WO2017097232A1 - 二段式电子膨胀阀 - Google Patents

二段式电子膨胀阀 Download PDF

Info

Publication number
WO2017097232A1
WO2017097232A1 PCT/CN2016/109069 CN2016109069W WO2017097232A1 WO 2017097232 A1 WO2017097232 A1 WO 2017097232A1 CN 2016109069 W CN2016109069 W CN 2016109069W WO 2017097232 A1 WO2017097232 A1 WO 2017097232A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
electronic expansion
cavity
expansion valve
stage electronic
Prior art date
Application number
PCT/CN2016/109069
Other languages
English (en)
French (fr)
Inventor
舒小辉
王宇栋
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to JP2018530573A priority Critical patent/JP6778752B2/ja
Priority to KR1020187018051A priority patent/KR102171202B1/ko
Publication of WO2017097232A1 publication Critical patent/WO2017097232A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of refrigeration equipment, and in particular to an electronic expansion valve for an inverter air conditioner.
  • the electronic expansion valve is mainly used in the inverter air conditioner system. It drives the motor through high pulse frequency current to directly drive the reducer, and through the transmission of the thread pair and the valve stem, the valve needle is raised or lowered, and the valve opening degree is changed, thereby automatically Regulate the refrigerant flow so that the refrigerant circuit system remains optimal at all times.
  • FIG. 1 is a schematic structural view of an electronic expansion valve in the prior art.
  • the electronic expansion valve is mainly composed of a valve body portion for flow regulation and a coil portion for driving; wherein the coil portion includes: a motor 1', a speed reducer 2', and a rotary motion of the motor 1'
  • the threaded substructure 5', the nut 4', the motor casing 6', and the motor casing 6', which are converted into the vertical movement of the screw 3', are riveted to the outside of the gearbox 9' outside the speed reducer 2';
  • the valve body portion includes the valve seat 14 ', the valve stem 15', and the core member such as the bellows 11' that controls the lifting and lowering of the valve needle 12'.
  • the action principle is as follows: the rotor of the motor 1' rotates, and the speed reducer 2' rotates. Through the transmission of the thread pair 5', the screw rod 3' moves downward to withstand the force transmitting member bushing 16' and the valve stem 15'. The valve needle 12' is caused to move downward, and at this time, the bellows 11' is in a continuously stretched state. When a reverse pulse is applied, the screw rod 3' moves upward, and the valve needle 12' continuously moves upward under the return elastic force of the bellows 11' and the system pressure, thereby changing the opening degree of the valve port 13', so that the flow passage area occurs. Change, to achieve the purpose of controlling flow and regulating system overheating.
  • the technical problem to be solved by the present invention is to provide an electronic expansion valve for an inverter air conditioner, which can reduce abnormal noise in a small flow adjustment range and improve adjustment precision in small flow adjustment. For this reason, the present invention provides The following technical solutions:
  • the two-stage electronic expansion valve comprises a motor and a reducer connected to the output end of the motor, and the valve stem of the two-stage electronic expansion valve is provided with a bellows, and the bellows is stretched or contracted with the reciprocating motion of the valve stem;
  • the utility model further comprises a valve core, wherein the valve core is opened or closed by the valve rod, and a small flow regulating mechanism is further arranged inside the valve core, and the small flow regulating mechanism is arranged from the lower end portion of the valve stem and disposed inside the valve core
  • the second valve port is composed.
  • the valve core has a cylindrical shape, and two ends of the valve body are respectively provided with a first cavity and a second cavity, and the second valve port is opened between the first cavity and the second cavity.
  • the first cavity is further provided with a blocking portion, and the end of the valve stem extends through the blocking portion into the first cavity, and the movable portion of the valve stem and the blocking portion is connected by the latching member.
  • the latching member is a washer, and the valve stem is provided with an annular groove, and the washer is clamped on the annular groove.
  • the blocking portion and the valve core are fixed by welding or crimping.
  • the valve body includes a large diameter section and a small diameter section, and a circulation portion is provided on the outer peripheral wall of the large diameter section.
  • the spool is provided with a flow hole that communicates the first cavity with the outer space of the spool.
  • the first cavity is provided with a first sound absorbing member, and the fluid flowing in from the flow hole is silenced by the first sound absorbing member and then flows out from the second valve port.
  • a second sound absorbing member is disposed in the second cavity.
  • the bottom of the spool is fixed in the second cavity by crimping deformation.
  • the bottom of the valve core is provided with a pressing member, and the pressing member is tightly engaged with the valve core to fix the second sound absorbing member in the second cavity.
  • the second silencing member includes an upper muffling member and a lower muffling member.
  • a normally-on device is also disposed between the first cavity and the second cavity to maintain a constant flow rate between the first cavity and the second cavity.
  • the gasket has an opening portion and an abutting portion that abuts against a peripheral wall of the annular groove.
  • the two-stage electronic expansion valve provided by the invention has a contact state between the lower end portion of the valve core and the first valve port in the small flow regulating section, and the fluid passes through the mesh-shaped sound absorbing member, and the internal vortex and the air bubble are greatly increased. Elimination, disturbance, and solve the abnormal noise problem of the existing electronic expansion valve in the initial small flow adjustment. At the same time, since the small flow adjustment is mainly adjusted by the second valve port disposed inside the spool, the flow adjustment range is wider and the accuracy is higher under the same pulse number condition.
  • FIG. 1 is a schematic structural view of an electronic expansion valve in the prior art
  • FIG. 2 is a schematic structural view of a first embodiment of a two-stage electronic expansion valve according to the present invention
  • Figure 3 is a cross-sectional view showing a partial structure of a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a gasket according to a first embodiment of the present invention.
  • Figure 5 is a partial cross-sectional view showing a second embodiment of a two-stage electronic expansion valve according to the present invention.
  • FIG. 6 is a partial cross-sectional view showing a third embodiment of a two-stage electronic expansion valve according to the present invention.
  • Figure 7 is a partial cross-sectional view showing a fourth embodiment of a two-stage electronic expansion valve according to the present invention.
  • FIG. 2 is schematic structural views of a first embodiment of a two-stage electronic expansion valve according to the present invention
  • FIG. 3 is a schematic structural view of a valve core according to a first embodiment of the present invention.
  • the two-stage electronic expansion valve provided by the present invention is mainly composed of a valve body portion for flow regulation and a coil portion for driving.
  • the coil part comprises: a motor 1, a speed reducer 2 connected to the output end of the motor 1, and a lower end of the deceleration 2 is connected with the screw rod 3 through the thread pair structure 5, and converts the rotary motion of the motor 1 into the reciprocating thread pair structure of the screw rod 3. 5, a nut 4 is connected between the screw rod 3 and the gear box 9, and the gear unit 9 is mounted on the outer casing of the speed reducer 2, and the motor casing 6 of the motor 1 is riveted to the outside of the gear box 9.
  • the valve body portion includes a valve seat 14 and a valve stem 15, and the valve stem 15 is jacketed with a bellows 11 which is stretched or contracted with the reciprocating motion of the valve stem 15, since the spool 12 and the valve stem 15 are movably coupled to each other. Together, the lifting and lowering of the valve stem 12 is effected by the lifting and lowering of the valve stem, thereby opening or closing the first valve opening 13 provided on the valve seat 14.
  • Coupled together means that the valve core and the valve stem can move relative to each other during operation, but cannot be separated from each other.
  • the valve body 12 has a substantially cylindrical shape and has a large diameter section 121 and a small diameter section 122.
  • the first cavity 123 is opened at one end of the large diameter section 121, and is opened at one end of the small diameter section 122.
  • the second cavity 124 defines a second valve port 125 between the first cavity 123 and the second cavity 124.
  • the outer peripheral wall of the large diameter section 121 is provided with a flow portion 1211.
  • the flow portion 1211 is a plurality of planes machined on the outer peripheral wall of the large diameter section 121 for fluid circulation.
  • those skilled in the art can make various designs for the shape of the circulation portion 1211, such as grooving, punching, etc., based on the concept of the present invention, and only need to be able to realize the upper and lower ends of the large diameter section 121.
  • the fluid can be passed through.
  • the lower end portion 152 of the valve stem 15 extends into the first cavity 123 and cooperates with the second valve port 125 to open and close the second valve port 125 by contacting or moving away, thereby regulating the flow. the amount.
  • a blocking portion 126 is further disposed in the first cavity 123, and the blocking portion 126 is fixedly connected to the inner wall of the large diameter section 121, and the two may be welded, crimped or otherwise The way to fix it.
  • the valve stem 15 is provided with an annular groove 151 at a position close to the end, and a latching member is provided in the annular groove 151, and the latching member can maintain a relatively movable connection state between the valve stem 15 and the blocking portion 126.
  • the latching member is specifically a washer 127. Specifically, the washer 127 is clamped in the annular groove 151 so that the valve stem 15 cannot be disengaged from the restriction of the blocking portion 126.
  • the valve stem 15 can be inserted into the blocking portion 126, the gasket 127 is placed in the annular groove 151, and then the blocking portion 126 is fixed on the large diameter section 121 of the valve core, and the blocking portion 126 and the washer 127 are common. The extreme position in which the valve stem 15 moves upward is limited.
  • FIG. 4 is a schematic view showing the structure of a gasket according to a first embodiment of the present invention
  • the gasket 127 has a substantially "C" shape and has an opening portion 1272 for insertion into the annular groove 151 of the valve stem.
  • the inside of the washer 127 is provided with three abutting portions 1271 which are closely attached to the peripheral wall of the annular groove 151 after assembly, and a vacant portion is further disposed between the adjacent abutting portions 1271.
  • FIG. 4 is a specific implementation manner, and those skilled in the art can make some changes under the technical revelation, such as canceling the vacant portion and connecting the abutting portion 1271 as one body, and the invention object can also be achieved.
  • the clamping or fixing of the annular groove 151 is not limited to the form of a gasket.
  • a through hole may be provided in the annular groove 151, and then a positioning pin may be used to also enable the valve rod 15 and the blocking portion 126. Limit connections are formed; these positioning methods obviously also fall within the scope of protection of the present invention.
  • a flow hole 1221 is defined in the outer peripheral wall of the small diameter section 122 of the valve body 12, and the number of the flow holes 1221 may be one or more, and the flow hole 1221 communicates the first cavity 123 with the outer space of the valve body 12, Fluid can flow from the flow hole 1221 into the first cavity 123.
  • a first silencing member 128 is further disposed in the first cavity 123 between the circulation hole 1221 and the valve port 125, so that the fluid flowing in from the circulation hole 1221 flows through the first muffling member 128 to be silenced and then from the second valve port. 125 flows out.
  • the first silencing member 128 can be designed as an annular body to fill the first cavity 123 as shown in FIG.
  • the lower end portion of the small diameter portion 122 is provided with a second cavity 124, and the second cavity 124 is provided with a second silencing member 129.
  • the lower end portion of the small diameter portion 122 can be deformed by crimping, thereby The second silencing member 129 is fixed in the second cavity 124.
  • the first silencing member 128 and the second silencing member 129 may be formed by a porous screen or wire winding, powder sintering, or the like.
  • the material or shape of the silencing member is not limited.
  • a normally-on device is disposed between the first cavity 123 and the second cavity 124.
  • the normally-on device is a normally-on hole 130, such that the second segment A portion of the flow between the two nozzles of the electronic expansion valve is always in circulation.
  • the first valve port 13 has a certain flow rate when it is closed, it is not limited to the opening of the above-mentioned normal through hole 130, and various technical means can be replaced on the basis of the above, for example, a slant hole is processed on the small diameter section 122.
  • the second cavity 124 is directly connected to the outside of the valve body 12, or a plurality of flow grooves are formed on the inner peripheral wall of the first valve port 13 by means of slotting, and the valve body can still have a certain degree when it is closed. flow. It should be understood by those skilled in the art that the use of several alternatives based on the inventive concept should also fall within the scope of the present invention.
  • a small flow adjustment mechanism is formed between the lower end portion 152 of the valve stem 15 and the second valve port 125 in the spool 12.
  • valve stem 15 When the valve stem 15 is displaced from the top to the bottom, the bellows 11 is in a stretched state, the spool 12 is subjected to a differential pressure force, and the lower end surface of the blocking portion 126 is always in contact with the upper end surface of the washer 127, when the spool 12 is oriented Moving down to the extreme position, after contact with the first valve port 13, the valve stem 15 continues to move downward, at which time the washer 127 moves down with the valve stem 15 and disengages from the blocking portion 126 until the valve stem 15 The lower end portion 152 is in contact with the second valve port 125, and the two-stage electronic expansion valve is in a closed state.
  • the motor 1 When the valve is opened, the motor 1 is energized, the bellows 11 is contracted, and the valve stem 15 is displaced from the bottom to the top. Since the spool 12 is subjected to the differential pressure, the lower end surface of the spool 12 remains in contact with the first valve port 13, the valve The rod 15 continues to move upward until the upper end surface of the washer 127 comes into contact with the lower end surface of the blocking portion 126; the valve stem 15 continues to move upward, causing the blocking portion 126 to move up together, at which point the valve body as a whole begins to move upward. When the motor 1 is turned on to the full-open pulse, the two-stage electronic expansion valve as a whole is fully opened.
  • the opening degree control is carried out, that is, the small flow regulating section, because the valve port is reduced, the flow rate is adjusted wider under the same pulse number condition.
  • the valve stem 15 drives the valve core 12 to move upward as a whole. At this time, the flow rate is mainly controlled by the opening degree between the valve body 12 and the first valve port 13, that is, the large flow regulating section.
  • the lower end portion of the valve body 12 and the first valve port 13 are always in contact with each other.
  • the fluid flows in from the flow hole 1221 and is silenced by the first silencing member 128.
  • the second valve port 125 is then silenced again by the second muffling member 129, the fluid is fully dissipated by the multi-layer mesh when flowing through the muffling member, thereby eliminating the whirl of a whistling sound, thereby reducing the vortex. noise.
  • the two-stage electronic expansion valve provided by the present invention passes through the mesh-shaped sound absorbing member, and the internal vortex and the bubble are largely eliminated and disturbed, thereby solving the problem that the existing electronic expansion valve is adjusted at the initial small flow rate. Abnormal noise problem.
  • the small flow rate adjustment is mainly performed by the second valve port 125 provided inside the valve body 12, the flow rate adjustment range is wider and the precision is higher under the same pulse number condition.
  • FIG. 5 is a schematic structural view of a second embodiment of a two-stage electronic expansion valve according to the present invention.
  • the same reference numerals are used for components having the same structure and function.
  • the two-stage electronic expansion valve comprises a motor 1, a reducer 2 connected to the output end of the motor 1, and a lower end of the deceleration 2 is connected with a screw rod 3 through a thread pair structure 5, and converts the rotary motion of the motor 1 into a reciprocating thread of the screw rod 3.
  • the sub-structure 5, the nut 4 is connected between the screw rod 3 and the gear case 9, and the gear unit 9 is mounted on the outer casing of the speed reducer 2, and the motor casing 6 of the motor 1 is riveted to the outside of the gear box 9.
  • the valve body portion includes a valve seat 14 and a valve stem 15, and the valve stem 15 is jacketed with a bellows 11 which is stretched or contracted with the reciprocating motion of the valve stem 15, since the spool 12A and the valve stem 15 are movably connected to each other. Together, the lifting and lowering of the valve stem 12A is effected by the lifting and lowering of the valve stem, thereby opening or closing the first valve opening 13 provided on the valve seat 14.
  • valve body 12 except for the structure of the valve body 12, the remaining components are the same as those of the first embodiment, and can be understood with reference to FIG. 2, and details are not described herein again.
  • the overall appearance of the valve body 12A is also generally a two-stage cylindrical structure.
  • the first cavity 123A and the second cavity 124A are respectively opened at the upper and lower ends of the valve core 12A, and the first cavity 123A and the second cavity 124A are respectively opened between the first cavity 123A and the second cavity 124A.
  • Second valve port 125A is also generally a two-stage cylindrical structure.
  • the outer peripheral wall of the large diameter section 121A is provided with a flow portion 1211A.
  • the flow portion 1211A is a plurality of planes machined on the outer peripheral wall of the large diameter section 121A for fluid communication.
  • those skilled in the art can make various designs for the shape of the circulation portion 1211A according to the concept of the present invention, such as grooving, punching, etc., and only need to be able to realize the upper and lower ends of the large diameter section 121A.
  • the fluid can be passed through.
  • the lower end portion 152A of the valve stem 15 extends into the first cavity 123A and forms a flow regulating mechanism with the second valve port 125A, and the contact between the lower end portion 152A and the second valve port 125A is achieved.
  • the two valve ports 125A are opened and closed to regulate the flow rate.
  • a blocking portion 126A is further disposed in the first cavity 123A, and the blocking portion 126A is fixedly connected to the inner wall of the large diameter section 121A, and the two may be welded, riveted or the like. Fix it.
  • An annular groove 151A is provided at a position near the lower end of the valve stem 15, and a latching member is provided in the annular groove 151A, and the latching member can maintain a relatively movable connection state between the valve stem 15 and the blocking portion 126A.
  • the latching member of the present embodiment may also be a washer 127A, and its structure is the same as that of the washer 127 in the first embodiment, and can be understood by referring to FIG. 4, and details are not described herein again.
  • the blocking portion 126A and the washer 127A together limit the extreme position in which the valve stem 15 moves upward.
  • the clamping or fixing of the annular groove 151 is not limited to the form of a gasket, for example, A through hole is formed in the annular groove 151, and then a positioning pin is used to form a limit connection between the valve stem 15 and the blocking portion 126; these positioning methods obviously also belong to the protection scope of the present invention.
  • a flow hole 1212A is formed in an outer peripheral wall of the large diameter section 121A of the valve body 12A, and the number of the flow holes 1212A may be one or more, and the flow hole 1212A connects the first cavity 123A with the outer space of the valve body 12A.
  • the fluid can flow from the outside of the spool 12A through the flow hole 1212A into the first cavity 123A.
  • the lower end portion of the small diameter portion 122A is provided with a second cavity 124A, and the second cavity 124A is provided with a second silencing member 128A.
  • pressure is also provided.
  • the member 129A, the pressing member 129A is fitted to the inner wall of the lower end of the small diameter section 122A, so that the second sound absorbing member 128A is fixed in the second cavity 124A.
  • the second silencing member 128A can be formed by a porous screen or wire winding, powder sintering, or the like, and in the present invention, the material or shape of the silencing member is not limited at all.
  • a through hole (not shown) may be disposed between the first cavity 123 and the second cavity 124, so that there is always a part between the two nozzles of the two-stage electronic expansion valve.
  • the traffic is in circulation.
  • a bevel hole is processed on the small diameter section 122A.
  • the second cavity 124A is directly connected to the outside of the valve body 12A, or a plurality of flow grooves are formed on the inner peripheral wall of the first valve port 13 by means of slotting, and the valve body can still have a certain flow rate when the valve body is closed.
  • a small flow rate adjusting mechanism is formed between the lower end portion 152A of the valve stem 15 and the second valve port 125A in the spool 12A.
  • valve stem 15 When the valve stem 15 is displaced from the top to the bottom, the bellows 11 is in a stretched state, the spool 12 is subjected to a differential pressure force, and the lower end surface of the blocking portion 126 is always adhered to the upper end of the latching member (the washer 127A). The spool 12A is moved downward to the extreme position. After contacting the first valve port 13, the valve stem 15 continues to move downward, at which time the washer 127A moves down with the valve stem 15 and disengages from the blocking portion 126A until The lower end portion 152A of the valve stem 15 is in contact with the second valve port 125A, and the two-stage electronic expansion valve is in a closed state.
  • the motor 1 When the valve is opened, the motor 1 is energized, the bellows 11 is contracted, and the valve stem 15 is displaced from the bottom to the top. Since the spool 12A is subjected to the differential pressure, the lower end surface of the spool 12A remains in contact with the first valve port 13, and the valve stem 15 The upward movement is continued until the upper end of the washer latching member (127A) is in contact with the lower end surface of the blocking portion 126A; the valve stem 15 continues to move upward, causing the blocking portion 126A to move up together, at which time the spool as a whole begins to move upward. When the motor 1 is turned on to the full-open pulse, the two-stage electronic expansion valve is To the fully open state.
  • the opening degree control is carried out, that is, the small flow regulating section, because the valve port is reduced, the flow rate is adjusted wider under the same pulse number condition.
  • the valve stem 15 drives the valve core 12A to move upward as a whole. At this time, the flow rate is mainly controlled by the opening degree between the spool 12A and the first valve port 13, that is, the large flow regulating section.
  • the lower end portion of the valve body 12 and the first valve port 13 are always in contact with each other.
  • the fluid flows into the first cavity 123A from the flow hole 1212A, and flows through the throttle body.
  • the second valve port 125A is then silenced by the silencing member 128A, and the fluid is sufficiently dissipated by the multi-layer mesh when flowing through the muffling member, thereby eliminating a whirl like whistling sound and reducing noise.
  • the two-stage electronic expansion valve provided by the present invention passes through the mesh-shaped sound absorbing member, and the internal vortex and the bubble are largely eliminated and disturbed, thereby solving the problem that the existing electronic expansion valve is adjusted at the initial small flow rate. Abnormal noise problem.
  • the small flow rate adjustment is mainly performed by the second valve port 125A provided inside the valve body 12A, the flow rate adjustment range is wider and the accuracy is higher under the same pulse number condition.
  • the third embodiment is different from the second embodiment in that the second muffling member 128A is fixed in the second cavity 124A in a manner of crimping, that is, crimping the lower end portion 1222A of the small diameter segment 122A. It is deformed to fix the second sound absorbing member 128A as shown in FIG. 6, that is, similar to the fixing manner of the second sound absorbing member in the first embodiment.
  • the rest of the embodiment is the same as the second embodiment and will not be further described.
  • the fourth embodiment is different from the second embodiment in that the second silencing member is specifically divided into two layers, namely, an upper muffling member 1281A and a lower muffling member 1282A, and in order to fix the muffling member in the second cavity 124A, Provided with a pressing member 129A, a pressing member 129A and a small diameter section The inner wall of the lower end of 122A is tightly fitted so that the upper muffling member 1281A and the lower muffling member 1282A are fixed in the second cavity 124A.
  • the sound absorbing member is not limited to two layers, and may be two or more layers, and the object of the present invention can also be achieved.
  • the rest of the embodiment can be referred to the corresponding description of the second embodiment, and will not be further described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

二段式电子膨胀阀,包括电机(1)、连接于所述电机(1)输出端的减速器(2),所述二段式电子膨胀阀的阀杆(15)外套装有波纹管(11),所述波纹管(11)随所述阀杆(15)的往复运动拉伸或收缩;还包括阀芯(12),所述阀芯(12)在所述阀杆(15)的带动下对第一阀口(13)进行打开或关闭,所述阀芯(12)内部还设置有小流量调节机构,所述的二段式电子膨胀阀,在小流量调节段,阀芯(12)的下端部与第一阀口(13)之间始终处于接触状态,流体通过网孔状消音部件,内部涡旋、气泡被大幅度消除、扰散,解决了现有的电子膨胀阀在初期小流量调节时出现的异常噪音问题。同时,由于小流量调节主要是通过设置在阀芯内部的第二阀口(125)进行调节,因此在同一脉冲数条件下,流量调节范围更宽,精度更高。

Description

二段式电子膨胀阀
本申请要求于2015年12月9日提交中国专利局、申请号为201510908144.1、发明名称为“二段式电子膨胀阀”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷设备技术领域,尤其涉及一种用于变频空调的电子膨胀阀。
背景技术
电子膨胀阀主要应用于变频空调系统中,通过高脉冲频率电流驱动电机转动,直接带动减速器,并通过螺纹副、阀杆的传递,使阀针上升或下降,改变阀口开启程度,从而自动调节制冷剂流量,使制冷剂回路系统始终保持最佳状态。
请参考图1,图1为现有技术中一种电子膨胀阀的结构示意图。
如图1所示,该电子膨胀阀主要由用于流量调节的阀体部分和用于驱动的线圈部分组成;其中线圈部分包括:电机1′、减速器2′、将电机1′的旋转运动转化成丝杆3′的垂直运动的螺纹副结构5′、螺母4′、电机外壳6′、电机外壳6′铆接于减速器2′外的齿轮箱9′外侧;阀体部分包括阀座14′、阀杆15′,以及控制阀针12′升降的波纹管11′等核心部件。其动作原理如下:电机1′的转子旋转,带动减速器2′转动,通过螺纹副5′的传递,丝杆3′向下运动,顶住传力部件衬套16′以及阀杆15′,使得阀针12′向下运动,此时,波纹管11′处于不断拉伸状态。当施加反向脉冲时,丝杆3′向上运动,阀针12′在波纹管11′的回复弹力和系统压力作用下不断向上运动,从而改变阀口13′的开启程度,使得通流面积发生变化,达到控制流量、调节系统过热的目的。
在这种电子膨胀阀结构中,从完全关闭状态到初期的小流量调节过程,即阀针12′从接触阀口13′到逐渐离开阀口13′时,由于阀口13′处开度较小,会产生明显的节流,从而使得流经阀口部分的流体被大幅加速,出现特定频率的涡旋而形成的异常噪音,影响最终用户的使用舒适度。并且,该结构的电子膨胀阀,阀口13′较大,因此小流量时的调节范围较窄,不利于更高精度的调节。
因此,如何设计一种既能减小初期小流量调节范围内的异常噪音,又能提高小流量调节宽度及精度的电子膨胀阀,是本领域技术人员亟待解决的技术问题。
发明内容
本发明要解决的技术问题为提供一种用于变频空调的电子膨胀阀,其能够在小流量调节范围内减小异常噪音,又能提高小流量调节时的调节精度,为此,本发明提供以下技术方案:
二段式电子膨胀阀,包括电机、连接于电机输出端的减速器,二段式电子膨胀阀的阀杆外套装有波纹管,波纹管随阀杆的往复运动拉伸或收缩;其特征在于,还包括阀芯,阀芯在阀杆的带动下对第一阀口进行打开或关闭,阀芯内部还设置有小流量调节机构,小流量调节机构由阀杆的下端部与设置在阀芯内部的第二阀口组成。
阀芯呈筒状,其两端分别设置有第一腔体和第二腔体,第二阀口开设在第一腔体和第二腔体之间。
第一腔体内还设置有阻挡部,阀杆的端部穿过阻挡部伸入第一腔体内,并由卡位部件实现阀杆与阻挡部之间可相互运动的连接。
卡位部件为垫圈,阀杆设置有环形槽,垫圈夹持在环形槽上。
阻挡部与阀芯之间通过焊接或者压接固定。
阀芯包括大径段和小径段,大径段的外周壁上设置有流通部。
阀芯设置有流通孔,流通孔将第一腔体与阀芯的外部空间相连通。
第一腔体内设置有第一消音部件,使从流通孔流入的流体经第一消音部件进行消音后再从第二阀口流出。
第二腔体内设置有第二消音部件。
阀芯的底部通过压接变形的方式,将第二消音部件固定在第二腔体内。
阀芯的底部设置有抵压部件,抵压部件与阀芯紧配合,将第二消音部件固定在第二腔体内。
第二消音部件包括上消音部件和下消音部件。
第一腔体和第二腔体之间还设置有常通装置,使第一腔体和第二腔体之间始终保持一定的流量。
垫圈具有开口部以及抵靠部,抵靠部与环形槽的周壁相抵接。
本发明提供的二段式电子膨胀阀,在小流量调节段,阀芯的下端部与第一阀口之间始终处于接触状态,流体通过网孔状消音部件,内部涡旋、气泡被大幅度消除、扰散,解决了现有的电子膨胀阀在初期小流量调节时出现的异常噪音问题。同时,由于小流量调节主要是通过设置在阀芯内部的第二阀口进行调节,因此在同一脉冲数条件下,流量调节范围更宽,精度更高。
附图说明
图1为现有技术中一种电子膨胀阀的结构示意图;
图2为本发明所提供二段式电子膨胀阀的第一种具体实施方式结构示意图;
图3为本发明第一实施方式的局部结构剖视图;
图4为本发明第一实施方式的垫圈结构示意图;
图5为本发明所提供二段式电子膨胀阀的第二种具体实施方式局部结构剖视图;
图6为本发明所提供二段式电子膨胀阀的第三种具体实施方式局部结构剖视图;
图7为本发明所提供二段式电子膨胀阀的第四种具体实施方式局部结构剖视图。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
第一实施方式:
请参考图2、图3、图2为本发明所提供二段式电子膨胀阀的第一种具体实施方式结构示意图;图3为本发明第一实施方式的阀芯结构示意图。
如图2所示,本发明提供的二段式电子膨胀阀主要由用于流量调节的阀体部分和用于驱动的线圈部分组成。其中线圈部分包括:电机1、连接于电机1输出端的减速器2,减速2下端通过螺纹副结构5连接有丝杆3,将电机1的旋转运动转化为丝杆3的往复运动的螺纹副结构5,丝杆3与齿轮箱9之间连接有螺母4,减速器2外套装有齿轮箱9,电机1的电机外壳6铆接于齿轮箱9的外侧。
阀体部分包括阀座14、阀杆15,阀杆15外套装有波纹管11,波纹管11随阀杆15的往复运动拉伸或收缩,由于阀芯12与阀杆15可相互运动地连接在一起,从而以阀杆的升降来实现阀芯12的升降,从而对设置在阀座14上的第一阀口13进行打开或关闭。
本发明所述的“可相互运动的连接在一起”,是指阀芯与阀杆两者在工作过程中能够作相对运动,但是不能相互脱离。
阀芯12的外观大体呈筒状,并具有大径段121和小径段122,其中,在靠近大径段121的一端上开设有第一腔体123,在靠近小径段122的一端则开设有第二腔体124,在第一腔体123和第二腔体124之间开设有第二阀口125。
大径段121的外周壁上设置有流通部1211,在本实施方式中,如图3所示,该流通部1211为在大径段121的外周壁上加工出来的若干平面,以供流体流通。当然,本领域技术人员在基于本发明的构思下,可以对流通部1211的形状作出多种设计,如挖槽、打孔等方式,只需能实现大径段121的上下两端之间可供流体通过即可。
阀杆15的下端部152伸入第一腔体123中,并与第二阀口125形成配合,通过接触或远离,来实现第二阀口125的打开和关闭,从而调节流 量。为了使阀杆15与阀芯12相连接,在第一腔体123中,还设置有阻挡部126,阻挡部126与大径段121的内壁固定连接,两者可以通过焊接、压接或者其他方式进行固定。
阀杆15靠近端部的位置设置有环形槽151,在环形槽151中设置有卡位部件,卡位部件能使阀杆15和阻挡部126之间保持可相对运动的连接状态。在本实施方式中,卡位部件具体为垫圈127,具体地,垫圈127夹持在环形槽151中,使阀杆15不能脱离阻挡部126的限制。具体装配时,可以将阀杆15装入阻挡部126中,再将垫圈127放入环形槽151中,然后将阻挡部126固定在阀芯的大径段121上,阻挡部126和垫圈127共同限制了阀杆15向上移动的极限位置。
图4为本发明第一实施方式的垫圈结构示意图;垫圈127大体呈“C”字型,具有开口部1272,用于插入阀杆的环形槽151中。垫圈127的内部设置有3个抵靠部1271,在装配之后紧贴环形槽151的周壁上,相邻的抵靠部1271之间还设置有空缺部。当然,图4作为一种具体的实施方式,本领域技术人员在该技术启示下,还可以作出一些变动,比如取消空缺部,将抵靠部1271连为一体,同样可以实现发明目的。另外,对环形槽151的夹持或固定也不限于采用垫圈的形式,比如还可以在环形槽151上设置通孔,然后采用定位销的方式,同样能够使阀杆15与阻挡部126之间形成限位连接;这些定位方式显然也应当属于本发明的保护范围。
阀芯12的小径段122的外周壁上开设有流通孔1221,流通孔1221的个数可以是1个或者多个,流通孔1221将第一腔体123与阀芯12的外部空间相连通,使流体可以从流通孔1221流入第一腔体123中。在流通孔1221与阀口125之间的第一腔体123中还设置有第一消音部件128,使得从流通孔1221流入的流体流经第一消音部件128进行消音后再从第二阀口125流出。第一消音部件128可以设计成环状体,填充第一腔体123,如图3所示。
小径段122的下端部设置有第二腔体124,在第二腔体124中设置有第二消音部件129,装配时,可以通过压接的方式使小径段122的下端部发生变形,从而将第二消音部件129固定在第二腔体124中。
上述第一消音部件128和第二消音部件129可以采用多孔质的筛网或者金属丝缠绕、粉末烧结等方式制成,在本发明,并不对消音部件的材质或形状作出任何限定。
为了使二段式电子膨胀阀具有除湿功能,通常需要使阀芯12在关闭第一阀口13时,仍然存在一定的流量。为了实现此目的,在本实施方式中,在第一腔体123和第二腔体124之间还设置有常通装置,在本实施方式中,常通装置为常通孔130,这样二段式电子膨胀阀的两根接管之间就始终有一部分流量处于流通当中。当然,为了使关闭第一阀口13时还具有一定流量,并不限于开设上述常通孔130,还可以在此基础上作出多种技术手段的替换,比如在小径段122上加工一个斜孔,直接将第二腔体124与阀芯12的外部连通,或者通过开槽的方式,在第一阀口13的内周壁上加工出若干流通槽,同样能够实现阀体关闭时仍然具有一定的流量。本领域技术人员应当了解,这些基于本发明构思上的若干替换手段的使用,也应当属于本发明的保护范围之内。
这样,阀杆15的下端部152与阀芯12中的第二阀口125之间就形成了小流量调节机构。
当阀杆15从上向下位移时,波纹管11处于拉伸状态,阀芯12受到压差力作用,阻挡部126的下端面始终与垫圈127的上端面保持贴合,当阀芯12向下移动至极限位置,与第一阀口13接触后,阀杆15继续向下移动,此时垫圈127随着阀杆15一起下移,脱离与阻挡部126的贴合,直到阀杆15的下端部152与第二阀口125接触密封,此时,二段式电子膨胀阀处于关闭状态。
开阀时,电机1通电,波纹管11收缩,并带动阀杆15从下向上位移,由于阀芯12受到压差力作用,阀芯12的下端面仍然与第一阀口13保持接触,阀杆15继续上移,直到垫圈127的上端面与阻挡部126的下端面接触;阀杆15继续上移,带动阻挡部126一起上移,此时阀芯整体开始向上移动。当电机1开至全开脉冲时,二段式电子膨胀阀整体达到全开状态。
在以上过程中,垫圈127的上端面与阻挡部126的下端面接触前的这一段调节距离,流量主要由阀杆15的下端部152与阀芯上的第二阀口125 之间进行开度控制,即小流量调节段,由于阀口减小,在相同脉冲数条件下,流量的调节范围更宽。而阀杆15带动阀芯12整体向上移动,此时流量主要由阀芯12与第一阀口13之间的开度来进行控制,即大流量调节段。
如上所述,在小流量调节段,阀芯12的下端部与第一阀口13之间始终处于接触状态,此时,流体从流通孔1221流入,经过第一消音部件128进行消音后,流经第二阀口125,然后经过第二消音部件129再次进行消音,流体在流经消音部件时,受多层网孔作用被充分打散,从而消除了类似尖啸声的涡旋,降低了噪音。
即,本发明提供的二段式电子膨胀阀,流体通过网孔状消音部件,内部涡旋、气泡被大幅度消除、扰散,解决了现有的电子膨胀阀在初期小流量调节时出现的异常噪音问题。同时,由于小流量调节主要是通过设置在阀芯12内部的第二阀口125进行调节,因此在同一脉冲数条件下,流量调节范围更宽,精度更高。
第二实施方式:
下面结合图5说明本发明的第二实施方式。图5为本发明所提供二段式电子膨胀阀的第二种具体实施方式结构示意图。为了说明本实施方式与第一实施方式的区别,对于结构和功能相同的部件采用同一附图标记。
二段式电子膨胀阀包括电机1、连接于电机1输出端的减速器2,减速2下端通过螺纹副结构5连接有丝杆3,将电机1的旋转运动转化为丝杆3的往复运动的螺纹副结构5,丝杆3与齿轮箱9之间连接有螺母4,减速器2外套装有齿轮箱9,电机1的电机外壳6铆接于齿轮箱9的外侧。
阀体部分包括阀座14、阀杆15,阀杆15外套装有波纹管11,波纹管11随阀杆15的往复运动拉伸或收缩,由于阀芯12A与阀杆15可相互运动地连接在一起,从而以阀杆的升降来实现阀芯12A的升降,从而对设置在阀座14上的第一阀口13进行打开或关闭。
在以上部件当中,除了阀芯12的结构之外,其余部件均与第一实施方式相同,可以参照图2进行理解,在此不再赘述。
在本实施方式中,阀芯12A的整体外观也大体呈两段式的筒状结构, 具有大径段121A和小径段122A,在阀芯12A的上下两端,也分别开设有第一腔体123A和第二腔体124A,第一腔体123A和第二腔体124A之间开设有第二阀口125A。
大径段121A的外周壁上设置有流通部1211A,在本实施方式中,流通部1211A为在大径段121A的外周壁上加工出来的若干平面,以供流体流通。当然,本领域技术人员在基于本发明的构思下,可以对流通部1211A的形状作出多种设计,如挖槽、打孔等方式,只需能实现大径段121A的上下两端之间可供流体通过即可。
阀杆15的下端部152A伸入第一腔体123A中,并与第二阀口125A之间形成流量调节机构,通过下端部152A与第二阀口125A之间的接触或远离,来实现第二阀口125A的打开和关闭,从而调节流量。为了使阀杆15与阀芯12A相连接,在第一腔体123A中,还设置有阻挡部126A,阻挡部126A与大径段121A的内壁固定连接,两者可以通过焊接、铆接或者其他方式进行固定。
在阀杆15靠近下端部的位置设置有环形槽151A,在环形槽151A中设置有卡位部件,卡位部件能使阀杆15和阻挡部126A之间保持可相对运动的连接状态。与第一实施方式相似,本实施方式的卡位部件也可以为垫圈127A,其结构与第一实施方式中的垫圈127相同,可参照图4进行理解,在此不再重复赘述。阻挡部126A和垫圈127A共同限制了阀杆15向上移动的极限位置。
显然,与第一实施方式相同,本领域技术人员在该技术启示下,还可以对卡位部件作出一些变动,对环形槽151的夹持或固定也不限于采用垫圈的形式,比如还可以在环形槽151上设置通孔,然后采用定位销的方式,同样能够使阀杆15与阻挡部126之间形成限位连接;这些定位方式显然也应当属于本发明的保护范围。
在阀芯12A的大径段121A的外周壁上开设有流通孔1212A,流通孔1212A的个数可以是1个或者多个,流通孔1212A将第一腔体123A与阀芯12A的外部空间相连通,使流体可以从阀芯12A的外部通过流通孔1212A流入第一腔体123A中。
小径段122A的下端部设置有第二腔体124A,在第二腔体124A中设置有第二消音部件128A,为了将第二消音部件128A固定在第二腔体124A内,还设置有抵压部件129A,抵压部件129A与小径段122A下端的内壁紧配,从而使第二消音部件128A固定在第二腔体124A内。
第二消音部件128A可以采用多孔质的筛网或者金属丝缠绕、粉末烧结等方式制成,在本发明中,并不对消音部件的材质或形状作出任何限定。
与第一实施方式相同,为了使二段式电子膨胀阀具有除湿功能,需要使阀芯12A在关闭第一阀口13时,仍然存在一定的流量。为了实现此目的,可以在第一腔体123和第二腔体124之间设置有常通孔(图中未示出),这样二段式电子膨胀阀的两根接管之间就始终有一部分流量处于流通当中。当然,为了使关闭第一阀口13时还具有一定流量,并不限于开设上述常通孔,还可以在此基础上作出多种技术手段的替换,比如在小径段122A上加工一个斜孔,直接将第二腔体124A与阀芯12A的外部连通,或者通过开槽的方式,在第一阀口13的内周壁上加工出若干流通槽,同样能够实现阀体关闭时仍然具有一定的流量。本领域技术人员应当了解,这些基于本发明构思上的若干替换手段的使用,也应当属于本发明的保护范围之内。
这样,阀杆15的下端部152A与阀芯12A中的第二阀口125A之间就形成了小流量调节机构。
当阀杆15从上向下位移时,波纹管11处于拉伸状态,阀芯12受到压差力作用,阻挡部126的下端面始终与卡位部件(垫圈127A)的上端保持贴合,当阀芯12A向下移动至极限位置,与第一阀口13接触后,阀杆15继续向下移动,此时垫圈127A随着阀杆15一起下移,脱离与阻挡部126A的贴合,直到阀杆15的下端部152A与第二阀口125A接触密封,此时,二段式电子膨胀阀处于关闭状态。
开阀时,电机1通电,波纹管11收缩,阀杆15从下向上位移,由于阀芯12A受到压差力作用,阀芯12A的下端面仍然与第一阀口13保持接触,阀杆15继续上移,直到垫圈卡位部件(127A)的上端与阻挡部126A的下端面接触;阀杆15继续上移,带动阻挡部126A一起上移,此时阀芯整体开始向上移动。当电机1开至全开脉冲时,二段式电子膨胀阀整体达 到全开状态。
在以上过程中,卡位部件(垫圈127)的上端面与阻挡部126A的下端面接触前的这一段调节距离,流量主要由阀杆15的下端部152A与阀芯上的第二阀口125A之间进行开度控制,即小流量调节段,由于阀口减小,在相同脉冲数条件下,流量的调节范围更宽。而阀杆15带动阀芯12A整体向上移动,此时流量主要由阀芯12A与第一阀口13之间的开度来进行控制,即大流量调节段。
如上所述,在小流量调节段,阀芯12的下端部与第一阀口13之间始终处于接触状态,此时,流体从流通孔1212A流入第一腔体123A,节流后流经第二阀口125A,然后经过消音部件128A进行消音,流体在流经消音部件时,受多层网孔作用被充分打散,从而消除了类似尖啸声的涡旋,降低了噪音。
即,本发明提供的二段式电子膨胀阀,流体通过网孔状消音部件,内部涡旋、气泡被大幅度消除、扰散,解决了现有的电子膨胀阀在初期小流量调节时出现的异常噪音问题。同时,由于小流量调节主要是通过设置在阀芯12A内部的第二阀口125A进行调节,因此在同一脉冲数条件下,流量调节范围更宽,精度更高。
第三实施方式
第三实施方式与第二实施方式的不同之处在于,第二消音部件128A固定在第二腔体124A中的实现方式是采用压接的方式,即对小径段122A的下端部1222A进行压接,使其变形,从而将第二消音部件128A固定,如图6所示,即类似于第一实施方式中对第二消音部件的固定方式。本实施方式的其余部分与第二实施方式相同,不再一一赘述。
第四实施方式:
第四实施方式与第二实施方式的不同之处在于,第二消音部件具体分为两层,即上消音部件1281A和下消音部件1282A,为了将消音部件固定在第二腔体124A内,还设置有抵压部件129A,抵压部件129A与小径段 122A下端的内壁紧配,从而使上消音部件1281A和下消音部件1282A固定在第二腔体124A内。当然,本领域技术人员可以理解,消音部件并不限于两层,也可是两层以上,亦可实现本发明的目的。本实施方式的其余部分可参照第二实施方式的相应描述,不再一一赘述。
需要说明的是,本发明出现的上、下、左、右等方位词,是基于说明书附图所示的结构为基准的,并不能理解为对本发明保护范围的限制。
以上对本发明所提供的一种用于变频空调的电子膨胀阀进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 二段式电子膨胀阀,包括电机、连接于所述电机输出端的减速器,所述二段式电子膨胀阀的阀杆外套装有波纹管,所述波纹管随所述阀杆的往复运动拉伸或收缩;其特征在于,还包括阀芯,所述阀芯在所述阀杆的带动下对第一阀口进行打开或关闭,所述阀芯内部还设置有小流量调节机构,所述小流量调节机构由所述阀杆的下端部与设置在所述阀芯内部的第二阀口组成。
  2. 根据权利要求1所述的二段式电子膨胀阀,其特征在于,所述阀芯呈筒状,其两端分别设置有第一腔体和第二腔体,所述第二阀口开设在所述第一腔体和第二腔体之间。
  3. 根据权利要求2所述的二段式电子膨胀阀,其特征在于,所述第一腔体内还设置有阻挡部,所述阀杆的下端部穿过所述阻挡部伸入所述第一腔体内,并由卡位部件实现所述阀杆与所述阻挡部之间可相互运动的连接。
  4. 根据权利要求3所述的二段式电子膨胀阀,其特征在于,所述卡位部件为垫圈,所述阀杆设置有环形槽,所述垫圈夹持在所述环形槽上。
  5. 根据权利要求3所述的二段式电子膨胀阀,其特征在于,所述阻挡部与所述阀芯之间通过焊接或者压接固定。
  6. 根据权利要求2所述的二段式电子膨胀阀,其特征在于,所述阀芯包括大径段和小径段,所述大径段的外周壁上设置有流通部。
  7. 根据权利要求2所述的二段式电子膨胀阀,其特征在于,所述阀芯设置有流通孔,所述流通孔将所述第一腔体与所述阀芯的外部空间相连通。
  8. 根据权利要求7所述的二段式电子膨胀阀,其特征在于,所述第一腔体内设置有第一消音部件,使从所述流通孔流入的流体经第一消音部件进行消音后再从第二阀口流出。
  9. 根据权利要求7所述的二段式电子膨胀阀,其特征在于,所述第二腔体内设置有第二消音部件。
  10. 根据权利要求9所述的二段式电子膨胀阀,其特征在于,所述阀 芯的底部通过压接变形的方式,将所述第二消音部件固定在所述第二腔体内。
  11. 根据权利要求9所述的二段式电子膨胀阀,其特征在于,所述阀芯的底部设置有抵压部件,所述抵压部件与所述阀芯紧配合,将所述第二消音部件固定在所述第二腔体内。
  12. 根据权利要求10或11所述的二段式电子膨胀阀,其特征在于,所述第二消音部件包括上消音部件和下消音部件。
  13. 根据权利要求1或2所述的二段式电子膨胀阀,其特征在于,所述第一腔体和第二腔体之间还设置有常通装置,使所述第一腔体和所述第二腔体之间始终保持一定的流量。
  14. 根据权利要求4所述的二段式电子膨胀阀,其特征在于,所述垫圈具有开口部以及抵靠部,所述抵靠部与所述环形槽的周壁相抵接。
PCT/CN2016/109069 2015-12-09 2016-12-08 二段式电子膨胀阀 WO2017097232A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018530573A JP6778752B2 (ja) 2015-12-09 2016-12-08 2段階式電子膨張弁
KR1020187018051A KR102171202B1 (ko) 2015-12-09 2016-12-08 2 단식 전자 팽창 밸브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510908144.1A CN106855128A (zh) 2015-12-09 2015-12-09 二段式电子膨胀阀
CN201510908144.1 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017097232A1 true WO2017097232A1 (zh) 2017-06-15

Family

ID=59012594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109069 WO2017097232A1 (zh) 2015-12-09 2016-12-08 二段式电子膨胀阀

Country Status (4)

Country Link
JP (1) JP6778752B2 (zh)
KR (1) KR102171202B1 (zh)
CN (1) CN106855128A (zh)
WO (1) WO2017097232A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109058470A (zh) * 2018-09-29 2018-12-21 贵州电网有限责任公司 一种压缩空气储能膨胀机进气调节阀及其调节方法
JP2020518774A (ja) * 2017-12-05 2020-06-25 浙江三花智能控制股▲ふん▼有限公司 電子膨張弁及それを具備する冷凍システム
JP2020531769A (ja) * 2017-08-30 2020-11-05 浙江三花智能控制股▲ふん▼有限公司 電子膨張弁及びそれを具備する冷凍システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356025B (zh) * 2016-05-10 2021-08-10 浙江三花智能控制股份有限公司 电子膨胀阀
CN109425150B (zh) * 2017-08-30 2020-05-15 浙江三花智能控制股份有限公司 电子膨胀阀及具有其的制冷系统
CN109469768B (zh) * 2017-09-07 2022-01-04 浙江三花智能控制股份有限公司 制冷系统及其电子膨胀阀
JP6968768B2 (ja) * 2018-08-31 2021-11-17 株式会社鷺宮製作所 電動弁及び冷凍サイクルシステム
JP6959900B2 (ja) * 2018-10-03 2021-11-05 株式会社鷺宮製作所 弁装置、電動弁および冷凍サイクルシステム
CN111829216A (zh) * 2019-04-23 2020-10-27 浙江盾安禾田金属有限公司 电子膨胀阀及具有其的制冷器
CN110513532A (zh) * 2019-08-15 2019-11-29 浙江盾安禾田金属有限公司 阀门消音器及具有该阀门消音器的电子膨胀阀
JP7466485B2 (ja) 2021-03-24 2024-04-12 株式会社鷺宮製作所 電動弁
CN115218562A (zh) * 2021-04-15 2022-10-21 浙江三花智能控制股份有限公司 一种电子膨胀阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104238A1 (ja) * 2008-02-18 2009-08-27 株式会社鷺宮製作所 圧力式膨張弁
CN202274126U (zh) * 2011-09-05 2012-06-13 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN103388694A (zh) * 2012-05-11 2013-11-13 浙江三花股份有限公司 一种电子膨胀阀
CN103511636A (zh) * 2012-06-27 2014-01-15 浙江三花股份有限公司 一种电子膨胀阀
KR20140054562A (ko) * 2012-10-29 2014-05-09 그린산업 주식회사 전자식 팽창밸브
KR101566635B1 (ko) * 2014-09-15 2015-11-13 이창국 밸브 구동기

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2898906B2 (ja) * 1995-06-29 1999-06-02 株式会社不二工機 電動流量制御弁
JP2000120885A (ja) * 1998-10-08 2000-04-28 Fuji Koki Corp 電動弁
JP4103363B2 (ja) * 2001-09-18 2008-06-18 三菱電機株式会社 流量制御装置、冷凍サイクル装置および空気調和装置
JP2005098423A (ja) * 2003-09-25 2005-04-14 Saginomiya Seisakusho Inc 電磁弁
JP2005331154A (ja) * 2004-05-19 2005-12-02 Saginomiya Seisakusho Inc 絞り弁装置および空気調和機
CN2703169Y (zh) * 2004-06-02 2005-06-01 浙江盾安精工集团有限公司 变频空调用减速式电子膨胀阀
JP2006029542A (ja) * 2004-07-21 2006-02-02 Saginomiya Seisakusho Inc 遊星歯車式減速装置および電動式コントロールバルブおよび冷凍サイクル装置
JP4336279B2 (ja) * 2004-09-02 2009-09-30 株式会社鷺宮製作所 弁装置および冷凍サイクル装置
CN101520107B (zh) * 2008-02-27 2012-04-11 浙江三花股份有限公司 电磁阀
JP2012117584A (ja) * 2010-11-30 2012-06-21 Saginomiya Seisakusho Inc 電動流量制御弁
CN102644785B (zh) * 2011-02-17 2014-04-30 浙江三花股份有限公司 一种电子膨胀阀
CN102767924A (zh) * 2012-06-28 2012-11-07 浙江盾安人工环境股份有限公司 电子膨胀阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104238A1 (ja) * 2008-02-18 2009-08-27 株式会社鷺宮製作所 圧力式膨張弁
CN202274126U (zh) * 2011-09-05 2012-06-13 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN103388694A (zh) * 2012-05-11 2013-11-13 浙江三花股份有限公司 一种电子膨胀阀
CN103511636A (zh) * 2012-06-27 2014-01-15 浙江三花股份有限公司 一种电子膨胀阀
KR20140054562A (ko) * 2012-10-29 2014-05-09 그린산업 주식회사 전자식 팽창밸브
KR101566635B1 (ko) * 2014-09-15 2015-11-13 이창국 밸브 구동기

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531769A (ja) * 2017-08-30 2020-11-05 浙江三花智能控制股▲ふん▼有限公司 電子膨張弁及びそれを具備する冷凍システム
JP2020518774A (ja) * 2017-12-05 2020-06-25 浙江三花智能控制股▲ふん▼有限公司 電子膨張弁及それを具備する冷凍システム
CN109058470A (zh) * 2018-09-29 2018-12-21 贵州电网有限责任公司 一种压缩空气储能膨胀机进气调节阀及其调节方法
CN109058470B (zh) * 2018-09-29 2023-09-29 贵州电网有限责任公司 一种压缩空气储能膨胀机进气调节阀及其调节方法

Also Published As

Publication number Publication date
JP2019504253A (ja) 2019-02-14
KR20180091852A (ko) 2018-08-16
CN106855128A (zh) 2017-06-16
KR102171202B1 (ko) 2020-10-29
JP6778752B2 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2017097232A1 (zh) 二段式电子膨胀阀
WO2017101878A1 (zh) 二段式电子膨胀阀
JP7018519B2 (ja) 電子膨張弁
JP5696093B2 (ja) 電動弁
CN107044543B (zh) 二段式电子膨胀阀
CN106884996B (zh) 电子膨胀阀及其阀芯
US7104281B2 (en) Fluid flow regulation
WO2018099422A1 (zh) 电子膨胀阀及具有其的制冷系统
KR200496160Y1 (ko) 전자 팽창 밸브
JP7369225B2 (ja) 電子膨張弁
CN106545660A (zh) 一种电子膨胀阀
JP6850364B2 (ja) 電子膨張弁及それを具備する冷凍システム
CN109425150B (zh) 电子膨胀阀及具有其的制冷系统
JP2020531769A (ja) 電子膨張弁及びそれを具備する冷凍システム
CN109469768B (zh) 制冷系统及其电子膨胀阀
CN109425151B (zh) 电子膨胀阀及具有其的制冷系统
CN110094513B (zh) 一种电动阀
CN107965584B (zh) 电子膨胀阀及具有其的制冷系统
CN104154171A (zh) 空气弹簧式半主动控制液压悬置
CN105508345B (zh) 一种具有消除噪音作用的液压执行器
JP2024521555A (ja) 可逆電磁弁及び空調ユニット
CN114838146A (zh) 一种电子膨胀阀及其阀针组件
JP2002156050A (ja) 流量制御弁
CN109312805A (zh) 振动抑制装置及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018530573

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018051

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16872421

Country of ref document: EP

Kind code of ref document: A1