WO2018097399A2 - 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법 - Google Patents

산화도가 제어된 Bi-Te계 열전 재료의 제조 방법 Download PDF

Info

Publication number
WO2018097399A2
WO2018097399A2 PCT/KR2017/001408 KR2017001408W WO2018097399A2 WO 2018097399 A2 WO2018097399 A2 WO 2018097399A2 KR 2017001408 W KR2017001408 W KR 2017001408W WO 2018097399 A2 WO2018097399 A2 WO 2018097399A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric material
based thermoelectric
thermoelectric
raw material
type
Prior art date
Application number
PCT/KR2017/001408
Other languages
English (en)
French (fr)
Other versions
WO2018097399A3 (ko
Inventor
연병훈
박재성
양승호
김종배
최종일
손경현
황병진
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Publication of WO2018097399A2 publication Critical patent/WO2018097399A2/ko
Publication of WO2018097399A3 publication Critical patent/WO2018097399A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Definitions

  • the present invention relates to a method for producing a Bi-Te-based thermoelectric material used for thermoelectric power generation, and more particularly, to a Bi-Te-based metal ribbon formed through a rapid solidification process (RSP) under a predetermined inert atmosphere.
  • the present invention relates to a new method for manufacturing a Bi-Te-based thermoelectric material in which thermoelectric properties are improved by securing low thermal conductivity through control of oxidation degree by pulverizing by sintering in shape and size.
  • thermoelectric technology is a technology for directly converting thermal energy into electric energy and electrical energy into thermal energy in a solid state, and is applied to thermoelectric power generation that converts thermal energy into electrical energy and thermoelectric cooling that converts electrical energy into thermal energy.
  • the thermoelectric material used for the thermoelectric power generation and thermoelectric cooling is improved the performance of the thermoelectric element as the thermoelectric properties increase.
  • the thermoelectric performance is determined by the thermoelectric power (V), Seebeck coefficient ( ⁇ ), Peltier coefficient ( ⁇ ), Thomson coefficient ( ⁇ ), Nernst coefficient (Q), Ettingshausen coefficient (P), and electrical conductivity ( ⁇ ).
  • thermoelectric material is fine, the more uniform particles are formed, the more the thermoelectric performance can be improved.
  • thermoelectric material is prepared in powder form by a method such as a melt spraying method, a simple crushing method, an electrolytic electrodeposition method, a chemical coprecipitation method, a mechanical grinding method.
  • the molten metal spraying method is a high-speed spraying of the molten metal in the chamber in the atmosphere, mass production is possible, but the particle size control is impossible.
  • the simple crushing method takes a long time to produce a powder of a certain size, it is also impossible to control the particle size.
  • the chemical coprecipitation method is possible to prepare a fine powder, but there is a difficulty in controlling the concentration, there is a disadvantage that exists in the agglomerated state (not unit powder).
  • the ball is pulverized using the mechanical kinetic energy of the spherical ball and the ball in a container in which the atmosphere is controlled, and the production speed is low, and there is a possibility of mixing of impurities by the ball.
  • various methods for each process such as the sol-gel method.
  • Korean Patent No. 10-0228464 discloses a fine and nearly spherical shape by melting a Bi 2 Te 3 -Sb 2 Te 3 material and cooling it by a rapid solidification method (Atomizing method) by high pressure nitrogen gas spraying. A method of producing a thermoelectric change material powder of is disclosed.
  • Korean Patent No. 10-0228463 discloses a method in which a Bi 2 Te 3 based thermoelectric material is formed into a chemically homogeneous ribbon shape and is press-molded by cold pressing and pressure-sintered by hot pressing.
  • 10-0382599 discloses a method in which a PbTe-based thermoelectric material is cooled in a copper block by crushing molten metal into a ball mill.
  • the Republic of Korea Patent No. 10-0440268 is a Bi 2 Te 3 -Sb 2 Te 3 based thermoelectric material is melted and grown as a crystal to solidify, and then hydrogenated to grind to form a powder.
  • the above-described prior arts are difficult to manufacture a nano-powder having a constant size, and since most of the manufacturing processes are performed in the air, the oxygen in the air is used to control the oxidation degree in the thermoelectric material or to lower the desired thermal conductivity. It was difficult to secure.
  • the present invention has been made to solve the above problems, by controlling the oxygen content by pulverizing the metal ribbon prepared by the rapid solidification method (RSP) in an inert atmosphere, thereby reducing the thermal conductivity through the oxidation control, high Seebeck coefficient and
  • An object of the present invention is to provide a novel method for producing a Bi-Te-based thermoelectric material capable of exhibiting electrical conductivity and ensuring excellent thermoelectric performance.
  • the present invention comprises the steps of (i) dissolving and solidifying the raw material for thermoelectric materials including Bi raw material and Te raw material to form a mother alloy; (ii) forming a metal ribbon through the rapid cooling of the master alloy; (iii) pulverizing the metal ribbon in an inert atmosphere to control the oxygen content of the pulverized product to 0.03% or less; And (iv) provides a method for producing a Bi-Te-based thermoelectric material comprising the step of compressing the pulverized product to form a preform and pressure sintering.
  • the master alloy ingot is preferably an n-type Bi-Te-Se-based alloy or a p-type Bi-Sb-Te-based alloy having a high purity of 5N or more.
  • the present invention provides a Bi-Te-based thermoelectric material produced by the method described above.
  • the thermal conductivity is reduced through the oxidation control of the pulverized powder, which is different from the conventional method. By showing conductivity, it is possible to secure higher thermoelectric performance.
  • FIG. 1 is a process flowchart of a manufacturing method according to an embodiment of the present invention.
  • Example 2 is an image of a thermoelectric material pressurized and sintered using the ribbon prepared in Example 1;
  • Example 4 is a thermal conductivity measurement result of the Bi-Te-based thermoelectric material prepared in Example 1.
  • FIG. 5 shows the Seebeck coefficient measurement results of the Bi-Te based material prepared in Example 1.
  • thermoelectric performance evaluation index of a thermoelectric material is measured as in Equation 1 below.
  • thermoelectric performance index (ZT) of the thermoelectric material is intended to increase the thermoelectric performance index (ZT) of the thermoelectric material by controlling the degree of oxidation to relatively reduce the thermal conductivity of the thermoelectric material.
  • the present invention applies the Rapid Solidification Process (RSP) to control the uniformity of the ribbon composition during metal ribbon manufacturing of n-type (Bi, Te, Se) and p-type (Bi, Te, Sn) -based thermoelectric materials.
  • RSP Rapid Solidification Process
  • the metal ribbon is pulverized into a fine powder having a desired size and shape in an inert atmosphere containing no oxygen, thereby reducing thermal conductivity, high Seebeck coefficient, and excellent electrical conductivity through oxidation control. High thermoelectric performance can be exhibited.
  • the prepared master alloy is identified in RSP.
  • a temperature about 650 ⁇ 700 °C
  • the Bi-Te-based thermoelectric material manufactured by the above-described method can secure low thermal conductivity through oxidation control, and is a nano-sized amorphous powder having a uniform particle size, so that the composition is homogeneous, high density and high strength characteristics. In addition, the thermoelectric performance is further improved.
  • the target composition of the Bi 2 Te 3 based thermoelectric material alloy can be uniformly controlled, uniformity can be maintained during ribbon manufacturing through the RSP process and the thermal properties of the final product are excellent.
  • the finer the nanoblocks the lower the thermal conductivity and excellent thermal conductivity (ZT).
  • the thermal properties are increased as the nanoblock size of the ribbon becomes fine according to the RSP process conditions.
  • thermoelectric materials including Bi raw material and Te raw material to form a mother alloy
  • forming a metal ribbon through rapid cooling of the master alloy (ii) pulverizing the metal ribbon in an inert atmosphere to control the oxygen content of the pulverized product to 0.03% or less ('S30 step'); And (iv) compressing the pulverized product to form a preform, followed by pressure sintering ('S40 step').
  • Figure 1 is a conceptual diagram showing each step of the manufacturing method of Bi-Te-based thermoelectric material according to the present invention.
  • the manufacturing method will be described with reference to FIG. 1 by dividing each process step as follows.
  • This step is to form n-type and / or p-type Bi-Te base alloy by mixing, dissolving and solidifying Bi-based and Te-based raw materials in accordance with the stoichiometric ratio of Bi-Te-based thermoelectric materials. .
  • the step S10 may form a master alloy without limitation in accordance with conventional methods known in the art.
  • step S10 (i-1) the first element; And charging the raw material having the composition including the second element into a quartz tube, and maintaining a vacuum state ('S10-1 step'). And (i-2) charging the vacuum quartz tube in a furnace and then stirring and dissolving at a rate of 10 to 15 times / minute at a temperature of 650 to 700 ° C. for 1 to 3 hours to form a master alloy. It may be configured to include a step ('S10-2 step').
  • thermoelectric material suitable for each composition is charged into a quartz tube and sealed for dissolution (hereinafter referred to as 'S10-1 step').
  • the raw material for thermoelectric materials usable in the present invention may be a composition including Bi and Te as main ingredients, and further including Se or Sb components, respectively, according to n-type and p-type.
  • the Bi raw material and the Te raw material may be mixed at a ratio according to the stoichiometric composition of Bi 2 Te 3 ⁇ 0.2 , preferably Bi 2 Te 3 ⁇ 0.15 .
  • the raw material for thermoelectric material (i) at least one first element selected from the group consisting of Bi and Sb; And it may be a composition comprising a raw material of a composition comprising at least one second element selected from the group consisting of Te and Se.
  • the raw material for the n-type thermoelectric material is Bi-Te-Se-based alloy composition
  • the composition may be a composition comprising a.
  • the raw material for p-type thermoelectric material is a Bi-Sb-Te-based alloy composition
  • the composition may include 10 to 15% by weight of Bi, 25 to 30% by weight, and 55 to 60% by weight of Te based on the total 100% by weight. have.
  • the doping element powder may be added to the composition of the thermoelectric material to be manufactured.
  • the dopant is introduced so that the Bi-Te-based thermoelectric material has n-type or p-type characteristics, and thus, conventional components in the art that can be used for n-type or p-type thermoelectric materials can be used without limitation. have.
  • it may be at least one metal selected from the group consisting of Al, Sn, Mn, Ag, Cu, and Ga.
  • the one or more metal content to be doped is not particularly limited, for example, may range from 0.001 to 1% by weight relative to the total weight.
  • the dopant introduced as described above substitutes lattice of Bi or Te according to the thermodynamic energy difference of lattice bond or driving force of atomic diffusion through the heat treatment process and the like.
  • the size and shape of the thermoelectric material is not particularly limited, but may be in the form of a block having a size of about 2 to 5 mm.
  • the purity of the thermoelectric material is preferably high purity of 5N or more.
  • step S10-2 The n-type and p-type mother alloys are prepared by using a furnace (Locking Furnace) in the quartz tube of step S10-1 (hereinafter referred to as step S10-2).
  • step S10-2 charged with a quartz tube sealed in a vacuum in the furnace and stirred at a rate of 10 to 15 times / minute for 1 to 3 hours at a temperature of about 650 ⁇ 700 °C for dissolution And dissolve to form a master alloy.
  • a master alloy of Bi 2 -Te 3 based thermoelectric materials should be prepared. Accordingly, in the present invention, a mother alloy of ⁇ 30 * 100 mm or a size of approximately ⁇ 20-30 * 100-150 mm can be produced.
  • the master alloy ingot manufactured by the step S10-2 may be a Bi-Te-based alloy having a high purity of 5N or more, preferably an n-type Bi-Te-Se-based alloy or a p-type Bi-Sb-Te-based alloy. .
  • step S20 (2) Melt spinning the n-type and / or p-type mother alloy obtained in step S10-2 to form a metal ribbon (hereinafter referred to as step S20).
  • a Bi-Te-based metal ribbon having a complex microstructure is manufactured by using the Bi-Te base alloy obtained in the previous step through rapid solidification (R.S.P).
  • the mother alloy ingot is charged to a nozzle installed in the melt spinning equipment and then completely dissolved using a heating element capable of supplying and continuously maintaining heat to form a melt, and then inert to the melt.
  • the gas is pressurized and sprayed to rapidly cool the melt by contacting the surface of the rotating high-speed wheel. This forms a Bi-Te-based metal ribbon.
  • the heating element is not particularly limited as long as it can continuously supply and maintain heat, and a conventional resistance heating element known in the art may be used.
  • a resistor that generates heat by receiving current Heating elements can be used.
  • temperature can be controlled with an electric furnace type heater, such as a graphite heater.
  • the temperature range in which the resistive heating element generates heat is not particularly limited as long as it is a range capable of completely dissolving the Bi-Te-based mother alloy.
  • the surface resistance of the resistance heating element may be adjusted according to its thickness and type, and may be adjusted within a range of 0.1 to 100 ohms, for example.
  • the type or pressurization range of the inert gas is not particularly limited, but it is preferable to pressurize and spray in the range of 0.1 to 0.5 MPa using, for example, argon gas.
  • the high-speed rotating wheel in contact with the melt may use a conventional wheel known in the art, for example, a copper wheel (Cu wheel) and the like.
  • the rotation speed of the high speed wheel (wheel) is not particularly limited, and may be, for example, 500 to 2,000 rpm, and the linear speed of the wheel may range from 5 m / s to 40 m / s.
  • the melt in contact with the surface of the wheel may be rapidly cooled, and an alloy ribbon having a thin thickness and a microstructure may be formed.
  • the cooling rate of the dissolved mother alloy by controlling the cooling rate of the dissolved mother alloy, uniform particle size control is possible, and in general, when the cooling rate is low, nano-sized amorphous powder can be prepared, or fine powder can be prepared. . In addition, it can be produced by varying the manufacturing conditions according to the concentration and type of the raw material.
  • the master alloy which has undergone the above-described process, is not crystalline through the rapid cooling (RSP) process, but becomes solidified in a state where amorphous and crystalline tissues are mixed.
  • RSP rapid cooling
  • the ribbon is manufactured in the form of a ribbon, but by adjusting the cooling rate, a powder having a size of several hundred nanometers may be prepared as a simple half-ribbon.
  • a Bi-Te-based thermoelectric material ribbon having a thin thickness, preferably 10 ⁇ m or less is formed.
  • the brittle ribbon-shaped raw material rapidly solidified by direct injection of the dissolved mother alloy is crushed to obtain nano-sized amorphous fine powder having a uniform particle size and shape.
  • the crushing step of step S30 can be carried out without limitation to the conventional crushing / grinding process known in the art, for example, it can be pulverized using a ball mill method.
  • the particle size of the powder to be pulverized is not particularly limited, and as an example, the average particle diameter may be adjusted to 100 ⁇ m or less, preferably in the range of 10 to 100 ⁇ m.
  • the above-described shredding / crushing process is performed in an inert atmosphere.
  • the oxidation degree can be controlled to be lowered by reducing the oxygen content in the pulverized powder.
  • the oxygen content of about 30% or more, specifically, 30 to 45% of the oxygen content may be reduced, compared to that of the pulverization under atmospheric conditions including oxygen. It can be controlled below% (see Table 1 below).
  • the type or pressure range of the inert gas is not particularly limited, and may be, for example, an atmosphere of nitrogen gas, argon gas, or a mixture thereof.
  • the Bi-Te-based powder formed through the above step may have an average particle diameter of 100 ⁇ m or less, and an oxygen content of the powder may be 0.03% or less, preferably 0.02 to 0.03%.
  • step S40 to form a molded body of a predetermined shape in order to ensure a high density in the pressure sintering process.
  • the nano-size amorphous powder crushed in step S30 is compressed.
  • the compression process may use a conventional method known in the art, and for example, it is preferable to use a molding press or a compressor.
  • the compression conditions are not particularly limited and may be appropriately adjusted under conventional compression conditions known in the art. For example, it is preferable to compress at 10 MPa or less.
  • thermoelectric material Thereafter, the preform obtained above is press-sintered to produce a high density thermoelectric material.
  • Non-limiting examples of the pressure sintering method that can be used in the present invention is a hot press molding method such as hot press (HP) or spark plasma (Spark Plasma Sintering, SPS).
  • the temperature of the hot working is not particularly limited, but is preferably prepared at 40 to 65 MPa pressure for 3 to 10 minutes at a temperature in the range of 400 to 500 °C. If the conditions (temperature, time, pressure) at the time of the hot working is less than 400 °C, 3 minutes or 40MPa can not obtain a high-density material, if the conditions exceed 500 °C or time exceeds 10 minutes, The high vapor pressure of Te is volatilized, making it unsuitable for the desired composition, which is likely to lower the thermoelectric performance index. In addition, pressures above 65 MPa may pose a risk for the application mold and equipment.
  • Bi-Te-based thermoelectric material of the present invention prepared by the above-described manufacturing method has a density of 95 to 99% range, preferably about 97% or more.
  • the thermal conductivity is also in the range 1.0 to 1.3 W / mK.
  • the thermoelectric performance index (ZT) may be about 1.0 or more in the case of P type, preferably in the range of about 1.0 to 1.2.
  • the n type may be about 0.8 or more, preferably 0.8 to 1.0.
  • thermoelectric material containing Bi, Te, Se, and Sn having a bulk form of about 2 to 5 mm and having a high purity of 5 N or more was prepared.
  • Bi-Te-Se-based material had Bi 53wt%, Te 44wt%, Se 3wt% as target composition, and in case of p-type, Bi 13wt%, Sb 28wt%, Te 59wt To have%.
  • the thermoelectric material was charged into a quartz tube (Quartz) and sealed using a vacuum pump. The quartz tube (Quartz) was charged to the Locking Furnace, and then stirred and dissolved at about 700 ° C.
  • the mother alloy ingot is charged into a nozzle installed in the melt spinning equipment and completely dissolved at a temperature of about 700 ° C. using a resistance heating element (a structure that surrounds the nozzle as a graphite heater) to form a melt, and then 0.1 MPa of inert gas is added to the melt.
  • a resistance heating element a structure that surrounds the nozzle as a graphite heater
  • inert gas is added to the melt.
  • the Bi-Te-based metal ribbon was formed as it rapidly cooled in contact with the rotating Cu wheel surface. At this time, the rotation speed of the copper wheel proceeded to 1000 rpm.
  • the formed metal ribbon was pulverized in an argon (Ar) atmosphere to have an average particle diameter of 100 ⁇ m or less by using a ball mill method. At this time, it was possible to control the oxygen content lower than about 30% than when ground under atmospheric conditions.
  • the pulverized powder was maintained at about 480 ° C. for 5 minutes and maintained at 60 MPa pressure using spark plasma sintering (SPS) to prepare a high-density thermoelectric material of 99% or more.
  • SPS spark plasma sintering
  • the photograph of the Bi-Te-based thermoelectric material obtained by sintering the metal ribbon prepared in Example 1 is shown in FIG. 2.
  • thermoelectric material containing Bi, Te, Se, and Sn having a bulk form of about 2 to 5 mm and having a high purity of 5 N or more was prepared.
  • Bi-Te-Se-based material had Bi 53wt%, Te 44wt%, Se 3wt% as target composition, and in case of p-type, Bi 13wt%, Sb 28wt%, Te 59wt To have%.
  • the thermoelectric material was charged into a quartz tube (Quartz) and sealed using a vacuum pump. The quartz tube (Quartz) was charged to the Locking Furnace, and then stirred and dissolved at about 700 ° C.
  • the mother alloy ingot is charged into a nozzle installed in the melt spinning equipment and completely melted using a resistance heating element (a structure that surrounds the nozzle as a graphite heater) to form a melt, and then pressurized and inert gas into the melt by spraying 0.1 MPa.
  • a resistance heating element a structure that surrounds the nozzle as a graphite heater
  • Bi-Te-based metal ribbons were formed.
  • the rotation speed of the copper wheel proceeded to 1000 rpm.
  • the formed metal ribbon was pulverized so that the average particle diameter was 100 ⁇ m or less by using a ball mill method under an atmospheric atmosphere containing oxygen. Since the powder was sintered by using plasma plasma sintering (SPS) for about 5 minutes at 480 °C, 60MPa pressure was maintained to prepare a thermoelectric material.
  • SPS plasma plasma sintering
  • Example 1 ground under inert atmosphere, the oxygen content in the powder was 0.030 wt% or less, and the oxygen content was reduced by about 40% or more based on Comparative Example 1 ground in the air. (See Table 1 below).
  • Thermal conductivity measurement Specific heat capacity measurement and thermal conductivity were calculated by the laser flash method in accordance with JIS R 1611 and JIS R 1650-3. More specifically, after cutting into a disc shape having a diameter of 10 mm x 1mm to measure the thermal diffusivity (D), specific heat (Cp) and density (d) by a laser flash method, the thermal conductivity is measured using the following equation (2) It was.
  • thermoelectric performance index results of the thermoelectric materials manufactured in Example 1 and Comparative Example 1 of the present invention are shown in Table 2 below.
  • Example 1 Comparative Example 1 Thermoelectric Performance Index (ZT) P type n type P type n type 1.05 0.85 1.00 0.78
  • the Bi-Te-based thermoelectric material of the present invention which has been pulverized in an inert atmosphere, has an excellent thermoelectric performance index compared to Comparative Example 1 pulverized in an atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 Bi-Te계 열전재료의 제조방법에 관한 것으로, 보다 상세하게는 급속응고(Rapid Solidification Process: RSP)를 통해 형성된 금속 리본을 비활성 분위기 하에서 소정의 형상과 크기로 분쇄한 후 소결함으로써, 산화도 제어를 통해 열전도도 감소, 높은 제벡계수 및 전기전도도를 유지하여 열전 특성을 향상시킬 수 있는 신규 제조방법을 제공한다.

Description

산화도가 제어된 Bi-Te계 열전 재료의 제조 방법
본 발명은, 열전발전에 사용되는 Bi-Te계 열전재료의 제조방법에 관한 것으로서, 보다 상세하게는 급속응고(Rapid Solidification Process: R.S.P)를 통해 형성된 Bi-Te계 금속 리본을 비활성 분위기 하에서 소정의 형상과 크기로 분쇄한 후 가압소결함으로써, 산화도 제어를 통해 낮은 열전도도를 확보하여 열전 특성이 향상되는 Bi-Te계 열전재료의 신규 제조방법에 관한 것이다.
열전기술은 일반적으로 열에너지를 전기에너지로, 전기에너지를 열에너지로 고체 상태에서 직접 변환하는 기술로서, 열에너지를 전기에너지로 변환하는 열전발전 및 전기에너지를 열에너지로 변환하는 열전냉각 분야에 응용되고 있다. 이러한 열전발전 및 열전냉각을 위해 사용되는 열전재료는 열전특성이 증가할수록 열전소자의 성능이 향상된다. 그 열전성능을 결정하는 것은, 열기전력(V), 제벡 계수(α), 펠티어 계수(π), 톰슨 계수(τ), 네른스트 계수(Q), 에팅스하우젠 계수(P), 전기 전도율(σ), 출력 인자(PF), 성능 지수(Z), 무차원성능지수(ZT=α2σT/κ (여기에서, T는 절대온도이다)), 열전도율(κ), 로렌츠수(L), 전기 저항율(ρ) 등의 물성이다. 특히, 무차원 성능지수(ZT)는 열전 변환 에너지 효율을 결정하는 중요한 요소로서, 성능 지수(Z=α2σ/κ)의 값이 큰 열전 재료를 사용하여 열전 소자를 제조함으로써, 냉각 및 발전의 효율을 높일 수 있게 된다. 즉, 열전재료는 제벡 계수와 전기전도도가 높을수록, 열전도도가 낮을수록, 우수한 열전성능을 가지게 된다.
한편 열전재료는 미세하고, 균일한 입자를 이룰수록 열전성능을 보다 향상시킬 수 있다. 이를 위해, 일반적으로 용탕 분사법, 단순 파쇄법, 전해 전착법, 화학 공침법, 기계적 분쇄법 등의 방법을 통해 열전재료를 분말 형태로 제조한다.
상기 용탕 분사법은 용탕을 분위기 중의 챔버에서 고속 분사하는 것으로, 대량 생산이 가능하지만 입도 제어가 불가능하다. 그리고, 단순 파쇄법은 일정 크기의 분말로 제조하기까지 장시간이 소요되며, 입도 제어 또한 불가능하다. 그리고, 화학 공침법 (석출법)은 미세 분말 제조가 가능하지만, 농도 제어에 어려움이 있으며, 단위분말이 아니라 뭉쳐진 상태 (agglomerated state)로 존재하는 단점이 있다. 그리고 기계 분쇄법은 분위기가 제어된 용기 내에 구형 볼과 볼의 기계적 운동에너지를 이용하여 분쇄하는 것으로서, 생산 속도가 느리고, 볼에 의한 불순물의 혼입 가능성도 있다. 이 외에도 졸겔법 등의 공정별 다양한 방법이 있다.
종래 기술로서, 대한민국 등록특허 제10-0228464호는 Bi2Te3-Sb2Te3계 재료를 용융하여 고압의 질소 가스 분무에 의한 급속응고법 (Atomizing법)으로 냉각함으로써, 미세하고 구형에 가까운 형상의 열전 변화 재료 분말을 제조하는 방법을 개시하였다. 또한 대한민국 등록특허 제10-0228463호는 Bi2Te3계 열전재료를 화학적으로 균질한 리본 형상으로 만들어 냉간 프레싱에 의해 가압 성형하고, 열간 프레싱에 의해 가압 소결하는 방법을 개시하였으며, 대한민국 등록특허 제10-0382599호는 PbTe계 열전재료를 용융 금속을 구리 블럭 안에서 냉각시켜 볼밀기로 파쇄하는 방법을 개시하였다. 또한, 대한민국 등록특허 제10-0440268호는 Bi2Te3-Sb2Te3계 열전재료를 용융하여 결정으로 성장시켜 응고한 후 수소 환원 처리하여 분쇄하여 분말을 형성하는 것이다. 그러나 전술한 종래 기술들은 일정한 크기를 갖는 나노 분말을 제조하기가 어려울 뿐만 아니라 대부분의 제조공정이 대기 중에서 이루어지므로, 대기 중의 산소로 인해 해당 열전재료 내 산화도를 낮게 조절하거나 또는 원하는 수준의 열전도도를 확보하기가 어려웠다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 급속응고법(RSP)을 통해 제조된 금속 리본을 비활성 분위기 하에서 분쇄하여 산소 함량을 제어함으로써, 산화도 제어를 통해 열전도도 감소, 높은 제벡계수 및 전기 전도도를 나타내어 우수한 열전성능을 확보할 수 있는 Bi-Te계 열전재료의 신규 제조방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해서, 본 발명은 (i) Bi 원료와 Te 원료를 포함하는 열전재료용 원료를 용해 및 응고시켜 모합금을 형성하는 단계; (ii) 상기 모합금을 급속냉각을 통해 금속 리본을 형성하는 단계; (iii) 상기 금속리본을 비활성 분위기하에서 분쇄하여, 당해 분쇄물 내 산소 함량을 0.03% 이하로 제어하는 단계; 및 (iv) 상기 분쇄물을 압축하여 예비성형체를 형성한 후 가압소결하는 단계를 포함하는 Bi-Te계 열전재료의 제조방법을 제공한다.
여기서, 상기 단계 (i)에서 모합금 잉곳은 5N 이상의 고순도를 갖는 n형 Bi-Te-Se계 합금 또는 p형 Bi-Sb-Te계 합금인 것이 바람직하다.
또한 본 발명은 전술한 방법에 의해 제조된 Bi-Te계 열전재료를 제공한다.
본 발명은 급속응고법(R.S.P)을 적용하여 제조된 금속 리본을 산소가 비포함된 비활성 분위기 하에서 분쇄함에 따라, 기존 방식과 달리 분쇄된 분말의 산화도 제어를 통해 열전도도 감소, 높은 제벡계수 및 전기 전도도를 나타내어 보다 높은 열전성능을 확보할 수 있다.
도 1은 본 발명의 일 실시형태에 따른 제조방법의 공정 순서도이다.
도 2은 실시예 1에서 제조된 리본을 이용하여 가압 소결한 열전 소재의 이미지이다
도 3은 실시예 1에서 제조된 Bi-Te계 열전재료의 전기전도도 측정 결과이다.
도 4는 실시예 1에서 제조된 Bi-Te계 열전재료의 열전도도 측정 결과이다.
도 5는 실시예 1에서 제조된 Bi-Te계 재료의 제벡계수 측정 결과이다.
도 6은 실시예 1에서 제조된 Bi-Te계 열전 재료의 열전 성능지수(ZT) 측정 결과이다.
이하, 본 발명을 상세히 설명한다.
일반적으로, 열전소재의 열전성능 평가 지표인 ZT는 하기 수학식 1과 같이 측정된다.
[수학식 1] ZT = (POWER FACTOR × (전기전도도)2 /열전도도) × ΔT
대부분의 금속소재의 경우, 전기전도도가 상승하면 비례적으로 열전도도가 상승하게 되므로, 열전도도가 높아질 경우 상대적으로 ZT가 현저히 감소하게 된다. 최근 열전소재 분야에서는 나노구조 개념으로 Power Factor, 전기전도도, 열전도도 등의 3가지 인자를 각각 독립적으로 제어하는 것을 연구하고 있으며, 급속냉각(R.S.P)을 통해 나노구조가 제어된 열전소재를 제조할 수 있다. 이로 인해 최종적으로 열전도도와 전기전도도를 각각 독립적으로 제어할 수 있어, 열전도도는 낮추고 전기전도도를 상승시키는 경우, ZT를 상승시킬 수 있다. 전술한 사항을 착안하여, 본 발명에서는 산화도를 조절하여 열전재료의 열전도도를 상대적으로 감소시킴으로써 열전재료의 열전 성능지수(ZT)를 상승시키고자 한다.
본 발명은 n형 (Bi, Te, Se) 및 p형 (Bi, Te, Sn)계 열전소자용 재료의 금속리본 제조시 급속 응고법 (Rapid Solidification Process: RSP)을 적용하여 리본 조성의 균일도를 제어할 수 있으며, 이와 동시에 산소가 비(非)포함된 비활성 분위기하에서 상기 금속리본을 원하는 크기와 형상을 갖는 미세분말로 분쇄함으로써 산화도 제어를 통해 열전도도 감소, 높은 제벡계수, 우수한 전기 전도도 등의 높은 열전성능을 발휘할 수 있다.
보다 구체적으로, 본 발명에서는 2 ~ 5㎜ 크기의 괴상형태의 고순도 Bi, Te, Se, Sn을 함유하는 조성의 원료를 용융 및 응고시켜 모합금을 제조한 후, 제조된 모합금을 R.S.P에서 특정 온도(약 650~700℃)로 제어하여 조성 균일도가 향상된 열전소자용 Bi-Te계 리본을 제조하고, 이후 상기 열전소자 리본을 비활성 분위기 하에서 미세분말로 분쇄한 후, 가압 소결을 통해 고밀도 및 우수한 열전 특성을 가진 열전재료를 제조할 수 있다.
전술한 방법을 통해 제조된 Bi-Te계 열전재료는 산화도 제어를 통해 낮은 열전도도를 확보할 수 있으며, 균일한 입도를 가지는 나노 크기의 비결정성 분말 형태이므로, 조성이 균질하고 고밀도 및 고강도 특성과 더불어, 열전성능을 더욱 향상시키게 된다.
또한 본 발명에서는 Bi2Te3계 열전재료 모합금의 목적 조성을 균일하게 제어할 수 있으므로, R.S.P 공정을 통한 리본(Ribbon) 제조시 균일도를 유지할 수 있으며 최종 제품의 열적 특성이 우수하다. 아울러, 나노블럭이 미세할수록 열전도도가 감소하여 우수한 열전성능(ZT)을 나타내는데, 본 발명에서는 R.S.P 공정 조건에 따라 리본(Ribbon)의 나노 블록 크기가 미세해짐에 따라 열적 특성이 보다 상승하게 된다.
<Bi-Te계 열전재료의 제조방법>
이하, 본 발명의 일 실시형태에 따른 Bi-Te계 열전재료의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.
상기 제조방법의 바람직한 일 실시예를 들면, (i) Bi 원료와 Te 원료를 포함하는 열전재료용 원료를 용해 및 응고시켜 모합금을 형성하는 단계('S10 단계'); (ii) 상기 모합금을 급속냉각을 통해 금속 리본을 형성하는 단계('S20 단계'); (iii) 상기 금속리본을 비활성 분위기하에서 분쇄하여, 당해 분쇄물 내 산소 함량을 0.03% 이하로 제어하는 단계('S30 단계'); 및 (iv) 상기 분쇄물을 압축하여 예비성형체를 형성한 후 가압소결하는 단계('S40 단계')를 포함하여 구성될 수 있다.
한편 도 1은 본 발명에 따른 Bi-Te계 열전재료의 제조방법을 각 단계별로 도시한 개념도이다. 이하, 도 1을 참고하여 상기 제조방법을 각 공정 단계별로 나누어 설명하면 다음과 같다.
(1) Bi-Te계 열전재료를 구성하는 원료를 용해 및 응고시켜 모합금을 형성한다('S10 단계').
본 단계는 Bi-Te계 열전재료를 구성하는 화학양론적 비율에 맞게 Bi계 원료와 Te계 원료를 혼합하고 용해, 응고시켜 n형 및/또는 p형 Bi-Te계 모합금을 형성하는 단계이다.
상기 S10 단계는 당 분야에 알려진 통상적인 방법에 따라 모합금을 제한 없이 형성할 수 있다.
보다 구체적으로, 상기 S10 단계의 바람직한 일례를 들면, (i-1) 제1원소; 및 제2원소를 포함하는 조성의 원료를 석영관(Quartz)에 장입한 후, 진공상태를 유지하는 단계('S10-1 단계'); 및 (i-2) 상기 진공상태의 석영관을 퍼니스(Locking furnace)에 장입한 후 650~700℃의 온도에서 1~3시간 동안 10~15회/분 속도로 교반 및 용해시켜 모합금을 형성하는 단계('S10-2 단계')를 포함하여 구성될 수 있다.
먼저, (i-1) n형과 p형으로 구분되어 각각의 조성에 맞는 열전재료용 원료를 석영관에 장입한 후 용해를 위해 실링(Sealing)한다(이하 'S10-1 단계'라 함).
본 발명에서 사용 가능한 열전재료용 원료는, Bi 및 Te를 주재로 하고, 여기에 n형과 p형에 따라 각각 Se 또는 Sb 성분을 추가로 포함하는 조성일 수 있다. 일례로, 상기 Bi 원료와 Te 원료는, Bi2Te3 ±0.2의 화학양론 조성에 따른 비율로 혼합될 수 있으며, 바람직하게는 Bi2Te3 ±0.15일 수 있다.
본 발명의 바람직한 일례에 따르면, 상기 열전재료용 원료는, (i) Bi 및 Sb로 구성된 군에서 선택되는 1종 이상의 제1원소; 및 Te 및 Se로 구성된 군에서 선택되는 1종 이상의 제2원소를 포함하는 조성의 원료를 포함하는 조성일 수 있다.
보다 구체적으로, 상기 n형 열전재료용 원료가 Bi-Te-Se계 합금 조성일 경우, 전체 100 중량%를 기준으로 Bi 50~55 중량%, Te 40~45 중량%, 및 Se 3~4 중량%를 포함하는 조성일 수 있다. 또한 p형 열전재료용 원료가 Bi-Sb-Te계 합금 조성일 경우, 전체 100 중량%를 기준으로 Bi 10~15 중량%, Sb 25~30 중량%, Te 55~60 중량%를 포함하는 조성일 수 있다.
본 발명에서는 제조하고자 하는 열전재료의 조성에, 도핑원소 분말을 첨가할 수 있다.
여기서 도핑 원소(dopant)는 Bi-Te계 열전재료가 n형 또는 p형 특성을 갖도록 하기 위해 도입된 것이므로, n형 또는 p형 열전 재료에 사용될 수 있는 당 분야의 통상적인 성분을 제한 없이 사용할 수 있다. 일례로 Al, Sn, Mn, Ag, Cu 및 Ga로 이루어진 군에서 선택되는 1종 이상의 금속일 수 있다. 전술한 금속 성분을 도핑함으로써, 전기전도도나 제벡 특성을 높여 열전 성능을 향상시킬 수 있다. 이때 도핑되는 상기 1종 이상의 금속 함량은 특별히 한정되지 않으며, 일례로 전체 중량 대비 0.001~1 중량% 범위일 수 있다.
상기와 같이 도입되는 도펀트는, 하기 실시되는 열처리 공정 등을 통해 격자 결합의 열역학적 에너지 차이 또는 원자확산의 구동력 등에 따라 Bi 또는 Te의 격자(lattice)를 치환하게 된다.
본 발명에서 상기 열전재료의 크기와 형태는 특별히 한정되지 않으나, 약 2 내지 5mm 크기의 괴상 형태일 수 있다. 또한 상기 열전재료의 순도는 5N 이상의 고순도인 것이 바람직하다.
전술한 열전재료용 원료를 석영관(Quartz)에 장입한 후 진공펌프를 이용하여 실링(Sealing)한 후 진공상태를 유지하도록 한다.
(i-2) 상기 S10-1 단계의 석영관을 퍼니스(Locking Furnace)를 이용하여 각각의 n형 및 p형 모합금을 제조한다(이하 'S10-2 단계'라 함).
상기 S10-2 단계의 바람직한 일례를 들면, 진공상태에서 실링된 석영관을 퍼니스에 장입한 후 용해를 위해 약 650 ~ 700℃ 온도에서 1 ~ 3시간 동안, 10 ~ 15회/분의 속도로 교반하고 용해시켜 모합금을 형성한다.
급속응고법(R.S.P)을 이용하여 리본(Ribbon)을 제조하기 위해서는, 균일한 Bi2-Te3계 열전재료의 모합금을 제조하여야 한다. 이에, 본 발명에서는 Φ 30 * 100㎜ 모합금이나 대략 Φ 20~30 * 100~150㎜ 크기 범위의 모합금을 제조할 수 있다.
상기 S10-2 단계를 통해 제조된 모합금 잉곳은 5N 이상의 고순도를 갖는 Bi-Te계일 수 있으며, 바람직하게는 n형 Bi-Te-Se계 합금 또는 p형 Bi-Sb-Te계 합금일 수 있다.
(2) 상기 S10-2 단계에서 얻은 n형 및/또는 p형 모합금을 용융 방사하여 금속 리본을 형성한다(이하 'S20 단계'라 함).
본 단계에서는 이전 단계에서 수득된 Bi-Te계 모합금을 급속 응고법(R.S.P)을 통해 복합 미세구조를 갖는 Bi-Te계 금속리본을 제조한다.
상기 S20 단계의 바람직한 일례를 들면, 상기 모합금 잉곳을 용융 방사 장비에 설치된 노즐에 장입한 후 열을 공급하고 지속적으로 유지할 수 있는 발열체를 이용하여 완전히 용해시켜 용융물을 형성하고, 이후 상기 용융물에 불활성 가스를 가압하고 분사시켜, 회전하는 고속회전 휠(wheel) 표면에 용융물을 접촉시켜 급속 냉각시키는 것이다. 이를 통해 Bi-Te계 금속 리본이 형성된다.
여기서, 상기 발열체는 열을 지속적으로 공급하고 유지시킬 수 있다면 특별히 한정되지 않으며, 당 분야에 알려진 통상적인 저항 발열체를 사용할 수 있다. 일례로, 전류를 공급받아 발열하는 저항 발열체를 사용할 수 있다. 사용 가능한 저항 발열체의 예를 들면, 전기로 타입의 히터, 예컨대 그래파이트 히터로 온도를 제어할 수 있다.
이때 저항 발열체가 발열하는 온도 범위는 Bi-Te계 모합금을 완전히 용해시킬 수 있는 범위이기만 하면 특별히 한정되지 않으며, 일례로 500 ~ 800℃, 바람직하게는 650 ~ 700℃ 범위로 유지되는 것이다. 상기 저항 발열체의 표면 저항은 이의 두께 및 종류에 따라 조절될 수 있으며, 일례로 0.1 내지 100옴(Ω) 범위 내에서 조절될 수 있다.
또한 비활성 가스의 종류나 가압 범위 역시 특별히 한정되지 않으나, 일례로 아르곤 가스 등을 이용하여 0.1 내지 0.5MPa 범위로 가압 분사시키는 것이 바람직하다.
상기 S20 단계에서, 상기 용융물과 접촉하는 상기 고속회전 휠은 당 분야에 알려진 통상적인 휠을 사용할 수 있으며, 일례로 구리 휠(Cu wheel) 등이 있다. 여기서 고속회전 휠(wheel)의 회전 속도는 특별히 한정되지 않으며, 일례로 500 내지 2,000rpm일 수 있으며, 휠 선속도는 5m/s 내지 40 m/s 범위일 수 있다. 전술한 조건을 만족할 경우 휠의 표면과 접촉하는 용융물이 급속 냉각됨과 동시에 두께가 얇고 미세구조를 갖는 합금 리본이 형성될 수 있다.
본 발명에서는, 용해된 모합금의 냉각속도를 조절함으로써, 균일 입도 제어가 가능하며, 일반적으로 냉각속도가 느린 경우 나노 크기의 비결정성 분말을 제조할 수 있으며, 또는 미립자 분말의 제조가 가능하게 된다. 또한, 원료의 농도와 종류에 따라 제조 조건을 달리하여 제조할 수 있다.
전술한 공정을 거친 모합금은 급속냉각(RSP) 공정을 통해 결정질이 되는 것이 아니라 비결정성 조직과 결정성 조직이 혼재(婚材)된 상태로 응고되게 된다. 이때, 급속냉각 속도가 매우 빠른 경우에는 리본 형태로 제조가 되지만, 냉각속도를 조절하면 수백 나노미터 크기를 가지는 분말이 단순 연결된 반리본 상으로도 제조할 수도 있다.
전술한 S20 단계의 급속냉각을 통해 두께가 얇은, 바람직하게는 10㎛ 이하인 Bi-Te계 열전재료 리본이 형성된다.
(3) 비활성 분위기 하에서 금속리본을 분쇄한다(이하 'S30 단계'라 함).
상기 S30 단계는 용해된 모합금의 직접 분사에 의해 급속 응고된 취성이 높은 리본상 원료를 파쇄하여 균일한 입도와 형상을 가지는 나노 크기의 비결정성 미세분말을 수득한다.
상기 S30 단계의 분쇄공정은 당 분야에 알려진 통상적인 파쇄/분쇄 공정을 제한 없이 실시할 수 있으며, 일례로 볼밀법을 이용하여 분쇄할 수 있다. 이때 분쇄되는 분말의 입경은 특별히 제한되지 않으며, 일례로 평균입경이 100 ㎛ 이하, 바람직하게는 10 내지 100㎛ 범위로 조절할 수 있다.
본 발명에서는 금속리본의 산화도 제어를 위해서, 전술한 파쇄/분쇄 공정을 비활성 분위기하에서 실시하게 된다. 이와 같이 산소가 비포함된 조건에서 분쇄를 실시함에 따라, 분쇄된 분말 내 산소 함량을 감소시켜 산화도를 낮게 제어할 수 있다. 일례로, 본 발명에서는 산소가 포함된 대기 조건하에서 분쇄를 실시한 것에 비해, 대략 30% 이상, 구체적으로 30 ~ 45%의 산소 함량을 감소시킬 수 있으며, 바람직하게는 당해 분쇄물 내 산소 함량을 0.03% 이하로 제어할 수 있다(하기 표 1 참조).
이때 비활성 가스의 종류나 압력 범위 역시 특별히 한정되지 않으며, 일례로 질소 가스, 아르곤 가스 또는 이들이 혼합된 분위기일 수 있다.
상기 단계를 거쳐 형성된 Bi-Te계 분말은 평균 입경이 100 ㎛ 이하 범위일 수 있으며, 분말 내 산소 함량이 0.03 % 이하, 바람직하게는 0.02 ~ 0.03% 범위일 수 있다.
(4) 이후, 상기 S30 단계에서 얻은 금속 리본의 분쇄물을 압축 공정을 통해 예비 성형체를 제조한 후, 가압 소결을 통해 고밀도의 열전 소재를 제조한다(이하 'S40 단계'라 함).
본 S40 단계에서는, 가압소결 공정에서의 고밀도를 확보하기 위해 일정 형상의 성형체를 제조한다.
이를 위해, 상기 S30 단계에서 파쇄된 나노 크기의 비결정성 분말 형태를 압축한다. 이때 압축 공정은 당 분야에 알려진 통상적인 방법을 사용할 수 있으며, 일례로 성형 프레스, 또는 압축기를 이용하는 것이 바람직하다. 또한 상기 압축 조건은 특별히 제한되지 않으며, 당 분야에 알려진 통상적인 압축 조건하에서 적절히 조절할 수 있다. 일례로 10 MPa 이하에서 압축하는 것이 바람직하다.
이후, 상기에서 얻은 예비 성형체를 가압소결을 통해 고밀도의 열전 재료를 제조한다.
본 발명에서 사용 가능한 가압소결법의 비제한적인 예로는 핫 프레스(Hot Press, HP) 또는 방전플라즈마(Spark Plasma Sintering, SPS) 등과 같은 고온 가압 성형법이 있다.
여기서, 상기 열간가공의 온도는 특별히 제한되지 않으나, 일례로 400 내지 500℃ 범위의 온도에서 3 내지 10분 동안 40 내지 65MPa 압력으로 제조하는 것이 바람직하다. 상기 열간가공시의 조건(온도, 시간, 압력)이 400℃, 3분 또는 40MPa 미만일 경우에는 고밀도의 소재를 얻을 수 없으며, 상기 조건이 500℃를 초과하거나 또는 시간이 10분을 초과할 경우, Te의 증기압이 높아 휘발되어 목적 조성에 적합하지 않게 되며, 이로 인해 열전 성능 지수가 저하될 가능성이 높다. 또한 압력이 65MPa를 초과할 경우에는 적용 몰드 및 장비의 위험을 초래할 수 있다.
전술한 제조방법을 통해 제조된 본 발명의 Bi-Te계 열전재료는 밀도가 95~99% 범위, 바람직하게는 약 97% 이상이다. 또한 대기 중에서 분쇄공정을 수행한 대조군(비교예 1)보다 대략 산소 함량을 30% 이상 감소시킬 수 있으며, 구체적으로 당해 열전재료 내 산소 함량을 0.03% 이하로 제어할 수 있다. 또한 열전도도는 1.0 ~ 1.3 W/mK 범위이다. 아울러, 열전 성능지수(ZT)는 P type의 경우 약 1.0 이상일 수 있으며, 바람직하게는 약 1.0 ~ 1.2 범위이다. n type의 경우 약 0.8 이상일 수 있으며, 바람직하게는 0.8 ~ 1.0 범위이다. 이는 급속응고법(R.S.P) 공정에서 제조된 리본의 나노 블록이 미세하고, 이후 비활성 분위기 하에서 분쇄시, 산화도가 조절되어 열전도도 특성이 감소함에 따라 ZT 값이 향상된 것으로 보여진다.
이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
약 2~5mm의 괴상형태이며, 5N 이상의 고순도를 갖는 Bi, Te, Se 및 Sn을 함유하는 열전재료를 준비하였다. n형의 경우, Bi-Te-Se계의 소재로서 목적 조성인 Bi 53wt%, Te 44wt%, Se 3wt%을 갖도록 하였으며, p형의 경우, Bi 13 wt%, Sb 28 wt%, Te 59 wt%을 갖도록 하였다. 해당 열전재료를 석영관(Quartz)에 장입한 후 진공펌프를 이용하여 실링(Sealing)하였다. 석영관(Quartz)을 Locking Furnace에 장입한 후 약 700℃에서 2시간, 10회/min 속도로 교반 및 용해하여 Φ 30 * 100㎜ 모합금 잉곳을 제조하였다. 이후 모합금 잉곳을 용융 방사 장비에 설치된 노즐에 장입하여 저항 발열체(그라파이트 히터로서 노즐을 감싸는 구조)를 이용하여 약 700℃ 온도로 완전히 용해시켜 용융물을 형성한 후, 상기 용융물에 불활성 가스를 0.1MPa로 가압하여 분사시킴으로써, 회전하는 구리 휠(Cu wheel) 표면에 접촉하여 급속 냉각됨에 따라 Bi-Te계 금속 리본을 형성하였다. 이때 구리 휠의 회전 속도는 1000rpm으로 진행하였다.
이후 산화도를 제어하고자, 형성된 금속 리본을 아르곤(Ar) 분위기 하에서 볼밀법을 이용하여 평균입경이 100 ㎛ 이하가 되도록 분쇄하였다. 이때 대기 조건하에서 분쇄하였을 때보다 약 30% 이상의 산소 함량을 낮게 제어할 수 있었다. 상기 분쇄된 분말을 방전플라즈마 소결(spark plasma sintering: SPS)을 이용하여 약 480℃에서 5분 유지, 60MPa 압력을 유지하여 99% 이상의 고밀도의 열전재료를 제조하였다.
상기 실시예 1에서 제조된 금속리본을 가압소결한 Bi-Te계 열전재료의 사진은 도 2와 같다.
비교예 1
약 2~5mm의 괴상형태이며, 5N 이상의 고순도를 갖는 Bi, Te, Se 및 Sn을 함유하는 열전재료를 준비하였다. n형의 경우, Bi-Te-Se계의 소재로서 목적 조성인 Bi 53wt%, Te 44wt%, Se 3wt%을 갖도록 하였으며, p형의 경우, Bi 13 wt%, Sb 28 wt%, Te 59 wt%을 갖도록 하였다. 해당 열전재료를 석영관(Quartz)에 장입한 후 진공펌프를 이용하여 실링(Sealing)하였다. 석영관(Quartz)을 Locking Furnace에 장입한 후 약 700℃에서 2시간, 10회/min 속도로 교반 및 용해하여 Φ 30 * 100㎜ 모합금 잉곳을 제조하였다. 이후 모합금 잉곳을 용융 방사 장비에 설치된 노즐에 장입하여 저항 발열체(그라파이트 히터로서 노즐을 감싸는 구조)를 이용하여 완전히 용해시켜 용융물을 형성한 후, 상기 용융물에 불활성 가스를 0.1MPa로 가압하여 분사시킴으로써, 회전하는 구리 휠(Cu wheel) 표면에 접촉하여 급속 냉각됨에 따라 Bi-Te계 금속 리본을 형성하였다. 이때 구리 휠의 회전 속도는 1000rpm으로 진행하였다.
이후 형성된 금속 리본을 산소가 포함된 대기 분위기 하에서 볼밀법을 이용하여 평균입경이 100 ㎛ 이하가 되도록 분쇄하였다. 이후 분쇄된 분말을 방전플라즈마 소결(spark plasma sintering: SPS)을 이용하여 약 480℃에서 5분 유지, 60MPa 압력을 유지하여 열전재료를 제조하였다.
실험예 1. 분쇄 공정의 조건에 따른 Bi - Te계 열전재료의 물성 평가
실시예 1과 비교예 1에서 제조된 Bi-Te계 열전재료를 이용하여 분쇄공정의 조건에 따른 산소 함량 및 이의 감소량을 하기와 같이 평가하였다.
실험 결과, 비활성 분위기 조건하에서 분쇄된 실시예 1의 경우 해당 분쇄물 내 산소 함량이 0.030 wt% 이하이며, 대기 중에서 분쇄된 비교예 1을 기준으로 하여 대략 40% 이상의 산소 함량이 감소하였음을 확인할 수 있었다(하기 표 1 참조).
구분 N형 (Bi-Te-Se계) p형 (Bi-Sb-Te계)
대기 분쇄 비활성 분위기 분쇄 대기 분쇄 비활성 분위기 분쇄
산소 함량(wt%) 0.045 0.025 0.050 0.030
산소함량 감소량 (%) 44.4% 40%
산소함량 감소(%) = 100 -[(비활성 분쇄 산소함량 / 대기분쇄 산소함량)×100]
실험예 2. Bi - Te계 열전재료의 물성 평가
실시예 1 및 비교예 1에서 제조된 Bi-Te계 열전 재료의 물성 측정방법은 하기와 같다.
1) 제벡계수 및 전기전도도 측정: JIS K 7194에 준거하여, ZEM-3 (Ulvac-Riko社 제조)를 이용하여 측정하였다. 측정된 전기전도도의 결과는 하기 도 3에 도시하였으며, 제벡계수의 결과는 하기 도 5에 도시하였다.
2) 열전도도 측정: JIS R 1611과, JIS R 1650-3에 준거하여 레이저 플래쉬법에 의한 비열용량 측정 및 열전도도를 계산하였다. 보다 구체적으로, 직경 10 mm x 1mm의 원판 형태로 절단하여 레이저 플래쉬법으로 열확산도(D), 비열(Cp) 및 밀도(d)를 측정한 후, 하기 수학식 2를 이용하여 열전도도를 측정하였다.
[수학식 2] κ = DCpd
측정된 열전도도의 결과는 하기 도 4에 도시하였으며, 무차원 열전성능지수(ZT)는 하기 도 6 및 하기 표 2에 기재하였다.
한편 본 발명의 실시예 1과 비교예 1에서 제조된 열전재료의 열전 성능지수 결과는 하기 표 2와 같다.
실시예 1 비교예 1
열전 성능지수(ZT) P type n type P type n type
1.05 0.85 1.00 0.78
실험 결과, 비활성 분위기 하에서 분쇄공정을 거친 본 발명의 Bi-Te계 열전재료는 대기 분위기하에서 분쇄된 비교예 1에 비해 우수한 열전 성능지수를 갖는다는 것을 알 수 있었다.

Claims (12)

  1. (i) Bi 원료와 Te 원료를 포함하는 열전재료용 원료를 용해 및 응고시켜 모합금을 형성하는 단계;
    (ii) 상기 모합금을 급속냉각을 통해 금속 리본을 형성하는 단계;
    (iii) 상기 금속리본을 비활성 분위기하에서 분쇄하여, 당해 분쇄물 내 산소 함량을 0.03% 이하로 제어하는 단계; 및
    (iv) 상기 분쇄물을 압축하여 예비성형체를 형성한 후 가압소결하는 단계
    를 포함하는 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  2. 제1항에 있어서,
    상기 단계 (i)에서 Bi 원료와 Te 원료는, Bi2Te3 ±0.2의 화학양론 조성에 따른 비율로 혼합되는 것을 특징으로 하는 마그네슘실리사이드계 열전재료의 제조방법.
  3. 제1항에 있어서,
    상기 단계 (i)의 열전재료용 원료는 Sb 및 Se로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함하는 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  4. 제3항에 있어서,
    상기 단계 (i)에서 형성된 모합금은, 5N 이상의 고순도를 갖는 n형 Bi-Te-Se계 합금 또는 p형 Bi-Sb-Te계 합금인 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  5. 제1항에 있어서,
    상기 단계 (i)의 열전재료용 원료는 Al, Sn, Mn, Ag, Cu 및 Ga로 이루어진 군에서 선택되는 1종 이상의 금속을 0.001 내지 1 중량% 범위로 더 포함하는 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  6. 제1항에 있어서,
    상기 단계 (ii)는 모합금을 용융 방사 장비에 설치된 노즐에 장입하고 발열체를 이용하여 용융시킨 후, 상기 용융물에 불활성 가스를 0.1~0.5MPa 범위로 가압하여 5~40m/s의 선속도로 회전하는 고속회전 휠 표면에 용융물을 접촉시켜 급냉시키는 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  7. 제1항에 있어서,
    상기 단계 (ii)에서 제조된 금속리본의 두께는 0.1 내지 10㎛ 범위인 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  8. 제1항에 있어서,
    상기 단계 (iii)는 아르곤(Ar) 분위기 하에서 평균입경이 100 ㎛ 이하가 되도록 금속 리본을 분쇄하는 것을 특징으로 하는 Bi-Te계 열전재료의 재료방법.
  9. 제1항에 있어서,
    상기 단계 (iv)는 예비성형체를 핫 프레스(Hot press) 또는 방전플라즈마 (SPS)를 통해 가압소결하는 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  10. 제1항에 있어서,
    상기 단계 (iv)는 400~500℃의 온도 및 40~65 MPa의 압력 조건 하에서 3 내지 30분 동안 실시되는 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  11. 가압소결된 Bi-Te계 열전재료의 밀도는 95~99% 이며,
    열전도도가 1.0~1.3 W/mK이며,
    p형 Bi-Te계 열전재료의 열전 성능지수(ZT)는 1.0 이상이며, n형 Bi-Te계 열전재료의 열전 성능지수(ZT)는 0.8 이상인 것을 특징으로 하는 Bi-Te계 열전재료의 제조방법.
  12. 제1항 내지 제11항 중 어느 한 항의 방법에 의해 제조된 Bi-Te계 열전재료.
PCT/KR2017/001408 2016-11-28 2017-02-09 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법 WO2018097399A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0159554 2016-11-28
KR1020160159554A KR20180060265A (ko) 2016-11-28 2016-11-28 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법

Publications (2)

Publication Number Publication Date
WO2018097399A2 true WO2018097399A2 (ko) 2018-05-31
WO2018097399A3 WO2018097399A3 (ko) 2018-08-02

Family

ID=62195271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001408 WO2018097399A2 (ko) 2016-11-28 2017-02-09 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법

Country Status (2)

Country Link
KR (1) KR20180060265A (ko)
WO (1) WO2018097399A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435698A (zh) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法
CN111732435A (zh) * 2020-04-10 2020-10-02 全球能源互联网研究院有限公司 一种BiTe基热电材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200109733A (ko) * 2019-03-14 2020-09-23 엘티메탈 주식회사 마이크로파 소결법을 이용한 Bi-Te계 열전소재의 제조방법
KR102248813B1 (ko) * 2019-12-02 2021-05-11 엘티메탈 주식회사 다공성 열전재료의 제조방법 및 상기 다공성 열전재료를 포함하는 열전 소자

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120517A1 (en) * 2009-11-13 2011-05-26 Brookhaven Science Associates, Llc Synthesis of High-Efficiency Thermoelectric Materials
KR101982279B1 (ko) * 2012-04-27 2019-08-28 삼성전자주식회사 고밀도 계면 미스핏 전위를 갖는 열전소재, 및 이를 구비한 열전소자와 열전모듈
EP2927973A4 (en) * 2012-11-28 2017-05-03 Furukawa Co., Ltd. Thermoelectric conversion module
TWI491556B (zh) * 2012-12-21 2015-07-11 Ind Tech Res Inst 熱電材料及其製造方法
KR102097064B1 (ko) * 2013-05-28 2020-04-03 삼성전자주식회사 복합열전재료, 이를 포함하는 열전소자 및 열전장치, 및 이의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435698A (zh) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法
CN111732435A (zh) * 2020-04-10 2020-10-02 全球能源互联网研究院有限公司 一种BiTe基热电材料及其制备方法
CN111732435B (zh) * 2020-04-10 2024-01-16 全球能源互联网研究院有限公司 一种BiTe基热电材料及其制备方法

Also Published As

Publication number Publication date
WO2018097399A3 (ko) 2018-08-02
KR20180060265A (ko) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2016171346A1 (ko) 저항 발열체를 이용한 Bi-Te계 열전 재료의 제조 방법
WO2022126952A1 (zh) 一种碲化铋热电材料及其制备方法
WO2018097399A2 (ko) 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법
CN1084527C (zh) Co-Sb系热电材料
JP2002285274A (ja) Mg−Si系熱電材料及びその製造方法
JP2000252526A (ja) スカッテルダイト系熱電材料及び熱電カップル並びにその製造方法
CN108198934B (zh) 一种复合热电材料及其制备方法
JPH0974229A (ja) 熱電変換材料及びその製法
JP3572939B2 (ja) 熱電材料及びその製造方法
WO2018139693A1 (ko) 입도 제어에 따른 Bi-Te계 열전 재료의 제조 방법 및 이로부터 제조된 Bi-Te계 열전 재료
WO2019231018A1 (ko) 탄소나노튜브 함유 Bi-Sb-Te계 열전재료의 제조방법 이에 의해 제조된 열전재료
JPH09321347A (ja) 熱電変換材料、及び、その製造方法
JP2000261044A (ja) 熱電変換材料とその製造方法
JP2002324921A (ja) 熱電材料及びその製造方法
KR20180087964A (ko) 입도 제어에 따른 Bi-Te계 열전 재료의 제조 방법 및 이로부터 제조된 Bi-Te계 열전 재료
WO2020184762A1 (ko) 마이크로파 소결법을 이용한 Bi-Te계 열전소재의 제조방법
KR20180068558A (ko) 열전발전용 마그네슘실리사이드계 열전재료의 제조방법 및 이로부터 제조된 마그네슘실리사이드계 계열 열전재료
JPH06216415A (ja) 熱電変換材料の製造方法
WO2021193481A1 (ja) 熱電変換素子の製造方法
JP2010232554A (ja) 熱電変換材料の製造方法
KR20180056140A (ko) 열전발전용 망간실리사이드계 열전재료의 제조방법 및 이로부터 제조된 망간실리사이드계 계열 열전재료
JP4373296B2 (ja) 熱電変換材料用原料、熱電変換材料の製造方法、および熱電変換材料
JPH0341780A (ja) 熱電材料の製造法
WO2021112268A1 (ko) 다공성 열전재료의 제조방법 및 상기 다공성 열전재료를 포함하는 열전 소자
JPH04119968A (ja) 酸化物超電導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874430

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874430

Country of ref document: EP

Kind code of ref document: A2