WO2018099422A1 - 电子膨胀阀及具有其的制冷系统 - Google Patents

电子膨胀阀及具有其的制冷系统 Download PDF

Info

Publication number
WO2018099422A1
WO2018099422A1 PCT/CN2017/113893 CN2017113893W WO2018099422A1 WO 2018099422 A1 WO2018099422 A1 WO 2018099422A1 CN 2017113893 W CN2017113893 W CN 2017113893W WO 2018099422 A1 WO2018099422 A1 WO 2018099422A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
electronic expansion
silencing
expansion valve
passage
Prior art date
Application number
PCT/CN2017/113893
Other languages
English (en)
French (fr)
Inventor
王宇栋
舒小辉
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to EP17875890.0A priority Critical patent/EP3550193B1/en
Priority to JP2019528843A priority patent/JP6757472B2/ja
Priority to KR1020197017856A priority patent/KR102191738B1/ko
Publication of WO2018099422A1 publication Critical patent/WO2018099422A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of refrigeration, and in particular to an electronic expansion valve and a refrigeration system therewith.
  • the deceleration type electronic expansion valve for an inverter air conditioner is mainly composed of two parts, one part is a valve body part for flow rate adjustment, and the other part is a coil part for driving.
  • the coil part comprises: a permanent magnet type stepping motor 1, a gear reducer 2 with three stages of deceleration 2, a threaded substructure 5 having a vertical movement for converting the rotary motion of the motor into the screw rod 3, the valve body comprising a valve seat 10', and
  • the core member such as the bellows 7 that controls the rise and fall of the needle 8 is formed.
  • the electronic controller of the air conditioning system controls the output shaft of the stepping motor 1 of the electronic expansion valve to rotate, and the motor 1 and the gear reducer 2 cooperate to drive the output shaft of the gear reducer 2 to rotate.
  • the output shaft of the gear reducer 2 cooperates with the screw rod to drive the screw rod to rotate, and then the screw rod cooperates with the thread pair structure 5 to enable the screw rod to move up and down.
  • a steel ball 11' is welded to the tip end of the lead screw, and a bushing 6 is provided at the lower end of the steel ball 11'.
  • the valve pin 8 is connected to the lower end of the bushing 6.
  • valve needle 8 When the lead screw is driven to move downward by the driving member, the screw rod will bear against the steel ball 11', and the steel ball 11' bears against the bushing 6, and the bushing 6 bears against the valve needle 8 so that the valve needle 8 can be synchronized with the screw rod
  • the movement is continued until the valve needle 8 is in the closed position, that is, the position at which the valve needle 8 abuts against the valve body 10'.
  • the valve needle 8 is in the closed position, the bellows 7 is in a continuously stretched state.
  • the reverse pulse is applied, the screw rod 3 moves upward, and the valve needle 8 continuously moves upward under the return elastic force of the bellows 7 and the system pressure, thereby changing the opening degree of the valve port 9, so that the flow area changes and the control is achieved.
  • the above electronic expansion valve has a noise problem in actual operation. Specifically, when the valve body and the valve port are in a state of small opening degree, since the opening degree at the valve port is small, a significant throttle will be generated. The flow rate of the refrigerant through the valve port is large, resulting in the formation of a vortex at a specific frequency, resulting in abnormal noise, which affects the end user's comfort.
  • a primary object of the present invention is to provide an electronic expansion valve and a refrigeration system therewith for solving the problem of high noise of the electronic expansion valve of the prior art.
  • an electronic expansion valve includes: a valve body having a first valve port; a valve needle having a closed position abutting the first valve port and escaping the first valve The open position of the mouth, the bottom of the valve needle has a second valve port communicating with the first valve port, the valve needle has a receiving space and a first over-current channel and a second over-current channel communicating with the receiving space, the first over-flow channel Located on the side wall of the valve needle and communicating with the outside, the second over-flow passage is located on the outer side of the second valve port and communicates with the second valve port; the valve stem is at least partially disposed in the accommodating space, and the valve stem can be up and down Moving to adjust the flow rate at the second valve port; the first muffling portion is disposed in the accommodating space such that the fluid entering from the first over-flow passage passes through the first muffler and flows to the second over-flow passage; the first seal a portion disposed in the accommodating space between the first si
  • the first sealing portion is made of a polymer material or a soft metal material.
  • valve needle comprises a valve needle body and a valve seat core disposed in the valve needle body, the inner wall of the valve needle body and the upper surface of the valve seat core enclose a receiving space, and the second valve port and the second flow passage are both Set on the seat core.
  • first sealing portion is a first sealing ring
  • first sealing ring is interposed between the valve seat core and the first silencing portion, and the first sealing ring is provided with a first avoiding hole for avoiding the valve stem, first The circumferential side wall of the sealing portion is in contact with the inner wall of the valve needle.
  • the second over-flow channel is a first flow-through hole, and the first flow-through holes are plural, and the plurality of first flow-through holes are arranged along a circumferential direction of the second valve port.
  • the third over-flow channel is a second overflow hole
  • the second flow-through hole is a plurality of
  • the plurality of second flow-through holes are disposed in one-to-one correspondence with the plurality of first flow-through holes.
  • the second through hole is an arc hole.
  • the first silencing portion includes a first silencing structure and a second silencing structure, the first silencing structure is located above the second silencing structure, the first silencing structure blocks the first overcurrent channel, and the second silencing structure blocks the third Overcurrent channel.
  • the electronic expansion valve further includes a second sealing portion disposed between the first silencing structure and the second silencing structure to separate the first silencing structure and the second silencing structure.
  • the second sealing portion is a second sealing ring, and the second sealing ring has a second relief hole for avoiding the valve stem, and the circumferential side wall of the second sealing portion is in contact with the inner wall of the valve needle.
  • the second sealing portion is made of a polymer material or a soft metal material.
  • first silencing structure and the second silencing structure are both mesh silencing members, and the first silencing structure and the second silencing structure are an integral structure, and the size of the mesh gap of the first silencing structure and the mesh of the second silencing structure The size of the gap is different.
  • the electronic expansion valve further includes a second sound absorbing portion, and the second sound absorbing portion is disposed below the second valve port.
  • a refrigeration system comprising: an electronic expansion valve, the electronic expansion valve being the above-described electronic expansion valve.
  • the electronic expansion valve includes a first sealing portion disposed in the accommodating space between the first silencing portion and the second overcurrent passage, and the third sealing portion is provided with a third passage portion
  • the flow channel, the accommodating space and the second overcurrent channel are in communication through the third overcurrent channel.
  • the fluid will be blocked by the first sealing portion and flowed into the first muffler in a direction opposite to the previous flow direction for muffling.
  • This portion of the silenced fluid flows into the third flow passage and eventually flows out of the second flow passage. Therefore, the above knot
  • the fluid entering the accommodating space from the first over-flow passage can all enter the first silencing portion for sound elimination, thereby improving the silencing effect, reducing the noise of the electronic expansion valve, and solving the noise of the electronic expansion valve in the prior art. Big problem.
  • FIG. 1 is a schematic longitudinal sectional view showing an electronic expansion valve of the prior art
  • Figure 2 is a schematic longitudinal sectional view showing a first embodiment of an electronic expansion valve according to the present invention
  • Figure 3 is a schematic enlarged plan view showing a portion A of the electronic expansion valve of Figure 2;
  • FIG. 4 is a cross-sectional structural view showing the valve stem of the electronic expansion valve of FIG. 2 mated with the valve needle;
  • Figure 5 is a front view showing the structure of the valve stem of Figure 4 in cooperation with the valve needle;
  • FIG. 6 is a schematic exploded view showing the first silencing portion, the first sealing portion, the second sealing portion, and the valve seat core of the electronic expansion valve of FIG. 2;
  • Figure 7 is a cross-sectional structural view showing the valve needle of the electronic expansion valve of Figure 2;
  • Fig. 8 is a longitudinal sectional view showing the cooperation of the valve stem and the valve needle of the second embodiment of the electronic expansion valve according to the present invention.
  • valve body 10, valve body; 11, first valve port; 20, valve needle; 21, valve needle body; 211, first overcurrent channel; 22, valve seat core; 221, second valve port; 222, second over circulation Road; 223, diversion trough; 23, accommodation space; 30, valve stem; 40, first silencing portion; 41, first silencing structure; 411, third avoidance hole; 42, second silencing structure; a relief hole; 50, a first sealing portion; 51, a third overcurrent passage; 52, a first relief hole; 60, a second sealing portion; 70, a second silencing portion.
  • the electronic expansion valve of the first embodiment includes a valve body 10 having a first valve port 11 and a valve needle 20 having a closed position abutting the first valve port 11 and avoiding the first position.
  • the bottom of the valve needle 20 In the open position of the valve port 11, the bottom of the valve needle 20 has a second valve port 221 communicating with the first valve port 11, the valve needle 20 having a receiving space 23 and a first overcurrent passage 211 and a second communicating with the accommodating space 23.
  • the first flow passage 211 is located on a side wall of the valve needle 20 and communicates with the outside, and the second overflow passage 222 is located outside the second valve port 221 and communicates with the second valve port 221;
  • the rod 30 is at least partially disposed in the accommodating space 23, and the valve stem 30 is movable up and down to adjust the flow rate at the second valve port 221;
  • the first muffling portion 40 is disposed in the accommodating space 23 so as to be from the first overcurrent passage
  • the entering fluid passes through the first sound absorbing portion 40 and flows to the second flow passage 222.
  • the first sealing portion 50 is disposed in the accommodating space 23 and is located at the first sound absorbing portion 40 and the second damper portion 222.
  • a third overflow passage 51 is disposed, and the receiving space 23 communicates with the second overflow passage 222 through the third overflow passage 51; the driving portion drives the valve stem 30 to move up and down, wherein the valve A stop member is disposed between the rod 30 and the valve needle 20 to synchronize the movement of the valve needle 20 with the valve stem 30 when it is in contact with the stop member, and the valve stem 30 is in the closed position when the stop member is in the closed position. It can move up and down with respect to the valve needle 20.
  • the electronic expansion valve includes a first sealing portion 50.
  • the first sealing portion 50 is disposed in the accommodating space 23 and located between the first silencing portion 40 and the second overcurrent passage 222.
  • the first sealing portion A third overcurrent passage 51 is provided on the 50, and the accommodation space 23 communicates with the second overflow passage 222 through the third overflow passage 51.
  • the above structure enables the fluid entering the accommodating space 23 from the first over-current passage 211 to all enter the first silencing portion 40 for muffling, thereby improving the silencing effect and reducing the noise of the electronic expansion valve, which solves the prior art.
  • the problem of the noise of the electronic expansion valve is large.
  • valve stem 30 When the valve stem 30 is driven to move downward by the driving portion, the valve needle 20 comes into contact with the stopper member due to its own gravity and pressure differential force.
  • the stop member is constructed such that the valve needle 20 can move in synchronism with the valve stem 30 in this state until the valve needle 20 is in the closed position.
  • the valve needle 20 When the valve needle 20 is in the closed position, the valve needle 20 begins to disengage from the stop member, at which point the valve stem 30 can move downward relative to the valve needle 20.
  • the valve stem 30 abuts at the second valve port 221, the electronic expansion valve is in a small flow state.
  • the valve stem 30 When the valve stem 30 is driven upward by the drive portion, the valve stem 30 is movable relative to the valve needle 20 until the valve needle 20 comes into contact with the stop member.
  • the valve stem 30 When the valve needle 20 comes into contact with the stop member, the valve stem 30 begins to move the valve needle 20 upward together. When the motor is turned on to the fully open pulse, the electronic expansion valve as a whole is fully open. It should be noted that, as shown in FIG. 5, the valve stem 30 can be moved up and down within the stroke range L1 by the driving of the driving portion.
  • L1 is related to the opening degree of the noise generating section.
  • the first sealing portion 50 is made of a polymer material or a soft metal material.
  • the polymer material may be rubber or plastic
  • the soft metal material may be various metal materials having low hardness and plasticity.
  • the valve needle 20 includes a valve needle body 21 and a valve seat core 22 disposed in the valve needle body 21, the inner wall of the valve needle body 21 and the valve seat core 22
  • the surfaces collectively enclose a receiving space 23, and the second valve port 221 and the second overflow passage 222 are both disposed on the valve seat core 22.
  • valve seat core 22 is further provided with a guide groove 223, wherein the flow guiding groove 223 is disposed at a lower portion of the valve seat core 22 and communicates with the second overflow passage 222.
  • the first sealing portion 50 is a first sealing ring, and the first sealing ring is interposed between the valve seat core 22 and the first silencing portion 40.
  • a first relief hole 52 for escaping the valve stem 30 is disposed on a seal ring, and a circumferential side wall of the first seal portion 50 is fitted to an inner wall of the valve needle 20.
  • the outer diameter of the first sealing ring is adapted to the inner diameter of the valve needle 20, and the upper surface of the first sealing ring can be inlaid after being pressed. The inside of the first silencing portion 40 whose surface is uneven is entered.
  • the lower surface of the first seal ring abuts against the upper surface of the valve seat core 22.
  • the first sealing ring is made of a polymer material or a soft metal material
  • the polymer material may be rubber, plastic, etc.
  • the soft metal material may be various metals having low hardness and plasticity. material. Since the polymer material or the soft metal material has an advantage of low hardness and high strength, it is possible to effectively eliminate a gap which may exist between the first silencing portion 40 and the valve seat core 22. Better improve the noise reduction and reduce the noise generated by the electronic expansion valve.
  • the second over-flow channel 222 is a first flow-through hole
  • the first flow-through hole is a plurality
  • the plurality of first flow-through holes are along the second valve port 221 .
  • Circumferential arrangement. The above structure can increase the flow rate of the fluid when the electronic expansion valve is in a small flow state, and can design the number and diameter of the first overflow holes according to actual conditions.
  • the third over-current channel 51 is a second over-current hole
  • the second over-current hole is a plurality
  • the plurality of second over-current holes and the plurality of first through holes The flow holes are arranged one by one.
  • the above structure can increase the flow rate of the fluid when the electronic expansion valve is in a small flow state, and the number of the second flow holes can be designed according to actual conditions.
  • the second through hole is an arc hole. Since the arcuate hole is long, the above structure makes it easier for the worker to align the first through hole during installation, thereby facilitating worker installation and improving production efficiency.
  • the first silencing portion 40 includes a first silencing structure 41 and a second silencing structure 42.
  • the first silencing structure 41 is located above the second silencing structure 42 and is first silenced.
  • the structure 41 blocks the first overcurrent channel 211, and the second silencing structure 42 blocks the third overcurrent channel 51.
  • the above structure improves the utilization of the first silencing portion 40 and further reduces the noise of the electronic expansion valve.
  • the electronic expansion valve further includes a second sealing portion 60, and the second sealing portion 60 is disposed in the first silencing structure 41.
  • the second silencing structure 41 and the second silencing structure 42 are separated from the second silencing structure 42.
  • the other portion of the fluid is blocked by the second sealing portion 60 so that it is repeatedly silenced in the first silencing structure 41 until it enters the accommodating space 23.
  • the fluid flowing into the accommodating space 23 flows into the second silencing structure 42
  • a portion of the fluid flows directly from the second overcurrent passage 222 through the third overflow passage 51.
  • Another portion of the fluid will be blocked by the first sealing portion 50 and flow into the first silencing portion 40 in a direction opposite to the previous flow direction for secondary muffling.
  • This portion of the fluid after the muffling flows into the third overcurrent passage 51 and eventually flows out of the second overflow passage 222.
  • the fluid When the fluid flows in from the second overflow passage 222, the fluid will directly enter the second sound absorbing structure 42 through the third overflow passage 51 for muffling, and a part of the silenced fluid directly enters the fluid accommodating space 23.
  • the fluid flowing into the accommodating space 23 continues to flow toward the first silencing structure 41.
  • the other portion of the fluid is blocked by the second sealing portion 60 so that it is repeatedly silenced in the second silencing structure 42 until it flows into the accommodating space 23.
  • the fluid that has flowed into the accommodating space 23 will all flow into the first silencing portion 40 to be muffled twice.
  • the above structure has the following two advantages: the arrangement of the first sealing portion 50 and the second sealing portion 60 enables the first silencing portion 40 to be reused, improving utilization, and improving the noise cancellation effect.
  • the arrangement of the first sealing portion 50 and the second sealing portion 60 is such that the effective distance through which the fluid is silenced is longer, effectively preventing fluid from flowing directly from the gap between the first silencing structure 41 and the second silencing structure 42.
  • the annular area of the accommodating space 23 is much larger than the area of the first over-current channel 211, so that the fluid can be silenced again after flowing into the accommodating space 23, which significantly improves the noise-cancellation effect.
  • the above process structure is relatively simple and the processability is good.
  • the second sealing portion 60 is a second sealing ring, and the second sealing ring has a second escape hole for avoiding the valve stem 30.
  • the circumferential side wall of the second seal portion 60 is in contact with the inner wall of the valve needle 20.
  • the second sealing portion 60 is made of a polymer material or a soft metal material.
  • the polymer material may be rubber or plastic, and the soft metal material may be various metal materials having low hardness and plasticity.
  • the outer diameter of the second seal ring is adapted to the inner diameter of the valve needle 20, and the upper surface of the second seal ring can be fitted into the first sound-damping structure 41 whose surface is uneven after being pressed.
  • the lower surface of the second seal ring may be fitted into the second sound absorbing structure 42 whose surface is uneven after being pressed.
  • the above structure is such that there is no gap between the first silencing structure 41 and the second silencing structure 42, so that the effective muffling distance through which the fluid entering the first silencing portion 40 passes is long, and the utilization ratio of the first silencing portion 40 is improved and improved.
  • the muffling effect of the electronic expansion valve is such that there is no gap between the first silencing structure 41 and the second silencing structure 42, so that the effective muffling distance through which the fluid entering the first silencing portion 40 passes is long, and the utilization ratio of the first silencing portion 40 is improved and improved.
  • the electronic expansion valve further includes a second silencing portion 70, and the second silencing portion 70 is disposed below the second valve port 221.
  • the fluid flows from the first overflow passage 211 to the second overflow passage 222, it is first silenced by the first silencing portion 40, and then second silenced by the second silencing portion 70.
  • the fluid flows from the second overflow passage 222 to the first overflow passage 211, it is first silenced by the second silencing portion 70, and then second silenced by the first silencing portion 40. Therefore, the above structure enables the fluid to be silenced twice, thereby significantly improving the noise reduction effect and reducing the noise of the electronic expansion valve.
  • the first silencing structure 41 has a cylindrical shape, and a third escape hole 411 for escaping the valve stem 30 is disposed in the middle of the first silencing structure 41, and the second silencing structure 42 is annular.
  • a fourth escape hole 421 for escaping the valve stem 30 is disposed at a middle portion of the second silencing structure 42.
  • the first silencing structure 41 and the second silencing structure 42 are both mesh-shaped silencing members.
  • the second silencing structure 42 is supported by a fine mesh plate-like material that can be slightly compressed, and second.
  • the muffling structure 42 can be pressed to insert the non-flat portion into the third overcurrent passage 51.
  • the electronic expansion valve of the second embodiment differs from the first embodiment in the specific structure of the first silencing portion 40.
  • the first silencing structure 41 and the second silencing structure 42 are both mesh-shaped silencing members, and the first silencing structure 41 and the second silencing structure 42 are an integral structure, and the mesh of the first silencing structure 41
  • the size of the gap is different from the size of the mesh gap of the second silencing structure 42.
  • the above structure makes the silencing effect better. It should be noted that the above structure may be set according to the needs of the actual silencing spoiler, for example, the cell gap of the first silencing structure 41 is larger than the cell gap of the second silencing structure 42.
  • valve stem 30 When the valve needle 20 is in the closed position, the valve stem 30 abuts at the second valve port 221, and when fluid flows in from the first overflow passage 211:
  • the fluid flowing in from the first overflow passage 211 is sealed and isolated by the first silencing structure 41 and the second silencing structure 42. Therefore, the first silencing structure 41 first enters the accommodating space 23, and then passes through the second silencing structure 42 to enter the first The three overcurrent passages 51 finally flow through the second second sound absorbing portion 70 through the second overflow passage 222 to the first valve port 11.
  • valve stem 30 When the valve needle 20 is in the closed position, the valve stem 30 begins to move away from the second valve port 221, and when fluid flows from the first flow passage 211:
  • the fluid flowing in from the first overflow passage 211 is sealed and isolated by the first sound absorbing structure 41 and the second sound absorbing structure 42, so that it is first entered into the accommodating space 23 through the first sound absorbing structure 41.
  • a portion of the fluid entering the accommodating space 23 enters the third overcurrent passage 51 through the second silencing structure 42 and finally flows into the first valve port 11 through the second second damper portion 70 through the second overcurrent passage 222.
  • the other portion flows out from the second valve port 221 through the opening gap between the valve stem 30 and the valve seat core 22, and then flows into the second muffler portion 70 to be muffled, and finally flows into the first valve port 11.
  • valve stem 30 When the valve needle 20 is in the closed position, the valve stem 30 abuts at the second valve port 221, and when fluid flows from the second flow passage 222:
  • the fluid flowing in from the second overflow passage 222 sequentially flows into the flow guiding groove 223, the second overflow passage 222, and the third overflow passage 51 of the valve seat core 22 through the second sound absorbing portion 70, and enters the second sound absorbing structure 42. Since the first silencing structure 41 and the second silencing structure 42 are sealed and isolated, the fluid enters the accommodating space 23 and passes through the first silencing structure 41 again, and finally flows out of the first overcurrent passage 211.
  • valve stem 30 When the valve needle 20 is in the closed position, the valve stem 30 begins to move away from the second valve port 221, and when fluid flows from the second flow passage 222:
  • the fluid flowing in from the second overflow passage 222 enters the second silencing portion 70 for silencing, and a part of the silenced fluid flows into the guide groove 223, the second over-current passage 222, and the second silencing structure 42 at the bottom of the valve seat core 22 in order.
  • another portion of the fluid enters the accommodating space 23 through the opening gap between the valve stem 30 and the valve seat core 22. Due to the first silencer knot
  • the structure 41 and the second silencing structure 42 are sealed and sealed, and the fluid enters the accommodating space 23 and passes through the first silencing structure 41 again, and finally flows out of the first overcurrent passage 211.
  • the present application also provides a refrigeration system, an embodiment of the refrigeration system (not shown) according to the present application includes: an electronic expansion valve, which is the above-described electronic expansion valve. Since the above-described electronic expansion valve has an advantage of low noise, the refrigeration system having the same has the above advantages.

Abstract

一种电子膨胀阀及具有其的制冷系统被公开。电子膨胀阀包括:阀体(10),具有第一阀口(11);阀针(20),具有关闭位置以及开启位置,阀针(20)的底部具有第二阀口(221),阀针(20)具有容纳空间(23)以及第一过流通道(211)和第二过流通道(222),第一过流通道(211)与外界连通,第二过流通道(222)与第二阀口(221)连通;阀杆(30),至少部分穿设在容纳空间(23)内;第一消音部(40)设置在容纳空间(23)内;第一密封部(50),设置在容纳空间(23)内并位于第一消音部(40)与第二过流通道(222)之间,第一密封部(50)上设置有第三过流通道(51),容纳空间(23)与第二过流通道(222)通过第三过流通道(51)连通;驱动部,驱动阀杆(30)上下移动。该电子膨胀阀能够有效地解决现有技术中的电子膨胀阀的噪音大的问题。

Description

电子膨胀阀及具有其的制冷系统 技术领域
本发明涉及制冷领域,具体而言,涉及一种电子膨胀阀及具有其的制冷系统。
背景技术
如图1所示,在现有技术中,变频空调用减速式电子膨胀阀主要由两部分组成,一部分为阀体部分用于流量调节,另一部分为用于驱动的线圈部分。其中线圈部分包括:永磁式步进电机1、具有三级减速的齿轮减速器2、具有将电机旋转运动转化成丝杆3垂直运动的螺纹副结构5,阀体包括阀座10’,以及控制阀针8升降的波纹管7等核心部件构成。下面介绍一下上述电子膨胀阀的工作原理:首先,空调系统的电子控制器控制电子膨胀阀的步进电机1的输出轴旋转,电机1与齿轮减速器2配合带动齿轮减速器2的输出轴旋转,齿轮减速器2的输出轴与丝杆配合,带动丝杆旋转,然后丝杆与螺纹副结构5配合,以使丝杆能够上下移动。丝杆的顶端焊接有钢球11’,钢球11’的下端设置有衬套6,衬套6的下端连接有阀针8。当丝杆被驱动部件驱动向下移动时,丝杆会顶住钢球11’,钢球11’顶住衬套6,衬套6顶住阀针8使得阀针8能够与丝杆同步向下运动直至阀针8位于关闭位置,即阀针8与阀体10’相抵接的位置。当阀针8处于关闭位置时,波纹管7处于不断拉伸状态。当施加反向脉冲时,丝杆3向上运动,阀针8在波纹管7的回复弹力和系统压力作用下不断向上运动,从而改变阀口9的开启程度,使得通流面积发生变化,达到控制流量调节过热度的目的。
但是上述的电子膨胀阀在实际工作时存在噪音问题。具体地,当阀体与阀口之间处于小开度的状态时,因阀口处开度较小,将会产生明显节流。冷媒流经阀口流速很大,导致了特定频率的涡旋形成,从而产生了的异常噪音,影响了最终用户的使用舒适度。
发明内容
本发明的主要目的在于提供一种电子膨胀阀及具有其的制冷系统,以解决现有技术中的电子膨胀阀的噪音大的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种电子膨胀阀,包括:阀体,具有第一阀口;阀针,具有与第一阀口抵接的关闭位置以及避让第一阀口的开启位置,阀针的底部具有与第一阀口连通的第二阀口,阀针具有容纳空间以及与容纳空间连通的第一过流通道和第二过流通道,第一过流通道位于阀针的侧壁上并与外界连通,第二过流通道位于第二阀口的周向外侧并与第二阀口连通;阀杆,至少部分穿设在容纳空间内,阀杆能够上下移动以调节第二阀口处的流量;第一消音部,设置在容纳空间内以使从第一过流通道进入的流体经过第一消音部后流到第二过流通道处;第一密封部,设置在容纳空间内并位于第一消音部与第二过流通道之间,第一密封部上设置有第三过流通道,容纳空间与第二过流通道通过第三过流通道连通;驱动部,驱动阀杆上下移动,其中,阀杆和阀针之间设置有止挡部件,以 使阀针与阀杆通过止挡部件接触时两者同步运动,并且止挡部件使阀针位于关闭位置时,阀杆能够相对于阀针上下运动。
进一步地,第一密封部由高分子材料或软性金属材料制成。
进一步地,阀针包括阀针本体以及设置在阀针本体内的阀座芯,阀针本体的内壁与阀座芯的上表面共同围成容纳空间,第二阀口与第二过流通道均设置在阀座芯上。
进一步地,第一密封部为第一密封环,第一密封环夹设在阀座芯与第一消音部之间,第一密封环上设置有用于避让阀杆的第一避让孔,第一密封部的周向侧壁与阀针的内壁贴合。
进一步地,第二过流通道为第一过流孔,第一过流孔为多个,多个第一过流孔沿第二阀口的周向布置。
进一步地,第三过流通道为第二过流孔,第二过流孔为多个,多个第二过流孔与多个第一过流孔一一对应设置。
进一步地,第二过流孔为弧形孔。
进一步地,第一消音部包括第一消音结构以及第二消音结构,第一消音结构位于第二消音结构的上方,第一消音结构封堵第一过流通道,第二消音结构封堵第三过流通道。
进一步地,电子膨胀阀还包括第二密封部,第二密封部设置在第一消音结构与第二消音结构之间以分隔第一消音结构与第二消音结构。
进一步地,第二密封部为第二密封环,第二密封环上具有避让阀杆的第二避让孔,第二密封部的周向侧壁与阀针的内壁贴合。
进一步地,第二密封部由高分子材料或软性金属材料制成。
进一步地,第一消音结构和第二消音结构均为网状消音件,第一消音结构和第二消音结构为一体结构,第一消音结构的网孔间隙的大小与第二消音结构的网孔间隙的大小不同。
进一步地,电子膨胀阀还包括第二消音部,第二消音部设置在第二阀口的下方。
根据本发明的另一方面,提供了一种制冷系统,包括:电子膨胀阀,电子膨胀阀为上述的电子膨胀阀。
应用本发明的技术方案,电子膨胀阀包括第一密封部,第一密封部设置在容纳空间内并位于第一消音部与第二过流通道之间,第一密封部上设置有第三过流通道,容纳空间与第二过流通道通过第三过流通道连通。当阀针位于关闭位置,阀杆抵接在第二阀口处时,电子膨胀阀处于小流量状态。当流体从第一过流通道进入容纳空间内时,一部分流体经过第一消音部进行消音后流入第三过流通道,并最终从第二过流通道内流出,另一部分未经第一消音部消音的流体将被第一密封部阻挡并向着与之前流动方向相反的方向流至第一消音部内进行消音。消音后的这部分流体流入第三过流通道,并最终从第二过流通道内流出。因此,上述结 构使得从第一过流通道进入容纳空间内的流体能够全部进入第一消音部进行消音,从而提高了消音效果,降低了电子膨胀阀的噪音,解决了现有技术中的电子膨胀阀的噪音大的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有技术中的电子膨胀阀的纵剖结构示意图;
图2示出了根据本发明的电子膨胀阀的实施例一的纵剖结构示意图;
图3示出了图2的电子膨胀阀的A处的放大结构示意图;
图4示出了图2的电子膨胀阀的阀杆与阀针配合的剖视结构示意图;
图5示出了图4的阀杆与阀针配合的主视结构示意图;
图6示出了图2的电子膨胀阀的第一消音部、第一密封部、第二密封部以及阀座芯的分解结构示意图;
图7示出了图2的电子膨胀阀的阀针的剖视结构示意图;以及
图8示出了根据本发明的电子膨胀阀的实施例二的阀杆与阀针配合的纵剖结构示意图。
其中,上述附图包括以下附图标记:
10、阀体;11、第一阀口;20、阀针;21、阀针本体;211、第一过流通道;22、阀座芯;221、第二阀口;222、第二过流通道;223、导流槽;23、容纳空间;30、阀杆;40、第一消音部;41、第一消音结构;411、第三避让孔;42、第二消音结构;421、第四避让孔;50、第一密封部;51、第三过流通道;52、第一避让孔;60、第二密封部;70、第二消音部。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图2至图5所示,实施例一的电子膨胀阀,包括:阀体10,具有第一阀口11;阀针20,具有与第一阀口11抵接的关闭位置以及避让第一阀口11的开启位置,阀针20的底部具有与第一阀口11连通的第二阀口221,阀针20具有容纳空间23以及与容纳空间23连通的第一过流通道211和第二过流通道222,第一过流通道211位于阀针20的侧壁上并与外界连通,第二过流通道222位于第二阀口221的周向外侧并与第二阀口221连通;阀杆30,至少部分穿设在容纳空间23内,阀杆30能够上下移动以调节第二阀口221处的流量;第一消音部40,设置在容纳空间23内以使从第一过流通道211进入的流体经过第一消音部40后流到第二过流通道222处;第一密封部50,设置在容纳空间23内并位于第一消音部40与第二过流通道222 之间,第一密封部50上设置有第三过流通道51,容纳空间23与第二过流通道222通过第三过流通道51连通;驱动部,驱动阀杆30上下移动,其中,阀杆30和阀针20之间设置有止挡部件,以使阀针20与阀杆30通过止挡部件接触时两者同步运动,并且止挡部件使阀针20位于关闭位置时,阀杆30能够相对于阀针20上下运动。
应用本实施例的技术方案,电子膨胀阀包括第一密封部50,第一密封部50设置在容纳空间23内并位于第一消音部40与第二过流通道222之间,第一密封部50上设置有第三过流通道51,容纳空间23与第二过流通道222通过第三过流通道51连通。当阀针20位于关闭位置,阀杆抵接在第二阀口221处时,电子膨胀阀处于小流量状态。当流体从第一过流通道211进入容纳空间23内时,一部分流体经过第一消音部40进行消音后流入第三过流通道51,并最终从第二过流通道222内流出,另一部分未经第一消音部40消音的流体将被第一密封部50阻挡并向着与之前流动方向相反的方向流至第一消音部40内进行消音。消音后的这部分流体流入第三过流通道51,并最终从第二过流通道222内流出。因此,上述结构使得从第一过流通道211进入容纳空间23内的流体能够全部进入第一消音部40进行消音,从而改善了消音效果,降低了电子膨胀阀的噪音,解决了现有技术中的电子膨胀阀的噪音大的问题。
下面简单介绍一下电子膨胀阀的工作原理:
当阀杆30被驱动部驱动向下移动时,阀针20由于其自身重力以及受到压差力的原因会与止挡部件相接触。上述止挡部件的结构使得阀针20能够与阀杆30在该状态下同步运动,直至阀针20位于关闭位置为止。当阀针20位于关闭位置时,阀针20开始与止挡部件相分离,此时阀杆30能够相对于阀针20向下运动。当阀杆30抵接在第二阀口221处时,电子膨胀阀处于小流量状态。当阀杆30被驱动部驱动向上移动时,阀杆30能够相对于阀针20相上运动,直至阀针20与止挡部件相接触。当阀针20与止挡部件接触时,阀杆30开始带动阀针20一同向上运动。当电机开至全开脉冲时,电子膨胀阀整体达到全开状态。需要说明的是,如图5所示,阀杆30能够在驱动部的驱动下在行程范围L1内上下移动。上述结构使得容易产生噪音的小流量调节段独立出来为一个单元,即L1与噪音产生段开度相关。
在实施例一中,第一密封部50由高分子材料或软性金属材料制成。上述高分子材料可以是橡胶、塑料等,上述软性金属材料可以是硬度较低、具有可塑性的各种金属材料。上述结构使得第一密封部50可在受压后镶嵌入表面不平整的第一消音部40内,使得第一消音部40与第一密封部50之间无缝隙。也就是说从第一过流通道211或从第二过流通道222进入的流体将会全部进入第一消音部40进行消音,从而改善了消音效果。
如图2至图6所示,在实施例一中,阀针20包括阀针本体21以及设置在阀针本体21内的阀座芯22,阀针本体21的内壁与阀座芯22的上表面共同围成容纳空间23,第二阀口221与第二过流通道222均设置在阀座芯22上。上述结构简单,易于制造和装配。
如图4所示,在实施例一中,阀座芯22上还设置有导流槽223,其中,导流槽223设置在阀座芯22的下部并与第二过流通道222连通。
如图4、图6和图7所示,在实施例一中,第一密封部50为第一密封环,第一密封环夹设在阀座芯22与第一消音部40之间,第一密封环上设置有用于避让阀杆30的第一避让孔52,第一密封部50的周向侧壁与阀针20的内壁贴合。上述结构简单、易于加工。且上述结构进一步封堵阀座芯22与第一消音部40之间的间隙,从而提高消音效果。
需要说明的是,由于第一消音部40的表面不平整,因此会有一部分未经消音的流体从不平整的缝隙(第一消音部40与阀针20的内壁之间的缝隙以及第一消音部40与阀座芯22的上表面之间的缝隙)中流至第一过流通道211或第二过流通道222流出,导致消音效果差。优选地,如图4、图5和图7所示,在实施例一中,第一密封环的外径与阀针20的内径适配,第一密封环的上表面可在受压后镶嵌入表面不平整的第一消音部40内。第一密封环的下表面与阀座芯22的上表面抵接。上述结构使得第一消音部40与阀座芯22之间无间隙,保证从第一过流通道211或从第二过流通道222进入的流体将会全部进入第一消音部40进行消音,从而改善了消音效果。
还需要说明的是,第一密封环由高分子材料或软性金属材料制成,上述高分子材料可以是橡胶、塑料等,上述软性金属材料可以是硬度较低、具有可塑性的各种金属材料。由于上述高分子材料或软性金属材料具备硬度低、且强度高的优点,因此能够有效地消除第一消音部40与阀座芯22之间可能存在的间隙。更好地提高消音效果,降低电子膨胀阀产生的噪音。
如图4至图7所示,在实施例一中,第二过流通道222为第一过流孔,第一过流孔为多个,多个第一过流孔沿第二阀口221的周向布置。上述结构能够增加电子膨胀阀处于小流量状态时的流体的流量,并可以根据实际的情况设计第一过流孔的个数以及直径。
如图4至图7所示,在实施例一中,第三过流通道51为第二过流孔,第二过流孔为多个,多个第二过流孔与多个第一过流孔一一对应设置。上述结构能够增加电子膨胀阀处于小流量状态时的流体的流量,并可以根据实际的情况设计第二过流孔的个数。
如图6所示,在实施例一中,第二过流孔为弧形孔。由于弧形孔较长,因此上述结构使得工人在安装时更容易对准第一过流孔,从而方便了工人安装,提高了生产效率。
如图2至图5所示,在实施例一中,第一消音部40包括第一消音结构41以及第二消音结构42,第一消音结构41位于第二消音结构42的上方,第一消音结构41封堵第一过流通道211,第二消音结构42封堵第三过流通道51。上述结构提升了第一消音部40的利用率,进一步降低电子膨胀阀的噪音。
为了进一步提升第一消音部40的消音效果,如图2至图7所示,在实施例一中,电子膨胀阀还包括第二密封部60,第二密封部60设置在第一消音结构41与第二消音结构42之间以分隔第一消音结构41与第二消音结构42。具体地,当阀针20位于关闭位置,阀杆30抵接在第二阀口221处时,电子膨胀阀处于小流量状态。当流体从第一过流通道211进入时,一部分流体经过第一消音结构41消音之后流入容纳空间23内。流入容纳空间23内的流体会继续向第二消音结构42流动。另一部分流体会被第二密封部60阻挡,使其在第一消音结构41内反复消音,直至进入容纳空间23内为止。当流入容纳空间23内的流体流入第二消音结构42内 进行消音后,一部分流体直接通过第三过流通道51从第二过流通道222内流出。另一部分流体将会被第一密封部50阻挡并向着与之前流动方向相反的方向流至第一消音部40内进行二次消音。消音后的这部分流体流入第三过流通道51,并最终从第二过流通道222内流出。
而当流体从第二过流通道222流入时,流体将会直接通过第三过流通道51进入第二消音结构42内进行消音,消音后的一部分流体直接进入流体容纳空间23内。流入容纳空间23内的流体会继续向第一消音结构41流动。另一部分流体会被第二密封部60阻挡,使其在第二消音结构42内反复消音,直至流入容纳空间23内为止。流入容纳空间23内的流体将全部流入第一消音部40内进行二次消音。
上述结构具有以下两个优点:第一密封部50、第二密封部60的设置使得第一消音部40能够被反复利用,提高了利用率,改善了消音效果。第一密封部50、第二密封部60的设置使得流体经过消音的有效距离更长,有效防止流体直接从第一消音结构41与第二消音结构42之间的间隙流出。
需要说明的是,在实施例一中,容纳空间23的环形面积远大于第一过流通道211的面积,因此流体流入容纳空间23内后能够再次被消音,明显提升了消音效果。而且上述工艺结构较为简单,工艺性较好。
如图6和图7所示,在实施例一中,第二密封部60为第二密封环,第二密封环上具有避让阀杆30的第二避让孔。第二密封部60的周向侧壁与阀针20的内壁贴合。上述结构简单、易于加工和装配。且上述结构进一步封堵第一消音结构41与第二消音结构42之间的间隙,从而进一步提高消音效果。
在实施例一中,第二密封部60由高分子材料或软性金属材料制成。上述高分子材料可以是橡胶、塑料等,上述软性金属材料可以是硬度较低、具有可塑性的各种金属材料。具体地,第二密封环的外径与阀针20的内径适配,第二密封环的上表面可在受压后镶嵌入表面不平整的第一消音结构41内。第二密封环的下表面可在受压后镶嵌入表面不平整的第二消音结构42内。上述结构使得第一消音结构41与第二消音结构42之间无间隙,从而使得进入第一消音部40内的流体经过的有效消音距离较长,提高了第一消音部40的利用率,改善了电子膨胀阀的消音效果。
如图2至图7所示,在实施例一中,电子膨胀阀还包括第二消音部70,第二消音部70设置在第二阀口221的下方。具体地,当流体从第一过流通道211向第二过流通道222流动时,将先经过第一消音部40进行一次消音,再经过第二消音部70进行二次消音。同样地,当流体从第二过流通道222向第一过流通道211流动时,将先经过第二消音部70进行一次消音,再经过第一消音部40进行二次消音。因此,上述结构使得流体能够进行两次消音,从而明显提升了消音效果,降低了电子膨胀阀的噪音。
如图6所示,在实施例一中,第一消音结构41呈筒状,第一消音结构41的中部设置有用于避让阀杆30的第三避让孔411,第二消音结构42呈环状,第二消音结构42的中部设置有用于避让阀杆30的第四避让孔421。
在实施例一中,第一消音结构41和第二消音结构42均为网状消音件,优选地,第二消音结构42是由可进行轻微压缩的细丝网板状等材质支撑,第二消音结构42可受压后将非平整部分镶入第三过流通道51内。
如图8所示,实施例二的电子膨胀阀与实施例一的区别在于第一消音部40的具体结构。具体地,在实施例二中,第一消音结构41和第二消音结构42均为网状消音件,第一消音结构41和第二消音结构42为一体结构,第一消音结构41的网孔间隙的大小与第二消音结构42的网孔间隙的大小不同。上述结构使得消音效果更佳。需要说明的是,上述结构可以根据实际消音扰流的需要进行设置,例如第一消音结构41的网孔间隙大于第二消音结构42的网孔间隙。
下面详细介绍一下,电子膨胀阀在处于不同的状态下流体的流动过程:
当阀针20位于关闭位置,阀杆30抵接在第二阀口221处,流体从第一过流通道211流入时:
从第一过流通道211流入的流体,由于第一消音结构41和第二消音结构42被密封隔离,因此需先通过第一消音结构41进入容纳空间23,再通过第二消音结构42进入第三过流通道51,最终通过第二过流通道222流经底部第二消音部70流至第一阀口11处。
当阀针20位于关闭位置,阀杆30开始远离第二阀口221处,流体从第一过流通道211流入时:
从第一过流通道211流入的流体,由于第一消音结构41和第二消音结构42被密封隔离,因此需先通过第一消音结构41进入容纳空间23。进入容纳空间23的流体一部分通过第二消音结构42进入第三过流通道51,最终通过第二过流通道222流经底部第二消音部70流入第一阀口11内。另一部分通过阀杆30与阀座芯22之间的开度间隙从第二阀口221流出,然后流入第二消音部70进行消音,最终流入第一阀口11内。
当阀针20位于关闭位置,阀杆30抵接在第二阀口221处,流体从第二过流通道222流入时:
从第二过流通道222流入的流体,依次通过第二消音部70流入阀座芯22上的导流槽223、第二过流通道222、第三过流通道51进入第二消音结构42,由于第一消音结构41和第二消音结构42被密封隔离,流体进入容纳空间23后会再次通过第一消音结构41,并最终从第一过流通道211流出。
当阀针20位于关闭位置,阀杆30开始远离第二阀口221处,流体从第二过流通道222流入时:
从第二过流通道222流入的流体进入第二消音部70进行消音,消音后的流体一部分依次流入阀座芯22底部的导流槽223、第二过流通道222、第二消音结构42进入容纳空间23内,另一部分流体通过阀杆30与阀座芯22之间的开度间隙进入容纳空间23内。由于第一消音结 构41和第二消音结构42被密封隔离,流体进入容纳空间23后再次通过第一消音结构41,并最终从第一过流通道211流出。
本申请还提供了一种制冷系统,根据本申请的制冷系统的实施例(图中未示出)包括:电子膨胀阀,电子膨胀阀为上述的电子膨胀阀。由于上述电子膨胀阀具有噪音小的优点,因此具有其的制冷系统也具有上述优点。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种电子膨胀阀,其特征在于,包括:
    阀体(10),具有第一阀口(11);
    阀针(20),具有与所述第一阀口(11)抵接的关闭位置以及避让所述第一阀口(11)的开启位置,所述阀针(20)的底部具有与所述第一阀口(11)连通的第二阀口(221),所述阀针(20)具有容纳空间(23)以及与所述容纳空间(23)连通的第一过流通道(211)和第二过流通道(222),所述第一过流通道(211)位于所述阀针(20)的侧壁上并与外界连通,所述第二过流通道(222)位于所述第二阀口(221)的周向外侧并与所述第二阀口(221)连通;
    阀杆(30),至少部分穿设在所述容纳空间(23)内,所述阀杆(30)能够上下移动以调节所述第二阀口(221)处的流量;
    第一消音部(40),设置在所述容纳空间(23)内以使从所述第一过流通道(211)进入的流体经过所述第一消音部(40)后流到所述第二过流通道(222)处;
    第一密封部(50),设置在所述容纳空间(23)内并位于所述第一消音部(40)与所述第二过流通道(222)之间,所述第一密封部(50)上设置有第三过流通道(51),所述容纳空间(23)与所述第二过流通道(222)通过所述第三过流通道(51)连通;
    驱动部,驱动所述阀杆(30)上下移动,
    其中,所述阀杆(30)和所述阀针(20)之间设置有止挡部件,以使所述阀针(20)与所述阀杆(30)通过所述止挡部件接触时两者同步运动,并且所述止挡部件使所述阀针(20)位于所述关闭位置时,所述阀杆(30)能够相对于所述阀针(20)上下运动。
  2. 根据权利要求1所述的电子膨胀阀,其特征在于,所述第一密封部(50)由高分子材料或软性金属材料制成。
  3. 根据权利要求1所述的电子膨胀阀,其特征在于,所述阀针(20)包括阀针本体(21)以及设置在所述阀针本体(21)内的阀座芯(22),所述阀针本体(21)的内壁与所述阀座芯(22)的上表面共同围成所述容纳空间(23),所述第二阀口(221)与所述第二过流通道(222)均设置在所述阀座芯(22)上。
  4. 根据权利要求3所述的电子膨胀阀,其特征在于,所述第一密封部(50)为第一密封环,所述第一密封环夹设在所述阀座芯(22)与所述第一消音部(40)之间,所述第一密封环上设置有用于避让所述阀杆(30)的第一避让孔(52),所述第一密封部(50)的周向侧壁与所述阀针(20)的内壁贴合。
  5. 根据权利要求1所述的电子膨胀阀,其特征在于,所述第二过流通道(222)为第一过流孔,所述第一过流孔为多个,多个所述第一过流孔沿所述第二阀口(221)的周向布置。
  6. 根据权利要求5所述的电子膨胀阀,其特征在于,所述第三过流通道(51)为第二过流孔,所述第二过流孔为多个,多个所述第二过流孔与多个所述第一过流孔一一对应设置。
  7. 根据权利要求6所述的电子膨胀阀,其特征在于,所述第二过流孔为弧形孔。
  8. 根据权利要求1所述的电子膨胀阀,其特征在于,所述第一消音部(40)包括第一消音结构(41)以及第二消音结构(42),所述第一消音结构(41)位于所述第二消音结构(42)的上方,所述第一消音结构(41)封堵所述第一过流通道(211),所述第二消音结构(42)封堵所述第三过流通道(51)。
  9. 根据权利要求8所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括第二密封部(60),所述第二密封部(60)设置在所述第一消音结构(41)与所述第二消音结构(42)之间以分隔所述第一消音结构(41)与所述第二消音结构(42)。
  10. 根据权利要求9所述的电子膨胀阀,其特征在于,所述第二密封部(60)为第二密封环,所述第二密封环上具有避让所述阀杆(30)的第二避让孔,所述第二密封部(60)的周向侧壁与所述阀针(20)的内壁贴合。
  11. 根据权利要求9所述的电子膨胀阀,其特征在于,所述第二密封部(60)由高分子材料或软性金属材料制成。
  12. 根据权利要求8所述的电子膨胀阀,其特征在于,所述第一消音结构(41)和所述第二消音结构(42)均为网状消音件,所述第一消音结构(41)和所述第二消音结构(42)为一体结构,所述第一消音结构(41)的网孔间隙的大小与所述第二消音结构(42)的网孔间隙的大小不同。
  13. 根据权利要求1所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括第二消音部(70),所述第二消音部(70)设置在所述第二阀口(221)的下方。
  14. 一种制冷系统,包括:电子膨胀阀,其特征在于,所述电子膨胀阀为权利要求1至13中任一项所述的电子膨胀阀。
PCT/CN2017/113893 2016-11-30 2017-11-30 电子膨胀阀及具有其的制冷系统 WO2018099422A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17875890.0A EP3550193B1 (en) 2016-11-30 2017-11-30 Electronic expansion valve and refrigeration system having same
JP2019528843A JP6757472B2 (ja) 2016-11-30 2017-11-30 電子膨張弁及びそれを備えた冷凍システム
KR1020197017856A KR102191738B1 (ko) 2016-11-30 2017-11-30 전자식 팽창 밸브 및 이를 구비하는 냉장 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611085736.9A CN108119698B (zh) 2016-11-30 2016-11-30 电子膨胀阀及具有其的制冷系统
CN201611085736.9 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018099422A1 true WO2018099422A1 (zh) 2018-06-07

Family

ID=62227426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113893 WO2018099422A1 (zh) 2016-11-30 2017-11-30 电子膨胀阀及具有其的制冷系统

Country Status (5)

Country Link
EP (1) EP3550193B1 (zh)
JP (1) JP6757472B2 (zh)
KR (1) KR102191738B1 (zh)
CN (1) CN108119698B (zh)
WO (1) WO2018099422A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654233A (zh) * 2019-01-25 2019-04-19 浙江科博电器有限公司 具有防水垢和消音功能的废水阀
CN111379892A (zh) * 2018-12-27 2020-07-07 株式会社鹭宫制作所 阀装置以及冷冻循环系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447040B1 (ko) * 2019-10-02 2022-09-26 동일기계공업 주식회사 전자식 팽창 및 방향전환 일체화 밸브
ES2967628T3 (es) * 2019-12-20 2024-05-03 Danfoss As Válvula de expansión
CN114135714B (zh) * 2020-09-03 2024-04-02 浙江盾安人工环境股份有限公司 节流阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135829A (ja) * 1994-11-11 1996-05-31 Pacific Ind Co Ltd 電動膨張弁の構造
CN102644785A (zh) * 2011-02-17 2012-08-22 浙江三花股份有限公司 一种电子膨胀阀
CN102901279A (zh) * 2011-07-27 2013-01-30 浙江三花股份有限公司 一种电子膨胀阀
WO2013170542A1 (zh) * 2012-05-18 2013-11-21 浙江三花股份有限公司 一种电子膨胀阀
CN103511636A (zh) * 2012-06-27 2014-01-15 浙江三花股份有限公司 一种电子膨胀阀
CN105626876A (zh) * 2014-10-28 2016-06-01 浙江盾安人工环境股份有限公司 电子膨胀阀

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071451B2 (ja) * 2001-04-12 2008-04-02 株式会社鷺宮製作所 絞り装置および空気調和機
JP4103363B2 (ja) * 2001-09-18 2008-06-18 三菱電機株式会社 流量制御装置、冷凍サイクル装置および空気調和装置
JP4077340B2 (ja) * 2003-02-06 2008-04-16 株式会社鷺宮製作所 絞り弁装置および空気調和機
JP2005331153A (ja) * 2004-05-19 2005-12-02 Saginomiya Seisakusho Inc 絞り弁装置および空気調和機
JP2012117584A (ja) * 2010-11-30 2012-06-21 Saginomiya Seisakusho Inc 電動流量制御弁
CN201934686U (zh) * 2010-12-07 2011-08-17 居琴 电子膨胀阀的阀座连接结构
CN202971946U (zh) * 2012-12-07 2013-06-05 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
JP6142181B2 (ja) * 2013-03-12 2017-06-07 株式会社テージーケー 膨張弁および防振ばね
CN105650337A (zh) * 2014-11-13 2016-06-08 浙江三花股份有限公司 电子膨胀阀
CN205534555U (zh) * 2016-01-26 2016-08-31 浙江三花股份有限公司 一种电子膨胀阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135829A (ja) * 1994-11-11 1996-05-31 Pacific Ind Co Ltd 電動膨張弁の構造
CN102644785A (zh) * 2011-02-17 2012-08-22 浙江三花股份有限公司 一种电子膨胀阀
CN102901279A (zh) * 2011-07-27 2013-01-30 浙江三花股份有限公司 一种电子膨胀阀
WO2013170542A1 (zh) * 2012-05-18 2013-11-21 浙江三花股份有限公司 一种电子膨胀阀
CN103511636A (zh) * 2012-06-27 2014-01-15 浙江三花股份有限公司 一种电子膨胀阀
CN105626876A (zh) * 2014-10-28 2016-06-01 浙江盾安人工环境股份有限公司 电子膨胀阀

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111379892A (zh) * 2018-12-27 2020-07-07 株式会社鹭宫制作所 阀装置以及冷冻循环系统
CN109654233A (zh) * 2019-01-25 2019-04-19 浙江科博电器有限公司 具有防水垢和消音功能的废水阀
CN109654233B (zh) * 2019-01-25 2024-01-16 浙江科博电器有限公司 具有防水垢和消音功能的废水阀

Also Published As

Publication number Publication date
JP2020513512A (ja) 2020-05-14
CN108119698A (zh) 2018-06-05
JP6757472B2 (ja) 2020-09-16
KR102191738B1 (ko) 2020-12-17
EP3550193B1 (en) 2021-08-25
EP3550193A1 (en) 2019-10-09
EP3550193A4 (en) 2020-08-05
CN108119698B (zh) 2021-11-02
KR20190087527A (ko) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2018099422A1 (zh) 电子膨胀阀及具有其的制冷系统
JP7018519B2 (ja) 電子膨張弁
WO2017097232A1 (zh) 二段式电子膨胀阀
CN107356025B (zh) 电子膨胀阀
JP5696093B2 (ja) 電動弁
WO2017101878A1 (zh) 二段式电子膨胀阀
CN104214263A (zh) 衰减力调整式缓冲器
CN104913148A (zh) 一种多级降噪器以及具有该降噪器的阀门
CN107044543B (zh) 二段式电子膨胀阀
JP6889805B2 (ja) 電子膨張弁及びそれを具備する冷凍システム
JP2020180699A (ja) 弁装置および冷凍サイクルシステム
KR101290283B1 (ko) 응답속도의 향상에 따른 개폐 충격 감소 장치를 갖는 컨트롤 밸브
JP6850364B2 (ja) 電子膨張弁及それを具備する冷凍システム
KR100587811B1 (ko) 머플러의 배압저감장치
CN102454652B (zh) 可调式液压先导开启机构
CN107304852B (zh) 电子膨胀阀及具有其的制冷设备
CN211203004U (zh) 一种单向节流阀
CN207762259U (zh) 一种节流截止阀
CN203585346U (zh) 带消声装置的调压器
JP2022502620A (ja) 電子膨張弁
CN107289172B (zh) 电磁阀
CN107965584B (zh) 电子膨胀阀及具有其的制冷系统
CN103574066B (zh) 带消声装置的调压器
RU2514817C1 (ru) Глушитель шума
CN105508345B (zh) 一种具有消除噪音作用的液压执行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197017856

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017875890

Country of ref document: EP

Effective date: 20190701