WO2013170542A1 - 一种电子膨胀阀 - Google Patents

一种电子膨胀阀 Download PDF

Info

Publication number
WO2013170542A1
WO2013170542A1 PCT/CN2012/079933 CN2012079933W WO2013170542A1 WO 2013170542 A1 WO2013170542 A1 WO 2013170542A1 CN 2012079933 W CN2012079933 W CN 2012079933W WO 2013170542 A1 WO2013170542 A1 WO 2013170542A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
screw rod
electronic expansion
port
valve port
Prior art date
Application number
PCT/CN2012/079933
Other languages
English (en)
French (fr)
Inventor
詹才意
Original Assignee
浙江三花股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210155946.6A external-priority patent/CN103423460B/zh
Application filed by 浙江三花股份有限公司 filed Critical 浙江三花股份有限公司
Priority to US14/399,502 priority Critical patent/US9689595B2/en
Publication of WO2013170542A1 publication Critical patent/WO2013170542A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • F16K3/265Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member with a sleeve sliding in the direction of the flow line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of fluid control components, and in particular to an electronic expansion valve. Background technique
  • the high-temperature and high-pressure gaseous refrigerant from the exhaust pipe of the compressor 7'8 passes through the D-connector of the four-way valve 7 ⁇ , the E-connector, the outdoor exchanger 7'2 (condensation heat release), and the first check valve 7 '4 (the first electronic expansion valve 7'3 does not adjust), the second electronic expansion valve 7'5 (when the second check valve 7'6 is closed, the second electronic expansion valve 7'5 acts as a flow regulator ), eventually entering the indoor exchanger 77 to evaporate and absorb heat for cooling.
  • the second electronic expansion valve 7'6 is closer to the indoor exchanger 77, heat loss can be reduced (if the electronic expansion valve is too far from the evaporator, the low-temperature low-pressure liquid refrigerant from the electronic expansion valve is easily gas-filled. It not only causes heat loss, but also greatly reduces the utilization rate of the evaporator).
  • the medium-temperature and high-pressure refrigerant from the outdoor heat exchanger 7'2 passes through the first electronic expansion valve 7'3, even if the expansion valve is fully opened, the throttling effect will occur, and the cooling is reduced.
  • the pressure of the agent is transferred to the second electronic expansion valve 7'5, the refrigerant is likely to partially vaporize, affecting the throttling effect of the electronic expansion valve and reducing the system efficiency.
  • the high-temperature and high-pressure gaseous refrigerant from the compressor 7'8 exhaust pipe passes through the D-connector of the four-way valve 7 ⁇ , the C-connector, the indoor exchanger 77 (condensation heat release), and the second check valve 7' 6 (the second electronic expansion valve 7'5 does not adjust), the first electronic expansion valve 7'3 (at this time, the first check valve 7'4 is closed, and the first electronic expansion valve 7'3 is used for flow regulation) Finally, enter the outdoor exchanger 7'2 to evaporate and absorb heat for cooling.
  • the first electronic expansion valve 7'3 is closer to the outdoor exchanger 7'2
  • the heat loss can be reduced (if the electronic expansion valve is too far from the evaporator, the low-temperature low-pressure liquid refrigerant coming out of the electronic expansion valve is easily vaporized, which not only causes heat loss, but also greatly reduces the evaporator utilization).
  • the medium-temperature and high-pressure refrigerant from the indoor heat exchanger 77 passes through the second electronic expansion valve 7'5, even if the expansion valve is fully opened, the throttling effect will occur, and the refrigerant is lowered.
  • the pressure, when the first electronic expansion valve 7'3 flows, will partially vaporize the refrigerant, affecting the throttling effect of the electronic expansion valve and reducing the system efficiency.
  • Japanese Patent Laid-Open No. 2009-287913 discloses an electronic expansion valve with a check valve function. Specifically, please refer to FIG. 2 and FIG. 3, FIG. The schematic diagram of the electronic expansion valve in the prior art when the flow rate is adjusted, and FIG. 3 is a schematic structural view of the prior art electronic expansion valve in the reverse conduction direction.
  • the prior art electronic expansion valve includes a valve seat 1'.
  • the valve seat 1' is provided with a main valve chamber 1'1, a horizontal interface portion ⁇ 2, and a vertical interface portion ⁇ 3.
  • the upper end opening of the portion 3 forms a main valve port ⁇ 31;
  • the main valve chamber 1 ⁇ is provided with a valve core seat 2 ′, and the valve core seat 2 ′ is guided by the circumferential side wall thereof to the circumferential inner side wall of the main valve chamber 1 ,. So that it can reciprocate in the axial direction of the main valve chamber 1 ⁇ , thereby opening and closing the main valve port 1'31;
  • the valve core seat 2' is provided with a sub-valve chamber 2 ⁇ , a spool
  • the seat 2' is provided with a spool valve port 2'2 communicating with the auxiliary valve chamber 2, the valve needle member
  • valve 3' extends into the secondary valve chamber 2 ⁇ and reciprocates in the axial direction to open and close the spool valve port 2'2; further, as shown in Figures 2 and 3, the circumferential direction of the valve core seat 2' A through hole 2'3 communicating with the sub valve chamber 2B is also formed in the side wall, and the through hole 2'3 faces the horizontal interface portion ⁇ 2 and communicates with the sub valve chamber 2 and the horizontal interface portion 1'2.
  • the horizontal joint portion 1'2 is connected to the cross pipe 4'
  • the vertical joint portion 1'3 is connected to the vertical pipe 4'2
  • the refrigerant fluid flows from the cross pipe 4 to the vertical pipe 4'2.
  • the horizontal interface part 1 '2 the side is the high pressure area
  • the vertical interface part ⁇ 3 the side is the low pressure area
  • the refrigerant fluid flows from the vertical connection pipe 1′3 to the transverse connection pipe 1′2 (also That is, the vertical interface portion 1'3 - the side is the high pressure region, and the lateral interface portion 1 '2 - the side is the low pressure region) is positioned to flow in the reverse direction.
  • the needle member 3' is connected to the lead screw 5', and the screw rod 5'' is screwed to the nut 5'2; in this configuration, under the action of the magnetic field of the coil 6, the magnet 6'2 rotates, the screw rod 5 turns and the nut 5'2 thread fit thus along the shaft The reciprocating motion causes the valve needle member 3' to reciprocate in the axial direction to open or close the spool valve port 2'2.
  • the spool seat 2′ moves downward. , thereby closing the main valve port 1'31; on this basis, the refrigerant enters the sub-valve chamber 2 ⁇ through the through-hole 2'3 through the transverse port portion 1'2, and the valve needle member 3' opens the spool valve port 2'2, The refrigerant entering the secondary valve chamber 2 ⁇ flows from the spool valve port 2'2 to the vertical port portion 1'3, and then flows into the vertical pipe 4'2.
  • the axial movement of the screw rod 5 allows the valve needle member 3' to adjust the opening degree of the spool valve port 2'2, thereby achieving the purpose of adjusting the flow rate of the electronic expansion valve.
  • the technical problem to be solved by the present invention is to provide an electronic expansion valve.
  • the structural design of the electronic expansion valve can on the one hand compress the control program, on the other hand, can prevent the valve needle component from being removed in time.
  • the screw is stuck, so that the spool seat can be opened smoothly.
  • the main valve port improves the reliability of the work.
  • the present invention provides an electronic expansion valve including a valve seat, a vertical pipe and a cross pipe, the valve seat is provided with a main valve cavity; the electronic expansion valve further includes a communication with the vertical pipe a main valve port and a spool seat that can open and close the main valve port, the valve core seat is provided with a spool valve port connectable with the vertical pipe, and the electronic expansion valve further comprises a valve that can open and close the valve a valve needle member of the core valve port, and a driving member for driving the valve needle member to reciprocate, the driving member including a screw rod connected to the valve needle member and a nut threadedly engaged with the screw rod;
  • the spool seat closes the main valve port, and the refrigerant flows to the vertical pipe via the spool valve port, and the valve needle member can adjust the opening of the spool valve port under the driving of the driving member.
  • the spool seat moves up to open the main valve port, and the valve needle member closes the spool valve port, and the refrigerant flows to the cross pipe through the main valve port;
  • a screw rod limiting portion is mounted on a bottom end of the screw rod, the valve needle member is provided with a wide needle limiting portion for blocking the screw rod limiting portion; and the threaded rod and the wide needle member are further Compressed elastic parts;
  • the screw rod and the valve needle member are movable relative to each other within a predetermined buffer distance, so that when the refrigerant flows in the reverse direction, the wide core seat moves up to push the relative displacement of the wide needle member relative to the screw rod.
  • the spool seat is caused to open the main valve port.
  • the wide needle member is provided with an axial mounting hole, and the screw rod limiting portion is mounted on the bottom end of the screw rod and extends into the axial mounting hole, and the wide needle limiting portion is installed.
  • the distance between the bottom end of the lead screw and the bottom wall of the axial mounting hole forms the predetermined cushioning.
  • the outer wall of the wide needle member is provided with a wide needle step portion, the elastic member is sleeved on the outer wall of the wide needle member and the lower end is supported on the wide needle step portion;
  • the lead screw is provided with a movable limiting plate at an outer portion of the axial mounting hole, and the limiting plate is upwardly abuttable on the screw step of the screw, and the upper end of the elastic member is abutted Connect the limit plate.
  • the valve needle limiting portion includes a cylindrical guiding portion, and the top end of the cylindrical guiding portion is provided a curved portion bent outwardly, the curved portion being in contact with a top end wall of the axial mounting hole; a bottom end of the screw rod is guided through the cylindrical guiding portion, and a bottom wall of the cylindrical guiding portion Blocking the screw stopper.
  • the elastic member is disposed inside the axial mounting hole, and an upper end thereof abuts the screw rod limiting portion, and a lower end thereof is supported on a bottom wall of the axial mounting hole.
  • valve needle limiting portion is a stopper fixed to an inner wall of the open end of the axial mounting hole.
  • the predetermined buffer distance ranges from 1 mm to 5 mm.
  • a sleeve is fixed in the main valve cavity, the spool seat is movably disposed in the sleeve in the axial direction, and a lower portion of the valve needle member extends into the sleeve to open and close a spool valve port; a circumferential flow side wall of the sleeve is provided with a first flow hole close to the main valve port and a second flow hole away from the main valve port; when the refrigerant flows in the forward direction, The valve core seat closes the main valve port, the first flow hole is disconnected from the main wide port, and the upper cavity of the sleeve communicates with the main valve cavity through the second flow hole; when the refrigerant flows in the reverse direction, the valve core The seat moves up to open the main valve port, and the main valve port communicates with the main cavity through the first flow hole.
  • the wide needle member closes the spool valve port, and the spool seat closes the second flow hole to interrupt the sleeve The communication between the upper chamber of the cylinder and the main valve chamber.
  • the lower end of the sleeve is supported by the valve seat, and the lower end of the sleeve surrounds the main valve port.
  • the valve seat is provided with a vertical interface portion for mounting the vertical pipe, and a lower end portion of the sleeve extends into the vertical interface portion and is supported by the vertical interface portion;
  • the inner wall forms a main wide hole, and the upper opening of the main wide hole forms the main valve port.
  • the electronic expansion valve provided by the present invention has a screw rod limiting portion at a bottom end of the screw rod, and the valve needle member is provided with a valve needle limit for blocking the screw rod limiting portion.
  • a compressed elastic member is further disposed between the lead screw and the wide needle member; the screw rod and the valve needle member are relatively movable within a predetermined buffer distance, so that when the refrigerant flows in the reverse direction, The spool seat moves up to urge the wide needle member relative to the spindle to cause the spool seat to open the main valve port.
  • the wide needle member is provided with an axial mounting hole, and the screw rod limiting portion is installed at a bottom end of the screw rod and extends into the axial mounting hole, and the wide needle limiting portion is installed.
  • the spool seat moves upwards under the pressure of the refrigerant pressure, due to the above floating between the valve needle member and the screw rod.
  • the connection has a predetermined cushioning distance such that the spool seat can push the valve needle member upwardly, the wide needle member being sufficiently displaced relative to the screw shaft, the relative displacement being less than or equal to the predetermined buffer distance, thereby causing the spool
  • the seat opens the main valve port smoothly.
  • the electronic expansion valve provided by the present invention can perform the control program on the one hand, and can avoid the problem of the screw stuck in the valve needle component when the valve needle component is removed in time, so that the valve core seat can be smoothly opened.
  • the valve port improves the reliability of the work.
  • FIG. 1 is a schematic view showing the working principle of an air conditioning refrigeration system in the prior art
  • FIG. 2 is a schematic structural view of a prior art electronic expansion valve when the flow rate is adjusted
  • FIG. 3 is a schematic structural view of the prior art electronic expansion valve when the reverse flow is performed
  • Figure 4 is a schematic view showing the structure of the electronic expansion valve in the forward flow of the refrigerant in the first embodiment of the present invention
  • Figure 4-1 is a partial enlarged view of the portion A in Figure 4;
  • Figure 5 is a schematic view showing the structure of the electronic expansion valve in the reverse flow of the refrigerant in the first embodiment of the present invention
  • Figure 6 is a structural view showing the electronic expansion valve in the forward flow of the refrigerant in the second embodiment of the present invention.
  • Figure 6-1 is a partial enlarged view of the portion B of Figure 6;
  • Figure 7 is a schematic view showing the structure of an electronic expansion valve in a reverse flow of a refrigerant in a second embodiment of the present invention.
  • the correspondence between the reference numerals and the component names in FIGS. 1 to 3 is:
  • ⁇ Valve seat 1 ⁇ Main valve cavity; ⁇ 2 transverse interface part; ⁇ 3 vertical interface part; ⁇ 31 main valve port; 2' spool seat; 2 ⁇ Sewer valve cavity; 2'2 spool valve port; 2'3 through hole;
  • valve seat 11 main valve cavity; 12 horizontal interface; 13 vertical interface; 2 spool seat; 21 spool valve port; 3 valve needle parts; 31 axial mounting hole; 32 valve needle limit; Shaped guide; 322 curved portion; 33 valve needle step;
  • the core of the present invention is to provide an electronic expansion valve.
  • the structural design of the electronic expansion valve can on the one hand compress the control program, on the other hand, can avoid the screw rod caused by the valve needle component being removed in time.
  • the problem of jamming allows the spool seat to open the main valve port smoothly, improving The reliability of the work.
  • FIG. 4 is a schematic structural view of the electronic expansion valve in the forward flow of the refrigerant in the first embodiment of the present invention
  • FIG. 4-1 is a partial enlarged view of the A portion in FIG.
  • Figure 5 is a schematic view showing the structure of the electronic expansion valve in the reverse flow of the refrigerant in the first embodiment of the present invention.
  • the electronic expansion valve provided by the present invention includes a valve seat 1, a vertical pipe 51 and a cross pipe 52.
  • the valve seat 1 is provided with a vertical interface portion 13 and a horizontal interface portion. 12, the vertical pipe 51 is mounted on the vertical interface portion 13, the transverse pipe 52 is mounted on the horizontal interface portion 12, the valve seat 1 is provided with a main valve cavity 11; the electronic expansion valve further includes a main valve port communicating with the vertical pipe 51 441 and a spool seat 2 that can open and close the main valve port 441.
  • the spool seat 2 is provided with a spool valve port 21 that can communicate with the vertical pipe 51.
  • the electronic expansion valve further includes a valve port that can be opened and closed.
  • a valve needle member 3 of 21 and a driving member for driving the wide needle member to reciprocate the driving member includes a screw 61 connected to the valve needle member and a nut 62 threadedly engaged with the screw rod 61.
  • the drive also includes a magnet 71 that rotates the lead screw 61 under the action of the magnetic field force of the coil.
  • the spool seat 2 closes the main valve port 441, the refrigerant flows to the vertical pipe 51 via the spool valve port 21, and the valve needle member 3 can be adjusted by the driving member to adjust the spool valve.
  • the opening degree of the opening 21 as shown in Fig. 5, when the refrigerant moves in the reverse direction, the spool seat 2 moves up to open the main valve port 441, and the valve needle member 3 closes the spool valve port 21, and the refrigerant flows to the horizontal direction through the main valve port 441. Take over 52.
  • FIG. 4, FIG. 4-1 and FIG. 5 at the same time.
  • the bottom end of the screw rod 61 is mounted with a screw rod limiting portion 611, and the valve needle member 3 is provided with a blocking rod.
  • a compressed elastic member 72 is further disposed between the screw rod 61 and the valve needle member 3;
  • the screw rod 61 and the wide needle member 3 are predetermined
  • the relative movement occurs within the buffer distance so that when the refrigerant flows in the reverse direction, the spool seat 2 moves up to urge the valve needle member 3 relative to the screw rod 61 to cause the spool seat 2 to open the main valve port 441.
  • valve needle member 3 is provided with an axial mounting hole 31, and the screw rod limiting portion 611 is mounted on the bottom end of the screw rod 61 and extends into the axial direction.
  • the needle stopper portion 32 is attached to the open end of the axial mounting hole 31; the distance between the bottom end of the screw 61 and the bottom wall of the axial mounting hole 31 forms the predetermined cushioning distance.
  • the screw 61 and the needle member 3 have a predetermined cushioning distance, when the valve needle member 3 is sufficiently displaced relative to the screw rod 61, the predetermined buffer distance has not been exhausted. Therefore, the main valve port 441 can be smoothly opened; at the same time, no rigid contact occurs between the needle member 3 and the lead screw 61, and the urging pressure of the refrigerant to the valve body seat 2 is not transmitted to the screw rod 61 through the needle member 3. Therefore, it is possible to avoid the problem that the screw 61 is stuck due to excessive friction. Further, since the needle member 3 is removed without first operating the lead screw 61, the control program of the electronic expansion valve is also compressed.
  • the focus of the present invention is to improve the connection structure between the needle member 3 and the lead screw 61, and thus the electronic expansion valve of the prior art in Figs. 2 and 3 (without using a fixed sleeve) a cylinder, the simple spool seat 2' moves in the main valve chamber 1 ⁇ , or the electronic expansion valve of the present invention in Figs. 4 and 5 (using the fixed sleeve 4, the spool seat 2 moves in the sleeve 4), As long as it uses the connection structure of the screw rod 61 of the present invention and the valve needle member 3, it should be within the scope of the present invention.
  • the valve needle member 3 is provided with a valve needle step portion 33 on the outer wall thereof, and the elastic member 72 is fitted on the outer wall of the valve needle member 3 and the lower end is supported by the wide needle.
  • the screw rod 61 is provided with a movable limiting plate 63 at an outer portion of the axial mounting hole 31. The limiting plate 63 can abut against the screw step portion 612 of the screw rod 61, and the elastic member The upper end of 72 abuts the limit plate 63.
  • the spool seat 2 pushes the needle member 3 upward, and the elastic member 72 is supported at one end on the valve needle step portion 33, and the other end thereof abuts against the limiting plate 63, so that the valve needle member 3 is opposed to the valve needle member 3
  • the lead screw 61 is relatively displaced, and the elastic member 72 is compressed.
  • the elastic member 72 is provided outside the needle member 3, the inside of the needle member 3 is not provided with the elastic member, so that the structure of the needle member 3 is reduced and lowered. Processing and manufacturing costs.
  • the valve needle limiting portion 32 includes a cylindrical guiding portion 321 and a cylindrical guiding portion 321
  • the top end is provided with a curved portion 322 bent outward, and the curved portion 322 is fitted to the top end wall of the axial mounting hole 31; the bottom end of the screw rod 61 is guided through the cylindrical guiding portion 321, and the cylindrical guiding portion 321
  • the bottom wall blocks the screw stopper 611.
  • the cylindrical guide portion 321 can guide the screw rod 61 to make the axial movement more stable; further, the curved portion 322 is attached to the top end wall of the axial mounting hole 31, The needle stopper 32 can be relatively stably attached to the open end of the axial mounting hole 31.
  • FIG. 6 is a schematic structural view of the electronic expansion valve in the forward flow of the refrigerant in the second embodiment of the present invention
  • FIG. 6-1 is the B portion in FIG.
  • FIG. 7 is a schematic view showing the structure of an electronic expansion valve in a reverse flow of a refrigerant in a second embodiment of the present invention.
  • the elastic member 72 is disposed inside the axial mounting hole 31, and the upper end thereof is connected to the lead screw limiting portion 611. The lower end is supported on the bottom wall of the axial mounting hole 31.
  • the needle stopper portion 32 is an annular stopper fixed to the inner wall of the open end of the axial mounting hole 31.
  • the annular stopper can be fixed to the open end of the axial mounting hole 31 by interference fit or welding.
  • the annular stopper structure is relatively simple, so the manufacturing cost is low. .
  • the predetermined buffer distance may be specifically designed. Specifically, the predetermined buffer distance is in the range of 1 to 5 mm; of course, the predetermined buffer distance is not limited thereto, and the predetermined buffer is not limited thereto.
  • the distance has the following meaning: When the refrigerant flows in the reverse direction, assuming that the spool seat 2 smoothly opens the main valve port 441 and the distance required to move up is H, the predetermined buffer distance needs to be greater than H.
  • a sleeve 4 is fixed in the main valve chamber 11, and the spool seat 2 is movably disposed in the sleeve 4 in the axial direction, and the needle member 3 is The lower portion extends into the sleeve 4 to open and close the spool valve port 21; the circumferential side wall of the sleeve 4 is provided with a first flow hole 41 close to the main valve port 441 and a second flow hole away from the main valve port 441 42; when the refrigerant is flowing forward, the spool seat 2 closes the main valve port 441, and the first flow hole 41 is disconnected from the main valve port 441, and the sleeve upper cavity 43 communicates with the main valve chamber 11 through the second flow hole 42; when the refrigerant flows in the reverse direction, the spool seat 2 moves up to open the main valve port 441, and the main valve port 441 communicates with the main valve chamber 11 through the first flow hole 41.
  • the cross pipe 52 is a high pressure zone, and the vertical pipe 51 is a low pressure zone.
  • the spool seat 2 moves downward.
  • the main valve port 441 on this basis, the refrigerant enters the sleeve upper chamber 43 through the second flow hole 42.
  • the valve needle member 3 opens the spool valve port 21, the refrigerant enters the vertical tube 51 through the spool valve port 21 again.
  • the needle member 3 can reciprocate in the axial direction with the screw rod 61, thereby adjusting the opening degree of the spool valve port 21, thereby achieving the purpose of adjusting the flow rate of the electronic expansion valve.
  • the vertical pipe 51 is a high pressure zone
  • the cross pipe 52 is a low pressure zone.
  • the spool seat 2 moves upward, thereby opening.
  • the main valve port 441 the refrigerant passes through the main wide opening 441, and then flows through the first flow hole 41 to the side of the transverse pipe 52, thereby achieving the purpose of the one-way valve being single-passed.
  • FIGS. 5 and 7 when the spool seat 2 opens the main valve port 441, the spool seat 2 simultaneously closes the second flow hole 42 to interrupt the communication between the sleeve upper chamber 43 and the main valve chamber 11. .
  • the spool seat 2 moves upward while closing the second flow hole 42, so that the refrigerant does not enter the sleeve through the second flow hole 42.
  • the upper chamber 43 thus does not generate a refrigerant pressure that causes the spool seat 2 to be downward, so that the sensitivity of the spool seat 2 to open the main valve port 441 can be improved.
  • the specific design of the main valve port 441 can be made.
  • the lower end portion of the sleeve 4 projects into the vertical interface portion 13 and is supported by the vertical interface portion 13; the inner wall of the lower end portion of the sleeve 4 forms the main valve hole 44, and the upper portion of the main valve hole 44
  • the orifice forms a main valve port 441.
  • the main valve port 441 is formed on the inner wall of the sleeve 4, and the structure in which the main valve port 441 is opened in the valve seat 1 can facilitate the securing of the spool seat 2 and the main valve in the sleeve 4.
  • the coaxiality between the ports 441 is advantageous for improving the sealing performance.
  • the present invention does not limit the manner in which the main valve port 441 is formed, as described above, any one.
  • the formation of the main valve port as long as the spool seat 2 moving up and down in the sleeve 4 can close and open the main valve port, should be within the scope of the present invention.
  • the main valve port 441 can be formed in the manner of the upper end opening of the vertical interface portion 13 as shown in FIGS. 2 and 3.
  • the lower end of the sleeve 4 does not extend into the vertical interface portion 13, Rather, it is supported on the inner wall of the valve seat 1 around the vertical interface portion 13, so that the spool seat 2 moving in the sleeve 4 can still open and close the main valve port.
  • a mounting groove surrounding the main valve port may be provided on the inner wall of the valve seat 1, and the lower end of the sleeve 4 may be fixed in the mounting groove.

Abstract

一种电子膨胀阀,其阀针部件(3)开设有轴向安装孔(31),丝杆(61)的底端安装有丝杆限位部(611)并伸入该轴向安装孔(31)中,所述轴向安装孔(31)的开口端设有阻挡所述丝杆限位部(611)的阀针限位部(32);所述丝杆(61)与所述阀针部件(3)之间还设有压缩的弹性部件(72);所述丝杆(61)的底端与所述轴向安装孔(31)的底壁之间具有预定缓冲距离。当冷媒逆向流动时,该电子膨胀阀的结构设计一方面能够简化控制程序,另一方面能够避免阀针部件移开不及时所导致的丝杆卡死问题。

Description

一种电子膨胀阀 本申请要求于 2012 年 05 月 18 日提交中国专利局、 申请号为 201210155946.6、 发明名称为"一种电子膨胀阀"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及流体控制部件技术领域, 特别涉及一种电子膨胀阀。 背景技术
在空调市场, 由于其室内机与室外机距离较远, 因此采用了两个电子 膨胀阀, 而两个电子膨胀阀必须分别并联单向阀才能最大限度的提高系统 效率。 其系统原理图如图 1 , 工作原理筒述如下:
制冷时: 从压缩机 7'8排气管出来的高温高压的气态制冷剂通过四通 阀 7Ί的 D接管、 E接管、 室外交换器 7'2 (冷凝放热)、第一单向阀 7'4 (第 一电子膨胀阀 7'3不起调节作用)、 第二电子膨胀阀 7'5 (此时第二单向阀 7'6关闭, 第二电子膨胀阀 7'5起流量调节作用), 最终进入室内交换器 77 蒸发吸收热量制冷。 此时由于第二电子膨胀阀 7'6与室内交换器 77较近, 可以减少热量损失(如果电子膨胀阀距离蒸发器太远, 那么从电子膨胀阀 出来的低温低压的液态制冷剂很容易气化, 不仅造成热损失, 也使得蒸发 器利用率大幅度下降)。 同时, 从室外换热器 7'2出来的中温、 高压的制冷 剂如果从第一电子膨胀阀 7'3 经过, 即使在膨胀阀全开的条件下, 仍会出 现节流效果, 降低了制冷剂的压力, 待传到第二电子膨胀阀 7'5 时制冷剂 很可能会部分气化, 影响电子膨胀阀的节流效果, 降低系统效率。
制热时: 从压缩机 7'8排气管出来的高温高压的气态制冷剂通过四通 阀 7Ί的 D接管、 C接管、 室内交换器 77 (冷凝放热)、第二单向阀 7'6 (第 二电子膨胀阀 7'5不起调节作用)、 第一电子膨胀阀 7'3 (此时第一单向阀 7'4关闭, 第一电子膨胀阀 7'3起流量调节作用), 最终进入室外交换器 7'2 蒸发吸收热量制冷。 此时由于第一电子膨胀阀 7'3与室外交换器 7'2较近, 可以减少热量损失(如果电子膨胀阀距离蒸发器太远, 那么从电子膨胀阀 出来的低温低压的液态制冷剂很容易气化, 不仅造成热损失, 也使得蒸发 器利用率大幅度下降)。 同时, 从室内换热器 77出来的中温、 高压的制冷 剂如果从第二电子膨胀阀 7'5 经过, 即使在膨胀阀全开的条件下, 仍会出 现节流效果, 降低了制冷剂的压力, 待流到第一电子膨胀阀 7'3 时制冷剂 会部分气化, 影响电子膨胀阀的节流效果, 降低系统效率。
但是, 目前市场上有客户要求将单向阀和电子膨胀阀合并, 从而减少 零部件, 减少焊点, 进而提高系统的可靠性。
鉴于此, 现有技术中, 专利号为 "特开 2009-287913" 的日本专利公 开了一种带单向阀功能的电子膨胀阀, 具体地, 请参考图 2和图 3 , 图 2 为现有技术中的电子膨胀阀正向进行流量调节时的结构示意图, 图 3为现 有技术中的电子膨胀阀逆向导通时的结构示意图。
如图 2和图 3所示, 该现有技术中的电子膨胀阀包括阀座 1', 阀座 1' 设有主阀腔 1'1、 横接口部 Γ2和竖接口部 Γ3 , 该竖接口部 Γ3的上端开口 形成主阀口 Γ31 ; 主阀腔 1Ί内设有阀芯座 2',该阀芯座 2'以其周向侧壁与 主阀腔 1Ί的周向内侧壁贴合导向, 以便可沿主阀腔 1Ί的轴向往复运动, 从而开启和关闭主阀口 1'31; 此外, 如图 2和图 3所示, 该阀芯座 2'设有 副阀腔 2Ί , 阀芯座 2'设有与该副阀腔 2Ί连通的阀芯阀口 2'2, 阀针部件
3'伸入该副阀腔 2Ί中并沿轴向往复运动,从而开启和关闭该阀芯阀口 2'2; 再者, 如图 2和图 3所示, 阀芯座 2'的周向侧壁上还开设有与副阀腔 2Ί 连通的导通孔 2'3 , 该导通孔 2'3朝向横接口部 Γ2, 并连通副阀腔 2Ί与横 接口部 1'2。
此外, 如图 2和图 3所示, 横接口部 1 '2连接有横接管 4Ί , 竖接口部 1'3连接有竖接管 4'2, 冷媒流体由横接管 4Ί向竖接管 4'2流动时(亦即横 接口部 1 '2—侧为高压区, 竖接口部 Γ3—侧为低压区 ) 定位为正向流动, 冷媒流体由竖接管 1'3向横接管 1'2流动时 (亦即竖接口部 1'3—侧为高压 区, 横接口部 1 '2—侧为低压区 )定位为逆向流动。 阀针部件 3'与丝杆 5Ί 连接, 丝杆 5Ί与螺母 5'2通过螺纹配合; 在该种结构中, 在线圈 6Ί磁场 的作用下, 磁体 6'2转动, 丝杆 5Ί转动并由于螺母 5'2螺纹配合因而沿轴 向往复运动, 从而带动阀针部件 3'沿轴向往复运动, 以便开启或关闭阀芯 阀口 2'2。
如图 2所示, 冷媒正向流动时, 横接口部 Γ2—侧为高压区, 竖接口 部 1'3 —侧为低压区, 在冷媒压力差的作用下, 阀芯座 2'向下运动, 从而 关闭主阀口 1'31; 在此基础上, 冷媒由横接口部 1'2通过导通孔 2'3进入副 阀腔 2Ί , 阀针部件 3'开启阀芯阀口 2'2, 进入副阀腔 2Ί中的冷媒由该阀芯 阀口 2'2流向竖接口部 1'3 , 进而流向竖接管 4'2中。 在该工作过程中, 通 过丝杆 5Ί沿轴向运动, 可以使得阀针部件 3'调节阀芯阀口 2'2的开度, 进 而实现电子膨胀阀流量调节的目的。
如图 3所示, 冷媒逆向流动时, 竖接口部 Γ3—侧为高压区, 横接口 部 1'2—侧为低压区, 此时, 在冷媒压力差的作用下, 推动阀芯座 2'向上 运动, 从而开启主阀口 Γ31 , 冷媒经过主阀口 1'31、 主阀腔 1Ί和横接口部 1'2, 流向横接管 4Ί , 从而实现单向阀的单向导通功能。
然而, 上述现有技术中的电子膨胀阀存在如下缺陷:
第一, 当冷媒逆向流动时, 阀芯座 2'向上运动从而开启主阀口 Γ31 , 此时需要先通过丝杆 5Ί 沿轴向向上运动而移开阀针部件 3', 因而程序控 制比较复杂; 并且, 当阀针部件 3'移开不及时时, 阀芯座 2'受到的向上压 力会传递给阀针部件 3', 进而会造成丝杆 5Ί摩擦力过大而造成卡死。
第二, 如图 2所示, 当冷媒正向流动时, 由于阀芯座 2'的侧壁正对横 接口部 Γ2, 因而阀芯座 2'的周向侧壁会受到高压冷媒的冲击; 当冷媒压力 出现波动时, 会造成该阀芯座 2'偏心, 从而造成阀芯座 2'对主阀口 Γ31的 密封不严, 造成内漏偏大, 影响系统的工作性能。 此外, 阀芯座 2'偏心也 会造成阀针部件 3'与阀芯阀口 2'2出现干涉。
发明内容
本发明要解决的技术问题为提供一种电子膨胀阀, 当冷媒逆向流动 时, 该电子膨胀阀的结构设计一方面能够筒化控制程序, 另一方面能够避 免阀针部件移开不及时所导致的丝杆卡死问题, 使得阀芯座能够顺利开启 主阀口, 提高了工作的可靠性。
为解决上述技术问题, 本发明提供了一种电子膨胀阀, 包括阀座、 竖 接管和横接管, 所述阀座设有主阀腔; 所述电子膨胀阀还包括与所述竖接 管连通的主阀口及可开启和关闭该主阀口的阀芯座, 所述阀芯座设有可与 所述竖接管连通的阀芯阀口, 所述电子膨胀阀还包括可开启和关闭该阀芯 阀口的阀针部件、 及驱动该阀针部件往复运动的驱动部件, 所述驱动部件 包括与所述阀针部件连接的丝杆、 及与所述丝杆螺纹配合的螺母;
当冷媒正向流动时, 所述阀芯座关闭主阀口, 冷媒经由所述阀芯阀口 流向竖接管, 所述阀针部件在驱动部件的驱动下可调节所述阀芯阀口的开 度;
当冷媒逆向移动时, 所述阀芯座上移开启主阀口, 并所述阀针部件关 闭所述阀芯阀口, 冷媒经由所述主阀口流向横接管;
所述丝杆的底端安装有丝杆限位部, 所述阀针部件设有阻挡所述丝杆 限位部的阔针限位部; 所述丝杆与所述阔针部件之间还设有压缩的弹性部 件;
所述丝杆与所述阀针部件可在预定緩冲距离内发生相对运动, 以便冷 媒逆向流动时, 所述阔芯座上移推动所述阔针部件相对于所述丝杆发生相 对位移而使得所述阀芯座开启所述主阀口。
优选地, 所述阔针部件开设有轴向安装孔, 所述丝杆限位部安装在所 述丝杆的底端, 并伸入该轴向安装孔中, 所述阔针限位部安装在轴向安装 孔的开口端;
所述丝杆的底端与所述轴向安装孔的底壁之间的距离形成所述预定緩 冲 巨离。
优选地, 所述阔针部件外壁上开设有阔针台阶部, 所述弹性部件套装 于所述阔针部件外壁上并且下端支撑于所述阔针台阶部上;
所述丝杆在所述轴向安装孔的外边部分套装有可移动的限位板, 该限 位板向上可抵接于所述丝杆的丝杆台阶部上, 所述弹性部件的上端抵接所 述限位板。
优选地, 所述阀针限位部包括筒状导向部, 所述筒状导向部的顶端设 有向外侧弯曲的弯曲部, 该弯曲部与所述轴向安装孔的顶端壁贴合; 所述 丝杆的底端导向穿过所述筒状导向部, 并该筒状导向部的底壁阻挡所述丝 杆限位部。
优选地, 所述弹性部件设于所述轴向安装孔的内部, 并其上端抵接所 述丝杆限位部, 其下端支撑于所述轴向安装孔的底壁上。
优选地, 所述阀针限位部为固定设于所述轴向安装孔的开口端内壁上 的挡块。
优选地, 所述预定緩冲距离的范围为 lmm至 5mm。
优选地, 所述主阀腔内固定有套筒, 所述阀芯座沿轴向可移动设于所 述套筒中,所述阀针部件的下部伸入所述套筒中开启和关闭所述阀芯阀口; 所述套筒的周向侧壁上设有靠近所述主阀口的第一流通孔及远离所述 主阀口的第二流通孔; 当冷媒正向流动时, 所述阀芯座关闭所述主阀口, 第一流通孔与所述主阔口中断连通, 同时套筒上腔通过第二流通孔与主阀 腔连通; 当冷媒逆向流动时, 所述阀芯座上移开启所述主阀口, 所述主阀 口通过第一流通孔与所述主阔腔连通。
优选地, 所述阔芯座上移开启所述主阔口时, 所述阔针部件关闭所述 阀芯阀口, 同时所述阀芯座关闭所述第二流通孔, 以便中断所述套筒上腔 与所述主阀腔之间的连通。
优选地, 所述套筒的下端由阀座支撑, 并该套筒的下端部包围所述主 阀口。
优选地, 所述阀座上开设有安装所述竖接管的竖接口部, 所述套筒的 下端部伸入所述竖接口部中, 并由该竖接口部支撑; 所述套筒下端部的内 壁形成主阔孔, 所述主阔孔的上部孔口形成所述主阀口。
在现有技术的基础上, 本发明所提供的电子膨胀阀, 其丝杆的底端安 装有丝杆限位部, 所述阀针部件设有阻挡所述丝杆限位部的阀针限位部; 所述丝杆与所述阔针部件之间还设有压缩的弹性部件; 所述丝杆与所述阀 针部件可在预定緩冲距离内发生相对运动, 以便冷媒逆向流动时, 所述阀 芯座上移推动所述阔针部件相对于所述丝杆发生相对位移而使得所述阀芯 座开启所述主阀口。 具体地, 所述阔针部件开设有轴向安装孔, 所述丝杆限位部安装在所 述丝杆的底端, 并伸入该轴向安装孔中, 所述阔针限位部安装在轴向安装 孔的开口端; 所述丝杆的底端与所述轴向安装孔的底壁之间的距离形成所 述预定緩冲距离。
当冷媒逆向流动时, 在驱动部件不动作, 丝杆不沿轴向往上运动的前 提下, 在冷媒压力的推动下, 阀芯座向上运动, 由于阀针部件与丝杆之间 的上述浮动连接具有预定緩冲距离, 因而阀芯座可以推动阀针部件向上运 动, 该阔针部件相对于丝杆向上发生足够相对位移, 该相对位移小于或等 于所述预定緩冲距离, 从而使得阀芯座顺利开启主阀口。
在上述工作过程中, 由于丝杆与阀针部件之间具有预定緩冲距离, 因 而当阀针部件相对于发生足够相对位移时, 该预定緩冲距离还未用尽, 因 而能够使得主阀口顺利开启; 同时, 阀针部件与丝杆之间不会发生刚性接 触, 冷媒给予阀芯座的推动压力, 不会通过阀针部件传递给丝杆, 因而可 以避免丝杆由于摩擦力过大而造成卡死的问题。 此外, 由于不用先期驱动 丝杆进行动作而移开阀针部件,因而该电子膨胀阀的控制程序也得以筒化。
综上所述, 本发明所提供的电子膨胀阀一方面能够筒化控制程序, 另 一方面能够避免阀针部件移开不及时所导致的丝杆卡死问题, 使得阀芯座 能够顺利开启主阀口, 提高了工作的可靠性。 附图说明
图 1为现有技术中空调制冷系统的工作原理示意图;
图 2为现有技术中的电子膨胀阀正向进行流量调节时的结构示意图; 图 3为现有技术中的电子膨胀阀逆向导通时的结构示意图;
图 4为本发明第一种实施例中电子膨胀阀在冷媒正向流动时的结构示 意图;
图 4-1为图 4中 A部位的局部放大图;
图 5为本发明第一种实施例中电子膨胀阀在冷媒逆向流动时的结构示 意图;
图 6为本发明第二种实施例中电子膨胀阀在冷媒正向流动时的结构示 意图;
图 6-1为图 6中 B部位的局部放大图;
图 7为本发明第二种实施例中电子膨胀阀在冷媒逆向流动时的结构示 意图。 其中, 图 1至图 3中附图标记与部件名称之间的对应关系为:
Γ阀座; 1Ί主阀腔; Γ2横接口部; Γ3竖接口部; Γ31主阀口; 2'阀芯座; 2Ί副阀腔; 2'2阀芯阀口; 2'3导通孔;
3'阀针部件;
4Ί横接管; 4'2竖接管;
5Ί丝杆; 5'2螺母;
6Ί线圈; 6'2磁体;
7Ί四通阀; T2室外换热器; 7'3第一电子膨胀阀; 7'4第一单向阀; 7'5第二电子膨胀阀; 7'6第二单向阀; 77室内换热器; 7'8压缩机。 图 4至图 7中附图标记与部件名称之间的对应关系为:
1阀座; 11主阀腔; 12横接口部; 13竖接口部; 2阀芯座; 21阀芯 阀口; 3阀针部件; 31轴向安装孔; 32阀针限位部; 321筒状导向部; 322 弯曲部; 33阀针台阶部;
4套筒; 41第一流通孔; 42第二流通孔; 43套筒上腔; 44主阀孔;
441主阀口;
51竖接管; 52横接管;
61丝杆; 丝杆限位部 611 ; 丝杆台阶部 612; 62螺母; 63限位板; 71磁体; 72弹性部件。 具体实施方式
本发明的核心为提供一种电子膨胀阀, 当冷媒逆向流动时, 该电子膨 胀阀的结构设计一方面能够筒化控制程序, 另一方面能够避免阀针部件移 开不及时所导致的丝杆卡死问题, 使得阀芯座能够顺利开启主阀口, 提高 了工作的可靠性。
请参考图 4、 图 4-1和图 5 , 图 4为本发明第一种实施例中电子膨胀阀 在冷媒正向流动时的结构示意图; 图 4-1为图 4中 A部位的局部放大图; 图 5 为本发明第一种实施例中电子膨胀阀在冷媒逆向流动时的结构示意 图。
在基础技术方案中,本发明所提供的电子膨胀阀,如图 4和图 5所示, 包括阀座 1、 竖接管 51和横接管 52, 阀座 1设有竖接口部 13和横接口部 12, 竖接管 51安装于该竖接口部 13上, 横接管 52安装于该横接口部 12 上, 阀座 1设有主阀腔 11 ; 电子膨胀阀还包括与竖接管 51连通的主阀口 441及可开启和关闭该主阀口 441的阀芯座 2, 阀芯座 2设有可与竖接管 51连通的阀芯阀口 21 , 电子膨胀阀还包括可开启和关闭该阀芯阀口 21的 阀针部件 3、 及驱动该阔针部件往复运动的驱动部件, 驱动部件包括与阀 针部件连接的丝杆 61、 及与丝杆 61螺纹配合的螺母 62。 驱动还包括磁体 71 , 该磁体 71在线圈磁场力的作用下带动丝杆 61发生转动。
如图 4所示, 当冷媒正向流动时, 阀芯座 2关闭主阀口 441 , 冷媒经 由阀芯阀口 21流向竖接管 51 , 阀针部件 3在驱动部件的驱动下可调节阀 芯阀口 21的开度; 如图 5所示, 当冷媒逆向移动时, 阀芯座 2上移开启主 阀口 441 , 并阀针部件 3关闭阀芯阀口 21 , 冷媒经由主阀口 441流向横接 管 52。
在上述结构的基础上, 请同时参考图 4、 图 4-1和图 5 , 丝杆 61的底 端安装有丝杆限位部 611 ,所述阀针部件 3上设有阻挡所述丝杆限位部 611 的阀针限位部 32; 所述丝杆 61与所述阀针部件 3之间还设有压缩的弹性 部件 72; 所述丝杆 61与所述阔针部件 3可在预定緩冲距离内发生相对运 动, 以便冷媒逆向流动时, 阀芯座 2上移推动阀针部件 3相对于丝杆 61 发生相对位移而使得阀芯座 2开启主阀口 441。
需要说明的是, 任一种结构, 在弹性部件的支撑下, 只要能够使得丝 杆与阀针部件能够发生相对位移, 均应该在本发明的保护范围之内。 当然, 可以具体设计一种结构。 比如, 如图 4和图 4-1所示, 阀针部件 3开设有 轴向安装孔 31 , 丝杆限位部 611安装在丝杆 61的底端, 并伸入该轴向安 装孔 31中, 阀针限位部 32安装在轴向安装孔 31的开口端; 丝杆 61的底 端与轴向安装孔 31的底壁之间的距离形成所述预定緩冲距离。
在上述工作过程中,由于丝杆 61与阀针部件 3之间具有预定緩冲距离, 因而当阀针部件 3相对于丝杆 61发生足够相对位移时,该预定緩冲距离还 未用尽, 因而能够使得主阀口 441顺利开启; 同时, 阀针部件 3与丝杆 61 之间不会发生刚性接触, 冷媒给予阀芯座 2的推动压力, 不会通过阀针部 件 3传递给丝杆 61 , 因而可以避免丝杆 61由于摩擦力过大而造成卡死的 问题。 此外, 由于不用先期驱动丝杆 61进行动作而移开阀针部件 3 , 因而 该电子膨胀阀的控制程序也得以筒化。
需要说明的是,本发明的重点在于对阀针部件 3与丝杆 61之间的连接 结构作出改进, 因而无论是现有技术中图 2和图 3中的电子膨胀阀 (没有 使用固定的套筒, 单纯的阀芯座 2'在主阀腔 1Ί中移动), 还是本发明图 4 和图 5中的电子膨胀阀(使用固定的套筒 4,阀芯座 2在该套筒 4中移动), 只要其使用本发明的丝杆 61与阀针部件 3的连接结构,就均应该在本发明 的保护范围之内。
具体地, 在上述基础技术方案中, 可以作出进一步改进, 从而得到本 发明的第一种实施例。 具体地, 如图 4、 图 4-1和图 5所示, 阀针部件 3 的外壁上开设有阀针台阶部 33 , 弹性部件 72套装于阀针部件 3的外壁上 并且下端支撑于阔针台阶部 33上;丝杆 61在轴向安装孔 31的外边部分套 装有可移动的限位板 63 , 该限位板 63向上可抵接于丝杆 61的丝杆台阶部 612上, 弹性部件 72的上端抵接限位板 63。
当冷媒逆向流动时, 阀芯座 2推动阀针部件 3向上移动, 弹性部件 72 一端支撑于阀针台阶部 33上, 其另一端抵接限位板 63 , 因而随着阀针部 件 3相对于丝杆 61发生相对位移, 弹性部件 72被压缩。 此外, 需要说明 的是, 在该种实施例中, 由于弹性部件 72设于阀针部件 3的外部, 因而阀 针部件 3的内部不设弹性部件, 因而阀针部件 3的结构筒化, 降低了加工 制造成本。
具体地 ,在上述第一种实施例中,可以对阔针限位部 32作出具体设计。 比如,如图 4-1所示, 阀针限位部 32包括筒状导向部 321 ,筒状导向部 321 的顶端设有向外侧弯曲的弯曲部 322, 该弯曲部 322与轴向安装孔 31的顶 端壁贴合; 丝杆 61的底端导向穿过筒状导向部 321 , 并该筒状导向部 321 的底壁阻挡丝杆限位部 611。 在该种结构中, 筒状导向部 321可以对丝杆 61起到一定的导向作用, 使其轴向运动更加平稳; 此外, 弯曲部 322贴合 于轴向安装孔 31的顶端壁上, 因而能够使得阀针限位部 32较为稳固地安 装于轴向安装孔 31的开口端。
此外, 在上述基础技术方案中, 还可以作出进一步改进, 从而得到本 发明的第二种实施例。 具体地, 请参考图 6、 图 6-1和图 7 , 图 6为本发明 第二种实施例中电子膨胀阀在冷媒正向流动时的结构示意图; 图 6-1为图 6中 B部位的局部放大图; 图 7为本发明第二种实施例中电子膨胀阀在冷 媒逆向流动时的结构示意图。
在该第二种实施例中, 如图 6、 图 6-1和图 7所示, 弹性部件 72设于 轴向安装孔 31的内部, 并其上端 4氏接丝杆限位部 611 , 其下端支撑于轴向 安装孔 31的底壁上。 显然, 该种结构设计也能解决技术问题, 实现发明目 的。
进一步地, 如图 6-1所示, 阀针限位部 32为固定设于轴向安装孔 31 的开口端内壁上的圆环状挡块。 圆环状挡块可以通过过盈配合或焊接的方 式固定于轴向安装孔 31的开口端,在保证工作性能的基础上,该圆环状挡 块结构比较筒单, 因而加工制造成本较低。
在上述任一种技术方案中, 可以对预定緩冲距离作出具体设计, 具体 地, 该预定緩冲距离为范围 1至 5mm; 当然, 该预定緩冲距离也并不限于 此, 该预定緩冲距离具有如下含义: 当冷媒逆向流动时, 假设阀芯座 2顺 利开启主阀口 441需要上移的距离为 H, 则该预定緩冲距离需要大于 H。
在上述任一种技术方案的基础上, 还可以作出进一步改进。
具体地, 如图 4、 图 5、 图 6和图 7所示, 主阀腔 11内固定有套筒 4, 阀芯座 2沿轴向可移动设于套筒 4中, 阀针部件 3的下部伸入套筒 4中开 启和关闭阀芯阀口 21 ; 套筒 4的周向侧壁上设有靠近主阀口 441的第一流 通孔 41、 及远离主阀口 441的第二流通孔 42; 当冷媒正向流动时, 阀芯座 2关闭主阀口 441 , 第一流通孔 41与主阀口 441中断连通, 同时套筒上腔 43通过第二流通孔 42与主阀腔 11连通; 当冷媒逆向流动时, 阀芯座 2上 移开启主阀口 441 , 主阀口 441通过第一流通孔 41与主阀腔 11连通。
如图 4和图 6所示, 当冷媒正向流动时, 横接管 52—侧为高压区, 竖 接管 51—侧为低压区,在冷媒压力差的作用下, 阀芯座 2向下运动关闭主 阀口 441 ; 在此基础上, 冷媒通过第二流通孔 42进入套筒上腔 43 , 当阀针 部件 3开启阀芯阀口 21时,冷媒又通过该阀芯阀口 21进入竖接管 51一侧 , 在此过程中, 阀针部件 3可以随着丝杆 61沿轴向往复运动,从而调节阀芯 阀口 21的开度, 实现电子膨胀阀流量调节的目的。
如图 5和图 7所示, 当冷媒逆向流动时, 竖接管 51—侧为高压区, 横 接管 52—侧为低压区, 在冷媒压力差的作用下, 阀芯座 2向上移动, 从而 开启主阀口 441 , 冷媒通过该主阔口 441 , 进而通过第一流通孔 41 , 流向 横接管 52—侧, 从而实现单向阀单向导通的目的。
在上述工作过程中, 当冷媒正向流动时, 由于阀芯座 2设于套筒 4中, 并且套筒 4固定设于主阀腔 11中,因而高压冷媒对阀芯座 2的压力冲击大 部分由套筒 4承受, 因而阀芯座 2受到的冲击能够明显减小, 因而可以防 止其发生偏心, 从而避免内漏的发生, 保证系统的工作的可靠性。
在上述技术方案中, 可以作出进一步改进。 比如, 如图 5和图 7所示, 阀芯座 2开启主阀口 441时, 阀芯座 2同时关闭第二流通孔 42, 以便中断 套筒上腔 43与主阀腔 11之间的连通。在该种结构中, 当冷媒逆向流动时, 如图 5和图 7所示, 阀芯座 2向上运动同时关闭第二流通孔 42 , 因而冷媒 便不会通过该第二流通孔 42进入套筒上腔 43 , 因而不会产生一个使得阀 芯座 2向下的冷媒压力,从而能够提高阀芯座 2打开主阀口 441的敏感度。
在上述技术方案中, 可以对主阀口 441的形成方式作出具体设计。 比 如, 如图 5所示, 套筒 4的下端部伸入竖接口部 13中, 并由该竖接口部 13支撑; 套筒 4下端部的内壁形成主阀孔 44, 主阀孔 44的上部孔口形成 主阀口 441。 在该种结构中, 在套筒 4的内壁上加工形成主阀口 441 , 相对 于在阀座 1开设主阀口 441的结构, 能够有利于保证套筒 4中的阀芯座 2 与主阀口 441之间的同轴度, 从而有利于提高密封性能。
当然, 本发明对于主阀口 441的形成方式不做限制, 如上文, 任意一 种主阀口的形成结构, 只要在套筒 4中上下移动的阀芯座 2能够关闭和开 启该主阀口, 就均应该在本发明的保护范围之内。 比如, 主阀口 441的形 成方式可以如图 2和图 3所示, 由竖接口部 13的上端孔口形成,在该种结 构中, 套筒 4的下端并不伸入竖接口部 13 , 而是支撑于竖接口部 13周围 的阀座 1内壁上, 因而在套筒 4中移动的阀芯座 2仍然能够开启和关闭主 阀口。 当然, 在该种结构中, 为了使得套筒 4固定可靠, 可以在阀座 1的 内壁上设有环绕主阀口的安装槽, 套筒 4的下端可以固定于该安装槽中。
以上对本发明所提供的电子膨胀阀进行了详细介绍。 本文中应用了具 于帮助理解本发明的方法及其核心思想。 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以对本发明进行若 干改进和修饰, 这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种电子膨胀阀, 包括阀座(1)、 竖接管 (51)和横接管 (52), 所述阀座( 1 )设有主阀腔( 11 );所述电子膨胀阀还包括与所述竖接管( 51 ) 连通的主阀口 (441)及可开启和关闭该主阀口 (441 ) 的阀芯座(2), 所 述阀芯座(2)设有可与所述竖接管 (51 )连通的阀芯阀口 (21 ), 所述电 子膨胀阀还包括可开启和关闭该阀芯阀口 (21 ) 的阀针部件(3)、 及驱动 该阀针部件往复运动的驱动部件, 所述驱动部件包括与所述阔针部件连接 的丝杆(61)、 及与所述丝杆(61)螺纹配合的螺母(62);
当冷媒正向流动时, 所述阀芯座(2)关闭主阀口 (441), 冷媒经由所 述阀芯阀口 (21 ) 流向竖接管 (51), 所述阀针部件 (3)在驱动部件的驱 动下可调节所述阀芯阀口 (21 ) 的开度;
当冷媒逆向移动时, 所述阀芯座(2)上移开启主阀口 (441), 并所述 阀针部件(3)关闭所述阀芯阀口 (21), 冷媒经由所述主阀口 (441)流向 横接管 (52);
其特征在于, 所述丝杆(61 ) 的底端安装有丝杆限位部 (611), 所述 阀针部件(3)上设有阻挡所述丝杆限位部(611 )的阀针限位部(32); 所 述丝杆(61)与所述阀针部件 (3)之间还设有压缩的弹性部件 (72); 所述丝杆( 61 )与所述阀针部件( 3 )可在预定緩冲距离内发生相对运 动, 以便冷媒逆向流动时, 所述阀芯座(2)上移推动所述阀针部件(3) 相对于所述丝杆( 61 )发生相对位移而使得所述阀芯座( 2 )开启所述主阀 口 (441)。
2、 如权利要求 1所述的电子膨胀阀, 其特征在于, 所述阀针部件(3) 开设有轴向安装孔(31 ), 所述丝杆限位部 (611 )安装在所述丝杆(61 ) 的底端, 并伸入该轴向安装孔(31) 中, 所述阀针限位部 (32)安装在轴 向安装孔(31 ) 的开口端;
所述丝杆(61) 的底端与所述轴向安装孔(31 ) 的底壁之间的距离形 成所述预定緩冲距离。
3、 如权利要求 2所述的电子膨胀阀, 其特征在于, 所述阀针部件(3) 的外壁上开设有阀针台阶部( 33 ), 所述弹性部件( 72 )套装于所述阀针部 件(3) 的外壁上并且下端支撑于所述阀针台阶部 (33)上; 所述丝杆(61)在所述轴向安装孔(31 ) 的外边部分套装有可移动的 限位板( 63 ), 该限位板( 63 )向上可抵接于所述丝杆( 61 )的丝杆台阶部 (612)上, 所述弹性部件(72) 的上端抵接所述限位板(63)。
4、如权利要求 3所述的电子膨胀阀,其特征在于,所述阀针限位部( 32 ) 包括筒状导向部(321), 所述筒状导向部(321)的顶端设有向外侧弯曲的 弯曲部 (322), 该弯曲部 (322)与所述轴向安装孔(31 ) 的顶端壁贴合; 所述丝杆(61) 的底端导向穿过所述筒状导向部 (321), 并该筒状导向部 ( 321 ) 的底壁阻挡所述丝杆限位部 ( 611 )。
5、如权利要求 2所述的电子膨胀阀,其特征在于,所述弹性部件(72) 设于所述轴向安装孔( 31 )的内部, 并其上端抵接所述丝杆限位部( 611 ), 其下端支撑于所述轴向安装孔(31) 的底壁上。
6、如权利要求 5所述的电子膨胀阀 ,其特征在于,所述阀针限位部( 32 ) 为固定设于所述轴向安装孔(31) 的开口端内壁上的挡块。
7、 如权利要求 1至 6任一项所述的电子膨胀阀, 其特征在于, 所述预 定緩冲距离的范围为 1mm至 5mm。
8、 如权利要求 1至 6任一项所述的电子膨胀阀, 其特征在于, 所述主 阀腔(11 ) 内固定有套筒(4), 所述阀芯座(2)沿轴向可移动设于所述套 筒(4)中, 所述阀针部件(3)的下部伸入所述套筒(4)中开启和关闭所 述阀芯阀口 (21);
所述套筒 (4) 的周向侧壁上设有靠近所述主阀口 (441) 的第一流通 孔(41)、 及远离所述主阀口 (441 )的第二流通孔(42); 当冷媒正向流动 时, 所述阀芯座(2)关闭所述主阀口 (441), 第一流通孔(41 )与所述主 阀口 ( 441 )中断连通, 同时套筒上腔( 43 )通过第二流通孔( 42 )与主阀 腔( 11 )连通; 当冷媒逆向流动时, 所述阀芯座( 2 )上移开启所述主阀口 ( 441 ), 所述主阔口 ( 441 )通过第一流通孔( 41 )与所述主阔腔( 11 )连 通。
9、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述阀芯座(2) 上移开启所述主阀口( 441 )时,所述阀针部件( 3 )关闭所述阀芯阀口( 21 ), 同时所述阀芯座(2) 关闭所述第二流通孔(42), 以便中断所述套筒上腔 (43 )与所述主阀腔( 11 )之间的连通。
10、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述套筒(4)的 下端由阀座(1) 支撑, 并该套筒 (4) 的下端部包围所述主阀口 (441)。
11、 如权利要求 10所述的电子膨胀阀, 其特征在于, 所述阀座(1) 上开设有安装所述竖接管 (51) 的竖接口部 (13), 所述套筒 (4) 的下端 部伸入所述竖接口部(13)中, 并由该竖接口部(13)支撑; 所述套筒(4) 下端部的内壁形成主阀孔( 44 ), 所述主阀孔( 44 )的上部孔口形成所述主 阀口 ( 441 )„
PCT/CN2012/079933 2012-05-18 2012-08-10 一种电子膨胀阀 WO2013170542A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/399,502 US9689595B2 (en) 2012-05-18 2012-08-10 Electronic expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210155946.6A CN103423460B (zh) 2012-05-18 一种电子膨胀阀
CN201210155946.6 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013170542A1 true WO2013170542A1 (zh) 2013-11-21

Family

ID=49583052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079933 WO2013170542A1 (zh) 2012-05-18 2012-08-10 一种电子膨胀阀

Country Status (2)

Country Link
US (1) US9689595B2 (zh)
WO (1) WO2013170542A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099422A1 (zh) * 2016-11-30 2018-06-07 浙江三花智能控制股份有限公司 电子膨胀阀及具有其的制冷系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023014A1 (zh) * 2012-08-10 2014-02-13 浙江三花股份有限公司 一种电子膨胀阀
CN106439150A (zh) * 2015-08-10 2017-02-22 浙江三花智能控制股份有限公司 阀的壳体组件及阀
CN109803728A (zh) * 2016-10-17 2019-05-24 高露洁-棕榄公司 具有增强的外观和形式的口腔护理组合物
DE102016013492A1 (de) * 2016-11-11 2018-05-17 Hanon Systems Expansions- und Absperrventil
CN108692042A (zh) * 2017-04-12 2018-10-23 杭州三花研究院有限公司 电子膨胀阀
CN209196130U (zh) * 2018-08-02 2019-08-02 浙江盾安禾田金属有限公司 空调及其电子膨胀阀
CN209180369U (zh) * 2018-08-21 2019-07-30 浙江盾安禾田金属有限公司 电子膨胀阀
CN210372066U (zh) * 2019-06-14 2020-04-21 浙江盾安禾田金属有限公司 电子膨胀阀
US20220154984A1 (en) 2019-06-28 2022-05-19 Zhejiang Sanhua Intelligent Controls Co., Ltd. Electronic expansion valve
JP7370833B2 (ja) 2019-11-29 2023-10-30 株式会社鷺宮製作所 配管の接続構造、および、それを備える弁装置
DE102020124871A1 (de) * 2019-12-04 2021-06-10 ECO Holding 1 GmbH Expansionsventil
CN111412684B (zh) * 2020-04-20 2020-12-15 珠海格力电器股份有限公司 节流元件失效的控制方法及空调
CN214197319U (zh) * 2020-12-14 2021-09-14 广东威灵电机制造有限公司 螺母、电子膨胀阀及其止动结构和制冷设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345306A (en) * 1942-02-24 1944-03-28 Adel Prec Products Corp Fluid controlled valve
CN1297518A (zh) * 1999-03-26 2001-05-30 株式会社鹭宫制作所 电动阀
CN201327255Y (zh) * 2008-07-11 2009-10-14 株式会社鹭宫制作所 电动膨胀阀及冷冻循环系统
US20090293520A1 (en) * 2008-05-29 2009-12-03 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
CN102042416A (zh) * 2009-10-09 2011-05-04 浙江三花股份有限公司 电子膨胀阀
CN202182593U (zh) * 2011-08-05 2012-04-04 株式会社鹭宫制作所 膨胀阀、热泵式制冷循环设备和空气处理机组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145507A (ja) 1994-11-24 1996-06-07 Sanyo Electric Co Ltd 冷媒流量制御弁及び冷媒流量制御弁を用いた冷凍装置
JP2001041596A (ja) * 1999-07-30 2001-02-16 Denso Corp 冷凍サイクル装置
JP2004183756A (ja) 2002-12-02 2004-07-02 Fuji Koki Corp 電動弁
JP4285155B2 (ja) 2003-08-27 2009-06-24 ダイキン工業株式会社 多段電動膨張弁及び冷凍装置
CN200968423Y (zh) 2006-11-16 2007-10-31 鞍山电磁阀有限责任公司 智能型套筒式高温高压电磁阀
US7854390B2 (en) 2008-05-29 2010-12-21 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
CN102252119A (zh) 2010-05-21 2011-11-23 浙江三花股份有限公司 一种电动阀及包括该电动阀的热交换装置
JP5480753B2 (ja) 2010-08-25 2014-04-23 株式会社鷺宮製作所 電動弁

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345306A (en) * 1942-02-24 1944-03-28 Adel Prec Products Corp Fluid controlled valve
CN1297518A (zh) * 1999-03-26 2001-05-30 株式会社鹭宫制作所 电动阀
US20090293520A1 (en) * 2008-05-29 2009-12-03 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
CN201327255Y (zh) * 2008-07-11 2009-10-14 株式会社鹭宫制作所 电动膨胀阀及冷冻循环系统
CN102042416A (zh) * 2009-10-09 2011-05-04 浙江三花股份有限公司 电子膨胀阀
CN202182593U (zh) * 2011-08-05 2012-04-04 株式会社鹭宫制作所 膨胀阀、热泵式制冷循环设备和空气处理机组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099422A1 (zh) * 2016-11-30 2018-06-07 浙江三花智能控制股份有限公司 电子膨胀阀及具有其的制冷系统

Also Published As

Publication number Publication date
CN103423460A (zh) 2013-12-04
US9689595B2 (en) 2017-06-27
US20150121951A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
WO2013170542A1 (zh) 一种电子膨胀阀
WO2013166791A1 (zh) 一种电子膨胀阀
WO2013189120A1 (zh) 一种电子膨胀阀
WO2013166790A1 (zh) 一种电子膨胀阀
WO2013177865A1 (zh) 一种电子膨胀阀
CN103511636B (zh) 一种电子膨胀阀
US10670011B2 (en) Electronic expansion valve
JP5022120B2 (ja) 冷暖房システム用の電動弁
JP5572330B2 (ja) 電動弁
US9121522B2 (en) Electrically operated valve
EP2889553A1 (en) Flow control valve, use of the same, refrigerating system and method for controlling the same
US9631850B2 (en) Thermal expansion valve with one-way control function
KR102139095B1 (ko) 냉난방 시스템용 전자식 팽창밸브
CN107304843A (zh) 电子膨胀阀
WO2012065437A1 (zh) 一种膨胀阀
US20120211683A1 (en) Valve apparatus
JP2013221640A (ja) 空気調和装置
JP7123020B2 (ja) 電動弁及び冷凍サイクルシステム
JP2010249247A (ja) 電動弁及びそれが用いられた冷凍サイクル
JP5862704B2 (ja) 空気調和装置
CN111365515B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
JP5921821B2 (ja) 電動弁
CN202835952U (zh) 一种电子膨胀阀
JP7317191B2 (ja) 電動弁及び冷凍サイクルシステム
CN217977701U (zh) 一种电子膨胀阀的阀针组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876870

Country of ref document: EP

Kind code of ref document: A1