CN111732435A - 一种BiTe基热电材料及其制备方法 - Google Patents

一种BiTe基热电材料及其制备方法 Download PDF

Info

Publication number
CN111732435A
CN111732435A CN202010280227.1A CN202010280227A CN111732435A CN 111732435 A CN111732435 A CN 111732435A CN 202010280227 A CN202010280227 A CN 202010280227A CN 111732435 A CN111732435 A CN 111732435A
Authority
CN
China
Prior art keywords
bite
based thermoelectric
ball milling
thermoelectric material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010280227.1A
Other languages
English (en)
Other versions
CN111732435B (zh
Inventor
祝志祥
陈新
丁一
陈保安
张强
刘晔
马光
聂京凯
杨富尧
程灵
盛鹏
徐丽
陈云
朱承治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
Global Energy Interconnection Research Institute
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
Global Energy Interconnection Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, Global Energy Interconnection Research Institute filed Critical State Grid Corp of China SGCC
Priority to CN202010280227.1A priority Critical patent/CN111732435B/zh
Publication of CN111732435A publication Critical patent/CN111732435A/zh
Application granted granted Critical
Publication of CN111732435B publication Critical patent/CN111732435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种电力大功率器件用热电制冷用的BiTe基热电材料,所述BiTe基热电材料包括;(Bi+Sb):Te=2:3,Mn占全部初始原料总量的摩尔百分比数<1%;本发明提供的电力大功率器件用热电制冷用的BiTe基热电材料的制备方法包括球磨、烘干、烧结和退火。本发明提供的技术方案通过调节所述BiTe基热电材料的配比以及赛贝克系数、电阻率和热导率间的匹配,获得了相对密度为98.1%~99.3%、在室温~500K范围内的最高热电优值系数ZT为1.41~1.50的BiTe基热电材料。

Description

一种BiTe基热电材料及其制备方法
技术领域
本发明涉及一种热电制冷材料,具体讲涉及一种新型BiTe基热电材料及其制备方法。
背景技术
热电材料具有赛贝克效应及其逆效应帕尔贴效应,热电制冷通常是利用半导体材料的帕尔贴效应来实现制冷,也称作半导体制冷或帕尔贴制冷,因此热电材料可以实现电能与热能相互转化,可用于微型电源或者局部高效制冷。热电制冷因其独特的制冷方式,近年来得到了快速的发展,是一种具有广泛应用前景的制冷方式。热电制冷器主动、高效吸收大功率器件产生的废热,来解决大功率器件的散热难题。在电网领域,随着近年来我国特高压交直流先进输电技术建设步伐的加快,现代电力系统向高电压、大容量、大机组方向发展,对输变电设备运行安全可靠性的要求越来越高,现有的制冷器件性能已越来越无法满足电网的快速散热、需要主动制冷的晶体管、晶闸管、电力电子变压器、IGBT功率器件等大功率制冷功率密度的要求,因此需要提供高制冷功率密度的新型热电材料及其制冷器件,以满足电气设备大电流易过热部位温度的主动控制。
在热电材料的选择应用上,一般根据热电器件的具体服役工作温度来决定,按热电器件工作温度范围可分为以下3大类:①工作温度为≤500K的低温材料,主要是以Bi2Te3及Bi2Te3为基材的固溶体合金材料;②工作温度为500~900K的中温材料,主要是PbTe、GeTe、AgSbTe2或其合金材料;③工作温度为≥900K高温材料,主要有SiGe、 MnSi2、CeS等。鉴于电网中电气设备服役运行时的工作温度一般都低于500K,因此一般选择低温区的Bi2Te3基热电材料。
本发明人经长期研究发现,现有的热电材料普遍存在转化效率不高、原料昂贵的不足。欲获得具有优异ZT值的Bi2Te3热电材料的关键在于电导率、塞贝克系数和热导率之间的匹配,单独调控其中某一参数难于将ZT值大幅提升,因此需要提供一种兼顾各个参数的低温区的热电材料。
发明内容
本发明目的在于提供一种电导率、塞贝克系数和热导率三者优异匹配的ZT值高的电力行业大功率器件快速制冷用的热电材料及其制备方法,以改进BiTe基热电材料低温区的热电性能。
该BiTe基热电化合物块体材料制备方法工艺操作简便,耗时少,且得到的块体材料结晶性好、成分均匀、可重复性高,在低温区具有优良的热电性能。
为实施上述目的,本发明采用以下技术方案:
一种BiTe基热电材料,其改进之处,按摩尔计,所述BiTe基热电材料包括:(Bi+Sb):Te=2:3,Mn占全部初始原料总量的摩尔百分比数<1%。
其中,所述方法包括:
步骤1球磨:
步骤1-1,按球料质量比为10:1~50:1的比例,在氩气保护气氛手套箱中将所述初始原料装入球磨罐并密封;
步骤1-2,将密封后的球磨罐放入行星球磨机进行球磨合金化,获得合金化物料;
步骤2烧结:将步骤1所述合金化物料经石墨模具压制成形后放入放电等离子烧结炉中烧结成型BiTe基热电化合物块体;
步骤3退火:将所述烧结成型BiTe基热电化合物块体在真空退火炉中退火,得所述BiTe基热电材料。
其中,所述球磨包括干球磨和湿球磨。
所述干磨包括:在250~450r/min转速下干磨4~15h;
所述湿磨包括:以无水乙醇为有机液体介质,于200~350r/min 转速下,湿磨30~150min后,再于80~~100℃下干燥3~5h。
其中,步骤2中所述烧结包括:所述放电等离子烧结炉的升温速度为30~150℃/min,烧结温度为300~550℃,压力为20~60MPa,保温时间为5~10min,真空条件为真空度10-1Pa。
其中,所述真空炉退火包括:
真空度为<10-1Pa、温度为150~350℃的退火炉中退火3~8h 后,冷却得BiTe基热电化合物块体。
与最接近的现有技术比,本发明提供的BiTe基热电材料及其制备方法具有以下优异效果:
1,本发明提供的技术方案,通过调整所述BiTe基热电材料所包括的(Bi+Sb):Te=2:3中,组分Mn在初始原料总量中所占的摩尔百分比数<1%,及其制备方法,获得了相对密度为98.1%~99.3%,在室温~500K范围内的最高热电优值系数ZT为1.41~1.50的BiTe基热电材料,使得赛贝克系数、电阻率和热导率三者间的关系得到了协调;
2,本发明提供的方法中,球磨罐和球磨球均为氧化锆,材质硬度高、密度大,能够在球磨过程中对粉末原料提供较大的撞击力。球磨罐中的原材料和球磨球的质量比小,有助于原材料快速发生球磨合金化,有助于获得单相的BiTe基热电材料粉末;
3,本发明提供的制备BiTe基热电材料的方法中采用放电等离子体烧结,具有升、降温速度快,所需保温时间短,制得材料致密度高,可快速使BiTe基粉末成型,防止颗粒尺寸长大的优点;
4,本发明提供的BiTe基热电材料的制备方法,可快速简便的合成BiTe基低温热电材料,相对密度达到98%,所得到的BiTe基热电材料在低温区(<500K)的最高热电优值系数ZT达到1.41~1.50。
具体实施方式
下面,通过实施例的方式对本发明提供的技术方案做详细说明:
实施例1
以纯度(质量分数)为99.99%的Bi单质粉、Sb单质粉、Te单质粉和Mn单质粉作为原料,将按摩尔计的Bi0.2Sb1.8Mn0.05Te3放入氧化锆球磨罐中,并加入直径为10mm、6mm和4mm的氧化锆球,球料比为10:1;
球磨罐抽真空后充入高纯氩气(纯度99.99%)作为保护气体,在行星式球磨机以400r/min的转速干磨10h;
将干磨后的物料加入有机液体介质无水乙醇进行湿磨,湿磨的转速为350r/min,湿磨时间为60min;
球磨后在手套箱(Ar气氛)中取出中间化合物粉末并烘干,将烘干后的中间化合物粉末放入石墨模具中,压实后再放在放电等离子烧结炉中,在真空条件下,压力为50MPa,以500℃的烧结温度进行5 min烧结,随炉冷却;
将烧结成型的热电化合物在真空退火炉中退火,退火温度为 150℃,退火时间6h,随炉冷却后得到BiTe基热电化合物块体。
制得的BiTe基热电化合物块体的相对密度为98.3%,室温~500K 范围内的最高热电优值系数ZT为1.45(ZT=α2·T/(ρ·κ),其中温度T 为350K;赛贝克系数α为247μV/K;电阻率ρ为1.50mΩ·cm;热导率κ为0.98W/m·K),制得的BiTe基热电化合物块体可用于制备大功率器件用热电制冷器件。
实施例2
以纯度(质量分数)为99.99%的Bi单质粉、Sb单质粉、Te单质粉和Mn单质粉作为原料,按摩尔计的Bi0.25Sb1.75Mn0.04Te3放入氧化锆球磨罐中,并加入直径为10mm、6mm和4mm的氧化锆球,球料比为20:1;
球磨罐抽真空后充入高纯氩气(纯度99.99%)作为保护气体,在行星式球磨机以450r/min的转速干磨8h;
将干磨后的物料加入有机液体介质无水乙醇进行湿磨,湿磨的转速为300r/min,湿磨时间为90min;
球磨后在手套箱(Ar气氛)中取出中间化合物粉末并烘干,将烘干后的中间化合物粉末放入石墨模具中,压实后再放在放电等离子烧结炉中,在真空条件下,压力为50MPa,以450℃的烧结温度进行8 min烧结,随炉冷却;
将烧结成型的热电化合物在真空退火炉中退火,退火温度为 180℃,退火时间5h,随炉冷却后得到BiTe基热电化合物块体。
制得的BiTe基热电化合物块体的相对密度为98.5%,室温~500K 范围内的最高热电优值系数ZT为1.48(ZT=α2·T/(ρ·κ),其中温度T 为320K;赛贝克系数α为259μV/K;电阻率ρ为1.42mΩ·cm;热导率κ为1.02W/m·K),制得的BiTe基热电化合物块体可用于制备大功率器件用热电制冷器件。
实施例3
以纯度(质量分数)为99.99%的Bi单质粉、Sb单质粉、Te单质粉和Mn单质粉作为原料,按摩尔计的Bi0.3Sb1.7Mn0.04Te3放入氧化锆球磨罐中,并加入直径为10mm、6mm和4mm的氧化锆球,球料比为20:1;
球磨罐抽真空后充入高纯氩气(纯度99.99%)作为保护气体,在行星式球磨机以400r/min的转速干磨10h;
将干磨后的物料加入有机液体介质无水乙醇进行湿磨,湿磨的转速为350r/min,湿磨时间为60min;球磨后在手套箱(Ar气氛)中取出中间化合物粉末并烘干,将烘干后的中间化合物粉末放入石墨模具中,压实后再放在放电等离子烧结炉中,在真空条件下,压力为60MPa,以450℃的烧结温度进行5min烧结,随炉冷却;
将烧结成型的热电化合物在真空退火炉中退火,退火温度为 200℃,退火时间4h,随炉冷却后得到BiTe基热电化合物块体。
制得的BiTe基热电化合物块体的相对密度为99.3%,室温~500K 范围内的最高热电优值系数ZT为1.54(ZT=α2·T/(ρ·κ),其中温度T 为350K;赛贝克系数α为233μV/K;电阻率ρ为1.45mΩ·cm;热导率κ为0.85W/m·K),制得的BiTe基热电化合物块体可用于制备大功率器件用热电制冷器件。
实施例4
以纯度(质量分数)为99.99%的Bi单质粉、Sb单质粉、Te单质粉和Mn单质粉作为原料,将按摩尔计的Bi0.35Sb1.65Mn0.03Te3放入氧化锆球磨罐中,并加入直径为10mm、6mm和4mm的氧化锆球,球料比为30:1;
球磨罐抽真空后充入高纯氩气(纯度99.99%)作为保护气体,在行星式球磨机以250r/min的转速干磨15h;
将干磨后的物料加入有机液体介质无水乙醇进行湿磨,湿磨的转速为350r/min,湿磨时间为60min;球磨后在手套箱(Ar气氛)中取出中间化合物粉末并烘干,将烘干后的中间化合物粉末放入石墨模具中,压实后再放在放电等离子烧结炉中,在真空条件下,压力为60MPa,以400℃的烧结温度进行8min烧结,随炉冷却;
将烧结成型的热电化合物在真空退火炉中退火,退火温度为 300℃,退火时间3h,随炉冷却后得到BiTe基热电化合物块体。
制得的BiTe基热电化合物块体的相对密度为99.0%,室温~500K 范围内的最高热电优值系数ZT为1.50(ZT=α2·T/(ρ·κ),其中温度T 为352K;赛贝克系数α为230μV/K;电阻率ρ为1.48mΩ·cm;热导率κ为0.84W/m·K),制得的BiTe基热电化合物块体可用于制备大功率器件用热电制冷器件。
实施例5
以纯度(质量分数)为99.99%的Bi单质粉、Sb单质粉、Te单质粉和Mn单质粉作为原料,将按摩尔计的Bi0.4Sb1.6Mn0.02Te3放入氧化锆球磨罐中,并加入直径为10mm、6mm和4mm的氧化锆球,球料比为50:1;
球磨罐抽真空后充入高纯氩气(纯度99.99%)作为保护气体,在行星式球磨机以450r/min的转速干磨10h;
将干磨后的物料加入有机液体介质无水乙醇进行湿磨,湿磨的转速为200r/min,湿磨时间为150min;
球磨后在手套箱(Ar气氛)中取出中间化合物粉末并烘干,将烘干后的中间化合物粉末放入石墨模具中,压实后再放在放电等离子烧结炉中,在真空条件下,压力为20MPa,以550℃的烧结温度进行6 min烧结,随炉冷却;
将烧结成型的热电化合物在真空退火炉中退火,退火温度为 350℃,退火时间3h,随炉冷却后得到BiTe基热电化合物块体。
制得的BiTe基热电化合物块体的相对密度为98.1%,室温~500K 范围内的最高热电优值系数ZT为1.41(ZT=α2·T/(ρ·κ),其中温度T 为382K;赛贝克系数α为210μV/K;电阻率ρ为1.36mΩ·cm;热导率κ为0.88W/m·K),制得的BiTe基热电化合物块体可用于制备大功率器件用热电制冷器件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品来描述的。应理解可由计算机程序指令实现。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在算机或其他可编程数据处理设备上执行。

Claims (5)

1.一种BiTe基热电材料,其特征在于,按摩尔计,所述BiTe基热电材料包括;(Bi+Sb):Te=2:3,Mn占全部初始原料总量的摩尔百分比数<1%。
2.一种如权利要求1的所述BiTe基热电材料的制备方法,其特征在于,所述方法包括:
步骤1球磨:
步骤1-1,按球料质量比为10:1~50:1的比例,在氩气保护气氛手套箱中将所述初始原料装入球磨罐并密封;
步骤1-2,将密封后的球磨罐放入行星球磨机进行球磨合金化,获得合金化物料;
步骤2烧结:将步骤1所述合金化物料经石墨模具压制成形后放入放电等离子烧结炉中烧结成型BiTe基热电化合物块体;
步骤3退火:将所述烧结成型BiTe基热电化合物块体在真空退火炉中退火,得所述BiTe基热电材料。
3.如权利要求2的一种BiTe基热电材料的制备方法,其特征在于,所述球磨包括干球磨和湿球磨;
所述干磨包括在250~450r/min转速下干磨4~15h;
所述湿磨包括;以无水乙醇为有机液体介质,于200~350r/min转速下,湿磨30~150min后,再于80~~100℃下干燥3~5h。
4.如权利要求2的一种BiTe基热电材料的制备方法,其特征在于,步骤2中所述烧结包括:所述放电等离子烧结炉的升温速度为30~150℃/min,烧结温度为300~550℃,压力为20~60MPa,保温时间为5~10min,真空条件为真空度10-1Pa。
5.如权利要求2所述的一种BiTe基热电材料的制备方法,其特征在于,所述真空炉退火包括:
真空度为<10-1Pa、温度为150~350℃的退火炉中退火3~8h后,冷却得BiTe基热电化合物块体。
CN202010280227.1A 2020-04-10 2020-04-10 一种BiTe基热电材料及其制备方法 Active CN111732435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010280227.1A CN111732435B (zh) 2020-04-10 2020-04-10 一种BiTe基热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010280227.1A CN111732435B (zh) 2020-04-10 2020-04-10 一种BiTe基热电材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111732435A true CN111732435A (zh) 2020-10-02
CN111732435B CN111732435B (zh) 2024-01-16

Family

ID=72647752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010280227.1A Active CN111732435B (zh) 2020-04-10 2020-04-10 一种BiTe基热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111732435B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471355A (zh) * 2021-06-28 2021-10-01 深圳大学 p型碲化铋制备方法、装置、系统与计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111546A (ja) * 1994-10-11 1996-04-30 Yamaha Corp 熱電材料及び熱電変換素子
JP2005259869A (ja) * 2004-03-10 2005-09-22 National Institute For Materials Science 熱電材料の製造方法
CN1974079A (zh) * 2006-12-08 2007-06-06 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料的制备方法
CN101220513A (zh) * 2007-09-28 2008-07-16 北京科技大学 一种提高N型多晶Bi2Te3热电性能的热处理方法
CN102867905A (zh) * 2012-07-27 2013-01-09 清华大学 一种Sn-S基热电化合物及其制备方法
US20130269739A1 (en) * 2012-01-16 2013-10-17 Samsung Electronics Co., Ltd. Nano-complex thermoelectric material, and thermoelectric module and thermoelectric apparatus including the same
WO2018097399A2 (ko) * 2016-11-28 2018-05-31 희성금속 주식회사 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법
CN108558383A (zh) * 2018-04-04 2018-09-21 电子科技大学 NiZn铁氧体材料及制备方法
CN111477736A (zh) * 2019-01-24 2020-07-31 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法
EP3792987A1 (en) * 2019-09-12 2021-03-17 Panasonic Corporation Thermoelectric conversion material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111546A (ja) * 1994-10-11 1996-04-30 Yamaha Corp 熱電材料及び熱電変換素子
JP2005259869A (ja) * 2004-03-10 2005-09-22 National Institute For Materials Science 熱電材料の製造方法
CN1974079A (zh) * 2006-12-08 2007-06-06 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料的制备方法
CN101220513A (zh) * 2007-09-28 2008-07-16 北京科技大学 一种提高N型多晶Bi2Te3热电性能的热处理方法
US20130269739A1 (en) * 2012-01-16 2013-10-17 Samsung Electronics Co., Ltd. Nano-complex thermoelectric material, and thermoelectric module and thermoelectric apparatus including the same
CN102867905A (zh) * 2012-07-27 2013-01-09 清华大学 一种Sn-S基热电化合物及其制备方法
WO2018097399A2 (ko) * 2016-11-28 2018-05-31 희성금속 주식회사 산화도가 제어된 Bi-Te계 열전 재료의 제조 방법
CN108558383A (zh) * 2018-04-04 2018-09-21 电子科技大学 NiZn铁氧体材料及制备方法
CN111477736A (zh) * 2019-01-24 2020-07-31 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法
EP3792987A1 (en) * 2019-09-12 2021-03-17 Panasonic Corporation Thermoelectric conversion material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAIXU QIN: "Improved thermoelectric performance of p-type Bi0.5Sb1.5Te3 through Mn doping at elevated temperature", MATERIALS TODAY PHYSICS, vol. 6, pages 31 - 37 *
TIAN-QI LU: "Enhanced thermoelectric performance through homogenously dispersed MnTe nanoparticles in p-type Bi0.52Sb1.48Te3 nanocomposites", CHIN. PHYS. B, vol. 27, no. 4, pages 1 - 7 *
吴萍, 马宠, 李华伦: "从铋碲精矿分离回收铋碲的新工艺", 矿产综合利用, no. 06, pages 24 - 26 *
梁立晓;陈梦东;段立强;王振;王乐;邓占锋;徐桂芝;晋涛;黄纯德;: "储热技术在太阳能热发电及热电联产领域研究进展", 热力发电, no. 03, pages 12 - 19 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471355A (zh) * 2021-06-28 2021-10-01 深圳大学 p型碲化铋制备方法、装置、系统与计算机可读存储介质
CN113471355B (zh) * 2021-06-28 2024-05-31 深圳大学 p型碲化铋制备方法、装置、系统与计算机可读存储介质

Also Published As

Publication number Publication date
CN111732435B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN105695774A (zh) Mg3Sb2基热电材料的制备方法
CN101080506B (zh) 热电半导体合金的制造方法、热电转换模块以及热电发电设备
WO2019169970A1 (zh) n-型Mg-Sb基室温热电材料及其制备方法
CN110592459B (zh) 一种具有低晶格热导率的高熵Half-Heusler热电材料及其制备方法
CN1333093C (zh) 铋-碲基热电合金的制备方法
CN108588838B (zh) 一种制备具有高热电性能的SnSe多晶块体的方法
CN112531097B (zh) n型碲化铋基热电材料及其制备方法
CN110078476B (zh) 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN102712543A (zh) 磁热材料
CN102534278A (zh) 一种碲化铋基热电材料的套管锻压制备方法
CN111875381A (zh) 一种n型碲化铋热电块体材料的制备方法
CN105895795A (zh) 一种复合硒化锡基热电材料的制备方法
CN107394035A (zh) 一种Sb掺杂BiCuSeO热电材料及其制备方法
CN111490148B (zh) 一种多晶SnSe基热电材料的制备方法
CN110423922A (zh) 一种用于电子封装的硅铝合金及其制备方法和应用
CN101101954A (zh) 一种镉锑基p型热电材料及其制备方法
CN111732435B (zh) 一种BiTe基热电材料及其制备方法
CN107994115A (zh) 一种Pb/Ba双掺杂BiCuSeO热电材料及其制备方法
CN113735582A (zh) 一种碲化铋基热电材料的制备方法
CN107887495A (zh) 一种一步制备Cu2Se/BiCuSeO复合热电材料的方法
CN109930019B (zh) 一种微波快速加热熔融-液氮淬火制备高性能SnTe合金的方法
CN105219995B (zh) 一种n‑type热电材料NbCoSb的制备方法
CN105957954B (zh) 含Mn的P-型Cu5Ga9Te16中温热电材料及其制备工艺
CN104362248A (zh) 溶剂热制备高塞贝克系数碲/氧化碲纳米复合材料的方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant