WO2013166790A1 - 一种电子膨胀阀 - Google Patents

一种电子膨胀阀 Download PDF

Info

Publication number
WO2013166790A1
WO2013166790A1 PCT/CN2012/079927 CN2012079927W WO2013166790A1 WO 2013166790 A1 WO2013166790 A1 WO 2013166790A1 CN 2012079927 W CN2012079927 W CN 2012079927W WO 2013166790 A1 WO2013166790 A1 WO 2013166790A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
valve
electronic expansion
nut
seat
Prior art date
Application number
PCT/CN2012/079927
Other languages
English (en)
French (fr)
Inventor
詹才意
Original Assignee
浙江三花股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花股份有限公司 filed Critical 浙江三花股份有限公司
Priority to US14/399,503 priority Critical patent/US9297562B2/en
Publication of WO2013166790A1 publication Critical patent/WO2013166790A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seat
    • F16K25/04Arrangements for preventing erosion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • F16K3/265Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member with a sleeve sliding in the direction of the flow line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86928Sequentially progressive opening or closing of plural valves
    • Y10T137/86936Pressure equalizing or auxiliary shunt flow
    • Y10T137/86944One valve seats against other valve [e.g., concentric valves]
    • Y10T137/8696Gate

Definitions

  • the invention relates to the technical field of fluid control components, and in particular to an electronic expansion valve. Background technique
  • the high-temperature and high-pressure gaseous refrigerant from the exhaust pipe of the compressor 7'8 passes through the D-connector of the four-way valve 7 ⁇ , the E-connector, the outdoor exchanger 7'2 (condensation heat release), and the first check valve 7 '4 (the first electronic expansion valve 7'3 does not adjust), the second electronic expansion valve 7'5 (when the second check valve 7'6 is closed, the second electronic expansion valve 7'5 acts as a flow regulator ), eventually entering the indoor exchanger 77 to evaporate and absorb heat for cooling.
  • the second electronic expansion valve 7'6 is closer to the indoor exchanger 77, heat loss can be reduced (if the electronic expansion valve is too far from the evaporator, the low-temperature low-pressure liquid refrigerant from the electronic expansion valve is easily gas-filled. It not only causes heat loss, but also greatly reduces the utilization rate of the evaporator).
  • the medium-temperature and high-pressure refrigerant from the outdoor heat exchanger 7'2 passes through the first electronic expansion valve 7'3, even if the expansion valve is fully opened, the throttling effect will occur, and the cooling is reduced.
  • the pressure of the agent is transferred to the second electronic expansion valve 7'5, the refrigerant is likely to partially vaporize, affecting the throttling effect of the electronic expansion valve and reducing the system efficiency.
  • the high-temperature and high-pressure gaseous refrigerant from the compressor 7'8 exhaust pipe passes through the D-connector of the four-way valve 7 ⁇ , the C-connector, the indoor exchanger 77 (condensation heat release), and the second check valve 7' 6 (the second electronic expansion valve 7'5 does not adjust), the first electronic expansion valve 7'3 (at this time, the first check valve 7'4 is closed, and the first electronic expansion valve 7'3 is used for flow regulation) Finally, enter the outdoor exchanger 7'2 to evaporate and absorb heat for cooling.
  • the first electronic expansion valve 7'3 is closer to the outdoor exchanger 7'2
  • the heat loss can be reduced (if the electronic expansion valve is too far from the evaporator, the low-temperature low-pressure liquid refrigerant coming out of the electronic expansion valve is easily vaporized, which not only causes heat loss, but also greatly reduces the evaporator utilization).
  • the medium-temperature and high-pressure refrigerant from the indoor heat exchanger 77 passes through the second electronic expansion valve 7'5, even if the expansion valve is fully opened, the throttling effect will occur, and the refrigerant is lowered.
  • the pressure, when the first electronic expansion valve 7'3 flows, will partially vaporize the refrigerant, affecting the throttling effect of the electronic expansion valve and reducing the system efficiency.
  • Japanese Patent Laid-Open No. 2009-287913 discloses an electronic expansion valve with a check valve function. Specifically, please refer to FIG. 2 and FIG. 3, FIG. The schematic diagram of the electronic expansion valve in the prior art when the flow rate is adjusted, and FIG. 3 is a schematic structural view of the prior art electronic expansion valve in the reverse conduction direction.
  • the prior art electronic expansion valve includes a valve seat 1'.
  • the valve seat 1' is provided with a main valve chamber 1'1, a horizontal interface portion ⁇ 2, and a vertical interface portion ⁇ 3.
  • the upper end opening of the portion 3 forms a main valve port ⁇ 31;
  • the main valve chamber 1 ⁇ is provided with a valve core seat 2 ′, and the valve core seat 2 ′ is guided by the circumferential side wall thereof to the circumferential inner side wall of the main valve chamber 1 ,. So that it can reciprocate in the axial direction of the main valve chamber 1 ⁇ , thereby opening and closing the main valve port 1'31; further, as shown in FIG. 2 and FIG.
  • valve core seat 2' is provided with a sub-valve chamber 2 ⁇ , a spool
  • the seat 2' is provided with a spool valve port 2'2 communicating with the auxiliary valve chamber 2, and the valve needle member 3' projects into the sub-valve chamber 2b and reciprocates in the axial direction, thereby opening and closing the spool valve port 2'2;
  • the circumferential side wall of the valve core seat 2' is further provided with a through hole 2'3 communicating with the sub valve chamber 2', the through hole 2' 3 faces the horizontal interface portion ⁇ 2 and communicates with the sub-valve chamber 2A and the lateral interface portion 1'2.
  • the horizontal joint portion 1'2 is connected to the cross pipe 4'
  • the vertical joint portion 1'3 is connected to the vertical pipe 4'2
  • the refrigerant fluid flows from the cross pipe 4 to the vertical pipe 4'2.
  • the horizontal interface part 1 '2 the side is the high pressure area
  • the vertical interface part ⁇ 3 the side is the low pressure area
  • the refrigerant fluid flows from the vertical connection pipe 1′3 to the transverse connection pipe 1′2 (also That is, the vertical interface portion 1'3 - the side is the high pressure region, and the lateral interface portion 1 '2 - the side is the low pressure region) is positioned to flow in the reverse direction.
  • the needle member 3' is connected to the lead screw 5', and the screw rod 5'' is screwed to the nut 5'2; in this configuration, under the action of the magnetic field of the coil 6, the magnet 6'2 rotates, the screw rod 5 turns and the nut 5'2 thread fit thus along the shaft The reciprocating motion causes the valve needle member 3' to reciprocate in the axial direction to open or close the spool valve port 2'2.
  • the spool seat 2' moves downward. , thereby closing the main valve port 1'31; on this basis, the refrigerant enters the sub-valve chamber 2 ⁇ through the through-hole 2'3 through the transverse port portion 1'2, and the valve needle member 3' opens the spool valve port 2'2,
  • the refrigerant entering the secondary valve chamber 2 ⁇ flows from the spool valve port 2'2 to the vertical port portion 1'3, and then flows into the vertical pipe 4'2.
  • the axial movement of the screw rod 5 allows the valve needle member 3' to adjust the opening degree of the spool valve port 2'2, thereby achieving the purpose of adjusting the flow rate of the electronic expansion valve.
  • the technical problem to be solved by the present invention is to provide an electronic expansion valve.
  • the structural design of the electronic expansion valve can prevent the high pressure refrigerant from causing excessive impact on the valve core seat, preventing eccentricity thereof, thereby avoiding internal
  • the occurrence of leakage ensures the reliability of the system work.
  • the present invention provides an electronic expansion valve including a valve seat, a vertical pipe and a cross pipe, the valve seat is provided with a main valve cavity; the electronic expansion valve further includes a communication with the vertical pipe a main valve port and a spool seat that can open and close the main valve port, the valve core seat is provided with a spool valve port connectable with the vertical pipe, and the electronic expansion valve further comprises a valve that can open and close the valve a valve stem component of the core valve port;
  • the electronic expansion further includes a driving component, the driving component comprising a screw rod and a nut threadedly engaged with the screw rod, the lower end portion of the screw rod forming the valve needle member;
  • a sleeve is fixed in the main cavity, and an upper portion of the sleeve is engaged with the nut, and the valve core seat is movably disposed in the sleeve in an axial direction, and a lower end portion of the screw rod extends into the sleeve Opening and closing the spool valve port in the sleeve;
  • a first flow hole adjacent to the main valve port is disposed on a circumferential side wall of the sleeve, and a second flow hole connecting the main valve cavity and the upper cavity of the sleeve is opened on the nut;
  • the lower end of the sleeve is supported by a valve seat, and the lower end of the sleeve includes the main valve port.
  • the wide seat is provided with a vertical interface portion for mounting the vertical pipe, and a lower end portion of the sleeve extends into the vertical interface portion and is supported by the vertical interface portion;
  • the inner wall forms a main valve bore, and the upper orifice of the main valve bore forms the main valve port.
  • the peripheral outer wall of the lower end portion of the spool seat forms a spool seat seal that opens and closes the main valve port.
  • the inner wall of the vertical interface portion is provided with an interface step portion
  • the outer portion of the lower end portion of the sleeve is provided with a first sleeve step portion, and the first sleeve step portion is supported on the interface step portion.
  • the outer portion of the lower end portion of the sleeve is further provided with a second sleeve step portion, the vertical connection tube is sleeved outside the lower end portion of the sleeve, and the top end surface of the vertical connection tube abuts the second portion Sleeve step.
  • the wide core seat is provided with a wide core through hole in the axial direction, and the upper end opening of the wide core through hole forms the valve plug valve port.
  • a lower portion of the nut is provided with a nut inner guiding hole, and an upper portion of the sleeve is provided with an outer sleeve guiding portion matched with the inner guiding hole of the nut;
  • the lower end of the sleeve outer guiding portion is provided with a third sleeve step portion, and the lower end surface of the nut is further supported on the third sleeve step portion.
  • the third sleeve step extends downward in the axial direction, and the first through hole further opens on the third sleeve step in the radial direction of the sleeve.
  • the inner working of the sleeve is formed with a spool seat guide hole disposed coaxially and a main valve bore of the upper port forming a main valve port.
  • the electronic expansion is further fixed to a positioning plate disposed inside the main cavity, the positioning plate is provided with a non-circular shaped hole, and a circumferential outer wall of the lower portion of the nut is provided with the non-circular shape
  • the holes cooperate to limit the non-circular shaped portion of the nut that rotates.
  • a third flow hole is defined in the positioning plate, and a main valve cavity below the positioning plate communicates with the second flow hole through the third flow hole.
  • a circumferential outer wall of the lower portion of the nut is provided with a nut step portion, and a circumferential outer wall of the nut is fitted with an elastic member elastically compressed between the positioning plate and the nut step portion.
  • the electronic expansion valve provided by the present invention further includes a driving component, and the driving component includes a screw rod that reciprocates in the axial direction and a nut that is screwed with the screw rod, the screw rod The lower end portion forms the wide needle member;
  • a sleeve is fixed in the main cavity, and an upper portion of the sleeve is engaged with the nut. Further, a lower end portion of the sleeve may be supported by a valve seat, and a lower end portion of the sleeve may surround the main valve port
  • the spool seat is axially displaceably disposed in the sleeve, and a lower end portion of the lead screw extends into the sleeve to open and close the spool valve port;
  • a first flow hole adjacent to the main valve port is disposed on a circumferential side wall of the sleeve, and a second flow hole connecting the main cavity and the upper cavity of the sleeve is opened on the nut;
  • the side of the cross pipe When the refrigerant flows in the forward direction, the side of the cross pipe is a high pressure zone, and the side of the pipe is a low pressure zone. Under the action of the pressure difference of the refrigerant, the spool seat moves downward to close the main valve port; on this basis, the refrigerant passes through The two flow holes enter the upper cavity of the sleeve.
  • the valve needle member opens the valve port of the valve core, the refrigerant enters the side of the vertical pipe through the valve port of the valve core. In the process, the valve needle member can follow the axial direction of the screw rod. The reciprocating motion adjusts the opening of the spool valve port to achieve the purpose of adjusting the flow rate of the electronic expansion valve.
  • one side of the vertical pipe is a high pressure zone, and one side of the pipe is a low pressure zone.
  • the spool seat moves upward, thereby opening the main valve port, and the refrigerant passes through the main valve port, and then flows through the first flow hole to the side of the cross pipe, thereby achieving the purpose of one-way valve single-pass.
  • the refrigerant flows in through the second flow hole provided in the nut, and the position of the nut is higher than the valve core seat, so that the position of the second flow hole is higher than the valve core seat, that is, the second flow hole of the refrigerant from above the valve core seat Inflow, it is also possible to reduce the impact of the refrigerant on the valve plug seat.
  • the electronic expansion valve provided by the invention can prevent the high pressure refrigerant from causing excessive impact on the valve core seat and prevent eccentricity, thereby avoiding the occurrence of internal leakage and ensuring the reliability of the operation of the system.
  • FIG. 1 is a schematic view showing the working principle of an air conditioning refrigeration system in the prior art
  • FIG. 2 is a schematic structural view of a prior art electronic expansion valve when the flow rate is adjusted
  • FIG. 3 is a schematic structural view of the prior art electronic expansion valve when the reverse flow is performed
  • FIG. 4 is a schematic view showing the structure of an electronic expansion valve in the forward flow adjustment according to an embodiment of the present invention
  • Figure 5 is a schematic view showing the structure of the electronic expansion valve of Figure 4 in reverse conduction
  • Figure 6 is a schematic structural view of the sleeve of the electronic expansion valve of Figures 4 and 5;
  • Figure 7 is a schematic view showing the structure of the valve core seat of the electronic expansion valve of Figures 4 and 5;
  • Figure 8 is a partial enlarged view of the portion A of Figure 5;
  • Figure 9 is a schematic view showing the structure of the nut of the electronic expansion valve of Figures 4 and 5;
  • Figure 9-1 is a cross-sectional view of the nut of Figure 9;
  • Figure 10 is a schematic view showing the structure of the positioning plate of the electronic expansion valve of Figures 4 and 5.
  • the correspondence between the reference numerals and the component names in FIGS. 1 to 3 is: ⁇ Valve seat; 1 ⁇ Main valve cavity; ⁇ 2 transverse interface part; ⁇ 3 vertical interface part; ⁇ 31 main valve port; 2' spool seat; 2 ⁇ Sewer valve cavity; 2'2 spool valve port; 2'3 through hole;
  • valve seat 11 main valve cavity; 12 horizontal interface; 13 vertical interface; 131 interface step; 2 spool seat; 21 spool valve port; 22 valve seat seal; 23 spool seat through hole;
  • the core of the invention provides an electronic expansion valve.
  • the structure of the electronic expansion valve can prevent the high pressure refrigerant from causing excessive impact on the valve core seat, preventing eccentricity, thereby avoiding the occurrence of internal leakage. , to ensure the reliability of the work of the system.
  • FIG. 4 is a forward flow of an electronic expansion valve according to an embodiment of the present invention. Schematic diagram of the structure when the flow rate is adjusted;
  • FIG. 5 is a schematic structural view of the electronic expansion valve of FIG.
  • the electronic expansion valve provided by the present invention comprises a valve seat 1, and the valve seat 1 is provided with a main valve chamber 11, a horizontal interface portion 12 and a vertical interface portion 13,
  • the horizontal interface portion 12 is mounted with a cross pipe 52
  • the vertical interface portion 13 is mounted with a vertical pipe 51;
  • the electronic expansion valve further includes a main valve port 441 communicating with the vertical pipe 51 and a valve core seat 2 capable of opening and closing the main valve port 441
  • the spool seat 2 is provided with a spool valve port 21 that can communicate with the riser tube 51.
  • the electronic expansion valve further includes a valve needle member 611 that can open and close the spool valve port 21.
  • the electronic expansion valve further includes a driving member including a screw rod 61 that reciprocates in the axial direction and a nut 62 that is screwed with the screw rod 61, and the screw rod 61
  • the lower end portion forms a valve needle member 611; a sleeve 4 is fixed in the main valve chamber 11, and an upper portion of the sleeve 4 is engaged with a nut 62, and a lower end portion of the sleeve 4 is supported by the valve seat 1, and the sleeve 4 is
  • the lower end portion surrounds the main valve port 441; the spool seat 2 is movably disposed in the sleeve 4 in the axial direction, and the lower end portion of the screw rod 61 projects into the sleeve 4 to open and close the spool valve port 21.
  • the circumferential side wall of the sleeve 4 is provided with a first flow hole 41 close to the main valve port 441, and the nut 62 is open to communicate with the main cavity 11 and the sleeve upper chamber 43.
  • the second flow hole 622 when the fluid medium flows from the cross pipe 52 to the vertical pipe 51, the valve core seat 2 closes the main valve port 441, the first flow hole 41 is disconnected from the main valve port 441, and the sleeve upper chamber 43 passes
  • the second flow hole 622 communicates with the main valve chamber 11; when the fluid medium flows from the vertical pipe 51 to the cross pipe 52, the valve core seat 2 opens the main valve port 441, and the main valve port 441 passes through the first flow hole 41 and the main valve chamber 11 Connected.
  • the cross pipe 52 When the refrigerant flows in the forward direction, the cross pipe 52 is a high pressure zone, and the vertical pipe 51 is a low pressure zone. Under the action of the refrigerant pressure difference, the spool seat 2 moves downward to close the main valve port 441; on this basis The refrigerant enters the sleeve upper chamber 43 through the second circulation hole 622.
  • the valve needle member 611 opens the spool valve port 21, the refrigerant enters the side of the vertical connection tube 51 through the spool valve port 21, in the process, the valve The needle member 611 can reciprocate in the axial direction with the screw rod 61, thereby adjusting the opening degree of the spool valve port 21, and achieving the purpose of adjusting the flow rate of the electronic expansion valve.
  • the vertical pipe 51 is a high pressure zone
  • the cross pipe 52 is a low pressure zone.
  • the spool seat 2 moves upward, thereby opening the main valve port 441.
  • the refrigerant passes through the main valve port 441 and further flows through the first flow hole 41 to the side of the cross pipe 52, thereby achieving the purpose of the one-way valve being single-passed.
  • the refrigerant flows in through the second flow hole 622 provided in the nut 62, and the position of the nut 62 is higher than the valve body seat 2, so that the position of the second flow hole 622 is higher than that of the valve core seat 2, that is, the refrigerant is held by the valve core seat Since the second flow hole 622 in the upper portion flows in, the impact of the refrigerant on the valve body seat 2 can be reduced.
  • FIG. 6 is a schematic structural view of the sleeve of the electronic expansion valve of FIGS. 4 and 5;
  • FIG. 7 is a schematic structural view of the valve core seat of the electronic expansion valve of FIGS. 4 and 5.
  • Figure 8 is a partial enlarged view of the portion A of Figure 5.
  • the specific design of the main valve port 441 can be made.
  • the lower end portion of the sleeve 4 projects into and is supported by the vertical interface portion 13; the inner wall of the lower end portion of the sleeve 4 forms a main valve hole 44, the main valve hole The upper orifice of 44 forms a main valve port 441.
  • the main valve port 441 is formed on the inner wall of the sleeve 4, and the structure in which the main valve port 441 is opened in the valve seat 1 can facilitate the securing of the spool seat 2 and the main valve in the sleeve 4.
  • the coaxiality between the ports 441 is advantageous for improving the sealing performance.
  • the present invention does not limit the manner in which the main valve port 441 is formed.
  • any of the main valve port forming structures should be closed and opened as long as the spool seat 2 moving in the sleeve 4 can be closed and opened.
  • the main valve port 441 can be formed in the manner of the upper end opening of the vertical interface portion 13 as shown in FIGS. 2 and 3.
  • the lower end of the sleeve 4 does not extend into the vertical interface portion 13, Rather, it is supported on the inner wall of the valve seat 1 around the vertical interface portion 13, and the spool seat 2 moving in the sleeve 4 can also be opened and closed.
  • a mounting groove surrounding the main valve port may be provided on the inner wall of the valve seat 1, and the lower end of the sleeve 4 may be fixed in the mounting groove.
  • the circumferential outer wall of the lower end portion of the valve core seat 2 forms a valve body seat sealing portion 22 that opens and closes the main valve port 441.
  • the spool seat seal 22 cooperates with the main valve port 441 in the sleeve 4 to achieve the purpose of opening or closing.
  • a specific design of the mounting structure between the lower end of the sleeve 4 and the vertical interface portion 13 can also be made. For example, as shown in FIG.
  • the inner wall of the vertical interface portion 13 is provided with an interface step portion 131, and the outer portion of the lower end portion of the sleeve 4 is provided with a first sleeve step portion 45, and the first sleeve step portion 45 is supported at the interface step portion. 131.
  • This structural design facilitates the axial support of the sleeve 4 and the reliability of the support is high.
  • the outer portion of the lower end portion of the sleeve 4 is further provided with a second sleeve step portion 46.
  • the electronic expansion valve further includes a vertical tube 51, and the vertical tube 51 is sleeved on the outside of the lower end portion of the sleeve 4.
  • the top end surface of the vertical pipe 51 abuts against the second sleeve step portion 46.
  • the spool seat 2 is provided with a spool seat through hole 23 in the axial direction, and the upper end port of the spool seat through hole 23 forms a spool valve port 21.
  • the valve needle member 3 is engaged with the spool valve port 21, so that the opening degree of the spool valve port 21 can be adjusted, thereby achieving the purpose of adjusting the flow rate of the electronic expansion valve.
  • the valve core seat 2 can make the valve core seat through hole 23 longer as required, for example, 5 mm, so that the valve core seat 2 is of a long cylinder type, thereby reducing the noise generated when the refrigerant passes. .
  • Fig. 9 is a schematic structural view of the nut of the electronic expansion valve of Fig. 4 and Fig. 5;
  • Fig. 9-1 is a sectional view of the nut of Fig. 9.
  • the lower part of the nut is provided with a nut inner guiding hole 621.
  • the upper part of the sleeve 4 is provided with a sleeve outer guiding portion 47, as shown in Fig. 4 and Fig. 5, outside the sleeve.
  • the guide portion 47 is fitted into the nut inner guide hole 621.
  • the lower end of the sleeve outer guide portion 47 is provided with a third sleeve step portion 42, and the lower end surface of the nut 62 is further supported on the third sleeve step portion 42.
  • the inner guide hole 621 of the nut is engaged with the outer guide portion 47 of the sleeve, so that the sleeve 4 and the nut 62, and thus the screw 61, are kept in good coaxiality.
  • the upper portion of the sleeve 4 may be provided with a sleeve inner guide hole
  • the outer end of the nut 62 may be provided with an outer nut guide portion so that the outer nut guide portion fits into the guide hole in the sleeve.
  • the third sleeve step portion 42 extends downward in the axial direction and extends to the first sleeve step portion 45, and the first flow hole 41 is further opened in the radial direction of the sleeve 4.
  • a circumferential projection is formed on the circumferential side wall of the sleeve 4, and a top wall of the circumferential projection forms a third sleeve step portion 42.
  • the bottom wall of the circumferential projection portion forms a first portion.
  • a sleeve step portion 45, the first flow hole 41 is opened on the circumferential projection.
  • the inner portion of the sleeve 4 is formed with a spool seat guide hole 48 disposed coaxially and a main valve hole 44 of the upper port forming a main valve port 441.
  • the spool The seat guide hole 48 and the main valve hole 44 can be integrally formed so that a good coaxiality can be maintained between the two; at the same time, the upper end opening of the main valve hole 44 forms the main valve port 441, and thus the spool seat 2 and A good degree of coaxiality can be maintained between the main valve ports 441.
  • the spool seat 2 is axially moved along the spool seat guide hole 48, so that a good coaxiality can be maintained between the spool seat 2 and the main valve port 441. Therefore, the sealing performance of the spool seat sealing portion 22 to the main valve port 441 can be ensured, and the occurrence of internal leakage can be prevented.
  • FIG. 10 is a schematic structural view of the positioning plate of the electronic expansion valve of FIGS. 4 and 5.
  • the electronic expansion valve also fixes the positioning plate 8 disposed inside the main valve chamber 11.
  • the positioning plate 8 is provided with a non-circular shaped hole 81, as shown in FIG.
  • the lower outer peripheral wall of the lower portion of the 62 is provided with a non-circular shaped portion 623 that cooperates with the non-circular shaped hole 81 to restrict the rotation of the nut 62.
  • non-circular shaped hole and the non-circular shaped portion of any structure can prevent the nut 62 from rotating relative to the positioning plate 8, and should be in the protection scope of the present invention.
  • it can be a triangle, a quadrangle or a polygonal structure.
  • the positioning plate 8 is provided with a third flow hole.
  • the main valve chamber 11 below the positioning plate 8 communicates with the second flow hole 622 through the third flow hole 82. In this configuration, when the refrigerant flows in the forward direction, the refrigerant passes through the third flow hole 82 and further flows into the second flow hole 622.
  • a nut step portion is provided on a circumferential outer wall of the lower portion of the nut 62.
  • the circumferential outer wall of the nut is provided with an elastic member 9 that is elastically compressed between the positioning plate 8 and the nut step.
  • the second flow hole 622 on the nut 62 is disposed in the axial direction.
  • the refrigerant passes from the transverse pipe 52 through the third flow hole 82 on the positioning plate 8, the second flow hole 622 on the nut 62, and the upper cavity of the sleeve. 43.
  • the spool valve port 21 flows to the end of the vertical pipe 51.
  • the magnet 71 rotates, the magnet 71 drives the screw 61 to rotate, and the positioning plate 8 limits the rotation of the nut 62, and the elastic force of the elastic member 9 and the sleeve 4 restrict the axial movement of the nut 62.
  • the screw rod 61 When the rod 61 and the nut 62 are screwed together, the screw rod 61 is moved up and down, so that the needle needle member 611 formed at the lower end portion of the screw rod 61 opens or closes the spool valve port 21.
  • the screw 61 When the valve is fully closed, the screw 61 is rotated until the lower end portion (i.e., the needle member 611) contacts the spool valve port 21, and the screw 61 cannot continue to move downward.
  • the magnet 71 and the screw 61 continue to rotate, and the screw 61 is transmitted to the nut 62 by the screw on the screw 61 by the thrust of the spool valve port 21, and the nut 62 compresses the elastic member 9 to move upward, thereby setting the product to open. Valve pulse.

Abstract

一种电子膨胀阀,包括驱动部件,驱动部件包括沿轴向往复运动的丝杆(61)及与丝杆(61)螺纹配合的螺母(62),丝杆(61)的下端部形成阀针部件(611);主阀腔(11)内固定有套筒(4),套筒(4)的上部与螺母(62)配合,套筒(4)的下端部由阀座(1)支撑并包围主阀口(441);阀芯座(2)沿轴向可移动设于套筒(4)中,丝杆(61)的下端部伸入套筒(4)中开启和关闭阀芯阀口(21)。当冷媒正向流动时,该电子膨胀阀的结构设计能够避免高压冷媒对阀芯座(2)造成过大冲击,防止其发生偏心。

Description

一种电子膨胀阀 本申请要求于 2012 年 05 月 11 日提交中国专利局、 申请号为 201210146266.8, 发明名称为"一种电子膨胀阀"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及流体控制部件技术领域, 特别涉及一种电子膨胀阀。 背景技术
在空调市场, 由于其室内机与室外机距离较远, 因此采用了两个电子 膨胀阀, 而两个电子膨胀阀必须分别并联单向阀才能最大限度的提高系统 效率。 其系统原理图如图 1 , 工作原理筒述如下:
制冷时: 从压缩机 7'8排气管出来的高温高压的气态制冷剂通过四通 阀 7Ί的 D接管、 E接管、 室外交换器 7'2 (冷凝放热)、第一单向阀 7'4 (第 一电子膨胀阀 7'3不起调节作用)、 第二电子膨胀阀 7'5 (此时第二单向阀 7'6关闭, 第二电子膨胀阀 7'5起流量调节作用), 最终进入室内交换器 77 蒸发吸收热量制冷。 此时由于第二电子膨胀阀 7'6与室内交换器 77较近, 可以减少热量损失(如果电子膨胀阀距离蒸发器太远, 那么从电子膨胀阀 出来的低温低压的液态制冷剂很容易气化, 不仅造成热损失, 也使得蒸发 器利用率大幅度下降)。 同时, 从室外换热器 7'2出来的中温、 高压的制冷 剂如果从第一电子膨胀阀 7'3 经过, 即使在膨胀阀全开的条件下, 仍会出 现节流效果, 降低了制冷剂的压力, 待传到第二电子膨胀阀 7'5 时制冷剂 很可能会部分气化, 影响电子膨胀阀的节流效果, 降低系统效率。
制热时: 从压缩机 7'8排气管出来的高温高压的气态制冷剂通过四通 阀 7Ί的 D接管、 C接管、 室内交换器 77 (冷凝放热)、第二单向阀 7'6 (第 二电子膨胀阀 7'5不起调节作用)、 第一电子膨胀阀 7'3 (此时第一单向阀 7'4关闭, 第一电子膨胀阀 7'3起流量调节作用), 最终进入室外交换器 7'2 蒸发吸收热量制冷。 此时由于第一电子膨胀阀 7'3与室外交换器 7'2较近, 可以减少热量损失(如果电子膨胀阀距离蒸发器太远, 那么从电子膨胀阀 出来的低温低压的液态制冷剂很容易气化, 不仅造成热损失, 也使得蒸发 器利用率大幅度下降)。 同时, 从室内换热器 77出来的中温、 高压的制冷 剂如果从第二电子膨胀阀 7'5 经过, 即使在膨胀阀全开的条件下, 仍会出 现节流效果, 降低了制冷剂的压力, 待流到第一电子膨胀阀 7'3 时制冷剂 会部分气化, 影响电子膨胀阀的节流效果, 降低系统效率。
但是, 目前市场上有客户要求将单向阀和电子膨胀阀合并, 从而减少 零部件, 减少焊点, 进而提高系统的可靠性。
鉴于此, 现有技术中, 专利号为 "特开 2009-287913" 的日本专利公 开了一种带单向阀功能的电子膨胀阀, 具体地, 请参考图 2和图 3 , 图 2 为现有技术中的电子膨胀阀正向进行流量调节时的结构示意图, 图 3为现 有技术中的电子膨胀阀逆向导通时的结构示意图。
如图 2和图 3所示, 该现有技术中的电子膨胀阀包括阀座 1', 阀座 1' 设有主阀腔 1'1、 横接口部 Γ2和竖接口部 Γ3 , 该竖接口部 Γ3的上端开口 形成主阀口 Γ31 ; 主阀腔 1Ί内设有阀芯座 2',该阀芯座 2'以其周向侧壁与 主阀腔 1Ί的周向内侧壁贴合导向, 以便可沿主阀腔 1Ί的轴向往复运动, 从而开启和关闭主阀口 1'31; 此外, 如图 2和图 3所示, 该阀芯座 2'设有 副阀腔 2Ί , 阀芯座 2'设有与该副阀腔 2Ί连通的阀芯阀口 2'2, 阀针部件 3'伸入该副阀腔 2Ί中并沿轴向往复运动,从而开启和关闭该阀芯阀口 2'2; 再者, 如图 2和图 3所示, 阀芯座 2'的周向侧壁上还开设有与副阀腔 2Ί 连通的导通孔 2'3 , 该导通孔 2'3朝向横接口部 Γ2, 并连通副阀腔 2Ί与横 接口部 1'2。
此外, 如图 2和图 3所示, 横接口部 1 '2连接有横接管 4Ί , 竖接口部 1'3连接有竖接管 4'2, 冷媒流体由横接管 4Ί向竖接管 4'2流动时(亦即横 接口部 1 '2—侧为高压区, 竖接口部 Γ3—侧为低压区 ) 定位为正向流动, 冷媒流体由竖接管 1'3向横接管 1'2流动时 (亦即竖接口部 1'3—侧为高压 区, 横接口部 1 '2—侧为低压区 )定位为逆向流动。 阀针部件 3'与丝杆 5Ί 连接, 丝杆 5Ί与螺母 5'2通过螺纹配合; 在该种结构中, 在线圈 6Ί磁场 的作用下, 磁体 6'2转动, 丝杆 5Ί转动并由于螺母 5'2螺纹配合因而沿轴 向往复运动, 从而带动阀针部件 3'沿轴向往复运动, 以便开启或关闭阀芯 阀口 2'2。
如图 2所示, 冷媒正向流动时, 横接口部 Γ2—侧为高压区, 竖接口 部 1'3—侧为低压区, 在冷媒压力差的作用下, 阀芯座 2'向下运动, 从而 关闭主阀口 1'31; 在此基础上, 冷媒由横接口部 1'2通过导通孔 2'3进入副 阀腔 2Ί , 阀针部件 3'开启阀芯阀口 2'2, 进入副阀腔 2Ί中的冷媒由该阀芯 阀口 2'2流向竖接口部 1'3 , 进而流向竖接管 4'2中。 在该工作过程中, 通 过丝杆 5Ί沿轴向运动, 可以使得阀针部件 3'调节阀芯阀口 2'2的开度, 进 而实现电子膨胀阀流量调节的目的。
如图 3所示, 冷媒逆向流动时, 竖接口部 Γ3—侧为高压区, 横接口 部 1'2—侧为低压区, 此时, 在冷媒压力差的作用下, 推动阀芯座 2'向上 运动, 从而开启主阀口 Γ31 , 冷媒经过主阀口 1'31、 主阀腔 1Ί和横接口部 1'2, 流向横接管 4Ί , 从而实现单向阀的单向导通功能。
然而, 上述现有技术中的电子膨胀阀存在如下缺陷:
如图 2所示, 当冷媒正向流动时, 由于阀芯座 2'的侧壁正对横接口部
1'2, 因而阀芯座 2'的周向侧壁会受到高压冷媒的冲击; 当冷媒压力出现波 动时, 会造成该阀芯座 2'偏心, 从而造成阀芯座 2'对主阀口 Γ31的密封不 严, 造成内漏偏大, 影响系统的工作性能。 此外, 阀芯座 2'偏心也会造成 阀针部件 3'与阀芯阀口 2'2出现干涉。 发明内容
本发明要解决的技术问题为提供一种电子膨胀阀, 当冷媒正向流动 时, 该电子膨胀阀的结构设计能够避免高压冷媒对阀芯座造成过大冲击, 防止其发生偏心, 从而避免内漏的发生, 保证系统工作的可靠性。
为解决上述技术问题, 本发明提供了一种电子膨胀阀, 包括阀座、 竖 接管和横接管, 所述阀座设有主阀腔; 所述电子膨胀阀还包括与所述竖接 管连通的主阀口及可开启和关闭该主阀口的阀芯座, 所述阀芯座设有可与 所述竖接管连通的阀芯阀口, 所述电子膨胀阀还包括可开启和关闭该阀芯 阀口的阀针部件; 所述电子膨胀阔还包括驱动部件, 所述驱动部件包括丝杆及与所述丝 杆螺纹配合的螺母, 所述丝杆的下端部形成所述阀针部件;
所述主阔腔内固定有套筒, 该套筒的上部与所述螺母配合, 所述阀芯 座沿轴向可移动设于所述套筒中, 所述丝杆的下端部伸入所述套筒中开启 和关闭所述阀芯阀口;
所述套筒的周向侧壁上设有靠近所述主阀口的第一流通孔, 所述螺母 上开设有连通所述主阀腔与套筒上腔的第二流通孔; 当流体介质由所述横 接管流向所述竖接管时, 所述阀芯座关闭所述主阀口, 第一流通孔与所述 主阀口中断连通, 同时套筒上腔通过第二流通孔与主阀腔连通; 当流体介 质由所述竖接管流向所述横接管时, 所述阀芯座开启所述主阀口, 所述主 阀口通过第一流通孔与所述主阔腔连通。
优选地, 所述套筒的下端部由阀座支撑, 并该套筒的下端部包括所述 主阀口。
优选地, 所述阔座开设有安装所述竖接管的竖接口部, 所述套筒的下 端部伸入所述竖接口部中, 并由该竖接口部支撑; 所述套筒下端部的内壁 形成主阀孔, 所述主阀孔的上部孔口形成所述主阀口。
优选地, 所述阀芯座下端部的周向外壁形成开启和关闭所述主阀口的 阀芯座密封部。
优选地, 所述竖接口部的内壁设有接口台阶部, 所述套筒下端部的外 部设有第一套筒台阶部, 所述第一套筒台阶部支撑于所述接口台阶部上。
优选地, 所述套筒下端部的外部进一步设有第二套筒台阶部, 所述竖 接管套于所述套筒的下端部的外部, 并该竖接管的顶端面抵接所述第二套 筒台阶部。
优选地, 所述阔芯座沿轴向开设有阔芯座通孔, 该阔芯座通孔的上端 部孔口形成所述阀芯阀口。
优选地, 所述螺母的下部设有螺母内导向孔, 所述套筒的上部设有配 合于所述螺母内导向孔中的套筒外导向部;
所述套筒外导向部的下端设有第三套筒台阶部, 所述螺母的下端面进 一步支撑于所述第三套筒台阶部上。 优选地, 所述第三套筒台阶部沿轴向向下延伸, 所述第一流通孔进一 步沿套筒的径向开设于所述第三套筒台阶部上。
优选地, 所述套筒的内部加工形成有同轴设置的阀芯座导向孔及上部 孔口形成主阀口的主阀孔。
优选地, 所述电子膨胀阔还固定设于所述主阔腔内部的定位板, 所述 定位板开设有非圆异形孔, 所述螺母的下部的周向外壁设有与所述非圆异 形孔配合以限制螺母发生转动的非圆异形部。
优选地, 所述定位板上开设有第三流通孔, 所述定位板的下方的主阀 腔通过所述第三流通孔与所述第二流通孔连通。
优选地, 所述螺母的下部的周向外壁设有螺母台阶部, 所述螺母的周 向外壁套装有弹性压缩于所述定位板与所述螺母台阶部之间的弹性部件。
在现有技术的基础上,本发明所提供的电子膨胀阀,还包括驱动部件, 所述驱动部件包括沿轴向往复运动的丝杆及与所述丝杆螺纹配合的螺母, 所述丝杆的下端部形成所述阔针部件;
所述主阔腔内固定有套筒,该套筒的上部与所述螺母配合,进一步地, 该套筒的下端部可由阀座支撑, 并该套筒的下端部可以包围所述主阀口; 所述阀芯座沿轴向可移动设于所述套筒中, 所述丝杆的下端部伸入所述套 筒中开启和关闭所述阀芯阀口;
所述套筒的周向侧壁上设有靠近所述主阀口的第一流通孔, 所述螺母 上开设有连通所述主阔腔与套筒上腔的第二流通孔; 所述阔芯座关闭所述 主阀口时, 第一流通孔与所述主阀口中断连通, 同时套筒上腔通过第二流 通孔与主阀腔连通; 所述阀芯座开启所述主阀口时, 所述主阀口通过第一 流通孔与所述主阔腔连通。
当冷媒正向流动时, 横接管一侧为高压区, 竖接管一侧为低压区, 在 冷媒压力差的作用下, 阀芯座向下运动关闭主阀口; 在此基础上, 冷媒通 过第二流通孔进入套筒上腔, 当阀针部件开启阀芯阀口时, 冷媒又通过该 阀芯阀口进入竖接管一侧, 在此过程中, 阀针部件可以随着丝杆沿轴向往 复运动, 从而调节阀芯阀口的开度, 实现电子膨胀阀流量调节的目的。
当冷媒逆向流动时, 竖接管一侧为高压区, 横接管一侧为低压区, 在 冷媒压力差的作用下, 阀芯座向上移动, 从而开启主阀口, 冷媒通过该主 阀口, 进而通过第一流通孔, 流向横接管一侧, 从而实现单向阀单向导通 的目的。
在上述工作过程中, 当冷媒正向流动时, 由于阀芯座设于套筒中, 并 且套筒固定设于主阀腔中, 因而高压冷媒对阀芯座的压力冲击大部分由套 筒承受, 因而阀芯座受到的冲击能够明显减小, 因而可以防止其发生偏心, 从而避免内漏的发生, 保证系统的工作的可靠性。 此外, 冷媒通过设于螺 母上的第二流通孔流入, 螺母的位置高于阀芯座, 因而第二流通孔的位置 高于阀芯座, 亦即冷媒由阀芯座上方的第二流通孔流入, 因而也能够降低 冷媒对阀芯座的冲击。
综上所述, 本发明提供的电子膨胀阀能够避免高压冷媒对阀芯座造成 过大冲击, 防止其发生偏心, 从而避免内漏的发生, 保证系统的工作的可 靠性。 附图说明
图 1为现有技术中空调制冷系统的工作原理示意图;
图 2为现有技术中的电子膨胀阀正向进行流量调节时的结构示意图; 图 3为现有技术中的电子膨胀阀逆向导通时的结构示意图;
图 4为本发明一种实施例中电子膨胀阀正向进行流量调节时的结构示 意图;
图 5为图 4中的电子膨胀阀逆向导通时的结构示意图;
图 6为图 4和图 5中电子膨胀阀的套筒的结构示意图;
图 7为图 4和图 5中电子膨胀阀的阀芯座的结构示意图;
图 8为图 5中 A部位的局部放大图;
图 9为图 4和图 5中电子膨胀阀的螺母的结构示意图;
图 9-1为图 9中螺母的剖视图;
图 10为图 4和图 5中电子膨胀阀的定位板的结构示意图。 其中, 图 1至图 3中附图标记与部件名称之间的对应关系为: Γ阀座; 1Ί主阀腔; Γ2横接口部; Γ3竖接口部; Γ31主阀口; 2'阀芯座; 2Ί副阀腔; 2'2阀芯阀口; 2'3导通孔;
3'阀针部件;
4Ί横接管; 4'2竖接管;
5Ί丝杆; 5'2螺母;
6Ί线圈; 6'2磁体;
7Ί四通阀; Τ2室外换热器; 7'3第一电子膨胀阀; 7'4第一单向阀; 第二电子膨胀阀; 7'6第二单向阀; 77室内换热器; 7'8压缩机。 图 4至图 10中附图标记与部件名称之间的对应关系为:
1阀座; 11主阀腔; 12横接口部; 13竖接口部; 131接口台阶部; 2阀芯座; 21阀芯阀口; 22阀芯座密封部; 23阀芯座通孔;
4套筒; 41第一流通孔; 42第三套筒台阶部; 43套筒上腔; 44主阀 孔; 441主阀口; 45第一套筒台阶部; 46第二套筒台阶部; 47套筒外导向 部; 48阀芯座导向孔;
51竖接管; 52横接管;
61丝杆; 611阀针部件;
62螺母; 621螺母内导向孔; 622第二流通孔; 623非圆异形部; 71磁体;
8定位板; 81非圆异形孔; 82第三流通孔;
9弹性部件。 具体实施方式
本发明的核心为提供一种电子膨胀阀, 当冷媒正向流动时, 该电子膨 胀阀的结构设计能够避免高压冷媒对阀芯座造成过大冲击, 防止其发生偏 心, 从而避免内漏的发生, 保证系统的工作的可靠性。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图和具体实施例对本发明作进一步的详细说明。
请参考图 4和图 5 , 图 4为本发明一种实施例中电子膨胀阀正向进行 流量调节时的结构示意图; 图 5为图 4中的电子膨胀阀逆向导通时的结构 示意图。
在一种实施例中, 如图 4和图 5所示, 本发明所提供的电子膨胀阀, 包括阀座 1 , 阀座 1设有主阀腔 11、 横接口部 12和竖接口部 13 , 横接口 部 12安装有横接管 52, 竖接口部 13安装有竖接管 51 ; 电子膨胀阀还包括 与竖接管 51连通的主阀口 441及可开启和关闭该主阀口 441的阀芯座 2, 阀芯座 2设有可与竖接管 51连通的阀芯阀口 21 , 电子膨胀阀还包括可开 启和关闭该阀芯阀口 21的阀针部件 611。
在上述结构的基础上, 如图 4和图 5所示, 电子膨胀阀还包括驱动部 件, 驱动部件包括沿轴向往复运动的丝杆 61及与丝杆 61螺纹配合的螺母 62, 丝杆 61的下端部形成阀针部件 611 ; 主阀腔 11内固定有套筒 4, 该套 筒 4的上部与螺母 62配合, 该套筒 4的下端部由阀座 1支撑, 并该套筒 4 的下端部包围主阀口 441; 阀芯座 2沿轴向可移动设于套筒 4中, 丝杆 61 的下端部伸入套筒 4中开启和关闭阀芯阀口 21。
此外, 如图 4和图 5所示, 套筒 4的周向侧壁上设有靠近主阀口 441 的第一流通孔 41 , 螺母 62上开设有连通主阔腔 11与套筒上腔 43的第二 流通孔 622; 当流体介质由横接管 52流向竖接管 51时, 阀芯座 2关闭主 阀口 441 , 第一流通孔 41与主阀口 441中断连通, 同时套筒上腔 43通过 第二流通孔 622与主阀腔 11连通; 当流体介质由竖接管 51流向横接管 52 时, 阀芯座 2开启主阀口 441 ,主阀口 441通过第一流通孔 41与主阀腔 11 连通。
当冷媒正向流动时, 横接管 52—侧为高压区, 竖接管 51—侧为低压 区, 在冷媒压力差的作用下, 阀芯座 2向下运动关闭主阀口 441 ; 在此基 础上, 冷媒通过第二流通孔 622进入套筒上腔 43 , 当阀针部件 611开启阀 芯阀口 21时,冷媒又通过该阀芯阀口 21进入竖接管 51一侧,在此过程中, 阀针部件 611可以随着丝杆 61沿轴向往复运动, 从而调节阀芯阀口 21的 开度, 实现电子膨胀阀流量调节的目的。
当冷媒逆向流动时, 竖接管 51—侧为高压区, 横接管 52—侧为低压 区, 在冷媒压力差的作用下, 阀芯座 2向上移动, 从而开启主阀口 441 , 冷媒通过该主阀口 441 , 进而通过第一流通孔 41 , 流向横接管 52—侧, 从 而实现单向阀单向导通的目的。
在上述工作过程中, 当冷媒正向流动时, 由于阀芯座 2设于套筒 4中 , 并且套筒 4固定设于主阀腔 11中,因而高压冷媒对阀芯座 2的压力冲击大 部分由套筒 4承受, 因而阀芯座 2受到的冲击能够明显减小, 因而可以防 止其发生偏心, 从而避免内漏的发生, 保证系统的工作的可靠性。 此外, 冷媒通过设于螺母 62上的第二流通孔 622流入, 螺母 62的位置高于阀芯 座 2, 因而第二流通孔 622的位置高于阀芯座 2, 亦即冷媒由阀芯座 2上方 的第二流通孔 622流入, 因而也能够降低冷媒对阀芯座 2的冲击。
请参考图 6、 图 7和图 8 , 图 6为图 4和图 5中电子膨胀阀的套筒的结 构示意图; 图 7为图 4和图 5中电子膨胀阀的阀芯座的结构示意图; 图 8 为图 5中 A部位的局部放大图。
在上述技术方案中, 可以对主阀口 441的形成方式作出具体设计。 比 如, 如图 4和图 5所示, 套筒 4的下端部伸入竖接口部 13中, 并由该竖接 口部 13支撑; 套筒 4下端部的内壁形成主阀孔 44, 主阀孔 44的上部孔口 形成主阀口 441。 在该种结构中, 在套筒 4的内壁上加工形成主阀口 441 , 相对于在阀座 1开设主阀口 441的结构, 能够有利于保证套筒 4中的阀芯 座 2与主阀口 441之间的同轴度, 从而有利于提高密封性能。
当然, 本发明对于主阀口 441的形成方式不做限制, 如上文, 任意一 种主阀口的形成结构, 只要在套筒 4中移动的阀芯座 2能够将其关闭和开 启, 就均应该在本发明的保护范围之内。 比如, 主阀口 441的形成方式可 以如图 2和图 3所示, 由竖接口部 13的上端孔口形成, 在该种结构中, 套 筒 4的下端并不伸入竖接口部 13 , 而是支撑于竖接口部 13周围的阀座 1 内壁上, 同样可以使得在套筒 4中移动的阀芯座 2开启和关闭主阀口。 当 然, 在该种结构中, 为了使得套筒 4固定可靠, 可以在阀座 1的内壁上设 有环绕主阀口的安装槽, 套筒 4的下端可以固定于该安装槽中。
在上述技术方案中, 如图 7所示, 阀芯座 2下端部的周向外壁形成开 启和关闭主阀口 441的阀芯座密封部 22。 该阀芯座密封部 22与套筒 4内 的主阀口 441相配合, 从而实现开启或关闭的目的。 在上述技术方案中,还可以对套筒 4的下端与竖接口部 13之间的安装 结构作出具体设计。 比如, 如图 8所示, 竖接口部 13的内壁设有接口台阶 部 131 , 套筒 4下端部的外部设有第一套筒台阶部 45 , 第一套筒台阶部 45 支撑于接口台阶部 131上。 该种结构设计非常方便地实现了对套筒 4的轴 向支撑, 并且支撑的可靠性较高。
进一步地, 如图 8所示, 套筒 4下端部的外部进一步设有第二套筒台 阶部 46 , 电子膨胀阀还包括竖接管 51 , 竖接管 51套于套筒 4的下端部的 外部, 并该竖接管 51的顶端面抵接第二套筒台阶部 46。 该种结构设计非 常方便地实现了竖接口部 13、 套筒 4和竖接管 51 之间的安装固定, 并且 固定的可靠性较高。
在上述技术方案中, 如图 7所示, 阀芯座 2沿轴向开设有阀芯座通孔 23 , 该阀芯座通孔 23的上端部孔口形成阀芯阀口 21。 阀针部件 3与该阀 芯阀口 21配合, 从而可以调节该阀芯阀口 21的开度, 从而实现电子膨胀 阀流量调节的目的。 此外, 在该种结构设计中, 阀芯座 2可以根据需要使 得阀芯座通孔 23较长, 比如可以为 5mm, 使得阀芯座 2为长筒型, 从而 可以降低冷媒通过时产生的噪音。
在上述技术方案中, 还可以作出具体设计。 比如, 请同时参考图 6、 图 9和图 9-1 , 图 9为图 4和图 5中电子膨胀阀的螺母的结构示意图; 图 9-1为图 9中螺母的剖视图。
如图 9-1所示, 螺母的下部设有螺母内导向孔 621 , 如 6所示, 套筒 4 的上部设有套筒外导向部 47 , 如图 4和图 5所示, 套筒外导向部 47配合 于螺母内导向孔 621中。进一步地,套筒外导向部 47的下端设有第三套筒 台阶部 42 , 螺母 62的下端面进一步支撑于第三套筒台阶部 42上。
在上述结构中,通过该螺母内导向孔 621与套筒外导向部 47配合,从 而使得套筒 4与螺母 62 , 进而与丝杆 61之间保持较好的同轴度。 当然, 在该种结构中,也可以套筒 4的上部设有套筒内导向孔,螺母 62的下端的 外部设有螺母外导向部, 使得螺母外导向部配合于套筒内导向孔中。
进一步地, 如图 6所示, 第三套筒台阶部 42沿轴向向下延伸, 并延伸 至第一套筒台阶部 45 , 第一流通孔 41进一步沿套筒 4的径向开设于第三 套筒台阶部 42上。 换句话说, 套筒 4的周向侧壁上开设有周向凸出部, 该 周向凸出部的顶壁形成第三套筒台阶部 42 , 该周向凸出部的底壁形成第一 套筒台阶部 45 , 第一流通孔 41便开设于该周向凸出部上。 显然, 该种结 构设计不仅便于形成两个套筒台阶部, 而且能够便于第一流通孔 41 的开 设, 并且结构筒单, 加工成本较低。
此外, 如图 6所示, 套筒 4的内部加工形成有同轴设置的阀芯座导向 孔 48及上部孔口形成主阀口 441的主阀孔 44, 在该种结构设计中, 阀芯 座导向孔 48和主阀孔 44可以一体加工形成, 因而二者之间能够保持较好 的同轴度; 同时, 主阀孔 44的上端孔口形成主阀口 441 , 因而阀芯座 2与 主阀口 441之间能够保持较好的同轴度。 具体地, 如图 4和图 5所示, 阀 芯座 2沿着该阀芯座导向孔 48沿轴向运动, 因而阀芯座 2与主阀口 441 之间能够保持较好地同轴度,从而能够保证阀芯座密封部 22对主阀口 441 的密封性能, 防止内漏的发生。
在上述技术方案中, 还可以作出进一步具体设计。 比如, 请参考图 4、 图 5、 图 9和图 10, 图 10为图 4和图 5中电子膨胀阀的定位板的结构示意 图。
如图 4和图 5所示,电子膨胀阀还固定设于主阀腔 11内部的定位板 8; 如图 10所示, 定位板 8开设有非圆异形孔 81 , 如图 9所示, 螺母 62的下 部的周向外壁设有与非圆异形孔 81配合以限制螺母 62发生转动的非圆异 形部 623。 通过该非圆异形孔 81与非圆异形部 623的配合, 可以防止螺母 62发生转动。 需要说明是, 任意结构的非圆异形孔和非圆异形部, 只要不 是圆形孔和圆心部的结构,从而能够防止螺母 62相对于定位板 8发生转动, 就均应该在本发明的保护范围之内, 比如可以为三角形、 四边形或多边形 的结构。
进一步地, 如图 4、 图 5和图 10所示, 定位板 8上开设有第三流通孔
82 , 定位板 8的下方的主阀腔 11通过第三流通孔 82与第二流通孔 622连 通。 在该种结构中, 冷媒正向流动时, 冷媒通过该第三流通孔 82, 进而流 入第二流通孔 622中。
此外,如图 4和图 5所示,螺母 62的下部的周向外壁设有螺母台阶部, 螺母的周向外壁套装有弹性压缩于定位板 8与螺母台阶部之间的弹性部件 9。 此外, 在上述结构中, 为了减少螺母 62加工的困难, 如图 9所示, 螺 母 62上的第二流通孔 622沿轴向方向设置。
在本发明中, 如图 4所示, 在冷媒正向流动状态下, 冷媒从横接管 52 经过定位板 8上的第三流通孔 82、螺母 62上的第二流通孔 622、套筒上腔 43、 阀芯阀口 21 , 流向竖接管 51—端。 在线圈磁场的驱动下, 磁体 71转 动, 磁体 71带动丝杆 61转动, 由于定位板 8限制了螺母 62的转动, 并弹 性部件 9的弹力及套筒 4限制了螺母 62轴向移动, 在丝杆 61与螺母 62 螺合下实现了丝杆 61上下移动, 从而以便丝杆 61下端部形成的阀针部件 611开启或关闭阀芯阀口 21。 在阀实现全闭功能时, 丝杆 61的转动, 直到 其下端部 (亦即阀针部件 611 )接触到阀芯阀口 21时, 丝杆 61不能继续 向下移动。 此时, 磁体 71和丝杆 61继续转动, 丝杆 61受到阀芯阀口 21 的推力通过丝杆 61上的螺纹传递给螺母 62, 螺母 62压缩弹性部件 9向上 移动, 从而为产品设置了开阀脉冲。
以上对本发明所提供的电子膨胀阀进行了详细介绍。 本文中应用了具 于帮助理解本发明的方法及其核心思想。 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以对本发明进行若 干改进和修饰, 这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种电子膨胀阀, 包括阀座(1)、 竖接管 (51)和横接管 (52), 所述阀座设有主阀腔( 11 ); 所述电子膨胀阀还包括与所述竖接管(51 )连 通的主阀口 (441 )及可开启和关闭该主阀口 (441) 的阀芯座(2), 所述 阀芯座(2)设有可与所述竖接管 (51 )连通的阀芯阀口 (21), 所述电子 膨胀阀还包括可开启和关闭该阀芯阀口 ( 21 ) 的阀针部件 (611 ); 其特征 在于,
所述电子膨胀阀还包括驱动部件, 所述驱动部件包括丝杆(61)及与 所述丝杆( 61 )螺纹配合的螺母( 62 ), 所述丝杆( 61 )的下端部形成所述 阀针部件 (611 );
所述主阀腔(11 ) 内固定有套筒(4), 该套筒(4)的上部与所述螺母 (62) 配合; 所述阀芯座(2) 沿轴向可移动设于所述套筒 (4) 中, 所述 丝杆(61 )的下端部伸入所述套筒(4)中开启和关闭所述阀芯阀口 (21 ); 所述套筒 (4) 的周向侧壁上设有靠近所述主阀口 (441) 的第一流通 孔(41), 所述螺母(62)上开设有连通所述主阔腔(11)与套筒上腔(43) 的第二流通孔( 622 ); 当流体介质由所述横接管( 52 )流向所述竖接管( 51 ) 时, 所述阀芯座(2)关闭所述主阀口 (441), 第一流通孔(41 )与所述主 阀口 (441) 中断连通, 同时套筒上腔(43)通过第二流通孔(622)与主 阀腔(11)连通; 当流体介质由所述竖接管 (51 ) 流向所述横接管 (52) 时, 所述阀芯座(2)上移开启所述主阀口 (441), 所述主阀口 (441)通 过第一流通孔(41 )与所述主阔腔( 11 )连通。
2、 如权利要求 1所述的电子膨胀阀, 其特征在于, 所述套筒 (4) 的 下端部由阀座(1)支撑, 并该套筒(4)的下端部包括所述主阀口 (441)。
3、 如权利要求 2所述的电子膨胀阀, 其特征在于, 所述阀座开设有安 装所述竖接管 (51) 的竖接口部 (13), 所述套筒 (4) 的下端部伸入所述 竖接口部(13) 中, 并由该竖接口部(13)支撑; 所述套筒 (4)下端部的 内壁形成主阀孔( 44 ),所述主阀孔( 44 )的上部孔口形成所述主阀口( 441 )。
4、 如权利要求 3所述的电子膨胀阀, 其特征在于, 所述阀芯座(2) 下端部的周向外壁形成开启和关闭所述主阀口( 441 )的阀芯座密封部( 22 )。 5、如权利要求 3所述的电子膨胀阀,其特征在于,所述竖接口部( 13 ) 的内壁设有接口台阶部(131), 所述套筒(4)下端部的外部设有第一套筒 台阶部 (45), 所述第一套筒台阶部 (45) 支撑于所述接口台阶部 (131) 上。
6、 如权利要求 5所述的电子膨胀阀, 其特征在于, 所述套筒 (4) 下 端部的外部进一步设有第二套筒台阶部(46), 所述竖接管(51)套于所述 套筒(4)的下端部的外部, 并该竖接管(51)的顶端面 4氏接所述第二套筒 台阶部 (46)。
7、 如权利要求 1至 6任一项所述的电子膨胀阀, 其特征在于, 所述阀 芯座(2) 沿轴向开设有阀芯座通孔(23), 该阀芯座通孔(23) 的上端部 孔口形成所述阀芯阀口 ( 21 )。
8、 如权利要求 1至 6任一项所述的电子膨胀阀, 其特征在于, 所述螺 母(62)的下部设有螺母内导向孔(621 ), 所述套筒(4)的上部设有配合 于所述螺母内导向孔(621) 中的套筒外导向部 (47);
所述套筒外导向部(47)的下端设有第三套筒台阶部(42), 所述螺母
(62) 的下端面进一步支撑于所述第三套筒台阶部 (42)上。
9、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述第三套筒台阶 部(42)沿轴向向下延伸, 所述第一流通孔(41)进一步沿套筒(4)的径 向开设于所述第三套筒台阶部 (42)上。
10、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述套筒(4)的 内部加工形成有同轴设置的阀芯座导向孔 (48 )及上部孔口形成主阀口 (441 ) 的主阀孔(44)。
11、 如权利要求 1至 6任一项所述的电子膨胀阀, 其特征在于, 所述 电子膨胀阀还包括固定设于所述主阀腔(11) 内部的定位板(8), 所述定 位板(8)开设有非圆异形孔(81), 所述螺母(62) 的下部的周向外壁设 有与所述非圆异形孔(81) 配合以限制螺母(62)发生转动的非圆异形部 ( 623 )。
12、 如权利要求 11所述的电子膨胀阀, 其特征在于, 所述定位板(8) 上开设有第三流通孔(82), 所述定位板(8) 的下方的主阀腔(11 )通过 所述第三流通孔(82) 与所述第二流通孔(622)连通。
13、 如权利要求 11所述的电子膨胀阀, 其特征在于, 所述螺母(62) 的下部的周向外壁设有螺母台阶部, 所述螺母(62) 的周向外壁套装有弹 性压缩于所述定位板(8)与所述螺母台阶部之间的弹性部件(9)。
PCT/CN2012/079927 2012-05-11 2012-08-10 一种电子膨胀阀 WO2013166790A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/399,503 US9297562B2 (en) 2012-05-11 2012-08-10 Electronic expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210146266.8A CN103388939B (zh) 2012-05-11 2012-05-11 一种电子膨胀阀
CN201210146266.8 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013166790A1 true WO2013166790A1 (zh) 2013-11-14

Family

ID=49533289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079927 WO2013166790A1 (zh) 2012-05-11 2012-08-10 一种电子膨胀阀

Country Status (3)

Country Link
US (1) US9297562B2 (zh)
CN (1) CN103388939B (zh)
WO (1) WO2013166790A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352467B2 (en) 2014-01-20 2019-07-16 Zhejiang Sanhua Climate And Appliance Controls Group Co., Ltd Direct-action-type electrically-operated valve and assembly method therefor
CN104791536B (zh) * 2014-01-20 2017-09-01 浙江三花制冷集团有限公司 一种直动式电动阀
CN103954081B (zh) * 2014-04-15 2016-03-30 朱德仲 一种防滑式节流活塞
CN107356024B (zh) * 2016-05-10 2021-07-13 浙江盾安人工环境股份有限公司 电子膨胀阀
CN106678421B (zh) * 2017-01-12 2024-02-02 诸暨市亿霸电子阀门有限公司 一种流量控制精度的电子膨胀阀
CN109723877B (zh) * 2017-10-27 2021-06-18 浙江三花制冷集团有限公司 一种电动阀
CN109958775B (zh) * 2017-12-25 2021-12-07 浙江盾安机械有限公司 一种电子膨胀阀
CN110939745B (zh) * 2018-09-25 2023-10-13 浙江三花智能控制股份有限公司 一种电子膨胀阀
JP7349514B2 (ja) * 2019-09-27 2023-09-22 浙江盾安人工環境股▲ふん▼有限公司 電子膨張弁
CN112901801B (zh) * 2019-11-19 2022-02-11 浙江盾安禾田金属有限公司 电子膨胀阀
JP7072907B2 (ja) * 2020-06-03 2022-05-23 株式会社不二工機 電動弁
WO2023143203A1 (zh) * 2022-01-30 2023-08-03 浙江盾安人工环境股份有限公司 电子膨胀阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552942B1 (ko) * 2002-12-02 2006-02-22 가부시기가이샤 후지고오키 전동 밸브
CN200968423Y (zh) * 2006-11-16 2007-10-31 鞍山电磁阀有限责任公司 智能型套筒式高温高压电磁阀
JP4285155B2 (ja) * 2003-08-27 2009-06-24 ダイキン工業株式会社 多段電動膨張弁及び冷凍装置
CN102252119A (zh) * 2010-05-21 2011-11-23 浙江三花股份有限公司 一种电动阀及包括该电动阀的热交换装置
JP2012047213A (ja) * 2010-08-25 2012-03-08 Saginomiya Seisakusho Inc 電動弁
CN202182593U (zh) * 2011-08-05 2012-04-04 株式会社鹭宫制作所 膨胀阀、热泵式制冷循环设备和空气处理机组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345306A (en) 1942-02-24 1944-03-28 Adel Prec Products Corp Fluid controlled valve
BE756932A (fr) * 1969-10-02 1971-04-01 Fischer Controls Cy Soupapes comportant notamment un dispositif reduisant l'intensite des bruits
EP0689015A1 (de) * 1994-06-21 1995-12-27 Staefa Control System Scs Ag Regelventil mit Stellantrieb
JPH08145507A (ja) 1994-11-24 1996-06-07 Sanyo Electric Co Ltd 冷媒流量制御弁及び冷媒流量制御弁を用いた冷凍装置
JP3937029B2 (ja) 1999-03-26 2007-06-27 株式会社鷺宮製作所 電動弁
JP2004069152A (ja) * 2002-08-06 2004-03-04 Izumi Giken:Kk 冷凍サイクルに用いる弁装置
US7104281B2 (en) * 2003-08-15 2006-09-12 Dresser, Inc. Fluid flow regulation
JP3824019B1 (ja) * 2005-02-28 2006-09-20 ダイキン工業株式会社 膨張弁及び冷凍装置
US8157183B2 (en) 2008-05-29 2012-04-17 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
US8157184B2 (en) * 2008-05-29 2012-04-17 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
US7854390B2 (en) * 2008-05-29 2010-12-21 Kabushiki Kaisha Saginomiya Seisakusho Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
JP3145048U (ja) 2008-07-11 2008-09-25 株式会社鷺宮製作所 電動膨張弁及び冷凍サイクル
CN101956830B (zh) * 2009-07-17 2013-06-12 浙江三花股份有限公司 电子膨胀阀
CN102042416B (zh) * 2009-10-09 2012-11-21 浙江三花股份有限公司 电子膨胀阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552942B1 (ko) * 2002-12-02 2006-02-22 가부시기가이샤 후지고오키 전동 밸브
JP4285155B2 (ja) * 2003-08-27 2009-06-24 ダイキン工業株式会社 多段電動膨張弁及び冷凍装置
CN200968423Y (zh) * 2006-11-16 2007-10-31 鞍山电磁阀有限责任公司 智能型套筒式高温高压电磁阀
CN102252119A (zh) * 2010-05-21 2011-11-23 浙江三花股份有限公司 一种电动阀及包括该电动阀的热交换装置
JP2012047213A (ja) * 2010-08-25 2012-03-08 Saginomiya Seisakusho Inc 電動弁
CN202182593U (zh) * 2011-08-05 2012-04-04 株式会社鹭宫制作所 膨胀阀、热泵式制冷循环设备和空气处理机组

Also Published As

Publication number Publication date
US9297562B2 (en) 2016-03-29
CN103388939A (zh) 2013-11-13
CN103388939B (zh) 2016-06-01
US20150136260A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2013166790A1 (zh) 一种电子膨胀阀
WO2013166791A1 (zh) 一种电子膨胀阀
WO2013170542A1 (zh) 一种电子膨胀阀
WO2013177865A1 (zh) 一种电子膨胀阀
WO2013189120A1 (zh) 一种电子膨胀阀
CN103511636B (zh) 一种电子膨胀阀
WO2019179517A1 (zh) 电子膨胀阀
JP6370269B2 (ja) 電動弁及び冷凍サイクル
JP2013241958A (ja) 電動弁
JP2009014056A (ja) 電動弁及び冷暖房システム
KR101604747B1 (ko) 유량조절밸브
US9109822B2 (en) Expansion valve
WO2020025048A1 (zh) 空调系统及其电子膨胀阀
CN112128409B (zh) 流体管理组件
JP2011202687A (ja) 流路切換弁及びそれを用いたヒートポンプ装置
JP2012172749A (ja) バルブ装置
KR102139095B1 (ko) 냉난방 시스템용 전자식 팽창밸브
JP2013221640A (ja) 空気調和装置
CN106482402B (zh) 制冷剂控制装置、换热系统及该制冷剂控制装置的控制方法
JP2010249247A (ja) 電動弁及びそれが用いられた冷凍サイクル
CN111365515B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN109973682A (zh) 电磁换向阀及具有其的制冷系统
JP2012241809A (ja) 電動弁
CN108361393A (zh) 电子膨胀阀
CN113446402A (zh) 一种电子膨胀阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399503

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876427

Country of ref document: EP

Kind code of ref document: A1