CN114408872A - 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用 - Google Patents

一种碲化铋制冷材料的制备方法及其在水离子发生器的应用 Download PDF

Info

Publication number
CN114408872A
CN114408872A CN202111440298.4A CN202111440298A CN114408872A CN 114408872 A CN114408872 A CN 114408872A CN 202111440298 A CN202111440298 A CN 202111440298A CN 114408872 A CN114408872 A CN 114408872A
Authority
CN
China
Prior art keywords
bismuth telluride
preparation
refrigeration
refrigeration material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111440298.4A
Other languages
English (en)
Inventor
马杰锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cixi Honge Electric Appliance Ltd
Original Assignee
Cixi Honge Electric Appliance Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cixi Honge Electric Appliance Ltd filed Critical Cixi Honge Electric Appliance Ltd
Priority to CN202111440298.4A priority Critical patent/CN114408872A/zh
Publication of CN114408872A publication Critical patent/CN114408872A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于热电材料领域,具体提供一种碲化铋制冷材料的制备方法及其在水离子发生器的应用,所述碲化铋制冷材料包括N型碲化铋半导体和P型碲化铋半导体,所述N型碲化铋半导体材料的化学组成为为Bi2Te2.7AsSe0.3Sbx,其中x=0.01‑0.1;所述P型碲化铋半导体的化学组成为BiSb3‑yCuyTe3,其中y=0.06~0.10。所述碲化铋制冷材料利用帕尔贴效应,将所述N型碲化铋半导体材料和P型碲化铋半导体材料应用到水离子发生器中,提高水离子发生器的制冷性能,扩大应用范围。

Description

一种碲化铋制冷材料的制备方法及其在水离子发生器的应用
技术领域
本发明属于半导体热电制冷材料领域,具体涉及一种碲化铋制冷材料的制备方法及其在水离子发生器的应用。
背景技术
随着全球工业化的发展,人类对能源的需求不断增长,在近百年中,工业消耗主要以化石类能源为主。化石能源是不可再生资源,地球中的存量越来越少,并且化石原料使用时会排出大量CO2、SO2、NO、NO2等有害物质,严重污染了大气环境,导致温室效应和酸雨,影响人类的身体健康和生活;因此开发新的可再生绿色能源材料代替化石材料,减少碳排放,保护生态资源越来越被重视。
热电材料能实现热能和电能的相互转换,有替代化石原料的潜能。热电材料是通过半导体材料的赛贝可效应和帕尔贴效应实现热能与电能直接耦合、相互转化的一类功能材料,该热电材料具有绿色无污染、无噪音、微型化、寿命长、可精确控制等优点,目前已应用到航空航天、太空飞船、精密仪器等领域。
碲化铋是热电材料中较为常见的一种,碲化铋的晶体结构属三方晶系,由于其各相异性,通常采用晶体生长的方法,但相邻的Te原子层间以较弱的范德华力结合而易发生解离,导致其机械强度低,加工性能差,良品率低,从而严重影响材料的利用率和元器件的可靠性。碲化铋利用赛贝可效应实现热电转化的研究较多,塞贝克效应(Seebeck effect)指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象,在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。相应的电动势称为热电势,其方向取决于温度梯度的方向;但利用帕尔贴效应制冷的研究较少,珀耳帖效应指当有电流通过不同的导体组成的回路时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。
碲化铋制冷器件是N型和P型半导体通过导流片形成P-N热电结,根据帕尔贴效应,当回路中通电流时,在器件的一端吸收热量制冷,其N型半导体的材料通常为Bi-Te-Se,P型半导体的材料为Bi-Sb-Te,主要应用在高端行业,在人们生活中的应用较少。
发明内容
为解决碲化铋材料利用帕尔贴效应研究少,制冷性能差,在日常生活中的应用少等问题,本发明通过在N型半导体材料Bi-Te-Se中加入Sb元素,P型半导体材料中加入Cu元素,提高碲化铋的机械加工性能和热电性能,降低解离,并将其应用于水离子发生器的制冷系统。
为达到上述技术目的,本发明提供一种碲化铋制冷材料的制备工艺及其在水离子发生器的应用,具体技术方案如下:
一种碲化铋制冷材料的制备工艺,其特征在于,所述碲化铋制冷材料包括N型碲化铋半导体和P型碲化铋半导体,所述N型碲化铋半导体材料的化学组成为为Bi2Te2.7AsSe0.3Sbx,其中x=0.01-0.1;所述P型碲化铋半导体的化学组成为BiSb3-yCuyTe3,其中y=0.06~0.10。
进一步的,所述碲化铋制冷材料的制备采用悬浮区熔法。
进一步的,所述N型碲化铋半导体材料的制备方法包括:
(1)按化学计量比称量Bi、Te、Se和Sb原料放置于石英管中混合均匀,在氮气保护下进行熔炼处理得到Bi2Te2.7Se0.3Sbx基体;
(2)将(1)中得到的Bi2Te2.7Se0.3Sbx在氮气保护下进行研磨得到粉末;
(3)将(2)中得到的粉末进行放电等离子烧结处理,得到所述N型碲化铋半导体材料。
进一步的,所述熔炼处理工业条件为:熔区宽度35~38mm,生长速度16~18mm/h,以1~3℃/min的升温速率升温至500~600℃,保温3~6h,然后以0.5~1.5℃/min的升温速率升温至650~800℃,保温6~8h,然后自然冷却至室温。
进一步的,所述Bi2Te2.7Se0.3Sbx基体研磨后粉末的粒径小于50nm。
进一步的,所述放电等离子体烧结压力为35~45MPa、温度为380~450℃,烧结时间为10~12min。
进一步的,所述P型碲化铋半导体材料的制备方法包括:
(1)按化学计量比称量Bi、Sb、Cu和Se原料放置于石英管中混合均匀,在氮气保护下进行熔炼处理;
(2)将(1)中的原料在850~1000℃下熔融处理12~15小时后在氮气保护下淬火处理,再在600~750℃下氮气保护退火处理3-4天得到BiSb3-yCuyTe3基体;
(3)将(2)中得到的样品研磨成粉后装入石墨模具,再采用放电等离子烧结技术加压烧结,得到P型碲化铋半导体材料。
进一步的,所述P型碲化铋半导体材料的制备烧结温度为450~600℃,烧结压力为60~70Mpa,烧结时间为5~10min。
进一步的,所述研磨方法为湿法研磨后再进行液体悬液分离。
一种如上述所述碲化铋制冷材料的应用,其特征在于,所述碲化铋制冷材料利用帕尔贴效应,将所述N型碲化铋半导体材料和P型碲化铋半导体材料应用到水离子发生器中,提高水离子发生器的制冷性能。
本发明的有益效果:
1、本发明通过在常规的N型碲化铋半导体材料和P型碲化铋半导体材料中分别加入加入Sb和Cu,降低了Te层之间范德化力产生的解离,提高了碲化铋N型和P型半导体的加工性能和使用寿命;
2、本发明通过对N型碲化铋半导体材料和P型碲化铋半导体材料的制备工艺进行改进,制备的N型碲化铋半导体材料和P型碲化铋半导体材料的热电性能有较大提升;
3、本发明尝试将N型碲化铋半导体材料和P型碲化铋半导体材料应用到水离子发生器上,扩大了碲化铋制冷材料的使用范围,易于工业化生产。
具体实施方式
为加深对本技术方案的进一步理解,下面将结合具体实施例,对本发明方案做进一步说明。
一、N型碲化铋半导体材料及其制备
(1)实施例1
制备N型碲化铋半导体材料:Bi2Te2.7 AsSe0.3Sb0.03,采用悬浮区熔法:
按化学计量比称量Bi、Te、Se和Sb原料放置于石英管中混合均匀,在氮气保护下熔炼处理:熔区宽度36mm,以2℃/min的升温速率升温至520℃,保温4h,然后以0.6℃/min的速率升温至760℃,保温6.5h,然后自然冷却至室温,得到Bi2Te2.7Se0.3Sb0.03基体;将Bi2Te2.7Se0.3Sb0.03基体在氮气保护下进行研磨得到平均粒径为42nm的粉末;再将该粉末进行放电等离子烧结处理,烧结压力为36MPa、温度为420℃,烧结时间为10.5min得到所述N型碲化铋半导体块状物,测试得到其在500K达到最大热电优值(ZT),其ZT值为1.42,在300K–500K温区内平均ZT值ZTave为1.20。
(2)实施例2
制备N型碲化铋半导体材料:Bi2Te2.7 AsSe0.3Sb0.09,采用悬浮区熔法:
按化学计量比称量Bi、Te、Se和Sb原料放置于石英管中混合均匀,在氮气保护下进行熔炼,熔区宽度38mm,以1℃/min的升温速率升温至550℃,保温5.5h,然后以1.0℃/min的速率升温至800℃,保温6h,然后自然冷却至室温,得到Bi2Te2.7Se0.3Sb0.09基体;将Bi2Te2.7Se0.3Sb0.09基体在氮气保护下进行研磨得到平均粒径为48nm粉末;再将该粉末进行放电等离子烧结处理,烧结压力为40MPa、温度为400℃,烧结时间为11min得到所述N型碲化铋半导体块状物,测试得到其在480K达到最大热电优值(ZT),其ZT值为1.39,在300K–500K温区内平均ZT值ZTave为1.32。
(3)实施例3
制备N型碲化铋半导体材料:Bi2Te2.7 AsSe0.3Sb0.06,采用悬浮区熔法:
按化学计量比称量Bi、Te、Se和Sb原料放置于石英管中混合均匀,在氮气保护下真空封装,熔区宽度35mm,温度梯度20℃/cm;生长速度16mm/h,以1℃/min的升温速率升温至500℃,保温6h,然后以0.5℃/min的速率升温至650℃,保温8h,然后自然冷却至室温,得到Bi2Te2.7Se0.3Sb0.06基体;将Bi2Te2.7Se0.3Sb0.06基体在氮气保护下进行研磨得到平均粒径为nm粉末;再将该粉末进行放电等离子烧结处理,烧结压力为40MPa、温度为400℃,烧结时间为11min得到所述N型碲化铋半导体块状物,测试得到其在480K达到最大热电优值(ZT),其ZT值为1.53,在300K–500K温区内平均ZT值ZTave为1.48。
由实施例1-3可知,在N型碲化铋半导体中加入Sb,其热电性能明显优于目前市场上所使用N型碲化铋半导体。
二、P型碲化铋半导体材料及其制备
(1)实施例1
所述P型碲化铋半导体的化学组成为BiSb2.94Cu0.06Te3,采用悬浮区熔法制备:按化学计量比称量Bi、Sb、Cu和Se原料放置于石英管中混合均匀,在氮气保护将原料在900℃下熔融处理14小时后淬火处理,继续在氮气保护下620℃下退火处理3天得到BiSb2.94Cu0.06Te3基体;将样品通过湿法研磨后再进行液体悬液分离后装入石墨模具,再采用放电等离子烧结技术加压烧结,烧结温度为540℃,烧结压力为63Mpa,烧结时间为6min得到P型碲化铋半导体材料。测试得到其在430K达到最大热电优值(ZT),为1.24,在300K–500K温区内平均ZT值ZTave为1.16。
(2)实施例2
所述P型碲化铋半导体的化学组成为BiSb2.92Cu0.08Te3,采用悬浮区熔法制备:按化学计量比称量Bi、Sb、Cu和Se原料放置于石英管中混合均匀,在氮气保护下将原料在1000℃下熔融处理12小时后淬火处理,继续在氮气保护下700℃退火处理3.5天得到BiSb2.92Cu0.08Te3基体;将样品通过湿法研磨后再进行液体悬液分离后装入石墨模具,再采用放电等离子烧结技术加压烧结,烧结温度为500℃,烧结压力为70Mpa,烧结时间为8min得到P型碲化铋半导体材料。测试得到其在420K达到最大热电优值(ZT),为1.40,在300K–500K温区内平均ZT值ZTave为1.32。
(3)实施例3
所述P型碲化铋半导体的化学组成为BiSb2.9Cu0.1Te3,采用悬浮区熔法制备:按化学计量比称量Bi、Sb、Cu和Se原料放置于石英管中混合均匀,在氮气保护下将原料在850℃下熔融处理14小时后淬火处理,继续在氮气保护下620℃退火处理4天得到BiSb2.9Cu0.1Te3基体;将样品通过湿法研磨后再进行液体悬液分离装入石墨模具,再采用放电等离子烧结技术加压烧结,烧结温度为600℃,烧结压力为60Mpa,烧结时间为10min得到P型碲化铋半导体材料。测试得到其在440K达到最大热电优值(ZT),为1.35,在300K–500K温区内平均ZT值ZTave为1.28。
由实施例1-3可知,本发明中制备的P型碲化铋半导体的有优异的热电性能。
三、碲化铋制冷材料在水离子发生器中的应用
将上述实施例中制备的N型和P型碲化铋半导体利用帕尔贴效应,将其应用到水离子发生器中,提高水离子发生器的制冷性能,从而进一步提升离子发生的效果。
运用该专利技术生产的水离子发生器可以运用在卫生间除味消毒,汽车除味杀菌,电风扇取暖器,空调净化器,电吹风等产品上,进一步增强这些产品的杀菌消毒净化空气功能。

Claims (10)

1.一种碲化铋制冷材料的制备方法,其特征在于,所述碲化铋制冷材料包括N型碲化铋半导体和P型碲化铋半导体,所述N型碲化铋半导体材料的化学组成为Bi2Te2.7AsSe0.3Sbx,其中x=0.01-0.1;所述P型碲化铋半导体的化学组成为BiSb3-yCuyTe3,其中y=0.06~0.10。
2.根据权利要求1所述一种碲化铋制冷材料的制备方法,其特征在于,所述碲化铋制冷材料的制备采用悬浮区熔法。
3.根据权利要求2所述一种碲化铋制冷材料的制备方法,其特征在于,所述N型碲化铋半导体材料的制备方法包括:
(1)按化学计量比称量Bi、Te、Se和Sb原料放置于石英管中混合均匀,在氮气保护下进行熔炼处理得到Bi2Te2.7Se0.3Sbx基体;
(2)将(1)中得到的Bi2Te2.7Se0.3Sbx在氮气保护下进行研磨得到粉末;
(3)将(2)中得到的粉末进行放电等离子烧结处理,得到所述N型碲化铋半导体材料。
4.根据权利要求3所述一种碲化铋制冷材料的制备方法,其特征在于,所述熔炼处理工业条件为:熔区宽度35~38mm,生长速度16~18mm/h,以1~3℃/min的升温速率升温至500~600℃,保温3~6h,然后以0.5~1.5℃/min的升温速率升温至650~800℃,保温6~8h,然后自然冷却至室温。
5.根据权利要求3所述一种碲化铋制冷材料的制备方法,其特征在于,所述Bi2Te2.7Se0.3Sbx基体研磨后粉末的粒径<50nm。
6.根据权利要求3所述一种碲化铋制冷材料的制备方法,其特征在于,所述放电等离子体烧结压力为35~45MPa、温度为380~450℃,烧结时间为10~12min。
7.根据权利要求2所述一种碲化铋制冷材料的制备方法,其特征在于,所述P型碲化铋半导体材料的制备方法包括:
(1)按化学计量比称量Bi、Sb、Cu和Se原料放置于石英管中混合均匀,在氮气保护下熔炼;
(2)将(1)中的原料在850~1000℃下熔融处理12~15小时后在氮气保护下淬火处理,再在氮气保护下600~750℃下退火处理3-4天得到BiSb3-yCuyTe3基体;
(3)将(2)中得到的样品通过研磨后粉末的粒径<50nm,再采用放电等离子烧结技术加压烧结,得到P型碲化铋半导体材料。
8.根据权利要求7所述一种碲化铋制冷材料的制备方法,其特征在于,所述P型碲化铋半导体材料的制备烧结温度为450~600℃,烧结压力为60~70Mpa,烧结时间为5~10min。
9.根据权利要求5或7所述一种碲化铋制冷材料的制备方法,其特征在于,所述研磨方法为湿法研磨后再进行液体悬液分离。
10.一种如上述权利要求1-8任意一项所述碲化铋制冷材料的应用,其特征在于,所述碲化铋制冷材料利用帕尔贴效应,将所述N型碲化铋半导体材料和P型碲化铋半导体材料应用到水离子发生器中,提高水离子发生器的制冷性能。
CN202111440298.4A 2021-11-30 2021-11-30 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用 Pending CN114408872A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111440298.4A CN114408872A (zh) 2021-11-30 2021-11-30 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111440298.4A CN114408872A (zh) 2021-11-30 2021-11-30 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用

Publications (1)

Publication Number Publication Date
CN114408872A true CN114408872A (zh) 2022-04-29

Family

ID=81266008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111440298.4A Pending CN114408872A (zh) 2021-11-30 2021-11-30 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用

Country Status (1)

Country Link
CN (1) CN114408872A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104555950A (zh) * 2015-01-30 2015-04-29 中国科学院上海硅酸盐研究所 一种中温区具有优异热电性能的碲化铋材料及其制备方法
CN110752285A (zh) * 2019-11-05 2020-02-04 南方科技大学 提升N型Bi-Sb-Te-Se基热电材料性能的制造方法
CN112500164A (zh) * 2020-12-14 2021-03-16 深圳先进电子材料国际创新研究院 一种碲化铋热电材料及其制备方法
CN112531097A (zh) * 2020-11-13 2021-03-19 深圳热电新能源科技有限公司 n型碲化铋基热电材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104555950A (zh) * 2015-01-30 2015-04-29 中国科学院上海硅酸盐研究所 一种中温区具有优异热电性能的碲化铋材料及其制备方法
CN110752285A (zh) * 2019-11-05 2020-02-04 南方科技大学 提升N型Bi-Sb-Te-Se基热电材料性能的制造方法
CN112531097A (zh) * 2020-11-13 2021-03-19 深圳热电新能源科技有限公司 n型碲化铋基热电材料及其制备方法
CN112500164A (zh) * 2020-12-14 2021-03-16 深圳先进电子材料国际创新研究院 一种碲化铋热电材料及其制备方法

Similar Documents

Publication Publication Date Title
Qiu et al. Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity
US9130066B2 (en) Power factor enhanced thermoelectric material and method of producing same
CN102931335B (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
KR20100009521A (ko) 열전재료 및 칼코게나이드 화합물
WO2021204162A1 (zh) 一种调制结构的n型碲化铋基热电材料及其制备方法
CN101723669A (zh) 一类可用于热电材料化合物及制备方法
CN102280570B (zh) 一种微量Cu掺杂Bi2S3基热电材料
CN103474567B (zh) 一种低维纳米银/Bi2Te3基热电复合材料及其制备方法
CN109650435B (zh) 一种硫化铜基热电复合材料及其制备方法
CN107845724A (zh) 一种低成本环境友好型SnS基热电材料及其制备方法
WO2016127572A1 (zh) 高优值的P型FeNbHfSb热电材料及其制备方法
CN101913869B (zh) 一种可低温烧结的氧化物热电材料及其制备方法
JP6250172B2 (ja) 高性能指数のP型FeNbTiSb熱電材料およびその調製方法
CN103247752B (zh) Ge‑Pb‑Te‑Se复合热电材料及其制备方法
CN103555986A (zh) 一种(Bi0.8Sb0.2)2Te3纳米热电材料的制备方法
CN110212080B (zh) 一种钡铜硫基热电材料及其制备方法
CN114408872A (zh) 一种碲化铋制冷材料的制备方法及其在水离子发生器的应用
KR20160137847A (ko) 복합체형 열전재료 및 이의 제조방법
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
CN104946918A (zh) 一种快速制备AgInSe2基热电材料的新方法
CN104762501A (zh) 低温固相反应结合热压工艺制备碲化银锑热电材料的方法
CN101857929A (zh) 一种多孔结构p型锌锑基热电材料及其制备方法
CN110129878B (zh) 一种具有高载流子浓度的SnSe晶体及其生长方法和应用
US9960334B2 (en) Thermoelectric materials and their manufacturing method
CN111690985B (zh) 量子点掺杂的硫化亚铜多晶材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination