WO2021204162A1 - 一种调制结构的n型碲化铋基热电材料及其制备方法 - Google Patents

一种调制结构的n型碲化铋基热电材料及其制备方法 Download PDF

Info

Publication number
WO2021204162A1
WO2021204162A1 PCT/CN2021/085829 CN2021085829W WO2021204162A1 WO 2021204162 A1 WO2021204162 A1 WO 2021204162A1 CN 2021085829 W CN2021085829 W CN 2021085829W WO 2021204162 A1 WO2021204162 A1 WO 2021204162A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
thermoelectric material
bismuth telluride
based thermoelectric
powder
Prior art date
Application number
PCT/CN2021/085829
Other languages
English (en)
French (fr)
Inventor
刘峰铭
Original Assignee
深圳见炬科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳见炬科技有限公司 filed Critical 深圳见炬科技有限公司
Publication of WO2021204162A1 publication Critical patent/WO2021204162A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Definitions

  • the invention relates to the technical field of electrothermal materials, in particular to an n-type bismuth telluride-based thermoelectric material with a modulation structure and a preparation method thereof.
  • thermoelectric materials can directly convert between heat and electric energy.
  • the corresponding thermoelectric application devices have simple structure, no transmission parts, no noise and emissions, and are widely used in computer/communication base station chip refrigeration, air conditioning, and refrigerators.
  • Aerospace/Polar detection equipment power supply and other fields are the current hot spots in the field of materials research.
  • S the Seebeck coefficient
  • the electrical conductivity
  • the thermal conductivity
  • T temperature.
  • thermoelectric properties should have high electromotive force, high electrical conductivity and low thermal conductivity.
  • thermoelectric material systems of which the most widely used is bismuth telluride-based thermoelectric materials
  • the current domestic bismuth telluride thermoelectric materials especially n-type bismuth telluride-based thermoelectric materials
  • have a single structure and there are carrier concentrations and The problem that the mobility cannot be improved synergistically limits the improvement of thermoelectric performance. Therefore, the present invention provides an n-type bismuth telluride-based thermoelectric material with a modulation structure and a preparation method thereof to solve the problems in the prior art.
  • the purpose of the present invention is to provide an n-type bismuth telluride-based thermoelectric material with a modulated structure and a preparation method thereof.
  • the n-type telluride-based thermoelectric material with a modulated structure and a preparation method thereof are prepared
  • the bismuth-based thermoelectric material and the preparation method thereof have a modulation structure, which can realize the synergistic improvement of carrier concentration and mobility.
  • an n-type bismuth telluride-based thermoelectric material with a modulation structure including n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in equimolar ratios Mixed powder, where 0.1 ⁇ x ⁇ 0.9, the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulated structure is a modulated structure.
  • the further improvement lies in: the purity of the Bi 2 Te 3 powder is greater than or equal to 99.99 wt%, the particle size of the Bi 2 Te 3 powder is less than or equal to 500 ⁇ m; the purity of the Bi 2 Te 3-x Se x powder is greater than or equal to 99.99 wt%, and the Bi 2 Te
  • the particle size of the 3-x Se x powder is ⁇ 500 ⁇ m, where 0.1 ⁇ x ⁇ 0.9.
  • a method for preparing an n-type bismuth telluride-based thermoelectric material with a modulation structure includes the following steps:
  • Step 1 According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1, the ingredients are 0.1 ⁇ x ⁇ 0.9, and then mixed uniformly to obtain a mixed powder;
  • Step 2 Put the mixed powder into a ball milling tank, and mill it under an inert atmosphere for 1-12 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in an equimolar ratio, where 0.1 ⁇ x ⁇ 0.9;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.1 ⁇ x ⁇ 0.9, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase the temperature to 400 ⁇ 550°C and the pressure to 30 ⁇ 100MPa, the heat preservation and pressure retention time are both 3 ⁇ 20min, and then start uniform temperature reduction and uniform pressure reduction at the same time, and reduce to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • a further improvement is that the ball mill tank equipment in the second step is a high-energy planetary ball mill, the mass ratio of the balls is (10-30):1, and the rotational speed of the high-energy planetary ball mill is 100-600 r/min.
  • a further improvement is that in the step three, the rate of uniform temperature increase is 10-100° C./min, and the rate of uniform temperature drop is 10-50° C./min.
  • a further improvement is that: in the first step, the preparation of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders is weighed and mixed in an equimolar ratio, where 0.1 ⁇ x ⁇ 0.9.
  • the present invention uses n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powder as raw materials, where 0.1 ⁇ x ⁇ 0.9, adopts mechanical alloying combined with plasma activation sintering process, ball milling for 1-12h, and it can be obtained n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x modulate the mixed powder with equal molar ratio; the shortest plasma activation sintering time is only 18 minutes, that is, the modulated n-type bismuth telluride can be quickly prepared in a short time Based on thermoelectric materials, the relative density of n-type bismuth telluride-based thermoelectric materials with a modulation structure is over 97%, and has the characteristics of simple process, short production cycle, high production efficiency, high product purity and high density;
  • thermoelectric material of the modulated structure prepared by mechanical alloying combined with plasma activation sintering technology according to the present invention is not only fine and lamellar in crystal grains, but also can form dispersed nanophases, Can effectively reduce the thermal conductivity of the thermoelectric material;
  • the n-type bismuth telluride-based thermoelectric material prepared in the present invention has a modulation structure, that is, a modulation mixed structure of a sample with high carrier concentration and ground mobility and a sample with low carrier concentration and high mobility.
  • a modulation structure that is, a modulation mixed structure of a sample with high carrier concentration and ground mobility and a sample with low carrier concentration and high mobility. This structure This allows the sample to have a relatively high carrier concentration. At the same time, since the carriers tend to migrate to the high mobility region, the high mobility is also integrated. It can maintain a relatively high carrier concentration while maintaining a relatively high carrier concentration. High mobility.
  • the present invention has the characteristics of simple process, short production cycle and high production efficiency.
  • the prepared n-type bismuth telluride-based thermoelectric material with a modulation structure has high purity, low thermal conductivity, high conductivity, and a modulation structure. , Can synergistically increase the carrier concentration and mobility.
  • Figure 1 is a schematic diagram of the modulation structure of the present invention.
  • this embodiment provides an n-type bismuth telluride-based thermoelectric material with a modulation structure, and the materials involved are described as follows:
  • the purity of the Bi 2 Te 3 powder is ⁇ 99.99wt%
  • the particle size of the Bi 2 Te 3 powder is ⁇ 500 ⁇ m
  • the purity of the Bi 2 Te 3-x Se x powder is ⁇ 99.99wt%
  • the Bi 2 Te 3-x Se The particle size of x powder ⁇ 500 ⁇ m, where 0.1 ⁇ x ⁇ 0.9.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, where 0.1 ⁇ x ⁇ 0.9, then mix uniformly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank, and mill it under an inert atmosphere for 1-12 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in an equimolar ratio, where 0.1 ⁇ x ⁇ 0.9;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.1 ⁇ x ⁇ 0.9, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase the temperature to 400 ⁇ 550°C and the pressure to 30 ⁇ 100MPa, the heat preservation and pressure retention time are both 3 ⁇ 20min, and then start uniform temperature reduction and uniform pressure reduction at the same time, and reduce to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (10-30):1, and the rotation speed of the high-energy planetary ball mill is 100-600 r/min.
  • the rate of the constant temperature increase is 10-100°C/min; the rate of the constant temperature drop is 10-50°C/min;
  • n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders are prepared by weighing and mixing in an equimolar ratio, where 0.1 ⁇ x ⁇ 0.9.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, where 0.1 ⁇ x ⁇ 0.4, then mix uniformly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank and mill it under an inert atmosphere for 1 to 6 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in an equimolar ratio, where 0.1 ⁇ x ⁇ 0.4;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.1 ⁇ x ⁇ 0.4, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase the temperature to 400 ⁇ 500°C and the pressure to 30 ⁇ 50MPa, the heat preservation and pressure retention time are both 3 ⁇ 6min, and then start the uniform temperature reduction and uniform pressure reduction at the same time, and reduce to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (10-20):1, and the rotation speed of the high-energy planetary ball mill is 100-200 r/min.
  • the rate of the constant temperature increase is 10-50°C/min; the rate of the constant temperature drop is 10-20°C/min;
  • n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders are prepared by weighing and mixing in an equimolar ratio, where 0.1 ⁇ x ⁇ 0.4.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, where 0.2 ⁇ x ⁇ 0.5, then mix evenly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank and mill it under an inert atmosphere for 2-7 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in an equimolar ratio, where 0.2 ⁇ x ⁇ 0.5;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.2 ⁇ x ⁇ 0.5, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase to temperature of 410 ⁇ 510°C and pressure of 40 ⁇ 60MPa, heat preservation and pressure holding time are both 5 ⁇ 9min, and then start uniform temperature drop and pressure drop at the same time, and drop to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (20-30):1, and the rotation speed of the high-energy planetary ball mill is 200-300 r/min.
  • the rate of the uniform temperature increase is 20-60°C/min; the rate of the uniform temperature drop is 15-30°C/min; the step one to prepare n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders is Weigh and mix in equal molar ratio, where 0.2 ⁇ x ⁇ 0.5.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, where 0.3 ⁇ x ⁇ 0.6, then mix uniformly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank and mill it under an inert atmosphere for 3 to 8 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in an equimolar ratio, where 0.3 ⁇ x ⁇ 0.6;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.3 ⁇ x ⁇ 0.6, place in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase to temperature of 420 ⁇ 520°C and pressure of 50 ⁇ 70MPa, heat preservation and pressure holding time are both 7 ⁇ 12min, and then start uniform temperature drop and pressure drop at the same time, and drop to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (10-20):1, and the rotation speed of the high-energy planetary ball mill is 300-400 r/min.
  • the rate of the constant temperature increase is 30 ⁇ 70°C/min; the rate of the constant temperature decrease is 20 ⁇ 40°C/min; the step one is to prepare n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders Weigh and mix in equal molar ratio, where 0.3 ⁇ x ⁇ 0.6.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, 0.4 ⁇ x ⁇ 0.7, and then mix uniformly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank and mill it under an inert atmosphere for 1-12 hours to prepare n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x mixed powders in equal molar ratio, where 0.4 ⁇ x ⁇ 0.7;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.4 ⁇ x ⁇ 0.7, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase to temperature of 430 ⁇ 530°C and pressure of 60 ⁇ 80MPa, heat preservation and pressure holding time are both 9 ⁇ 15min, and then start uniform temperature drop and pressure drop at the same time, and drop to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (20-30):1, and the rotational speed of the high-energy planetary ball mill is 400-500 r/min.
  • the rate of the constant temperature increase is 40 ⁇ 80°C/min; the rate of the constant temperature decrease is 25 ⁇ 50°C/min; the step one is to prepare n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders Weigh and mix in equal molar ratio, where 0.4 ⁇ x ⁇ 0.7.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, where 0.5 ⁇ x ⁇ 0.8, then mix uniformly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank and mill it under an inert atmosphere for 1-12 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in equal molar ratio, where 0.5 ⁇ x ⁇ 0.8;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.5 ⁇ x ⁇ 0.8, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, and at the same time increase to temperature of 440 ⁇ 540°C and pressure of 70 ⁇ 90MPa, heat preservation and pressure holding time are both 11 ⁇ 18min, and then start uniform temperature drop and pressure drop at the same time, and drop to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (10-20):1, and the rotation speed of the high-energy planetary ball mill is 500-600 r/min.
  • the rate of the uniform temperature increase is 50-90°C/min; the rate of the uniform temperature drop is 25-50°C/min; the step one to prepare n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders is Weigh and mix in equal molar ratio, where 0.5 ⁇ x ⁇ 0.8.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the internal structure of the n-type bismuth telluride-based thermoelectric material crystal atom of the modulation structure is a modulation structure .
  • the preparation method is as follows: Step 1. According to the ratio of the amount of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x as 1:1 ingredients, where 0.6 ⁇ x ⁇ 0.9, then mix evenly to obtain a mixed powder ;
  • Step 2 Put the mixed powder into a ball milling tank and mill it under an inert atmosphere for 1-12 hours to obtain a mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x in an equimolar ratio, where 0.6 ⁇ x ⁇ 0.9;
  • Step 3 Put the mixed powder of n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x with equal molar ratio into the mold, where 0.6 ⁇ x ⁇ 0.9, place it in the plasma activated sintering furnace, and then start uniform speed at the same time Increase temperature and pressure at a constant rate, simultaneously increase to temperature of 450 ⁇ 550°C and pressure of 80 ⁇ 100MPa, heat preservation and pressure holding time are 13 ⁇ 20min, and then start uniform temperature drop and pressure drop at the same time, and drop to room temperature at the same time And atmospheric pressure;
  • Step 4 Take out the sintered mold and demold to obtain an n-type bismuth telluride-based thermoelectric material with a modulated structure.
  • the equipment of the ball mill is a high-energy planetary ball mill, the mass ratio of the balls is (20-30):1, and the rotation speed of the high-energy planetary ball mill is 200-300 r/min.
  • the rate of the uniform temperature increase is 60-100°C/min; the rate of the uniform temperature drop is 25-50°C/min; the step one to prepare n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powders is Weigh and mix in equal molar ratio, where 0.6 ⁇ x ⁇ 0.9.
  • the n-type bismuth telluride-based thermoelectric material prepared in this embodiment has high purity, low thermal conductivity, high electrical conductivity, has a modulation structure, and can synergistically increase carrier concentration and mobility.
  • the present invention uses n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x powder as raw materials, where 0.1 ⁇ x ⁇ 0.9, adopts mechanical alloying combined with plasma activation sintering process, ball milling for 1-12h, and it can be obtained n-type Bi 2 Te 3 and Bi 2 Te 3-x Se x modulate the mixed powder with equal molar ratio; the shortest plasma activation sintering time is only 18 minutes, that is, the modulated n-type bismuth telluride can be quickly prepared in a short time Based on thermoelectric materials, the relative density of n-type bismuth telluride-based thermoelectric materials with a modulation structure is over 97%, and has the characteristics of simple process, short production cycle, high production efficiency, high product purity and high density;
  • thermoelectric material of the modulated structure prepared by mechanical alloying combined with plasma activation sintering technology according to the present invention not only has fine crystal grains and is lamellar, but also can form dispersed nanophases. Can effectively reduce the thermal conductivity of the thermoelectric material;
  • the n-type bismuth telluride-based thermoelectric material prepared in the present invention has a modulation structure, that is, a modulation mixed structure of a sample with high carrier concentration and ground mobility and a sample with low carrier concentration and high mobility.
  • a modulation structure that is, a modulation mixed structure of a sample with high carrier concentration and ground mobility and a sample with low carrier concentration and high mobility. This structure This allows the sample to have a relatively high carrier concentration. At the same time, since the carriers tend to migrate to the high mobility region, the high mobility is also integrated. It can maintain a relatively high carrier concentration while maintaining a relatively high carrier concentration. High mobility.
  • the present invention has the characteristics of simple process, short production cycle and high production efficiency.
  • the prepared n-type bismuth telluride-based thermoelectric material with a modulation structure has high purity, low thermal conductivity, high conductivity, and a modulation structure. , Can synergistically increase the carrier concentration and mobility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种调制结构的n型碲化铋基热电材料及其制备方法,包括成分为n型Bi2Te3和Bi2Te3-xSex的等摩尔比混合粉末,其中0.1≤x≤0.9,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构,Bi2Te3粉末的纯度为≥99.99wt%,Bi2Te3粉末的粒径≤500μm;Bi2Te3-xSex粉末的纯度为≥99.99wt%,Bi2Te3-xSex粉末的粒径≤500μm,其中0.1≤x≤0.9。

Description

一种调制结构的n型碲化铋基热电材料及其制备方法 技术领域
本发明涉及电热材料技术领域,尤其涉及一种调制结构的n型碲化铋基热电材料及其制备方法。
背景技术
热电材料作为一种新能源材料,可以直接实现热能和电能直接的相互转换,对应的热电应用器件结构简单、无传动部件、无噪音和排放,广泛应用于计算机/通信基站芯片制冷、空调、冰箱、航天/极地探测设备电源等领域,是当前材料研究领域的热点。评价热电材料的最重要的标准是无量纲热电优值(ZT),ZT=(S 2σ/κ)T;其中:S为塞贝克系数、σ为电导率和κ为热导率,T为温度。无量纲热电优值越高,对应的热电转换效率越高。高热电性能的材料应该具备高电动势、高电导率和低热导率。电导率由载流子浓度和迁移率决定,σ=enμ,其中e为电子电量,n为载流子浓度,μ为载流子迁移率;
目前热电材料体系有约200种,其中应用最广泛的是碲化铋基热电材料,但目前国内碲化铋热电材料,尤其是n型碲化铋基热电材料结构单一,存在载流子浓度和迁移率不能协同提升的问题,限制了热电性能的提升,因此,本发明提出一种调制结构的n型碲化铋基热电材料及其制备方法以解决现有技术中存在的问题。
发明内容
针对上述问题,本发明的目的在于提出一种调制结构的n型碲化铋基热电材料及其制备方法,该调制结构的n型碲化铋基热电材料及 其制备方法所制备的n型碲化铋基热电材料及其制备方法具备调制结构,可以实现载流子浓度和迁移率的协同提升。
为实现本发明的目的,本发明通过以下技术方案实现:一种调制结构的n型碲化铋基热电材料,包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.9,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
进一步改进在于:所述Bi 2Te 3粉末的纯度≥99.99wt%,Bi 2Te 3粉末的粒径≤500μm;所述Bi 2Te 3-xSe x粉末的纯度≥99.99wt%,Bi 2Te 3-xSe x粉末的粒径≤500μm,其中0.1≤x≤0.9。
一种调制结构的n型碲化铋基热电材料的制备方法,包括以下步骤:
步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.1≤x≤0.9,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~12h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.9;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.1≤x≤0.9,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为400~550℃和升至压强为30~100MPa,保温和保压的时间均为3~20min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋 基热电材料。
进一步改进在于:所述步骤二中球磨罐设备为高能行星球磨机,球料质量比为(10~30)∶1,所述高能行星球磨机的转速为100~600r/min。
进一步改进在于:所述步骤三中匀速升温的速率为10~100℃/min,匀速降温的速率为10~50℃/min。
进一步改进在于:所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.1≤x≤0.9。
本发明的有益效果为:
1、本发明以n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为原料,其中0.1≤x≤0.9,采用机械合金化结合等离子体活化烧结工艺,球磨1~12h,即可获得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比调制混合粉末;等离子体活化烧结时间最短只需18min,即在较短时间内能快速制得调制结构的n型碲化铋基热电材料,所制调制结构的n型碲化铋基热电材料相对密度超过97%,具有工艺简单、生产周期短、生产效率高、产品纯度高和致密度高的特点;
2、本发明采用机械合金化结合等离子体活化烧结技术制得的所述调制结构的n型碲化铋基热电材料,不仅晶粒细小且成片层状,且可形成弥散分布的纳米相,能有效降低所述热电材料的热导率;
3、本发明制备的n型碲化铋基热电材料具备调制结构,也即是高载流子浓度、地迁移率样品和低载流子浓度、高迁移率样品的调制混合结构,这种结构使得样品具备相对较高的载流子浓度,同时由于 载流子倾向于往高迁移率的区域迁移,所以也综合了高迁移率,在保持相对较高的载流子浓度的同时能维持较高的迁移率。
综上所述,本发明具有工艺简单、生产周期短和生产效率高的特点,所制备的调制结构的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
附图说明
图1为本发明调制结构示意图。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明做进一步详述,本实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
根据图1所示,本实施例提供了一种调制结构的n型碲化铋基热电材料,其中所涉及的物料统一描述如下:
所述Bi 2Te 3粉末的纯度≥99.99wt%,Bi 2Te 3粉末的粒径≤500μm,所述Bi 2Te 3-xSe x粉末的纯度≥99.99wt%,Bi 2Te 3-xSe x粉末的粒径≤500μm,其中0.1≤x≤0.9。
实施例1
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.9,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.1≤x≤0.9,然后混合均匀,得混合粉 末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~12h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.9;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.1≤x≤0.9,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为400~550℃和升至压强为30~100MPa,保温和保压的时间均为3~20min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(10~30)∶1,所述高能行星球磨机的转速为100~600r/min。
所述匀速升温的速率为10~100℃/min;所述匀速降温的速率为10~50℃/min;
所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.1≤x≤0.9。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
实施例2
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.4,该调制结构的n型碲化铋基热电材料晶体原子内部结构为 调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.1≤x≤0.4,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~6h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.4;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.1≤x≤0.4,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为400~500℃和升至压强为30~50MPa,保温和保压的时间均为3~6min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(10~20)∶1,所述高能行星球磨机的转速为100~200r/min。
所述匀速升温的速率为10~50℃/min;所述匀速降温的速率为10~20℃/min;
所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.1≤x≤0.4。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
实施例3
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.2≤x≤0.5,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.2≤x≤0.5,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨2~7h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.2≤x≤0.5;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.2≤x≤0.5,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为410~510℃和升至压强为40~60MPa,保温和保压的时间均为5~9min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(20~30)∶1,所述高能行星球磨机的转速为200~300r/min。
所述匀速升温的速率为20~60℃/min;所述匀速降温的速率为15~30℃/min;所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.2≤x≤0.5。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
实施例4
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.3≤x≤0.6,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.3≤x≤0.6,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨3~8h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.3≤x≤0.6;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.3≤x≤0.6,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为420~520℃和升至压强为50~70MPa,保温和保压的时间均为7~12min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(10~20)∶1,所述高能行星球磨机的转速为300~400r/min。
所述匀速升温的速率为30~70℃/min;所述匀速降温的速率为 20~40℃/min;所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.3≤x≤0.6。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
实施例5
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.4≤x≤0.7,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.4≤x≤0.7,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~12h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.4≤x≤0.7;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.4≤x≤0.7,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为430~530℃和升至压强为60~80MPa,保温和保压的时间均为9~15min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(20~30)∶1, 所述高能行星球磨机的转速为400~500r/min。
所述匀速升温的速率为40~80℃/min;所述匀速降温的速率为25~50℃/min;所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.4≤x≤0.7。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
实施例6
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.5≤x≤0.8,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.5≤x≤0.8,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~12h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.5≤x≤0.8;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.5≤x≤0.8,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为440~540℃和升至压强为70~90MPa,保温和保压的时间均为11~18min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋 基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(10~20)∶1,所述高能行星球磨机的转速为500~600r/min。
所述匀速升温的速率为50~90℃/min;所述匀速降温的速率为25~50℃/min;所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.5≤x≤0.8。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
实施例7
包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.6≤x≤0.9,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
其制备方法是:步骤一、按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.6≤x≤0.9,然后混合均匀,得混合粉末;
步骤二、将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~12h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.6≤x≤0.9;
步骤三、将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.6≤x≤0.9,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为450~550℃和升至压强为80~100MPa,保温和保压的时间均为13~20min,再同时开始匀速降温 和匀速降压,同时降至常温和常压;
步骤四、取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
所述球磨的设备为高能行星球磨机,球料质量比为(20~30)∶1,所述高能行星球磨机的转速为200~300r/min。
所述匀速升温的速率为60~100℃/min;所述匀速降温的速率为25~50℃/min;所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.6≤x≤0.9。
本实施例制备的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
根据实施例1~7可以得出本发明与现有技术相比,具有以下积极效果:
1、本发明以n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为原料,其中0.1≤x≤0.9,采用机械合金化结合等离子体活化烧结工艺,球磨1~12h,即可获得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比调制混合粉末;等离子体活化烧结时间最短只需18min,即在较短时间内能快速制得调制结构的n型碲化铋基热电材料,所制调制结构的n型碲化铋基热电材料相对密度超过97%,具有工艺简单、生产周期短、生产效率高、产品纯度高和致密度高的特点;
2、本发明采用机械合金化结合等离子体活化烧结技术制得的所述调制结构的n型碲化铋基热电材料,不仅晶粒细小且成片层状,且可形成弥散分布的纳米相,能有效降低所述热电材料的热导率;
3、本发明制备的n型碲化铋基热电材料具备调制结构,也即是高载流子浓度、地迁移率样品和低载流子浓度、高迁移率样品的调制混合结构,这种结构使得样品具备相对较高的载流子浓度,同时由于载流子倾向于往高迁移率的区域迁移,所以也综合了高迁移率,在保持相对较高的载流子浓度的同时能维持较高的迁移率。
综上所述,本发明具有工艺简单、生产周期短和生产效率高的特点,所制备的调制结构的n型碲化铋基热电材料纯度高、热导率低、电导率高、具备调制结构,能协同提升载流子浓度和迁移率。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

  1. 一种调制结构的n型碲化铋基热电材料,其特征在于:包括成分为n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.9,该调制结构的n型碲化铋基热电材料晶体原子内部结构为调制结构。
  2. 根据权利要求1所述的一种调制结构的n型碲化铋基热电材料,其特征在于:所述Bi 2Te 3粉末的纯度≥99.99wt%,Bi 2Te 3粉末的粒径≤500μm;所述Bi 2Te 3-xSe x粉末的纯度≥99.99wt%,Bi 2Te 3-xSe x粉末的粒径≤500μm,其中0.1≤x≤0.9。
  3. 根据权利要求1所述的一种调制结构的n型碲化铋基热电材料的制备方法,其特征在于,包括以下步骤:
    步骤一:按照n型Bi 2Te 3和Bi 2Te 3-xSe x的物质的量之比为1∶1配料,其中0.1≤x≤0.9,然后混合均匀,得混合粉末;
    步骤二:将所述混合粉末装入球磨罐中,在惰性气氛条件下球磨1~12h,制得n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末,其中0.1≤x≤0.9;
    步骤三:将所述n型Bi 2Te 3和Bi 2Te 3-xSe x等摩尔比混合粉末装入模具,其中0.1≤x≤0.9,置于等离子体活化烧结炉内,然后同时开始匀速升温和匀速升压,同时升至温度为400~550℃和升至压强为30~100MPa,保温和保压的时间均为3~20min,再同时开始匀速降温和匀速降压,同时降至常温和常压;
    步骤四:取出烧结后的模具,脱模,即得调制结构的n型碲化铋基热电材料。
  4. 根据权利要求3所述的一种调制结构的n型碲化铋基热电材料 的制备方法,其特征在于:所述步骤二中球磨罐设备为高能行星球磨机,球料质量比为(10~30)∶1,所述高能行星球磨机的转速为100~600r/min。
  5. 根据权利要求3所述的一种调制结构的n型碲化铋基热电材料的制备方法,其特征在于:所述步骤三中匀速升温的速率为10~100℃/min,匀速降温的速率为10~50℃/min。
  6. 根据权利要求3所述的一种调制结构的n型碲化铋基热电材料的制备方法,其特征在于:所述步骤一制备n型Bi 2Te 3和Bi 2Te 3-xSe x粉末为等摩尔比称量混合,其中0.1≤x≤0.9。
PCT/CN2021/085829 2020-04-08 2021-04-07 一种调制结构的n型碲化铋基热电材料及其制备方法 WO2021204162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010267802.4 2020-04-08
CN202010267802.4A CN111454060B (zh) 2020-04-08 2020-04-08 一种调制结构的n型碲化铋基热电材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021204162A1 true WO2021204162A1 (zh) 2021-10-14

Family

ID=71675860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085829 WO2021204162A1 (zh) 2020-04-08 2021-04-07 一种调制结构的n型碲化铋基热电材料及其制备方法

Country Status (3)

Country Link
CN (1) CN111454060B (zh)
AU (1) AU2021107532A4 (zh)
WO (1) WO2021204162A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561706A (zh) * 2021-12-16 2022-05-31 杭州大和热磁电子有限公司 一种碲化铋晶棒加工废料回收方法及其利用方法
CN114890792A (zh) * 2022-05-31 2022-08-12 先导薄膜材料(广东)有限公司 一种高热电性能p型碲化铋基热电材料及其制备方法和应用
CN115305567A (zh) * 2022-08-05 2022-11-08 中国电子科技集团公司第十八研究所 一种提高热挤压n型碲化铋性能均匀性的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454060B (zh) * 2020-04-08 2021-04-02 深圳见炬科技有限公司 一种调制结构的n型碲化铋基热电材料及其制备方法
CN113314660A (zh) * 2021-07-30 2021-08-27 深圳见炬科技有限公司 基于熔融离心合成多孔热电材料的方法及多孔热电材料
CN115216846B (zh) * 2022-05-26 2023-11-24 杭州大和热磁电子有限公司 一种p型碲化铋合金材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546369A (zh) * 2003-12-05 2004-11-17 浙江大学 Bi2Te3基纳米复合热电材料
WO2007047928A2 (en) * 2005-10-20 2007-04-26 State Of Oregon Acting By And Through The State Board Of Higher Superlattice and turbostratically disordered thermoelectric materials
CN1974079A (zh) * 2006-12-08 2007-06-06 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料的制备方法
CN111454060A (zh) * 2020-04-08 2020-07-28 深圳见炬科技有限公司 一种调制结构的n型碲化铋基热电材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786162B (zh) * 2010-01-19 2011-07-27 武汉科技大学 一种碲化铋基块体纳米晶热电材料的制备方法
CN103928604B (zh) * 2013-11-15 2016-08-24 武汉理工大学 一种超快速制备n型碲化铋基高性能热电材料的方法
CN103311426B (zh) * 2013-06-24 2015-12-09 武汉科技大学 用制冷晶棒加工废料制备N型Bi2Te3基热电材料的方法
KR102158578B1 (ko) * 2014-01-08 2020-09-22 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 열전환장치
CN110002412B (zh) * 2019-04-22 2022-08-02 湖北赛格瑞新能源科技有限公司 一种择优取向n型碲化铋基多晶块体热电材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546369A (zh) * 2003-12-05 2004-11-17 浙江大学 Bi2Te3基纳米复合热电材料
WO2007047928A2 (en) * 2005-10-20 2007-04-26 State Of Oregon Acting By And Through The State Board Of Higher Superlattice and turbostratically disordered thermoelectric materials
CN1974079A (zh) * 2006-12-08 2007-06-06 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料的制备方法
CN111454060A (zh) * 2020-04-08 2020-07-28 深圳见炬科技有限公司 一种调制结构的n型碲化铋基热电材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561706A (zh) * 2021-12-16 2022-05-31 杭州大和热磁电子有限公司 一种碲化铋晶棒加工废料回收方法及其利用方法
CN114890792A (zh) * 2022-05-31 2022-08-12 先导薄膜材料(广东)有限公司 一种高热电性能p型碲化铋基热电材料及其制备方法和应用
CN114890792B (zh) * 2022-05-31 2023-07-28 先导薄膜材料(广东)有限公司 一种高热电性能p型碲化铋基热电材料及其制备方法和应用
CN115305567A (zh) * 2022-08-05 2022-11-08 中国电子科技集团公司第十八研究所 一种提高热挤压n型碲化铋性能均匀性的方法
CN115305567B (zh) * 2022-08-05 2024-02-13 中国电子科技集团公司第十八研究所 一种提高热挤压n型碲化铋性能均匀性的方法

Also Published As

Publication number Publication date
CN111454060A (zh) 2020-07-28
AU2021107532A4 (en) 2021-10-21
CN111454060B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2021204162A1 (zh) 一种调制结构的n型碲化铋基热电材料及其制备方法
CN102031416B (zh) 一种填充方钴矿基复合材料及其制备方法
Gharleghi et al. Low thermal conductivity and rapid synthesis of n-type cobalt skutterudite via a hydrothermal method
Wang et al. Thermoelectrics in misfit-layered oxides [(Ca, Ln) 2CoO3] 0.62 [CoO2]: From bulk to nano
US20130299754A1 (en) Power factor enhanced thermoelectric material and method of producing same
CN105671344A (zh) 一步制备高性能CoSb3基热电材料的方法
CN104032194B (zh) 共掺杂Mg‑Si‑Sn 基热电材料及其制备方法
CN111848165A (zh) 一种p型碲化铋热电材料及其制备方法
CN102280570A (zh) 一种微量Cu掺杂Bi2S3基热电材料
CN101101954A (zh) 一种镉锑基p型热电材料及其制备方法
CN102051513B (zh) 中温用金属硒化物热电材料及制备工艺
WO2019214158A1 (zh) 基于晶体拓扑实现粉末合金烧结相变的五元系n型热电材料与制备方法
CN103555986A (zh) 一种(Bi0.8Sb0.2)2Te3纳米热电材料的制备方法
Kim et al. Thermoelectricity for crystallographic anisotropy controlled Bi–Te based alloys and p–n modules
Chang et al. Enhanced thermoelectric performance of BiCuTeO by excess Bi additions
CN105633267B (zh) 一种Cu2‑xS/CNT复合热电材料及其制备方法
CN110218888B (zh) 一种新型Zintl相热电材料及其制备方法
CN103924109B (zh) 一种自蔓延燃烧合成超快速制备高性能CoSb3基热电材料的方法
TWI417248B (zh) 熱電材料與其製造方法、以及包含其熱電模組
CN108640683A (zh) 一种纳米复合热电材料及其制备方法
CN113013315B (zh) N型银硫属化合物热电材料的制备方法及其多孔块体
CN104946918A (zh) 一种快速制备AgInSe2基热电材料的新方法
CN1614054B (zh) 锑化钴基热电复合材料及制备方法
CN101359713A (zh) 一种p型铕锌锑基热电材料及其制备方法
CN103107278B (zh) Pb掺杂In4Se3热电材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 120N DATED 29.11.2022)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 29.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21785303

Country of ref document: EP

Kind code of ref document: A1