポリシリコン破砕物の付着樹脂を高い感度で定性、更には、高い精度で定量することが可能な分析方法を提供するものである。
 多結晶シリコンは、半導体デバイス等の製造に必要なシリコン単結晶育成用の原料として用いられており、その純度に関する要求は高まっている。
 多結晶シリコンは、多くの場合シーメンス法によって製造される。シーメンス法とはトリクロロシラン等のシラン原料ガスを加熱されたシリコン芯棒に接触させることにより芯棒表面に多結晶シリコンを気相成長させる方法である。シーメンス法で製造される多結晶シリコンは、ロッド状で得られる。このロッド状の多結晶シリコンは直径が80~150mm、長さが1000mm以上の大きさである。そのため、このロッド状の多結晶シリコンを他工程、例えばCZ法によるシリコン単結晶育成設備にて使用とする場合には、所定の長さのロッドに切断したり、適当な塊状に破砕したりされる。これらポリシリコン破砕物は必要に応じて篩等により分類される。その後表面に付着する金属汚染物を取り除く為に、洗浄工程、例えば通常、フッ化水素酸、又はフッ化水素酸と硝酸とを含む酸性溶液と多結晶シリコンとを接触させる等の方法を経て、梱包工程にて高純度の梱包袋に詰めて出荷されている。
 ところで、上記ポリシリコン破砕物の製造工程において、その表面は種々の金属汚染物のみならず、有機系の不純物が付着することがある。例えば、上記破砕工程においてハンドリングする際には樹脂製の手袋、例えばポリ塩化ビニル、ニトリルゴム、ポリエチレン、ポリウレタン等が用いられる。またポリシリコンを所定の大きさに分類する篩にはポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリエーテルエーテルケトン(PEEK)等が使用される。
 また、上記洗浄工程においてはポリシリコン破砕物をフッ化水素酸と硝酸とを含む酸性溶液に浸漬させる為の容器として、耐薬品性の高い樹脂製の部材、例えばポリプロピレン、ポリエチレン、PTFE、ポリフッ化ビニリデン(PVDF)が用いられる。
 更に、上記梱包工程においては樹脂製の手袋、例えばポリ塩化ビニル、ニトリルゴム、ポリエチレン、ポリウレタンが用いられる。梱包袋としては例えばポリエチレン、ポリエチレンテレフタラート、ポリプロピレンが用いられる。これらがポリシリコン破砕物と接触し樹脂が付着する可能性がある。
 従って、得られるポリシリコン破砕物について、付着樹脂の特定を行うことができれば、汚染源が特定でき、かかる汚染源に対して付着防止のための改善を行うことが可能となる。
 上記要求に対して課題は異なるが、多結晶シリコンロッドを破砕して得られたポリシリコン破砕物を、不活性ガス雰囲気中で、350~600℃の温度で熱処理し、発生する二酸化炭素を赤外フロー測定セルに導入し、付着する全ての炭素量を測定する方法がある(特許文献1参照)。かかる方法は、炭素量の定量方法であるため、樹脂の種類及び付着樹脂量を特定することはできない。
 一方、ポリシリコン破砕物を、不活性ガス雰囲気中で熱処理してその表面を清浄化する方法において、180~350℃の熱処理温度にて、発生するガスを吸着剤にて吸着させた後、吸着剤を加熱し離脱した成分をGC-MS(四重極質量分析型のガスクロマトグラフィー)に導入し、成分の定性分析を行った結果が報告されている(特許文献2参照)。
 しかしながら、上記定性分析結果は、多量に付着する樹脂成分に関しての検出は容易であるが、微量の樹脂成分に関しては、検出感度の点において改良の余地がある。また、製品であるポリシリコン破砕物の清浄化処理であるため、加熱温度に350℃という上限があり、ポリシリコンの製造工程で使用される可能性が高い、フッ素樹脂、PEEKなど、上記温度を超える分解開始温度を有する樹脂についての分析は全く意識されていない。
特開2013-170122号公報 特開2016-56066号公報
 本発明はこのような問題に鑑みてなされたもので、その目的とするところは、従来技術では把握することができなかったポリシリコン破砕物の表面に付着する樹脂の種類を高感度で特定し、更に、必要に応じて、それぞれの樹脂について、付着量を高い精度で定量することができる分析方法を提供することにある。
 本発明者らは上記目的を達成する為に鋭意研究した。その結果、以下の知見を得た。即ち、ポリシリコン破砕物を製造する工程はPTFE膜を有するクリーンルーム用フィルターを有するクリーンルーム内環境下で行われるが、一般に、クリーンルームの隔壁、カーテン、間仕切り、床材にはポリ塩化ビニル、エポキシ等の樹脂が使用される。そして、上記樹脂には可塑剤・滑剤・溶剤・着色剤など複数の添加剤が含まれており、そのうち揮発性を有するもの(以下、有機揮発成分ともいう)は、比較的低温にて大気中に徐々に放出されると考えられる。大気中に浮遊する有機揮発成分はこれらフィルターでは除去できない為、ポリシリコン破砕物の表面に付着する。そのため、前記ポリシリコン破砕物を加熱して付着樹脂を分解せしめ、その分解物を分析して付着樹脂を特定しようとした場合、上記有機揮発成分が同時に揮発し、これがノイズとして働き、特に、微量で付着している樹脂の特定に悪影響を及ぼすという知見を得た。そこで、ポリシリコン破砕物表面に付着する前記有機揮発成分を予め除去することで、製造工程にて付着した樹脂由来の分解物を精度良く検出することに成功し、本発明を完成するに至った。
 即ち、本発明は、ポリシリコン破砕物より有機揮発成分を除去した後、不活性ガスの流通下、該ポリシリコン破砕物の温度を上昇せしめ、上記加熱温度において発生する樹脂分解物を捕集して、該樹脂分解物に含まれる前記樹脂固有の分解物を分析することにより、前記ポリシリコン破砕物の付着樹脂の種類を特定することを特徴とするポリシリコン破砕物の表面有機不純物の分析方法を提供するものである。
 上記本発明において、有機揮発成分の除去は、180℃以上、該ポリシリコン破砕物の製造工程においてポリシリコンとの接触が想定される樹脂の分解開始温度未満の温度に維持して行うことが、有機揮発成分の除去を確実に行うために好ましい。
 また、有機揮発成分の除去後のポリシリコン破砕物の温度の上昇は、段階的に行い、各加熱温度が、該ポリシリコン破砕物の製造工程においてポリシリコンとの接触が想定される樹脂の分解開始温度以上、800℃以下の温度範囲で、樹脂の分解開始温度に応じて段階的に上昇させることが、付着樹脂固有の分解物を確実に検出することができるため、好ましい。
 更に、前記樹脂固有の分解物についてそれぞれ検量線を作成し、該検量線に基づいて前記付着樹脂毎の付着量を算出することが可能である。
 本発明の方法によれば、ポリシリコン破砕物の表面に付着する樹脂の種類をより精度よく特定することができ、また、上記樹脂の種類毎に付着樹脂量を正確に求めることが可能となる。
 従って、ポリシリコン破砕物の製造工程において、どの工程において樹脂による汚染があり、更には、その汚染の程度がどのくらいかを、得られるポリシリコン破砕物の分析によって正確に推定することが可能となり、製造工程の管理、改善において、極めて重要な情報を得ることができる。
ポリシリコン破砕物を250℃に昇温した際に発生する有機揮発成分についてのGC/MS装置によるクロマトグラムチャート ポリエチレンを250℃から450℃に昇温した際に発生する樹脂分解物についてのGC/MS装置によるクロマトグラムチャート
 (ポリシリコン破砕物)
 本発明において、分析の対象となるポリシリコン破砕物は、シーメンス法にて製造されたロッド状の多結晶シリコンを破砕して得られるものであり、かかる破砕工程を含む、以下に示す代表的な処理工程、即ち、(a)破砕工程、(b)洗浄工程、(c)梱包工程のうち、任意の工程を経た状態のものを全て含む。
 そのうち、最終工程である梱包工程を経たポリシリコン破砕物に対して、本発明の分析方法を実施することが、製品管理を行う上で好ましい。
 (a)破砕工程:
 多結晶シリコンは、シーメンス法や流動床法等で製造されるが、その中でもシーメンス法で得られる多結晶シリコンは、通常棒状で得られるため、例えば、単結晶シリコン製造用の坩堝に投入し易いよう、この棒状の多結晶シリコンは、必要に応じて切断された後、適当な大きさに破砕される。上記破砕は、例えば、ジョークラッシャー、ロールクラッシャーなどの破砕機で破砕したり、ハンマー又はタガネを用いて手作業で破砕したりすることにより、ポリシリコン破砕物に加工される。
 上記破砕により得られるポリシリコン破砕物の形状としては特に制限はないが、粉砕等を行った不定形(不均一な方面状態)の塊状物が一般的である。また、ポリシリコン破砕物の大きさは、破砕片における最大長で示される粒径が0.1~20cm、好ましくは、1~10cmのものが一般的である。また、上記破砕片は、粒径を調整する為に必要に応じて篩等により大きさを揃えたものでもよい。
 上記粉砕工程において、シリコン破砕物は、破砕機の樹脂カバー、破砕用台の樹脂カバー等の樹脂と接触し、汚染されるおそれがある。
 (b)洗浄工程:
 破砕工程より得られたポリシリコン破砕物は、破砕時や取り扱い時に表面に付着する金属、油類等を除去してポリシリコン破砕物を清浄化する工程であり、公知の方法が特に制限無く採用される。例えば、酸液による酸洗工程と、その後の純水による水洗工程とを備えたものが挙げられる。酸洗工程では、予めポリシリコン破砕物を保持した洗浄カゴを、酸液を含む薬液槽に浸漬させることで、ポリシリコン破砕物の表面を溶解して汚染物質を除去する。酸洗工程で用いられる酸液としては、フッ化水素酸と硝酸との混合液が挙げられる。酸洗工程の後の水洗工程においては、超純水を使用することが好ましい。超純水で洗浄した後の多結晶シリコンは、送風乾燥(通気乾燥)により、乾燥させることが好ましく、この乾燥は80~150℃の温度で、0.5~24時間行うことが好ましい。
 上記洗浄工程において、シリコン破砕物は、洗浄カゴ、搬送コンベアの樹脂と接触し、汚染されるおそれがある。
 (c)梱包工程:
 梱包工程は、ポリエチレンを代表とする樹脂製梱包材でポリシリコン破砕物を包装する工程であり、かかる包装方法も、公知の方法が特に制限無く採用される。例えば、梱包材として、ポリエチレン製の包装袋を使用し、これに、ポリシリコン破砕物を、手作業により、または、充填装置を使用して充填する方法が挙げられる。上記包装袋としては、平袋、ガゼット袋などの形状が一般に採用され、また、袋を二重とした二重袋構造などが好適に使用される。また、ポリシリコン破砕物と梱包材との擦れや破損を抑制する為に、上記包装体内を減圧もしくは真空とすることも好ましい態様である。梱包袋が二重による包装をしても良い。
 上記梱包工程において、シリコン破砕物は、包装袋などの梱包材、検査用手袋等の樹脂と接触し汚染されるおそれがある。
 また、前記破砕工程、洗浄工程、梱包工程は、通常、クリーンルーム内で行われるが、クリーンルーム内に僅かに存在する揮発性有機物、例えば、クリーンルーム内のポリ塩化ビニル製のカーテンや床材などから放出される添加剤によりポリシリコン破砕物が汚染される。
 (ポリシリコン破砕物に付着した樹脂の分析)
 本発明の分析方法は、上記いずれかの工程において得られたポリシリコン破砕物より有機揮発成分を除去した後、不活性ガスの流通下、該ポリシリコン破砕物の温度を上昇せしめ、上記加熱温度において発生する樹脂分解物を捕集して、該樹脂分解物に含まれる前記樹脂固有の分解物を分析することにより、前記ポリシリコン破砕物の付着樹脂の種類を特定することにより実施される。
 本発明において、ポリシリコン破砕物に付着する樹脂の分解するに際し、上記有機揮発成分を事前に除去することが極めて重要である。
 即ち、有機揮発成分を事前に除去することにより、後の付着樹脂の熱分解により生成する分解物の分析において、有機揮発成分によるノイズをキャンセルすることができ、微量で付着している樹脂についても、確実にその分解物を検出することが可能となる。
 前記有機揮発成分の除去は、付着樹脂が分解しない温度条件下での加熱により行うことが好ましい。具体的には、180℃以上、前記ポリシリコン破砕物の製造工程において想定される樹脂の分解開始温度以下の温度に維持して、有機揮発成分を揮発せしめて除去する方法が好適である。
 上記有機揮発成分としては、シロキサン類、フタル酸エステル類が考えられ、これらの有機揮発成分の除去における加熱温度は、180℃以上とすることが、有機揮発成分効果的に除去するために好ましい。したがって、本発明における有機揮発成分とは、たとえば常圧250℃以下で気化する低分子量化合物を意味する。また、加熱温度の上限は、前記工程において、ポリシリコン破砕物への付着が予想される樹脂のうち、最も分解温度が低い樹脂の分解開始温度未満に設定される。したがって、加熱温度は、たとえば300℃以下であってもよく、280℃以下であってもよく、250℃以下でもよく、200℃以下でもよい。低温においては、有機揮発成分を除去するために、十分な時間保持する。本発明における有機揮発成分には、樹脂成分は含まれない。
 また、上記有機揮発成分を除去する際の加熱は、ヘリウムガス、アルゴンガス、窒素ガスなどの不活性ガス雰囲気下で行うことが付着樹脂の燃焼を防止するために好ましい。そのうち、不活性ガスとしてはヘリウムが最も好ましい。
 前記有機揮発成分を除去する際の加熱に使用する装置としては、ポリシリコン破砕物を所定の温度に加熱する機構を有すると共に、気化した有機揮発成分を抽気することができる機構を有する炉が使用される。
 上記抽気は、前記不活性ガスをキャリアガスとして使用して行うことが好ましい。具体的には、外付けのヒーター、高周波加熱等の加熱手段を備え、不活性ガスの供給口、ガスの排出口を有する密閉炉が好適に使用される。
 また、ポリシリコン破砕物は、セッターに収容して前記炉にセットすればよい。セッターは、前記有機揮発成分の除去を行うための加熱温度、好ましくは、後段の樹脂の分解のための加熱温度においても安定な材質、例えば、石英、アルミナ等の耐熱性セラミックスよりなる。勿論、炉自体の材質に、上記素材を使用し、ポリシリコン破砕物を炉内に直接載置することも可能である。また、いずれの態様においても、セッターや炉は、分析における最高加熱温度以上の温度で事前に空焼きをしておくことが好ましい。
 尚、上記構造の装置は、後段の樹脂の分解のための加熱にも使用することができ、一般には、有機揮発成分の除去を行った後、継続して樹脂の分解温度への昇温が行われる。
 本発明において、有機揮発成分の除去のための加熱時間は、前記抽気されたガス中に有機揮発成分が実質的に存在しなくなるまでとすることが好ましく、一般には、30~100分間が適当であり、250℃では60分以内が十分であり好ましい。このような加熱処理により、ポリシリコン破砕物に付着している有機揮発成分の90%以上が除去される。本発明では、有機揮発成分の除去率が高いほど感度は向上するため、有機揮発成分は好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上除去される。有機揮発成分の除去率は、以下の方法により求める。即ち、まず、ポリシリコン破砕物から採取した測定サンプルについて、180℃以上から樹脂の分解温度未満の温度範囲で、有機揮発成分が発生しなくなるまで加熱し、この間に発生した有機揮発成分を吸着剤に吸着させる。その後、吸着剤を加熱して離脱した成分をGC/MS装置にて測定し、得られたクロマトグラムから有機揮発成分のピーク面積の合計し、測定サンプルに付着している全有機揮発成分のピーク面積値(Aall)を求める。次いで、ポリシリコン破砕物から他の測定サンプルを同量採取し、これを有機揮発成分の除去のための加熱処理を施し(n時間)、その時に発生する有機揮発成分について、上記と同様にして、加熱により除去された有機揮発成分のピーク面積値(An)を求め、An/Aallから、有機揮発成分の除去率を求める。

 この際に、時間と有機揮発成分のピーク面積値とを記録し、加熱温度毎に任意の時間における有機揮発成分のピーク面積値を求める検量線を作成しておき、加熱温度と加熱時間から、有機揮発成分の除去率を見積もることが好ましい。また、実際の操業においては、有機揮発成分のピークが検出されなくなるまでの条件を予め求めておき、その条件に準じて、有機揮発成分の除去を行っても良い。
 図1に、ポリシリコン破砕物を250℃に昇温させ、発生する有機揮発成分を吸着剤に吸着させ、その後吸着剤を加熱して脱離した成分をGC/MS(四重極質量分析型のガスクロマトグラフィー)装置に導入し、定性分析を行った際の、クロマトグラムチャートの一例を示す。上記チャートに示すように、多くの種類の有機揮発成分がポリシリコン破砕物表面に存在することが判る。
 本発明において、有機揮発成分を除去されたポリシリコン破砕物は、次いで、不活性ガスの流通下、該ポリシリコン破砕物の温度を上昇せしめ、かかる加熱温度において発生する樹脂分解物を捕集する。
 上記加熱温度は、ポリシリコン破砕物の製造工程において想定される樹脂の分解開始温度以上かつ、発生する樹脂分解物が更に変性しない温度未満に設定すればよい。一般には分解開始温度より25~100℃高い温度に、段階的に設定することが好ましい。
 例えば、ポリシリコン破砕物の製造工程においてポリシリコン破砕物が接触する可能性があると想定される樹脂として、製造工程を調査した結果、以下の表1に示す樹脂が挙げられた場合、各樹脂の分解開始温度は、表1に示すようになる。
Figure JPOXMLDOC01-appb-T000001
 このように、加熱温度については、測定する対象の其々の樹脂の種類、樹脂分解温度により適宜設定され、其々の樹脂に応じた加熱温度を設定することで、精度の高い測定が可能となる。
 前記加熱温度における加熱時間は、該温度において、樹脂の分解物の発生が実質的に無くなるまで行うことが、定量を正確に行うために好ましい。かかる時間は、予め実験を行い適宜決定することが好ましい。本発明者らの確認によれば、上記加熱時間は、30分以上行えばよく、特に60分であれば十分である。
 本発明において、上記加熱温度で得られる樹脂分解物は、ガスとして回収して捕集し、含まれる前記樹脂固有の分解物を分析する。
 上記樹脂分解物の抽気は、前記不活性ガスをキャリアとして使用し、樹脂分解物をガスとして取り出し、これを吸着剤により捕集して分析に供する。
 上記分解物の捕集に使用する吸着剤としては、対象の樹脂により適宜使用できる。非制限的な具体例として、ポリマー系吸着剤、例えばTenax TAの他に、カーボン系の吸着剤、例えばCarboxen 1000(商品名:Sigma-aldrich社製)や、Carbosieve SIII(商品名:Sigma-aldrich社製)、活性炭を使用しても良い。また、有機揮発成分を吸着する吸着剤と、樹脂分解物を吸着する吸着剤は同じでも良いし、上記記載の吸着剤から適宜選択しても良い。
 また、該カラムについては、測定する樹脂により適宜選択して使用でき、例えば、ポリシロキサン系の固定相を有するキャピラリーカラム、例えばZB-1MS(商品名:Agilent製)や、シリカ粒子系のプロットカラム、例えばGC-GasPro(商品名:Phenomenex製)を使用することができる。また、カラムの長さは上記樹脂分解物が分離できればよく、20~60mがより好ましく、30m以上であればより好ましい。
 本発明において、前記樹脂の分解物を前記吸着剤から脱着し、分析する方法は、公知の方法を採用することができる。例えば、吸着剤を加熱して脱着した樹脂分解物を、GC装置内の冷却した二次吸着剤に濃縮捕集して、二次吸着剤の加熱脱着後にカラムに導入する方法が一般的である。
 本発明において、前記加熱温度毎に得られる樹脂分解物の分析結果より、前記ポリシリコン破砕物の付着樹脂の種類を特定する。
 以下の表2は、代表的な樹脂固有の分解物を示すものであり、前記分析により特定された化合物と下記の樹脂固有の分解物を照合することにより、ポリシリコン破砕物に付着している樹脂を特定することができる。他の樹脂についても、予め分解試験を行うことで、同様に分解物から、付着樹脂を特定できる。
 そして、上記結果に基づき、ポリシリコン破砕物の製造工程において調査した樹脂の種類とその樹脂が存在する箇所を特定することにより、汚染源を知ることができ、かかる汚染源に対して、ポリシリコン破砕物への樹脂付着に対して、適切な改善を採ることができる。
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、それぞれの樹脂の定量に好ましい分解物は、ポリエチレンが1-ペンタデセン、ポリウレタンが2-イソシアネート-1,3-ビス(1-メチルエチル)ベンゼン、ポリプロピレンが2,4-ジメチル-1-ヘプテン、PTFEがヘキサフルオロプロペン、PVDFが1,3,5-トリフルオロベンゼン、PEEKがジフェニルエーテルである。したがって、これらの分解物に基づいて検量線を作成することが好ましい。実施例においては、これら分解物に基づいて検量線を作成している。
 本発明の分析方法において、上記ポリシリコン破砕物への付着樹脂の種類を特定することに加えて、その付着量をも測定することが可能である。
 例えば、以下の方法により、各樹脂について、固有の特徴的な分解物についての検量線を作成し、該検量線に基づき、付着樹脂量を求めることができる。
 1)定量対象の樹脂について、分取が可能な量(一般には、1~300μg)で、2以上の任意の分量、例えば、10μg、100μg、200μgで定量して試料を準備する。
 2)前記樹脂試料をヘリウム雰囲気下、前記樹脂の分解温度に加熱し、樹脂の全量を分解せしめ、分解物の全量を捕集剤に捕集する。
 3)捕集剤をGC/MS分析にかけ(例:GC条件 カラム:ZB-1MS、キャリアガス:He、流量:1mL/min、オーブン:40℃(5 分間保持)→10℃/分→280℃。MS条件 イオン源温度230℃、イオン化モード:EI、イオン化電圧70eV)、クロマトグラフのチャートを得る。
 図2は、樹脂としてポリエチレンを200μg秤量し、250℃から450℃に昇温した際の発生する樹脂分解物を吸着剤に吸着させ、その後吸着剤を加熱して離脱した成分をGC/MS装置にて測定したクロマトグラムの一例である。
5)クロマトグラフのチャートより、樹脂に特徴的な分解物のピーク面積値を求める。
6)前記重量の異なる樹脂試料について、上記測定をそれぞれ行い、上記樹脂に特徴的な分解物のピーク面積値を求める。
7)「樹脂重量」と「特徴的な分解物のピーク面積値」のグラフを作り、切片を持たない線形近似式から傾きとRを求める。なお、Rは決定係数であり、標本値から求めた線形近似式のあてはまりの良さの尺度として利用される。
8)Rが0.9未満であれば、Rが0.9以上になるまで樹脂試料の重量を変えて前記操作を行うことによりプロットを増やし、検量線を得る。
 (定量の正確性の確認)
 前記の通り、本発明の方法によれば、ポリシリコン破砕物の表面に付着する樹脂の種類をより感度よく特定することができ、また、上記樹脂の種類毎に付着樹脂量を正確に求めることが可能となる。そこで、定量の正確性を確認する為に以下の検討を行った。
 シーメンス法にて製造された直径150mm、長さ1000mmのロッド状の多結晶シリコンを、クリーンルーム内にて、シリコンにてライニングされた破砕台の上に乗せ、タングステンカーバイド製のハンマーにて破砕し、最大片長10mm~100mmの破砕物を95重量%含むポリシリコン破砕物を得た。ハンドリングする際の手袋の材質をポリウレタンで使用した。得られたポリシリコン破砕物を20個、約500gを取出し更に上記破砕物に樹脂としてポリエチレン片をポリシリコン破砕物重量当たり100ppbwになるよう秤量し、ポリシリコン破砕物と共に加熱装置内の石英チャンバー内に保持した。
 上記ポリエチレン片を含むポリシリコン破砕物を250℃にて加熱し有機揮発成分を脱離させた後、250℃から450℃に昇温した際の発生する樹脂分解物を吸着剤に吸着させ、その後吸着剤を加熱して離脱した成分をGC/MS装置にて測定した。また、比較として上記ポリエチレン片を含むポリシリコン破砕物を、有機揮発成分を脱離させず直接450℃に昇温した際の発生する樹脂分解物を吸着剤に吸着させ、その後吸着剤を加熱して離脱した成分をGC/MS装置にて測定した。なお本操作は再現性を確認する為に其々の条件で5回行った。
 得られるピーク面積から、予め求めた検量線より、付着するポリエチレンの定量を行ったところ、有機揮発成分を脱離させた試料についてはいずれも90~110ppbwと高精度で定量できることを確認した。しかしながら、有機揮発成分の脱離を行わなかった試料については、何れもポリエチレン固有のピークは確認できたものの、有機揮発成分のピークが重複して分離ができない試料が存在した。また定量した値についても90~300ppbwと大きくバラつきが生じた。
 以上、本発明の方法により、ポリシリコン破砕物の表面に付着する樹脂の種類をより感度よく特定することができ、また、上記樹脂の種類毎に付着樹脂量を正確に求めることが可能となった。
 本発明を概略すれば以下のとおりである。
(1)ポリシリコン破砕物より有機揮発成分を除去した後、不活性ガスの流通下、該ポリシリコン破砕物の温度を上昇せしめ、上記加熱温度において発生する樹脂分解物を捕集して、該樹脂分解物に含まれる前記樹脂固有の分解物を分析することにより、前記ポリシリコン破砕物の付着樹脂の種類を特定することを特徴とするポリシリコン破砕物の表面不純物の分析方法。
(2)前記有機揮発成分の除去を、180℃以上、該ポリシリコン破砕物の製造工程においてポリシリコンとの接触が想定される樹脂の分解開始温度未満の温度に維持して行う(1)記載の分析方法。
(3)前記ポリシリコン破砕物の温度の上昇を樹脂分解開始温度に応じて段階的に行う、(1)又は(2)に記載の分析方法。
(4)前記樹脂固有の分解物についてそれぞれ検量線を作成し、該検量線に基づいて前記付着樹脂毎の付着量を定量する(1)~(3)のいずれか一項に記載の分析方法。
 さらに、本発明は以下のように記述することもできる。
(5)有機揮発成分および付着樹脂を表面に含むポリシリコン破砕物を得て、
 ポリシリコン破砕物から有機揮発成分を除去し、
 不活性ガスの流通下、該ポリシリコン破砕物を加熱して、付着樹脂を分解し、該樹脂分解物を捕集し、
 該樹脂分解物に含まれる前記樹脂固有の分解物を分析し、
 前記ポリシリコン破砕物の付着樹脂の種類を特定することを含む、ポリシリコン破砕物の表面不純物の分析方法。
 以下、本発明を実施例により説明するが、本発明はこれら実施例により限定されるものではない。
 尚、実施例において、加熱装置、分析装置は以下のものを使用した。
 1)加熱装置
 加熱装置にガス流路を接続したマッフル炉を用いた。ポリシリコン破砕物を収容するセッターには石英製容器を用いた。吸着剤は、ポリエチレン、ポリウレタン、ポリプロピレン、PEEKの分解物の捕集にポリマー系吸着剤であるTenax TAを用いた。また、PTFE、PVDFの分解物の捕集にCarboxene 1000を用いた。加熱温度は、有機揮発成分の除去を目的とする加熱を250℃で行い、49分保持した。また、付着樹脂の分解を目的とする加熱を400~650℃で行い、後述する実施例に記載の温度で49分保持した。ヘリウムをキャリアガスとして、流量100mL/minで通気する。加熱条件を以下表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 2)分析装置
 分析装置に四重極質量分析型のGC/MSを用いた。ポリエチレン、ポリウレタン、ポリプロピレン、PEEKの分解物の分析カラムには、シロキサンポリマー系の一般的なキャピラリーカラムのZB-1MSを採用した。PTFE、PVDFの分解物の分析カラムには、分解物が低沸点化合物であることから、低沸点成分の分離に優れたシリカ粒子系のプロットカラムのGC-GasProを採用した。分析条件を以下表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 実施例1
 シーメンス法にて製造された直径150mm、長さ1000mmのロッド状の多結晶シリコンを、破砕工程として、シリコンにてライニングされた破砕台の上に乗せ、タングステンカーバイド製のハンマーにて破砕し、最大片長10mm~110mmの破砕物を95重量%含むポリシリコン破砕物を得た。ハンドリングにはポリエチレンの手袋を使用した。
 上記ポリシリコン破砕物を洗浄工程として、PVDFの洗浄カゴに5kg投入し、フッ化水素酸と硝酸(体積比1:20)の混合溶液に5分間浸漬させた後、超純水にて30分浸漬させ、80℃で24時間乾燥させた。その後、クリーンブース内にて、シリコンにてライニングされた作業台の上に乗せ、ポリエチレンの手袋を用いて、ポリエチレンの梱包袋に梱包した。
 梱包袋の中から、ポリエチレンの手袋を用いて、最大片長10mm~30mmの任意のポリシリコン破砕物を20個、約500gを取出し、加熱装置内の石英チャンバー内に保持した。それらをヘリウムガス、流量100mL/minの雰囲気下にて250℃にて加熱し、49分保持した後、発生する有機揮発成分を脱離させた。その後、加熱温度が400℃で49分保持した。発生する其々の樹脂分解物の面積から、事前に作成した検量線から、樹脂付着量を算出した。結果を表5に示す。
 実施例2
 上記、洗浄工程にて、洗浄カゴの材質をポリプロピレンに変更し、実施例1と同様の条件で実施した。結果を表5に示す。
 実施例3
 上記、洗浄工程にて、洗浄カゴの材質をPTFEに変更し、加熱温度を400℃で49分保持した後、更に650℃で49分保持した以外は、実施例1と同様の条件で実施した。結果を表5に示す。
 実施例4
 上記、破砕工程にて、ハンドリングする際の手袋の材質をポリウレタンに変更した以外は、実施例1と同様の条件で実施した。結果を表5に示す。
 実施例5
 上記、破砕工程にて、ハンマーによる破砕後に、PEEKの篩にて、最大片長10mm~110mmの破砕物を最大片長10mm~30mmに分類し、加熱温度が400℃で49分保持した後、更に650℃にて49分保持した以外は、以外は実施例1と同様の条件で実施した。結果を表5に示す。
 実施例6
 上記、実施例1において、ハンマーにて破砕し、最大片長10mm~110mmの破砕物を95重量%含むポリシリコン破砕物を得た後、洗浄工程を行わず、直接ポリエチレンの梱包袋へ手作業にて投入した以外は、実施例1と同様の条件で実施した。結果を表5に示す。
 比較例1
 比較例として、実施例1に示す破砕工程、洗浄工程、梱包工程を経たポリシリコン破砕物を、加熱装置内の石英チャンバー内に保持し、それらを有機揮発成分の除去操作を行わず、ヘリウムガス、流量100mL/minの雰囲気下にて400℃で49分保持し、実施例1と同様にして、発生する樹脂分解物を捕集、分析チャートを得た。しかし、表5に示すとおり、ポリエチレンは有機揮発成分とピークが重複して分離ができず、正確な定量ができなかった。また、PVDFはノイズに埋もれてピークが検出できなかった。
Figure JPOXMLDOC01-appb-T000005

Claims (4)

  1.  ポリシリコン破砕物より有機揮発成分を除去した後、不活性ガスの流通下、該ポリシリコン破砕物の温度を上昇せしめ、上記加熱温度において発生する樹脂分解物を捕集して、該樹脂分解物に含まれる前記樹脂固有の分解物を分析することにより、前記ポリシリコン破砕物の付着樹脂の種類を特定することを特徴とするポリシリコン破砕物の表面不純物の分析方法。
  2.  前記有機揮発成分の除去を、180℃以上、該ポリシリコン破砕物の製造工程においてポリシリコンとの接触が想定される樹脂の分解開始温度未満の温度に維持して行う請求項1記載の分析方法。
  3.  前記ポリシリコン破砕物の温度の上昇を樹脂分解開始温度に応じて段階的に行う、請求項1又は請求項2に記載の分析方法。
  4.  前記樹脂固有の分解物についてそれぞれ検量線を作成し、該検量線に基づいて前記付着樹脂毎の付着量を定量する請求項1~3のいずれか一項に記載の分析方法。
PCT/JP2017/044936 2016-12-16 2017-12-14 ポリシリコン破砕物の付着樹脂の分析方法 WO2018110653A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17881490.1A EP3557246B1 (en) 2016-12-16 2017-12-14 Method of analyzing resins adhering to crushed polysilicon
CN201780074177.8A CN110036293A (zh) 2016-12-16 2017-12-14 多晶硅破碎物的附着树脂的分析方法
US16/469,202 US11428685B2 (en) 2016-12-16 2017-12-14 Method of analyzing resins adhering to crushed polysilicon
JP2018530933A JP6413047B1 (ja) 2016-12-16 2017-12-14 ポリシリコン破砕物の付着樹脂の分析方法
KR1020197015305A KR20190096339A (ko) 2016-12-16 2017-12-14 폴리실리콘 파쇄물의 부착 수지의 분석 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244778 2016-12-16
JP2016-244778 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110653A1 true WO2018110653A1 (ja) 2018-06-21

Family

ID=62558923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044936 WO2018110653A1 (ja) 2016-12-16 2017-12-14 ポリシリコン破砕物の付着樹脂の分析方法

Country Status (7)

Country Link
US (1) US11428685B2 (ja)
EP (1) EP3557246B1 (ja)
JP (1) JP6413047B1 (ja)
KR (1) KR20190096339A (ja)
CN (1) CN110036293A (ja)
TW (1) TWI749125B (ja)
WO (1) WO2018110653A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153340A1 (ja) * 2019-01-25 2020-07-30 株式会社トクヤマ 多結晶シリコン塊状物、その梱包体及びこれらの製造方法
WO2021182341A1 (ja) * 2020-03-12 2021-09-16 グローバルウェーハズ・ジャパン株式会社 シリコン原料の洗浄装置
WO2023042660A1 (ja) * 2021-09-17 2023-03-23 株式会社トクヤマ 無機固体の表面炭素量測定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144388B2 (ja) 2019-11-21 2022-09-29 トヨタ自動車株式会社 ガソリン中の硫黄成分の濃度を推定する方法
CN112986463A (zh) * 2021-02-07 2021-06-18 暨南大学 一种两段式气体采样管及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266650A (ja) * 1999-03-16 2000-09-29 Toshiba Ceramics Co Ltd ポリシリコンの表層部不純物の分析方法およびポリシリコンをエッチングするための試料処理容器
JP2013170122A (ja) 2012-02-21 2013-09-02 Wacker Chemie Ag チャンク多結晶シリコン及び多結晶シリコンチャンクをクリーニングする方法
JP2016056066A (ja) 2014-09-10 2016-04-21 信越化学工業株式会社 多結晶シリコンの表面清浄化方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332447A1 (de) 1983-09-08 1985-03-21 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur befreiung von siliciumbruchstuecken von verunreinigungen
US5242671A (en) * 1988-10-11 1993-09-07 Ethyl Corporation Process for preparing polysilicon with diminished hydrogen content by using a fluidized bed with a two-step heating process
KR100197114B1 (ko) * 1995-07-19 1999-06-15 김영환 메모리 소자 집적 다이의 층결함의 3차원 검사 방법
JP3506599B2 (ja) * 1998-02-04 2004-03-15 Necエレクトロニクス株式会社 分析方法
EP1193286B1 (en) * 2000-09-28 2004-02-18 Kabushiki Kaisha Toshiba Method of decomposing thermosetting resin, apparatus and heat control program
EP2039485B1 (en) * 2007-05-01 2014-06-18 Panasonic Corporation Method of resin segregation
JP2012091137A (ja) * 2010-10-28 2012-05-17 Mitsubishi Materials Corp 多結晶シリコンの破砕装置及び多結晶シリコン破砕物の製造方法
JP6420777B2 (ja) 2014-02-14 2018-11-07 株式会社トクヤマ 清浄化された多結晶シリコン塊破砕物の製造装置、及び該製造装置を用いた、清浄化された多結晶シリコン塊破砕物の製造方法
EP3208236A4 (en) 2014-10-14 2017-09-06 Tokuyama Corporation Polycrystalline silicon fragment, method for manufacturing polycrystalline silicon fragment, and polycrystalline silicon block fracture device
JP6292164B2 (ja) * 2015-04-30 2018-03-14 信越半導体株式会社 シリコン単結晶の製造方法
CN105784459B (zh) * 2016-03-15 2019-05-21 亚洲硅业(青海)有限公司 氯硅烷和多晶硅体表金属痕量杂质元素的前处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266650A (ja) * 1999-03-16 2000-09-29 Toshiba Ceramics Co Ltd ポリシリコンの表層部不純物の分析方法およびポリシリコンをエッチングするための試料処理容器
JP2013170122A (ja) 2012-02-21 2013-09-02 Wacker Chemie Ag チャンク多結晶シリコン及び多結晶シリコンチャンクをクリーニングする方法
JP2016056066A (ja) 2014-09-10 2016-04-21 信越化学工業株式会社 多結晶シリコンの表面清浄化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557246A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153340A1 (ja) * 2019-01-25 2020-07-30 株式会社トクヤマ 多結晶シリコン塊状物、その梱包体及びこれらの製造方法
CN113348149A (zh) * 2019-01-25 2021-09-03 株式会社德山 多晶硅块状物、其包装体及其制造方法
EP3901089A4 (en) * 2019-01-25 2022-09-28 Tokuyama Corporation LUMP OF POLYCRYSTALLINE SILICON, PACKAGING BODY THEREOF AND METHOD FOR ITS MANUFACTURE
JP7482039B2 (ja) 2019-01-25 2024-05-13 株式会社トクヤマ 多結晶シリコン塊状物、その梱包体及びこれらの製造方法
WO2021182341A1 (ja) * 2020-03-12 2021-09-16 グローバルウェーハズ・ジャパン株式会社 シリコン原料の洗浄装置
JP7458833B2 (ja) 2020-03-12 2024-04-01 グローバルウェーハズ・ジャパン株式会社 シリコン原料の洗浄装置
WO2023042660A1 (ja) * 2021-09-17 2023-03-23 株式会社トクヤマ 無機固体の表面炭素量測定方法
KR20240055725A (ko) 2021-09-17 2024-04-29 가부시끼가이샤 도꾸야마 무기 고체의 표면 탄소량 측정 방법

Also Published As

Publication number Publication date
TW201827342A (zh) 2018-08-01
EP3557246A4 (en) 2020-09-02
US20190391126A1 (en) 2019-12-26
TWI749125B (zh) 2021-12-11
JP6413047B1 (ja) 2018-10-24
EP3557246A1 (en) 2019-10-23
KR20190096339A (ko) 2019-08-19
JPWO2018110653A1 (ja) 2018-12-13
EP3557246B1 (en) 2023-04-26
US11428685B2 (en) 2022-08-30
CN110036293A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
JP6413047B1 (ja) ポリシリコン破砕物の付着樹脂の分析方法
JP5720297B2 (ja) シリコンウェーハの金属汚染分析方法
CN103253674A (zh) 多晶硅碎块以及用于净化多晶硅碎块的方法
WO2016038779A1 (ja) 多結晶シリコンの表面清浄化方法
JP6495147B2 (ja) 多結晶シリコン収容治具の検査方法および多結晶シリコンの製造方法
US20150284873A1 (en) Methods of forming and analyzing doped silicon
Silvestri et al. Thermal desorption mass spectrometer for mass metrology
JP6700370B2 (ja) 多結晶シリコンの収容治具および多結晶シリコンの製造方法
KR20190009927A (ko) 흡착제 내의 휘발성 유기화합물을 정량 분석하는 방법
JP2020128332A (ja) 多結晶シリコンの収容治具および多結晶シリコンの製造方法
JP2002286600A (ja) 大気の清浄度評価用捕集剤
JP2004317141A (ja) りんの定量方法
JP4760458B2 (ja) 半導体ウェーハ収納容器の金属汚染分析方法
JP2001264295A (ja) 汚染物質の固体表面吸着評価方法
Reddy et al. Determination of Impurities in High Purity Germanium by Inductively Coupled Plasma Quadrupole Mass Spectrometry (ICP-QMS) After Matrix Volatilization Using Chlorine Gas
JPH1164316A (ja) クリーンルーム空気中の有機ガス分析方法
KR102568572B1 (ko) 흡착제 내의 휘발성 유기화합물을 정량 분석하는 방법
JP6439782B2 (ja) 石英試料の分解方法、石英試料の金属汚染分析方法および石英部材の製造方法
JP7281937B2 (ja) 低炭素高純度多結晶シリコン塊とその製造方法
JP2005326219A (ja) 分析用試料の調整装置及び分析用試料の調整方法、並びに半導体試料の分析方法
JPH0777523A (ja) クロロシラン類中の超微量リンの定量方法
KR20190087360A (ko) 흡착제 내의 휘발성 유기화합물을 정량 분석하는 방법
JP2009519449A (ja) 石英ガラス部材の表面充填量の測定方法
CN110129892A (zh) 减少硅块表面有机物的方法及单晶硅的制备方法
JP2006275551A (ja) 基板製造局所空間の汚染状態の評価方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530933

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881490

Country of ref document: EP

Effective date: 20190716