WO2022126952A1 - 一种碲化铋热电材料及其制备方法 - Google Patents
一种碲化铋热电材料及其制备方法 Download PDFInfo
- Publication number
- WO2022126952A1 WO2022126952A1 PCT/CN2021/088968 CN2021088968W WO2022126952A1 WO 2022126952 A1 WO2022126952 A1 WO 2022126952A1 CN 2021088968 W CN2021088968 W CN 2021088968W WO 2022126952 A1 WO2022126952 A1 WO 2022126952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintering
- bismuth telluride
- thermoelectric material
- ball milling
- telluride thermoelectric
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 75
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 56
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 44
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000000843 powder Substances 0.000 claims abstract description 31
- 238000000498 ball milling Methods 0.000 claims abstract description 28
- 239000002994 raw material Substances 0.000 claims abstract description 28
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 9
- 238000000713 high-energy ball milling Methods 0.000 claims abstract description 7
- 238000002490 spark plasma sintering Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 3
- 230000008569 process Effects 0.000 claims description 24
- 238000000280 densification Methods 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000013590 bulk material Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 238000007731 hot pressing Methods 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 238000005303 weighing Methods 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 15
- 239000010453 quartz Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001192 hot extrusion Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000004857 zone melting Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000875 high-speed ball milling Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005551 mechanical alloying Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- GPMBECJIPQBCKI-UHFFFAOYSA-N germanium telluride Chemical compound [Te]=[Ge]=[Te] GPMBECJIPQBCKI-UHFFFAOYSA-N 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000007780 powder milling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/547—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the invention belongs to the technical field of thermoelectric materials, in particular to a bismuth telluride-based thermoelectric material with excellent thermoelectric properties and mechanical properties and a preparation method thereof.
- Thermoelectric materials are functional materials that directly convert thermal energy and electrical energy to each other by utilizing the Seebeck effect and Peltier effect of semiconductors.
- Thermoelectric refrigeration technology based on the Peltier effect has the characteristics of small size, no moving parts, no noise, and high precision. It has been widely used in local refrigeration and temperature control of electronic components in many fields such as microelectronics, computers and aerospace. In recent years, with the rapid development of the 5G industry, micro-thermoelectric cooling devices have become one of the key components necessary for thermal management of high-speed communication optical modules.
- bismuth telluride-based alloys have always been the thermoelectric conversion materials with the best performance near room temperature, and they are also the only commercial materials used in thermoelectric refrigeration devices.
- the bismuth telluride-based thermoelectric material has a hexagonal crystal structure and is an anisotropic layered compound, in which the higher mobility in the layer along the 100 crystal plane becomes the dominant direction of its thermoelectric performance.
- cleavage is likely to occur, resulting in low mechanical strength, which greatly affects the processability of materials and the reliability of components.
- thermoelectric cooling devices With the development of 5G and other electronic technologies, the packaging of devices such as communication optical modules is developing towards miniaturization, which requires more and more miniaturization, reliability and cooling power consumption of thermoelectric cooling devices.
- the bismuth telluride material with grain orientation, excellent thermoelectric properties, and very good mechanical strength to meet the needs of fine cutting processing has become the key to improving the performance of micro-refrigeration devices.
- the mechanical strength of the material in this process has increased, and the thermoelectric properties basically maintain the level of the zone melting method;
- the third is the powder metallurgy method, that is, the raw material powder is mixed by ball milling mechanical alloying, or melting
- the bismuth telluride ultrafine powder is obtained by spinning and then densified by sintering.
- This process has better material consistency due to the high mixing uniformity of the powder; high-energy ball milling can refine the grain size to the nanometer level, which can not only strongly scatter phonons to reduce the thermal conductivity of the material, but also reduce the thermal conductivity of the material due to the fine grain size. Strengthening greatly improves the mechanical strength of the material.
- the present invention proposes a bismuth telluride thermoelectric material and a preparation method thereof, which adopts the plasma-assisted ball milling technology, combined with the fully enclosed system.
- the sintering and densification process realizes the synthesis and preparation technology of ultra-fine-grained bismuth telluride material with controllable composition.
- the invention provides a method for preparing high-performance bismuth telluride materials in batches with plasma-assisted powder milling combined with fully enclosed system sintering and densification technology, comprising the following steps:
- Step 1 Weigh Bi, Te and Se elemental powders as raw materials according to the chemical formula X w /Bi 2 Te 2.7-w Se 0.3 of the N-type bismuth telluride material, or according to the chemical formula X w /Bi 0.5 of the P-type bismuth telluride material -w Sb 1.5 Te 3
- X is a doping element, where w is the stoichiometric ratio of doping element X, and the range is 0 ⁇ w ⁇ 0.1;
- Step 2 mixing the above-mentioned raw materials evenly and placing them in a ball mill tank equipped with a plasma generator for high-energy ball milling;
- Step 3 Transfer the powder in the tank after ball milling to a sintering mold under the protection of an inert gas for densification and sintering, the sintering is performed twice, and the bismuth telluride thermoelectric material is obtained after cooling.
- the X is selected from at least one of S, I, Cl, Br, In, Sn, Ge, Pb, S, Cu, and Ag.
- step 2 the inner lining of the ball mill tank equipped with the plasma generating device is polytetrafluoroethylene or cemented carbide, and the ball grinding ball is cemented carbide, stainless steel, zirconia or tungsten carbide, preferably For cemented carbide.
- the process parameters of the ball milling treatment are: the mass ratio of the balls in the ball mill tank is (10-20): 1, the ball milling is carried out in an inert atmosphere, and the ball milling time is 0.5-12h.
- step 2 the rotational speed of the ball mill pot with the plasma generator is 500-1500 r/min, and the electric power of the plasma generator is 0.5-3kW.
- step 3 the sintering adopts spark plasma sintering or hot pressing sintering, and the process conditions for the first sintering are as follows: vacuum degree ⁇ 10Pa, heating rate 20-100K/min, sintering pressure 50 ⁇ 65Mpa, the pressure holding time is not less than 30 minutes, and the sintering temperature is 400°C ⁇ 520°C, preferably 450 ⁇ 500°C.
- the second sintering is to re-place the dense bulk material obtained by the first sintering in a sintering mold with a larger size for the second liquid phase plastic sintering.
- the process conditions for the second sintering The vacuum degree is less than 10Pa, the heating rate is 20 ⁇ 100K/min, the sintering temperature is 450 ⁇ 500°C, the sintering pressure is 50 ⁇ 65Mpa, and the temperature and pressure are kept for 10 ⁇ 30 minutes.
- the present invention also provides a bismuth telluride thermoelectric material prepared according to the above method.
- the ball mill jar is placed in the glove box, and the powder is loaded into the sintering mold under the protection of inert gas and transferred to the spark plasma sintering furnace;
- the present invention has the following beneficial effects:
- the present invention combines plasma ball milling and spark plasma sintering technology to prepare high-performance bismuth telluride materials for the first time. This method has the characteristics of fast speed, controllable powder composition, low energy consumption and suitable for mass production.
- the present invention proposes a technology for synthesizing and preparing ultra-fine-grained bismuth telluride materials with controllable composition by adopting a plasma-assisted ball milling technology combined with a sintering and densification process under a fully enclosed system.
- the present invention adopts the plasma-assisted high-energy ball milling technology, and the high energy of the local plasma is used to make the powder surface generate a high activation state, and ultra-fine pulverization can be realized under the condition of low overall ball milling energy, thereby avoiding the introduction of impurities.
- Example 1 is a SEM image of the cross-section of the bismuth telluride thermoelectric material prepared in Example 1 of the present invention, wherein, (a) is a cross-sectional microstructure diagram along the direction parallel to the sintering pressure, and (b) is a diagram perpendicular to the sintering pressure direction Sectional microstructure diagram.
- Figure 2 is a graph of the ZT values of the materials prepared in Examples 1-3 and Comparative Examples 1-4, wherein, Figure (a) is a graph of the materials prepared in Example 1, Example 1 and Comparative Example 1 and Comparative Example 3 of the present invention. ZT value comparison diagram, (b) is a ZT value comparison diagram of the materials prepared in Example 2, Comparative Example 2 and Comparative Example 4.
- Example 3 shows the material resistance of the P-type Bi 0.5 Sb 1.5 Te 3 prepared in Example 1 of the present invention, the N-type Bi 2 Te 2.7 Se 0.3 material prepared in Example 2, and the materials prepared in Comparative Examples 3 and 4. Bending strength performance comparison chart.
- the elemental raw materials Bi, Sb and Te are weighed according to the stoichiometric ratio, and the prepared raw materials are placed in a glove box filled with high-purity argon gas into stainless steel Ball milling tank, and then high-speed ball milling with a plasma ball mill.
- the speed of the ball mill is 500 rpm
- the power of the plasma generator is set to 2kW
- the ball milling time is 60 minutes.
- the powder is loaded into the glove box with a diameter of 15mm.
- the sintering mold is then transferred into a vacuum discharge plasma sintering furnace through a sealing device for sintering.
- the process conditions are that the temperature is raised to a sintering temperature of 400 °C at a rate of 100 °C per minute, the sintering pressure is kept at 50 MPa, and the sintering time is 15 min. Block material; then put the columnar block into a mold with a diameter of 25mm for sintering again, the sintering temperature is 500°C, the pressure is 60Mpa, and the sintering time is 20 minutes.
- the elemental raw materials Bi, Sb and Te (the purity of each element are all ⁇ 99.99%) are weighed according to the stoichiometric ratio, and the prepared raw materials are put into a glove box filled with high-purity argon gas for carbonization Tungsten-lined ball milling tank, and then high-speed ball milling with a plasma ball mill.
- the ball mill speed is 600 rpm
- the plasma generator power is set to 1.5kW
- the ball milling time is 60 minutes.
- the sintering mold with a diameter of 15mm is then transferred into a vacuum discharge plasma sintering furnace through a sealing device for sintering.
- the process conditions are that the temperature is raised to a sintering temperature of 400°C at a rate of 100°C per minute, and the sintering pressure is kept at 60MPa and the sintering time is 10min. , to obtain a columnar block material; then put the columnar block into a mold with a diameter of 25mm and sinter again, the sintering temperature is 480°C, the pressure is 60Mpa, and the sintering time is 20 minutes.
- the elemental raw materials Cu, Bi, Sb and Te are weighed according to the stoichiometric ratio, and the prepared raw materials are placed in a glove box filled with high-purity argon gas. Put the zirconia lined ball mill in the jar, and then perform high-speed ball milling in a plasma ball mill.
- the ball mill speed is 800 rpm
- the power of the plasma generator is set to 0.5kW
- the ball milling time is 90 minutes.
- a sintering mold with a diameter of 10 mm was placed in the glove box, and then transferred into a vacuum discharge plasma sintering furnace through a sealing device for sintering.
- the sintering time was 10 min.
- the columnar block was put into a mold with a diameter of 25 mm and sintered again.
- the sintering temperature was 500° C.
- the pressure was 60 Mpa
- the sintering time was 20 minutes.
- the elemental raw materials Bi, Sb and Te are weighed according to the stoichiometric ratio, and the prepared raw materials are vacuum sealed in a 50mm/30mm diameter unequal diameter In the quartz tube, then place the coarse quartz tube in a vacuum hot extrusion furnace with a temperature of 520 ° C, set the temperature at the transition of the quartz tube to 450 ° C, and press the material from the 50 mm diameter quartz tube to the 30mm quartz tube and finally extruded into a crystal rod, the extrusion movement rate is 5cm/h, and finally a columnar hot extrusion crystal material is obtained.
- the elemental raw materials Bi, Sb and Te (the purity of each element are all ⁇ 99.99%) are weighed according to the stoichiometric ratio, and the prepared raw materials are placed in a glove box filled with high-purity argon gas into stainless steel.
- the sintering temperature is 420°C
- the sintering pressure is kept at 60MPa
- the sintering time is 20min, and then the temperature is lowered and cooled at a rate of 60°C per minute to obtain a columnar bulk material.
- the elemental raw materials Bi, Sb and Te (the purity of each element are all ⁇ 99.99%) are weighed according to the stoichiometric ratio, and the prepared raw materials are vacuum sealed in a quartz tube, and the mixed raw materials are melted by zone melting.
- the raw material is melted and solidified, the temperature of the melting zone is 520°C, the width of the melting zone is 3 cm, and the moving speed of the quartz tube is 3 cm/h, and finally a columnar zone melting crystal material is obtained.
- the elemental raw materials Bi, Se and Te (the purity of each element are all ⁇ 99.99%) are weighed according to the stoichiometric ratio, and the prepared raw materials are vacuum sealed in a 50mm/30mm diameter unequal diameter In the quartz tube, then place the coarse quartz tube in a vacuum hot extrusion furnace with a temperature of 520°C, and set the temperature at the transition point of the quartz tube to 450°C. Into a 30mm quartz tube and finally extruded into a crystal rod, the extrusion movement rate is 5cm/h, and finally a columnar hot extrusion crystal material is obtained.
- FIG. 1 is a SEM image of the bismuth telluride thermoelectric material prepared in Example 1, (a) is a cross-sectional microstructure diagram along the direction parallel to the sintering pressure, (b) is a cross-sectional microstructure diagram perpendicular to the sintering pressure direction, It can be seen from Fig. 1 that due to the pressure-promoted grain turning, the flaky grains are basically arranged in the vertical direction of the pressure and have good orientation.
- Figure 3 shows the material resistance of the P-type Bi 0.5 Sb 1.5 Te 3 prepared in Example 1 of the present invention, the N-type Bi 2 Te 2.7 Se 0.3 material prepared in Example 2, and the materials prepared in Comparative Examples 3 and 4.
- Bending strength performance comparison chart the mechanical bending strength is tested by the three-point bending method.
- the bending strengths of the materials prepared in Example 1, Example 2, Comparative Example 3, and Comparative Example 4 are 81Mpa, 65Mpa, 48Mpa, and 24Mpa, respectively. , it can be seen that the new plasma ball milling combined with the sintering process of the present invention can greatly improve the mechanical flexural strength of the N-type and P-type bismuth telluride-based thermoelectric materials.
- the invention selects the plasma-assisted ball milling process for the mechanical alloying synthesis of the bismuth telluride powder, which has the comprehensive advantages of uniform mixing, precise and controllable components, nanometer ultrafine powder and the like.
- the bismuth telluride high-purity raw material glove box is put into a ball mill tank equipped with a plasma generator, and then the high-energy ball milling is carried out by sealing, and the plasma generator can be discharged to generate plasma during the ball milling process.
- the ball mill can be disordered by increasing the rotational speed and collision.
- Mechanical energy is used to achieve high reaction energy, which greatly reduces the loss of ball mill jars and grinding balls, which helps to reduce the introduction of impurity elements. It is very suitable for composition control in mass production, and is also suitable for small batch compound synthesis.
- the present invention also combines the spark plasma sintering (SPS) process to sinter the ultra-fine powder.
- SPS spark plasma sintering
- the powder after the plasma-assisted ball milling is transferred to the sintering mold under the fully inert gas protection environment. It is a new powder metallurgy sintering technology in which high-performance materials are obtained by exothermic plastic deformation and densification of ultra-fine powders by applying electric current discharge heating to the electrode indenter, while pressing pressure is applied to the sintered powder.
- the present invention combines the advantages of plasma ball milling technology and discharge plasma rapid sintering and densification for the first time to prepare a room temperature bismuth telluride bulk thermoelectric material with both high thermoelectric performance and high mechanical strength.
- the method is also applicable to the synthesis of other thermoelectric materials such as skutterudite, half-Heusler, lead telluride, germanium telluride, etc.
- the present invention illustrates the preparation method of the method for the bismuth telluride thermoelectric material provided by the present invention through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned process steps, that is, it does not mean that the present invention must rely on the above-mentioned process steps. to be implemented.
- the present invention should understand that any improvement to the present invention, the equivalent replacement of the selected raw materials of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种碲化铋热电材料的制备方法,属于热电材料技术领域,包括如下步骤:步骤一、按照N型碲化铋材料的化学式X w/Bi 2Te 2.7-wSe 0.3称取Bi、Te和Se单质粉末为原料,或者按照P型碲化铋材料的化学式X w/Bi 0.5-wSb 1.5Te 3称取Bi、Sb和Te单质粉末为原料,X为掺杂元素,w为掺杂元素X的化学计量比,范围为0≤w≤0.1;步骤二、将上述原料混合均匀后置于加装等离子发生器的球磨罐中进行高能球磨;步骤三、将球磨之后的罐体内的粉体在惰性气体下转移至烧结模具中进行烧结,烧结分两次进行,冷却后得到碲化铋热电材料。该方法首次结合等离子球磨和放电等离子烧结技术制备高性能碲化铋材料,具有速度快,粉体成分可控,能耗小、适合大批量生产。
Description
本发明属于热电材料技术领域,具体涉及一种具有优异热电性能与力学性能的碲化铋基热电材料及其制备方法。
热电材料是一种利用半导体的塞贝克效应(Seebeck effect)和珀尔帖效应(Peltier effect)将热能和电能直接相互转换的功能材料。基于珀尔帖效应的热电制冷技术具有体积小、无运动部件、无噪音、精度高等特点,在微电子、计算机以及航天等诸多领域已广泛应用于电子元件的局部制冷与温度控制。近年来,随着5G产业的迅速发展,微型热电制冷器件已经成为高速率通信光模块对热管理必不可少的关键元器件之一。
目前,碲化铋基合金一直是室温附近性能最佳的热电转换材料,也是热电制冷器件唯一被采用的商业化材料。碲化铋基热电材料具有六方晶体结构,且是一种具有各向异性的层状化合物,其中沿100晶面的层内由于具有较高的迁移率成为其热电性能的优势方向。此外,由于相邻的碲原子层以较弱的范德华力结合而容易发生解理,导致机械强度低,极大影响了材料的可加工性和元器件的使用可靠性。随着5G等电子技术的发展,通讯光模块等器件的封装朝微型化趋势发展,这对热电制冷器件的微型化、可靠性和制冷功耗的要求越来越来高,如何获得具有良好晶粒取向并具有优异的热电性能,同时具有非常好的 力学强度以满足精细切割加工需求的碲化铋材料,成为目前提升微型制冷器件性能的关键。
目前碲化铋材料的批量合成有三种主流工艺,一是采用区熔法生长棒状晶体,这种方法可以实现非常好的晶粒取向,从而保证沿生长方向的热电性能,目前区熔法生长的N型材料最大ZT达到0.9左右,P型材料最大ZT可以达到1.1;但是这种工艺得到的材料晶粒非常粗大,力学强度非常差,容易解离,而且在熔体结晶的过程中会发生成分的偏析,导致量产材料的均一性较差;二是采用热挤压的方法,将区熔晶棒在压力下进行热塑致密化,在晶粒细化的同时促进晶粒转向提升织构化程度。由于晶粒细化增强左右,这种工艺的材料力学强度有所增加,热电性能基本保持区熔法晶体水平;第三种是粉末冶金方法,即将原料粉体混合采用球磨机械合金化、或者熔融旋甩的方式获得碲化铋超细粉体,然后通过烧结的方式进行致密化。这种工艺由于粉体混合均匀度较高,因此材料一致性较好;高能球磨可以使得晶粒尺寸细化到纳米量级,不仅可以强烈散射声子降低材料的热导率,还由于细晶强化作用大幅改善材料的力学强度。但是由于在高能球磨制备超细粉体制备过程中,由于球磨过程的高能量使得非常容易引入杂质,且在超细粉体的转移过程中非常容易氧化,导致电性能和最终热电优值优化困难。而熔融旋甩工艺虽然可以避免杂质引入,但是设备昂贵难于实现大规模的批量量产。因此如何批量化实现超细晶、定向化排布微结构、成分可控的碲化铋材料仍然是关键瓶颈问题。
发明内容
为了解决上述背景技术中所提出的问题,针对以上工艺各自的弊端,本发明提出了一种碲化铋热电材料及其制备方法,采用等离子辅助的球磨制粉技术,并结合全封闭体系下的烧结致密化工艺,实现成分可控的超细晶碲化铋材料的合成制备技术。
为了达到上述目的,本发明所采用的技术方案为:
本发明提供了一种等离子辅助制粉结合全封闭体系烧结致密技术批量制备高性能碲化铋材料的方法,包括如下步骤:
步骤一、按照N型碲化铋材料的化学式X
w/Bi
2Te
2.7-wSe
0.3称取Bi、Te和Se单质粉末为原料,或者按照P型碲化铋材料的化学式X
w/Bi
0.5-wSb
1.5Te
3称取Bi、Sb和Te单质粉末为原料,X为掺杂元素,其中w为掺杂元素X的化学计量比,范围为0≤w≤0.1;
步骤二、将上述原料混合均匀后置于加装等离子发生器的球磨罐中进行高能球磨处理;
步骤三、将球磨之后的罐体内的粉体在惰性气体保护下转移至烧结模具中进行致密化烧结,烧结分两次进行,冷却后得到碲化铋热电材料。
在本发明的技术方案中,所述X选自S、I、Cl、Br、In、Sn、Ge、Pb、S、Cu、Ag其中的至少一种。
在本发明的技术方案中,步骤二中,加装等离子体发生装置的球磨罐体内衬为聚四氟乙烯或者硬质合金,球磨球为硬质合金,不锈钢、氧化锆或碳化钨,优选为硬质合金。
在本发明的技术方案中,步骤二中,球磨处理的工艺参数为:球磨罐中的 球料质量比为(10~20):1,球磨在惰性气氛下进行,球磨时间为0.5~12h。
在本发明的技术方案中,步骤二中,加装等离子发生器的球磨罐的转速为500~1500r/min,等离子发生器电功率为0.5-3kW。
在本发明的技术方案中,步骤三中,所述烧结采用放电等离子烧结或热压烧结,第一次烧结的工艺条件如下:真空度<10Pa,升温速率20~100K/min,烧结压力为50~65Mpa,压力保持时间不小于30分钟,烧结温度为400℃~520℃,优选为450~500℃。
在本发明的技术方案中,第二次烧结是将第一次烧结所获得的致密块体材料重新放置于尺寸更大的烧结模具中进行二次液相塑性烧结,第二次烧结的工艺条件为真空度<10Pa,升温速率20~100K/min,烧结温度为450~500℃,烧结压力为50~65Mpa,温度压力保持时间10~30分钟。
另一方面,本发明还提供了一种根据上述方法制备的碲化铋热电材料。
球磨完成之后,将球磨罐置于手套箱内,在惰性气体保护下将粉体装入烧结模具并转移至放电等离子烧结炉;
相对于现有技术,本发明具有以下有益效果:
1、本发明首次结合等离子球磨和放电等离子烧结技术制备高性能碲化铋材料,该方法具有速度快,粉体成分可控,能耗小、适合大批量生产的特点。
2、本发明提出了一种采用等离子辅助的球磨制粉技术,并结合全封闭体系下的烧结致密化工艺,实现成分可控的超细晶碲化铋材料的合成制备技术。
3、本发明采用等离子辅助的高能球磨技术,采用局部等离子体的高能量使得粉体表面产生高活化态,在整体球磨能量较低的情况下即可以实现超细粉碎, 从而避免了杂质的引入;通过惰性气体保护下的粉体转移、装填、烧结,避免了高活性的纳米超细粉体在空气中的暴露氧化,实现了材料成分的可控以及纳米晶粒微结构的保持;再通过二次热变形烧结的方法,实现晶粒转向,促进织构化程度的提升,最终获得晶粒成分可控、高织构化程度的碲化铋材料,实现热电性能与力学性能的双重改善。
图1为本发明实施例1制备得到的碲化铋热电材料的断面SEM图,其中,(a)图是沿平行于烧结压力方向的断面微结构图,(b)图是垂直烧结压力方向的断面微结构图。
图2为实施例1-3以及对比例1-4制备得到的材料的ZT值图,其中,(a)图为本发明实施例1、实施例以及对比例1和对比例3制备得到材料的ZT值对比图,(b)图为实施例2、对比例2和对比例4制备得到的材料的ZT值对比图。
图3为本发明实施例1制备得到的P型Bi
0.5Sb
1.5Te
3和实施例2制备得到的N型Bi
2Te
2.7Se
0.3材料以及对比例3和对比例4制备得到的材料的材料抗弯强度性能对比图。
下面结合发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1
根据化学式Bi
0.5Sb
1.5Te
3,按照化学计量比称取单质原料Bi、Sb和Te(各元素纯度均≥99.99%),将配好的原料在充满高纯氩气的手套箱中装入不锈钢球磨罐,然后再等离子球磨机进行高速球磨,球磨机转速为500转/分,等离子体发生器功率设置为2kW,球磨时间为60分钟,充分研磨得到粉体后再在手套箱中装入直径为15mm的烧结模具,随后通过密封装置转移进入真空放电等离子体烧结炉进行烧结,工艺条件为以每分钟100℃的速率升温至烧结温度400℃,保持烧结压力为50MPa,烧结时间为15min,得到柱状的块体材料;之后将柱状块体再次放入直径为25mm的模具之中再次烧结,烧结温度为500℃,压力为60Mpa,烧结时间为20分钟。
实施例2
根据化学式Bi
2Te
2.7Se
0.3,按照化学计量比称取单质原料Bi、Sb和Te(各元素纯度均≥99.99%),将配好的原料在充高纯氩气的手套箱中装入碳化钨内衬球磨罐,然后再等离子球磨机进行高速球磨,球磨机转速为600转/分,等离子体发生器功率设置为1.5kW,球磨时间为60分钟,充分研磨得到粉体后再在手套箱中装入直径为15mm的烧结模具,随后通过密封装置转移进入真空放电等离子体烧结炉进行烧结,工艺条件为以每分钟100℃的速率升温至烧结温度400℃,保持烧结压力为60MPa,烧结时间为10min,得到柱状的块体材料;之后将柱状块体再次放入直径为25mm的模具之中再次烧结,烧结温度为480℃,压力为60Mpa,烧结时间为20分钟。
实施例3
根据化学式Cu
0.002Bi
0.498Sb
1.5Te
3,按照化学计量比称取单质原料Cu、Bi、Sb和Te(各元素纯度均≥99.99%),将配好的原料在充满高纯氩气的手套箱中装入氧化锆内衬球磨罐,然后再等离子球磨机进行高速球磨,球磨机转速为800转/分,等离子体发生器功率设置为0.5kW,球磨时间为90分钟,充分研磨得到粉体后再在手套箱中装入直径为10mm的烧结模具,随后通过密封装置转移进入真空放电等离子体烧结炉进行烧结,工艺条件为以每分钟100℃的速率升温至烧结温度450℃,保持烧结压力为50MPa,烧结时间为10min。之后将柱状块体再次放入直径为25mm的模具之中再次烧结,烧结温度为500℃,压力为60Mpa,烧结时间为20分钟。
对比例1
根据化学式Bi
0.5Sb
1.5Te
3,按照化学计量比称取单质原料Bi、Sb和Te(各元素纯度均≥99.99%),将配好的原料真空密封在直径为50mm/30mm的不等直径的石英管中,然后将粗石英管置于温度为520℃的真空热挤压炉中,石英管转接处温度设定为450℃,同时在采用气压将物料从直径50mm石英管中压入至30mm石英管并最终挤出成晶棒,挤压移动速率为5cm/h,最终得到柱状的热挤压晶体材料。
对比例2
根据化学式Bi
2Te
2.7Se
0.3,按照化学计量比称取单质原料Bi、Sb和Te(各元素纯度均≥99.99%),将配好的原料在充满高纯氩气的手套箱中装入不锈钢球磨罐,然后采用行星球磨机,球磨机转速为1000转/分,球磨时间为60分钟,充分研磨得到粉体后进行真空放电等离子体烧结炉进行烧结,工艺条件为以每分 钟100℃的速率升温至烧结温度420℃,保持烧结压力为60MPa,烧结时间为20min,然后以每分钟60℃的速率降温冷却,得到柱状的块体材料。
对比例3
根据化学式Bi
0.5Sb
1.5Te
3,按照化学计量比称取单质原料Bi、Sb和Te(各元素纯度均≥99.99%),将配好的原料真空密封在石英管中,采用区熔的方式将原料进行融化凝固,熔融区间温度为520℃,熔融区间宽度为3cm,石英管移动速率为3cm/h,最终得到柱状的区熔晶体材料。
对比例4
根据化学式Bi
2Te
2.7Se
0.3,按照化学计量比称取单质原料Bi、Se和Te(各元素纯度均≥99.99%),将配好的原料真空密封在直径为50mm/30mm的不等直径的石英管中,然后将粗石英管置于温度为520℃的真空热挤压炉中,石英管转接处温度设定为450℃,同时在采用气压的方式将物料从直径50mm石英管中压入至30mm石英管并最终挤出成晶棒,挤压移动速率为5cm/h,最终得到柱状的热挤压晶体材料。
测试与表征
图1是实施例1制备得到的碲化铋热电材料SEM图,(a)图是沿平行于烧结压力方向的断面微结构图,(b)图是垂直于烧结压力方向的断面微结构图,从图1中可以看出,由于压力促进晶粒转向,片状晶粒基本沿压力垂直方向排布,具有良好的取向性。
图2为本发明实施例1制备得到的P型Bi
0.5Sb
1.5、实施例2制备得到的N型Te
3Bi
2Te
2.7Se
0.3材料和实施例3制备得到的Cu
0.002Bi
0.498Sb
1.5Te
3材料以及对比 例1-4制备得到的材料的ZT值对比分析图,ZT值通过分别测量实施例1-3与对比例1-4的电导率σ、泽贝克系数α和热导率κ,然后通过ZT=σα
2/κ计算得到;可以看出,采用本发明新型的等离子球磨结合放电等离子烧结工艺可以大幅提升N型和P型碲化铋基热电材料的性能优值。
图3是本发明实施例1制备得到的P型Bi
0.5Sb
1.5Te
3和实施例2制备得到的N型Bi
2Te
2.7Se
0.3材料以及对比例3和对比例4制备得到的材料的材料抗弯强度性能对比图,力学抗弯强度采用三点抗弯方法进行测试,实施例1、实施例2对比例3、对比例4制备得到的材料的抗弯强度分别为81Mpa,65Mpa和48Mpa,24Mpa,可以看出采用本发明新型的等离子球磨结合烧结工艺可以大幅提升N型和P型碲化铋基热电材料的力学抗弯强度。
本发明选用等离子体辅助球磨工艺进行碲化铋粉体的机械合金化合成,其具有混合均匀,组分精确可控、纳米超细粉体等综合的优势。具体来说,本发明通过使将碲化铋高纯原料手套箱中放入装有等离子体发生器的球磨罐中,然后进行密封进行高能球磨,在球磨过程中等离子发生器可以放电产生等离子体,使得粉体表面处于高活性状态,有助于粉体的细化以及相互扩散反应,从而达到快速机械合金的效果;同时由于在等离子辅助活化的状态下,球磨罐无序通过提高转速和碰撞机械能来达到高的反应能量,从而使得球磨罐与磨球的损耗大大降低,有助于降低杂质元素的引入,非常适用于大批量生产时的成分控制,同时也适用于小批量化合物合成。此外,本发明还结合放电等离子烧结(SPS)工艺对超细粉体进行烧结,具体来说其是将等离子辅助球磨之后的粉体在全惰性气体保护环境下的转移至烧结模具中,利用上下电极压头通电电流放电加热, 同时压制压力施加于烧结粉末,超细粉体经放热塑变形和致密化后制得高性能材料的一种新的粉末冶金烧结技术。
因此,本发明首次结合等离子球磨技术和放电等离子快速烧结致密化的优点,制备出兼具高热电性能与高力学强度的室温碲化铋块体热电材料。所述方法同样可适用于方钴矿、半赫斯勒、碲化铅、碲化锗等其他热电材料的合成。
最后说明的是,本发明通过上述实施例来说明本发明提供的碲化铋热电材料的方法的制备方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上公开的仅为本发明的一个具体实施例,仅用以说明本发明的技术方案而非限制,本领域的普通技术人员应该理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (8)
- 一种碲化铋热电材料的制备方法,其特征在于,所制备的碲化铋热电材料为N型或P型,包括如下步骤:步骤一、按照N型碲化铋材料的化学式X w/Bi 2Te 2.7-wSe 0.3称取Bi、Te和Se单质粉末为原料,或者按照P型碲化铋材料的化学式X w/Bi 0.5-wSb 1.5Te 3称取Bi、Sb和Te单质粉末为原料,X为掺杂元素,其中w为掺杂元素X的化学计量比,范围为0≤w≤0.1;步骤二、将上述原料混合均匀后置于加装等离子发生器的球磨罐中进行高能球磨处理;步骤三、将球磨之后的罐体内的粉体在惰性气体保护下转移至烧结模具中进行致密化烧结,烧结分两次进行,冷却后得到碲化铋热电材料。
- 根据权利要求1所述的碲化铋热电材料的制备方法,其特征在于,所述X选自S、I、Cl、Br、In、Sn、Ge、Pb、S、Cu、Ag其中的至少一种。
- 根据权利要求1所述的碲化铋热电材料的制备方法,其特征在于,步骤二中,加装等离子体发生装置的球磨罐体内衬为聚四氟乙烯或者硬质合金,球磨球为硬质合金,不锈钢、氧化锆或碳化钨,优选为硬质合金。
- 根据权利要求1所述的碲化铋热电材料的制备方法,其特征在于,步骤二中,球磨处理的工艺参数为:球磨罐中的球料质量比为(10~20):1,球磨在惰性气氛下进行,球磨时间为0.5~12h。
- 根据权利要求1所述的碲化铋热电材料的制备方法,其特征在于,步骤二中,加装等离子发生器的球磨罐的转速为500~1500r/min,等离子发生器电功 率为0.5-3kW。
- 根据权利要求1所述的碲化铋热电材料的制备方法,其特征在于,步骤三中,所述烧结采用放电等离子烧结或热压烧结,第一次烧结的工艺条件如下:真空度<10Pa,升温速率20~100K/min,烧结压力为50~65Mpa,压力保持时间不小于10分钟,烧结温度为400℃~520℃,优选为450~500℃。
- 根据权利要求6所述的碲化铋热电材料的制备方法,其特征在于,第二次烧结是将第一次烧结所获得的致密块体材料重新放置于尺寸更大的烧结模具中进行二次液相塑性烧结,第二次烧结的工艺条件为真空度<10Pa,升温速率20~100K/min,烧结温度为450~500℃,烧结压力为50~65Mpa,温度压力保持时间10~30分钟。
- 一种根据权利要求1-7任意一项所述的碲化铋热电材料的制备方法制备得到的碲化铋热电材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011466507.8A CN112500164B (zh) | 2020-12-14 | 2020-12-14 | 一种碲化铋热电材料及其制备方法 |
CN202011466507.8 | 2020-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022126952A1 true WO2022126952A1 (zh) | 2022-06-23 |
Family
ID=74972891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/088968 WO2022126952A1 (zh) | 2020-12-14 | 2021-04-22 | 一种碲化铋热电材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112500164B (zh) |
WO (1) | WO2022126952A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115122461A (zh) * | 2022-07-15 | 2022-09-30 | 湖北赛格瑞新能源科技有限公司 | 一种自由锻工艺制备n型碲化铋基热电材料的方法 |
CN115141018A (zh) * | 2022-07-15 | 2022-10-04 | 湖北赛格瑞新能源科技有限公司 | 一种利用累积热镦制备n型碲化铋基热电材料的方法 |
CN115368136A (zh) * | 2022-08-26 | 2022-11-22 | 武汉理工大学 | 一种适用于批量化制备多晶Bi2Te3基块体热电材料的方法 |
CN115537930A (zh) * | 2022-09-29 | 2022-12-30 | 中南大学 | 铋碲硫半导体、制备方法及光电器件 |
CN118026685A (zh) * | 2024-02-06 | 2024-05-14 | 西安交通大学 | N型碲化铋材料及其制备方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112500164B (zh) * | 2020-12-14 | 2022-05-27 | 深圳先进电子材料国际创新研究院 | 一种碲化铋热电材料及其制备方法 |
CN114408872A (zh) * | 2021-11-30 | 2022-04-29 | 慈溪市香格电器有限公司 | 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用 |
CN114477102B (zh) * | 2022-01-20 | 2023-06-09 | 深圳热电新能源科技有限公司 | 一种n型碲化铋基热电材料及其制备方法与应用 |
CN114456607B (zh) * | 2022-02-21 | 2023-02-24 | 哈尔滨工业大学(深圳) | 一种含无限共轭聚合物的室温基热电材料及其制备方法 |
CN114735658A (zh) * | 2022-04-12 | 2022-07-12 | 广西自贸区见炬科技有限公司 | 一种n型碲化铋基合金及制备方法 |
CN114920563B (zh) * | 2022-04-13 | 2023-05-23 | 纯钧新材料(深圳)有限公司 | 一种p型碲化铋烧结材料及其制备方法 |
CN115196965B (zh) * | 2022-07-25 | 2023-07-25 | 深圳先进电子材料国际创新研究院 | 一种n型碲化铋热电材料及其制备方法 |
CN115322004B (zh) * | 2022-08-22 | 2023-05-30 | 哈尔滨工业大学(深圳) | 一种兼具高热电和力学性能的碲化铋基热电材料及其制备方法 |
CN115815600A (zh) * | 2022-09-19 | 2023-03-21 | 杭州大和热磁电子有限公司 | 一种提高挤出材料热电性能的制备方法 |
CN115521148A (zh) * | 2022-09-22 | 2022-12-27 | 广西自贸区见炬科技有限公司 | 一种Cu掺杂的(Bi,Sb)2Te3热电材料的制备方法及其产品 |
CN116283295B (zh) * | 2023-03-15 | 2023-12-05 | 佛山(华南)新材料研究院 | 一种碲化铋基复合热电材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101239336A (zh) * | 2008-03-07 | 2008-08-13 | 华南理工大学 | 一种等离子体辅助高能搅拌球磨装置 |
US20150311418A1 (en) * | 2014-04-24 | 2015-10-29 | Evident Technologies | Powdered Materials Attached with Molecular Glue |
CN110098313A (zh) * | 2019-04-22 | 2019-08-06 | 武汉科技大学 | 一种择优取向p型碲化铋基多晶块体热电材料的制备方法 |
CN111304492A (zh) * | 2020-03-12 | 2020-06-19 | 中南大学 | 一种低温n型热电材料及其制备方法 |
CN111848165A (zh) * | 2020-08-03 | 2020-10-30 | 深圳见炬科技有限公司 | 一种p型碲化铋热电材料及其制备方法 |
CN111875381A (zh) * | 2020-08-03 | 2020-11-03 | 深圳见炬科技有限公司 | 一种n型碲化铋热电块体材料的制备方法 |
CN112500164A (zh) * | 2020-12-14 | 2021-03-16 | 深圳先进电子材料国际创新研究院 | 一种碲化铋热电材料及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9660165B2 (en) * | 2008-08-29 | 2017-05-23 | Lg Chem, Ltd. | Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
CN104843654B (zh) * | 2015-04-24 | 2017-01-04 | 宁波工程学院 | P-型Ga-Cd-S-Te四元化合物中温热电合金及其制备工艺 |
CN106992246A (zh) * | 2017-04-15 | 2017-07-28 | 苏州思创源博电子科技有限公司 | 一种铜掺杂碲化铋复合电热材料的制备方法 |
-
2020
- 2020-12-14 CN CN202011466507.8A patent/CN112500164B/zh active Active
-
2021
- 2021-04-22 WO PCT/CN2021/088968 patent/WO2022126952A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101239336A (zh) * | 2008-03-07 | 2008-08-13 | 华南理工大学 | 一种等离子体辅助高能搅拌球磨装置 |
US20150311418A1 (en) * | 2014-04-24 | 2015-10-29 | Evident Technologies | Powdered Materials Attached with Molecular Glue |
CN110098313A (zh) * | 2019-04-22 | 2019-08-06 | 武汉科技大学 | 一种择优取向p型碲化铋基多晶块体热电材料的制备方法 |
CN111304492A (zh) * | 2020-03-12 | 2020-06-19 | 中南大学 | 一种低温n型热电材料及其制备方法 |
CN111848165A (zh) * | 2020-08-03 | 2020-10-30 | 深圳见炬科技有限公司 | 一种p型碲化铋热电材料及其制备方法 |
CN111875381A (zh) * | 2020-08-03 | 2020-11-03 | 深圳见炬科技有限公司 | 一种n型碲化铋热电块体材料的制备方法 |
CN112500164A (zh) * | 2020-12-14 | 2021-03-16 | 深圳先进电子材料国际创新研究院 | 一种碲化铋热电材料及其制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115122461A (zh) * | 2022-07-15 | 2022-09-30 | 湖北赛格瑞新能源科技有限公司 | 一种自由锻工艺制备n型碲化铋基热电材料的方法 |
CN115141018A (zh) * | 2022-07-15 | 2022-10-04 | 湖北赛格瑞新能源科技有限公司 | 一种利用累积热镦制备n型碲化铋基热电材料的方法 |
CN115141018B (zh) * | 2022-07-15 | 2023-09-08 | 湖北赛格瑞新能源科技有限公司 | 一种利用累积热镦制备n型碲化铋基热电材料的方法 |
CN115368136A (zh) * | 2022-08-26 | 2022-11-22 | 武汉理工大学 | 一种适用于批量化制备多晶Bi2Te3基块体热电材料的方法 |
CN115368136B (zh) * | 2022-08-26 | 2023-07-14 | 武汉理工大学 | 一种适用于批量化制备多晶Bi2Te3基块体热电材料的方法 |
CN115537930A (zh) * | 2022-09-29 | 2022-12-30 | 中南大学 | 铋碲硫半导体、制备方法及光电器件 |
CN118026685A (zh) * | 2024-02-06 | 2024-05-14 | 西安交通大学 | N型碲化铋材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112500164A (zh) | 2021-03-16 |
CN112500164B (zh) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022126952A1 (zh) | 一种碲化铋热电材料及其制备方法 | |
CN110098313B (zh) | 一种择优取向p型碲化铋基多晶块体热电材料的制备方法 | |
CN112028632B (zh) | 一种非化学计量比碲化铋基热电材料及其制备方法 | |
Yi et al. | Synthesis and characterization of Mg 2 Si/Si nanocomposites prepared from MgH 2 and silicon, and their thermoelectric properties | |
CN107681043B (zh) | 一种柔性热电器件的碲化铋基复合热电材料及制备方法 | |
EP2562835B1 (en) | Clathrate compound, thermoelectric material, and method for producing thermoelectric material | |
CN107445621B (zh) | 一种Cu-Te纳米晶/Cu2SnSe3热电复合材料及其制备方法 | |
CN111848165B (zh) | 一种p型碲化铋热电材料及其制备方法 | |
JP5528873B2 (ja) | 複合熱電材料及びその製造方法 | |
CN108238796A (zh) | 铜硒基固溶体热电材料及其制备方法 | |
KR101051010B1 (ko) | p형 Bi-Sb-Te계 열전재료의 제조방법 | |
CN101694010A (zh) | 一种层状纳米结构InSb热电材料的制备方法 | |
KR20110112993A (ko) | 열전재료 및 열전재료의 제조방법 | |
CN113421959A (zh) | 一种n型碲化铋基室温热电材料及其制备方法 | |
CN106191522B (zh) | 一种激光高效制备方钴矿热电材料的方法 | |
CN108198934A (zh) | 一种复合热电材料及其制备方法 | |
JP4123388B2 (ja) | 亜鉛アンチモン化合物焼結体 | |
JP3929880B2 (ja) | 熱電材料 | |
KR20110092762A (ko) | 기계적 합금화에 의한 Mg2Si 열전재료 제조방법 및 이에 의해 제조된 Mg2Si 열전재료 | |
CN108172680B (zh) | 一种立方相Ca2Ge热电材料及其制备方法 | |
JP2000261044A (ja) | 熱電変換材料とその製造方法 | |
CN112002796A (zh) | 一种快速制备易于切割的高性能Bi2Te3基热电材料的方法 | |
EP3742504A1 (en) | Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material | |
JP3704556B2 (ja) | 亜鉛アンチモン化合物の製造法 | |
JPH10308538A (ja) | 熱電素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21904891 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 31.10.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21904891 Country of ref document: EP Kind code of ref document: A1 |