WO2018097312A1 - 繊維と無機粒子の複合体 - Google Patents

繊維と無機粒子の複合体 Download PDF

Info

Publication number
WO2018097312A1
WO2018097312A1 PCT/JP2017/042614 JP2017042614W WO2018097312A1 WO 2018097312 A1 WO2018097312 A1 WO 2018097312A1 JP 2017042614 W JP2017042614 W JP 2017042614W WO 2018097312 A1 WO2018097312 A1 WO 2018097312A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
inorganic particles
composite
fiber
product
Prior art date
Application number
PCT/JP2017/042614
Other languages
English (en)
French (fr)
Inventor
直之 菅原
正淳 大石
萌 渕瀬
徹 中谷
後藤 至誠
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016255144A external-priority patent/JP2018104624A/ja
Priority claimed from JP2017017509A external-priority patent/JP2018090939A/ja
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to EP17873231.9A priority Critical patent/EP3546640A4/en
Priority to CN201780073162.XA priority patent/CN110023558A/zh
Priority to US16/464,014 priority patent/US20200385547A1/en
Publication of WO2018097312A1 publication Critical patent/WO2018097312A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/70Inorganic compounds forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with other substances added separately

Definitions

  • the present invention relates to a product containing a composite of fibers and inorganic particles, and a method for producing the same.
  • the present invention comprises a composite of fibers and inorganic particles and is in the form of an aqueous suspension, pulp, sheet, powder, microsphere, granule, pellet, paste, mold, yarn, or foam And a manufacturing method thereof.
  • Patent Document 1 In recent years, it has been found that by combining fibers and inorganic particles, a unique composite having the characteristics of both fibers and inorganic particles can be obtained.
  • Patent Document 1 by mixing an inorganic compound and fine fibrous cellulose, the properties of the inorganic compound (heat resistance, thermal conductivity, antibacterial property while maintaining transparency, light transmission, and light diffusibility) are disclosed. Etc.) can be provided.
  • Patent Document 2 describes a composite in which crystalline calcium carbonate is mechanically bonded on the fiber.
  • Patent Document 3 describes a technique for producing a composite of pulp and calcium carbonate by precipitating calcium carbonate in a pulp suspension by a carbon dioxide method.
  • Patent Document 4 describes a method of removing or reducing hydrogen sulfide in an absorbent product by using a particulate material attached to pulp fibers with a yield improver.
  • JP 2012-007247 A Japanese Patent Laid-Open No. 06-158585 US Pat. No. 5,679,220 JP-A-2005-48351
  • An object of the present invention is to provide a product including a composite of fibers and inorganic particles, and a method for producing the product.
  • the present invention comprises a composite of fibers and inorganic particles and is in the form of an aqueous suspension, pulp, sheet, powder, thread, microsphere, granule, pellet, paste, mold, or foam It is an object to provide a manufacturing method thereof.
  • the present invention includes, but is not limited to, the following inventions.
  • a product comprising a composite of fibers and inorganic particles and in the form of an aqueous suspension, pulp, sheet, powder, microsphere, granule, pellet, mold, thread, or foam.
  • the product according to (1) wherein the product is an aqueous suspension.
  • the product according to (2) wherein the water content of the aqueous suspension is 90% by mass or more and 99% by mass or less.
  • the product according to (1), wherein the product is pulp.
  • the product according to (4), wherein a moisture content of the pulp is 10% by mass or more and less than 90% by mass.
  • (6) The product according to (1), wherein the product is a sheet.
  • (30) A method for producing a product containing a composite of fibers and inorganic particles, Synthesizing inorganic particles in a solution in the presence of fibers to synthesize a composite of fibers and inorganic particles; Adjusting the moisture content of the composite of fibers and inorganic particles, Including the above method.
  • (31) A method for producing an aqueous suspension containing a composite of fibers and inorganic particles, In the step of adjusting the moisture content of the composite of fibers and inorganic particles, the moisture content is adjusted to 90% by mass or more and 99% by mass or less. The method according to (30).
  • a method for producing a pulp containing a composite of fibers and inorganic particles In the step of adjusting the moisture of the composite of fibers and inorganic particles, the moisture content is adjusted to 10% by mass or more and less than 90% by mass; The method according to (30).
  • a method for producing a product containing a composite of fibers and inorganic particles Synthesizing inorganic particles in a solution in the presence of fibers to synthesize a composite of fibers and inorganic particles; Adjusting the particle size of the composite of fibers and inorganic particles, Including the above method.
  • a method for producing a powder containing a composite of fibers and inorganic particles In the step of adjusting the particle diameter of the composite of fibers and inorganic particles, the average particle diameter of the composite of fibers and inorganic particles is adjusted to less than 100 ⁇ m. The method according to (34).
  • a method for producing microspherical particles containing a composite of fibers and inorganic particles In the step of adjusting the particle diameter of the composite of fibers and inorganic particles, the average particle diameter of the composite of fibers and inorganic particles is adjusted to 100 ⁇ m or more and less than 1000 ⁇ m. The method according to (34).
  • (37) A method for producing a granule containing a composite of fibers and inorganic particles In the step of adjusting the particle size of the composite of fibers and inorganic particles, the average particle size of the composite of fibers and inorganic particles is adjusted to 1.0 mm or more and less than 10 mm. The method according to (34).
  • a method for producing a pellet containing a composite of fibers and inorganic particles Synthesizing inorganic particles in a solution in the presence of fibers to synthesize a composite of fibers and inorganic particles; A step of pelletizing a composite of fibers and inorganic particles; Including the above method.
  • a method for producing a yarn containing a composite of fibers and inorganic particles A step of synthesizing inorganic particles in a solution in the presence of fibers to synthesize a fiber composite of fibers and inorganic particles; A process of twisting a composite of fibers and inorganic particles, Including the above method.
  • the method according to (41), comprising: (43) A method for producing a foam containing a fiber composite of fibers and inorganic particles, A step of synthesizing inorganic particles in a solution in the presence of fibers to synthesize a fiber composite of fibers and inorganic particles; A step of stirring the fiber composite of fibers and inorganic particles with a stirrer; Including the above method. (44) The method according to (43), further comprising a step of drying the foamed foam.
  • a product including a fiber composite of fibers and inorganic particles, and a manufacturing method thereof.
  • it comprises a fiber composite of fibers and inorganic particles, and is in the form of an aqueous suspension, pulp, sheet, powder, granule, microsphere, pellet, paste cake, mold, yarn, or foam. And a manufacturing method thereof.
  • the manufacturing cost of the fiber composite of fibers and inorganic particles is low, and the manufacturing process is short, A fiber composite can be produced efficiently.
  • products in the form of pulp, sheets, powders, granules, microspheres, including fiber composites of fibers and inorganic particles transfer of fiber composites of inorganic particles to other products Is easy to mix.
  • obtaining a product in the form of pellets, pastes, molds, threads, or foams, including a fiber composite of fibers and inorganic particles the handling is excellent and the fiber composite of fibers and inorganic particles alone.
  • Products with flame retardancy, opacity, radiation shielding, adsorptive properties, antibacterial properties, etc. are obtained.
  • a product comprising a fiber-fiber composite of fibers and inorganic particles, in the form of an aqueous suspension, pulp, sheet, powder, granule, microspherical particle, pellet, paste, mold, thread, or foam.
  • a composition imparted with the function of a fiber-fiber composite of fibers and inorganic particles such as flame retardancy and opacity, radiation shielding properties, adsorbability and antibacterial properties).
  • FIG. 3 is a schematic diagram showing a reaction apparatus used for production of Sample 1 in Experiment A. It is an electron micrograph of the composite_body
  • the present invention relates to a product including a fiber composite of fibers and inorganic particles, and a method for producing the product.
  • the present invention comprises a fiber composite of fibers and inorganic particles, and is in the form of an aqueous suspension, pulp, sheet, powder, granule, microsphere, pellet, paste, mold, thread, or foam.
  • the present invention relates to a product and a manufacturing method thereof.
  • inorganic particles and fibers are formed into a fiber composite.
  • the fiber composite is not simply a mixture of inorganic particles and fibers, but refers to those in which the inorganic particles are bound to the surface of the fibers by hydrogen bonds, van der Waals forces, or the like. For this reason, the inorganic particles are less likely to fall out of the fiber even by the disaggregation treatment.
  • the strength of binding between inorganic particles and fibers in the composite can be evaluated by, for example, a numerical value such as ash yield (%, that is, ash content of the sheet ⁇ ash content of the composite before disaggregation ⁇ 100).
  • the fiber composite is dispersed in water, adjusted to a solid content concentration of 0.2%, disaggregated for 5 minutes with a standard disintegrator specified in JIS P 8220-1: 2012, and then JIS P 8222: 1998.
  • the ash yield when formed into a sheet using a 150 mesh wire can be used for evaluation. In a preferred embodiment, the ash yield is 20% by mass or more, and in a more preferred embodiment, the ash yield is 50% by mass or more. It is.
  • the fiber constituting the fiber- fiber composite is not particularly limited as long as it is a fiber.
  • natural fibers as well as regenerated fibers (semi-synthetic fibers) such as rayon and lyocell, and synthetic fibers can be used without limitation. it can.
  • fiber raw materials include pulp fibers (wood pulp and non-wood pulp), cellulose nanofibers, bacterial cellulose, seaweed and other animal-derived cellulose, and algae. Wood pulp may be produced by pulping wood raw materials. .
  • Wood raw materials include red pine, black pine, todomatsu, spruce, beech pine, larch, fir, tsuga, cedar, hinoki, larch, shirabe, spruce, hiba, douglas fir, hemlock, white fur, spruce, balsam fur, cedar, pine, Coniferous trees such as Merck pine, Radiata pine, etc., and mixed materials thereof, beech, hippopotamus, alder tree, oak, tab, shii, birch, broadleaf tree, poplar, tamo, dragonfly, eucalyptus, mangrove, lawan, acacia, etc. Examples are materials.
  • wood raw materials wood raw materials
  • wood raw materials wood raw materials
  • wood pulp can be classified by pulping method, for example, chemical pulp digested by kraft method, sulfite method, soda method, polysulfide method, etc .; mechanical pulp obtained by pulping by mechanical force such as refiner, grinder; Semi-chemical pulp obtained by carrying out pulping by mechanical force after pretreatment by; waste paper pulp; deinked pulp and the like. Wood pulp may be unbleached (before bleaching) or bleached (after bleaching).
  • non-wood-derived pulp examples include cotton, hemp, sisal hemp, manila hemp, flax, straw, bamboo, bagasse, kenaf, sugar cane, corn, rice straw, cocoon, honey and others.
  • the pulp fiber may be either unbeaten or beaten, and may be selected according to the physical properties of the fiber composite sheet, but it is preferable to beaten. Thereby, improvement of sheet strength and promotion of fixing of inorganic particles can be expected.
  • these cellulose raw materials are further processed to give finely pulverized cellulose, chemically modified cellulose such as oxidized cellulose, and cellulose nanofiber: CNF (microfibrillated cellulose: MFC, TEMPO oxidized CNF, phosphate esterified CNF, carboxy Methylated CNF, mechanically ground CNF, etc.).
  • CNF microfibrillated cellulose: MFC, TEMPO oxidized CNF, phosphate esterified CNF, carboxy Methylated CNF, mechanically ground CNF, etc.
  • the finely pulverized cellulose used in the present invention includes both what is generally called powdered cellulose and the above mechanically pulverized CNF.
  • the powdered cellulose for example, a machined pulverized raw pulp or a bar shaft produced by a method of purifying and drying an undegraded residue obtained after acid hydrolysis, crushing and sieving Crystalline cellulose powder having a certain particle size distribution may be used, or commercially available products such as KC Flock (manufactured by Nippon Paper Industries), Theolas (manufactured by Asahi Kasei Chemicals), Avicel (manufactured by FMC), etc. Good.
  • KC Flock manufactured by Nippon Paper Industries
  • Theolas manufactured by Asahi Kasei Chemicals
  • Avicel manufactured by FMC
  • the degree of polymerization of cellulose in the powdered cellulose is preferably about 100 to 1500, the degree of crystallinity of the powdered cellulose by X-ray diffraction is preferably 70 to 90%, and the volume average particle size by a laser diffraction type particle size distribution analyzer. Is preferably 1 ⁇ m or less and 100 ⁇ m or less.
  • the oxidized cellulose used in the present invention can be obtained, for example, by oxidizing in water using an oxidizing agent in the presence of a compound selected from the group consisting of N-oxyl compounds and bromides, iodides, or mixtures thereof. it can.
  • As the cellulose nanofiber a method of defibrating the cellulose raw material is used.
  • an aqueous suspension of chemically modified cellulose such as cellulose or oxidized cellulose is mechanically ground or beaten with a refiner, a high-pressure homogenizer, a grinder, a single or multi-screw kneader, a bead mill, or the like.
  • a method of defibration can be used.
  • Cellulose nanofibers may be produced by combining one or more of the above methods. The fiber diameter of the produced cellulose nanofibers can be confirmed by observation with an electron microscope or the like, and is, for example, in the range of 5 nm to 1000 nm, preferably 5 nm to 500 nm, more preferably 5 nm to 300 nm.
  • an arbitrary compound may be further added and reacted with the cellulose nanofiber to modify the hydroxyl group.
  • functional groups to be modified acetyl group, ester group, ether group, ketone group, formyl group, benzoyl group, acetal, hemiacetal, oxime, isonitrile, allene, thiol group, urea group, cyano group, nitro group, azo group , Aryl group, aralkyl group, amino group, amide group, imide group, acryloyl group, methacryloyl group, propionyl group, propioyl group, butyryl group, 2-butyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group , Decanoyl group,
  • Isocyanate groups such as oxyethylisocyanoyl group, methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl Group, decyl group, undecyl group, dodecyl group, myristyl group, palmityl group, stearyl group and other alkyl groups, oxirane group, oxetane group, oxyl group, thiirane group, thietane group and the like.
  • Hydrogen in these substituents may be substituted with a functional group such as a hydroxyl group or a carboxy group. Further, a part of the alkyl group may be an unsaturated bond.
  • the compound used for introducing these functional groups is not particularly limited. For example, a compound having a phosphoric acid-derived group, a compound having a carboxylic acid-derived group, a compound having a sulfuric acid-derived group, or a sulfonic acid-derived compound And the like, compounds having an alkyl group, compounds having an amine-derived group, and the like.
  • Lithium dihydrogen phosphate which is phosphoric acid and the lithium salt of phosphoric acid Dilithium hydrogen phosphate, Trilithium phosphate, Lithium pyrophosphate, Lithium polyphosphate is mentioned.
  • sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate and sodium polyphosphate which are sodium salts of phosphoric acid are mentioned.
  • potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, and potassium polyphosphate which are potassium salts of phosphoric acid are mentioned.
  • ammonium dihydrogen phosphate diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium polyphosphate which are ammonium salts of phosphoric acid are included.
  • phosphoric acid, sodium phosphate, phosphoric acid potassium salt, and phosphoric acid ammonium salt are preferred from the viewpoint of high efficiency in introducing a phosphate group and easy industrial application.
  • Sodium dihydrogen phosphate Although disodium hydrogen phosphate is more preferable, it is not particularly limited.
  • the compound having a carboxyl group is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid and itaconic acid, and tricarboxylic acid compounds such as citric acid and aconitic acid.
  • the acid anhydride of the compound having a carboxyl group is not particularly limited, but examples thereof include acid anhydrides of dicarboxylic acid compounds such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. It is done.
  • the derivative of the acid anhydride of the compound which has a carboxyl group and the acid anhydride imidation of a compound which has a carboxyl group are mentioned.
  • an acid anhydride imidation thing of a compound which has a carboxyl group Imidation thing of dicarboxylic acid compounds, such as maleimide, succinic acid imide, and phthalic acid imide, is mentioned.
  • the acid anhydride derivative of the compound having a carboxyl group is not particularly limited.
  • the hydrogen atoms of the acid anhydride of the compound having a carboxyl group such as dimethylmaleic anhydride, diethylmaleic anhydride, diphenylmaleic anhydride, etc. are substituted (for example, alkyl group, phenyl group, etc. ) are substituted.
  • the compounds having a group derived from a carboxylic acid maleic anhydride, succinic anhydride, and phthalic anhydride are preferred because they are easily applied industrially and easily gasified, but are not particularly limited.
  • the cellulose nanofiber may be modified in such a manner that the compound to be modified is physically adsorbed on the cellulose nanofiber without being chemically bonded.
  • Examples of the physically adsorbing compound include surfactants, and any of anionic, cationic, and nonionic may be used.
  • these functional groups can be removed after defibrating and / or pulverization to return to the original hydroxyl group.
  • a composite fiber of synthetic fiber and fiber can also be used in the present invention.
  • a composite fiber of polyester, polyamide, polyolefin, acrylic fiber, glass fiber, carbon fiber, various metal fibers and the like can also be used. it can.
  • the fibers shown above may be used alone or in combination. Especially, it is preferable that wood pulp is included or the combination of wood pulp, non-wood pulp, and / or synthetic fiber is included, and it is more preferable that it is only wood pulp.
  • the fibers constituting the fiber composite of the present invention are cellulose fibers or pulp fibers.
  • a fibrous substance recovered from the wastewater of a paper mill may be supplied to the carbonation reaction of the present invention. By supplying such a substance to the reaction vessel, various composite particles can be synthesized, and fibrous particles and the like can be synthesized in terms of shape.
  • a substance that is not directly involved in the carbonation reaction but is taken into the product inorganic particles to form composite particles can be used.
  • fibers such as pulp fibers are used, but these substances are further incorporated by synthesizing inorganic particles in a solution containing inorganic particles, organic particles, polymers and the like. Composite particles can be produced.
  • the fiber length of the fiber to be combined is not particularly limited.
  • the average fiber length may be about 0.1 ⁇ m to 15 mm, and may be 1 ⁇ m to 12 mm, 100 ⁇ m to 10 mm, 500 ⁇ m to 8 mm, and the like.
  • the inorganic particles to be combined with the fiber are not particularly limited, but are preferably inorganic particles that are insoluble or hardly soluble in water. Since the inorganic particles may be synthesized in an aqueous system and the fiber composite may be used in an aqueous system, the inorganic particles are preferably insoluble or hardly soluble in water.
  • the inorganic particle said here means a metal or a metal compound.
  • the metal compound is a metal cation (for example, Na + , Ca 2+ , Mg 2+ , Al 3+ , Ba 2+ ) and an anion (for example, O 2 ⁇ , OH ⁇ , CO 3 2 ⁇ , PO 4 3).
  • an anion for example, O 2 ⁇ , OH ⁇ , CO 3 2 ⁇ , PO 4 3.
  • SO 4 2 ⁇ NO 3 ⁇ , Si 2 O 3 2 ⁇ , SiO 3 2 ⁇ , Cl ⁇ , F ⁇ , S 2 ⁇ , etc.
  • At least a part of the inorganic particles is a metal salt of calcium, magnesium or barium, or at least a part of the inorganic particles is a metal salt of silicic acid or aluminum, or titanium, copper, silver, iron, manganese Or it is preferable that it is a metal particle containing zinc.
  • These inorganic particles can be synthesized by a known method, which may be either a gas-liquid method or a liquid-liquid method.
  • a gas-liquid method is a carbon dioxide gas method.
  • magnesium carbonate can be synthesized by reacting magnesium hydroxide and carbon dioxide gas.
  • liquid-liquid methods include reacting an acid (hydrochloric acid, sulfuric acid, etc.) and a base (sodium hydroxide, potassium hydroxide, etc.) by neutralization, reacting an inorganic salt with an acid or base, And a method of reacting the For example, barium sulfate and sulfuric acid are reacted to obtain barium sulfate, aluminum sulfate and sodium hydroxide are reacted to obtain aluminum hydroxide, or calcium carbonate and aluminum sulfate are reacted to produce calcium and aluminum.
  • Composite inorganic particles can be obtained.
  • any metal or metal compound can be allowed to coexist in the reaction solution.
  • these metals or metal compounds are efficiently incorporated into the inorganic particles and are combined.
  • calcium carbonate can be synthesized by a carbon dioxide method, a soluble salt reaction method, a lime / soda method, a soda method, etc.
  • calcium carbonate can be synthesized by a carbon dioxide method. Synthesize.
  • calcium carbonate when calcium carbonate is produced by the carbon dioxide method, lime is used as a calcium source, water is added to quick lime CaO to obtain slaked lime Ca (OH) 2, and carbon dioxide CO 2 is added to the slaked lime.
  • Calcium carbonate is synthesized by the carbonation step of blowing to obtain calcium carbonate CaCO3.
  • a slaked lime suspension prepared by adding water to quick lime may be passed through a screen to remove low-solubility lime particles contained in the suspension. Further, slaked lime may be directly used as a calcium source.
  • the carbonation reaction when calcium carbonate is synthesized by the carbon dioxide method, the carbonation reaction may be performed in the presence of cavitation bubbles.
  • a gas blowing type carbonator and a mechanical stirring type carbonator are known as reaction vessels (carbonation reactor: carbonator) for producing calcium carbonate by the carbon dioxide method.
  • carbonation reactor carbonator
  • carbon dioxide gas is blown into a carbonation reaction tank containing slaked lime suspension (lime milk) to react slaked lime with carbon dioxide gas.
  • slaked lime suspension limestone
  • the mechanical agitator type carbonator a stirrer is provided inside the carbonator, and carbon dioxide gas is introduced near the stirrer to make the carbon dioxide gas fine bubbles, improving the reaction efficiency between slaked lime and carbon dioxide gas.
  • the concentration of the reaction liquid is high or the carbonation reaction proceeds, the resistance of the reaction liquid is large and it is difficult to sufficiently stir Therefore, it is difficult to precisely control the carbonation reaction, and in order to perform sufficient stirring, a considerable load is applied to the stirrer, which may be disadvantageous in terms of energy.
  • the gas inlet is located at the bottom of the carbonator, and the blades of the stirrer are installed near the bottom of the carbonator to improve the stirring. Lime screen residue with low solubility is always settled at the bottom due to fast sedimentation, which may block the gas blowing port or break the balance of the stirrer.
  • jet cavitation sufficient stirring can be performed without a mechanical stirrer such as a blade.
  • conventionally known reaction vessels can be used, and of course, the above-described gas blowing type carbonator and mechanical stirring type carbonator can be used without any problem. You may combine jet cavitation using.
  • the solid content concentration of the aqueous suspension of slaked lime is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, and still more preferably 1 to 20%. It is about wt%. If the solid content concentration is low, the reaction efficiency is low and the production cost is high. If the solid content concentration is too high, the fluidity is deteriorated and the reaction efficiency is lowered. In the present invention, since calcium carbonate is synthesized in the presence of cavitation bubbles, the reaction solution and carbon dioxide can be suitably mixed even when a suspension (slurry) having a high solid content is used.
  • aqueous suspension containing slaked lime those generally used for calcium carbonate synthesis can be used, for example, prepared by mixing slaked lime with water, or slaked (digested) quick lime (calcium oxide) with water. Can be prepared.
  • concentration of CaO can be 0.1 wt% or more, preferably 1 wt% or more, and the temperature can be 20 to 100 ° C., preferably 30 to 100 ° C. .
  • the average residence time in the soaking reaction tank (slaker) is not particularly limited, but can be, for example, 5 minutes to 5 hours, and preferably 2 hours or less.
  • the slaker may be batch or continuous.
  • the carbonation reaction tank (carbonator) and the decontamination reaction tank (slaker) may be separated, and one reaction tank may be used as the carbonation reaction tank and the decontamination reaction tank. Good.
  • the method for synthesizing magnesium carbonate can be a known method.
  • magnesium bicarbonate can be synthesized from magnesium hydroxide and carbon dioxide
  • basic magnesium carbonate can be synthesized from magnesium bicarbonate via normal magnesium carbonate.
  • Magnesium carbonate can obtain magnesium bicarbonate, normal magnesium carbonate, basic magnesium carbonate, and the like by a synthesis method, but it is particularly preferable that the magnesium carbonate according to the fiber composite of the present invention is basic magnesium carbonate. This is because magnesium bicarbonate is relatively low in stability, and normal magnesium carbonate, which is a columnar (needle-like) crystal, may be difficult to fix to the fiber.
  • a fiber composite of magnesium carbonate and fibers in which the fiber surface is coated in a scale or the like can be obtained by chemical reaction to basic magnesium carbonate in the presence of fibers.
  • the reaction solution in the reaction vessel can be circulated for use.
  • the reaction efficiency can be increased and desired inorganic particles can be easily obtained.
  • a gas such as carbon dioxide (carbon dioxide) is blown into the reaction vessel and can be mixed with the reaction solution.
  • carbon dioxide gas can be supplied to the reaction liquid without a gas supply device such as a fan or a blower, and the reaction can be efficiently performed because the carbon dioxide gas is refined by cavitation bubbles. .
  • the carbon dioxide concentration of the gas containing carbon dioxide is not particularly limited, but a higher carbon dioxide concentration is preferable.
  • the amount of carbon dioxide introduced into the injector is not limited and can be appropriately selected. For example, it is preferable to use carbon dioxide at a flow rate of 100 to 10,000 L / hour per kg of slaked lime.
  • the gas containing carbon dioxide of the present invention may be substantially pure carbon dioxide gas or a mixture with other gas.
  • a gas containing an inert gas such as air or nitrogen can be used as a gas containing carbon dioxide.
  • the gas containing carbon dioxide in addition to carbon dioxide gas (carbon dioxide gas), exhaust gas discharged from an incinerator of a paper mill, a coal boiler, a heavy oil boiler, or the like can be suitably used as the carbon dioxide-containing gas.
  • a carbonation reaction can also be performed using carbon dioxide generated from the lime baking step.
  • barium sulfate an ionic crystalline compound consisting of barium ions and sulfate ion represented by barium sulfate (BaSO 4), often at plate-like or columnar form, in water Is sparingly soluble.
  • barium sulfate is a colorless crystal, but when it contains impurities such as iron, manganese, strontium and calcium, it becomes yellowish brown or blackish gray and becomes translucent.
  • impurities such as iron, manganese, strontium and calcium
  • it can be obtained as a natural mineral, it can also be synthesized by chemical reaction.
  • synthetic products by chemical reaction are used not only for pharmaceuticals (X-ray contrast media) but also widely used in paints, plastics, storage batteries, etc. by applying chemically stable properties.
  • the hydrotalcite synthesis method can be a known method.
  • the fibers are immersed in an aqueous carbonate solution containing carbonate ions constituting the intermediate layer and an alkaline solution (such as sodium hydroxide) in the reaction vessel, and then an acid solution (divalent metal ions and trivalent ions constituting the basic layer).
  • Hydrotalcite is synthesized by adding a metal salt aqueous solution containing metal ions and controlling the temperature, pH, etc., and coprecipitation reaction.
  • the fiber is immersed in an acid solution (metal salt aqueous solution containing divalent metal ions and trivalent metal ions constituting the basic layer), and then carbonate aqueous solution containing carbonate ions constituting the intermediate layer.
  • Hydrotalcite can also be synthesized by dropwise addition of an alkaline solution (such as sodium hydroxide) and controlling the temperature, pH, etc. and coprecipitation reaction.
  • an alkaline solution such as sodium hydroxide
  • reaction at normal pressure is common, there is also a method obtained by hydrothermal reaction using an autoclave or the like (Japanese Patent Laid-Open No. 60-6619).
  • magnesium, zinc, barium, calcium, iron, copper, cobalt, nickel, manganese chlorides, sulfides, nitrates and sulfates are used as the source of divalent metal ions constituting the basic layer.
  • various chlorides, sulfides, nitrates, and sulfates of aluminum, iron, chromium, and gallium can be used as a supply source of trivalent metal ions constituting the basic layer.
  • carbonate ions, nitrate ions, chloride ions, sulfate ions, phosphate ions and the like can be used as anions as interlayer anions.
  • sodium carbonate is used as the source.
  • sodium carbonate can be replaced with a gas containing carbon dioxide (carbon dioxide gas), and may be a substantially pure carbon dioxide gas or a mixture with other gases.
  • carbon dioxide gas gas containing carbon dioxide
  • exhaust gas discharged from an incinerator, a coal boiler, a heavy oil boiler or the like of a paper mill can be suitably used as the carbon dioxide-containing gas.
  • a carbonation reaction can also be performed using carbon dioxide generated from the lime baking step.
  • the fiber composite of the present invention can be obtained by synthesizing inorganic particles in the presence of fibers. This is because the fiber surface is a suitable place for the precipitation of inorganic particles, so that it is easy to synthesize a fiber composite of inorganic particles and fibers.
  • the method for synthesizing a fiber composite according to the present invention essentially synthesizes inorganic particles in a solution containing fibers.
  • a fiber composite may be synthesized by stirring and mixing a solution containing a precursor of fibers and inorganic particles in an open reaction vessel, or an aqueous suspension containing a precursor of fibers and inorganic particles. You may synthesize
  • the fibers When one of the precursors of the inorganic particles is alkaline, the fibers can be swollen if the fibers are dispersed in the alkaline precursor solution in advance, so that a fiber composite of inorganic particles and fibers can be obtained efficiently. .
  • the reaction can be started after promoting the swelling of the fibers by stirring for 15 minutes or more after mixing, the reaction may be started immediately after mixing.
  • a substance that easily interacts with cellulose such as aluminum sulfate (sulfuric acid band, polyaluminum chloride, etc.) is used as part of the precursor of inorganic particles, the aluminum sulfate side should be mixed with the fiber in advance. In some cases, the proportion of the inorganic particles fixed to the fibers can be improved.
  • the liquid may be ejected under conditions that cause cavitation bubbles in the reaction vessel, or may be ejected under conditions that do not cause cavitation bubbles.
  • the reaction vessel is preferably a pressure vessel in any case.
  • the pressure vessel in this invention is a container which can apply the pressure of 0.005 Mpa or more. In the condition that does not generate cavitation bubbles, the pressure in the pressure vessel is preferably 0.005 MPa to 0.9 MPa in static pressure.
  • the average primary particle diameter of the inorganic particles in the fiber composite of the present invention can be, for example, 1 ⁇ m or less, but the average primary particle diameter is 500 nm or less, and the average primary particle diameter is 200 nm.
  • the following inorganic particles, inorganic particles having an average primary particle diameter of 100 nm or less, and inorganic particles having an average primary particle diameter of 50 nm or less can be used.
  • the average primary particle diameter of the inorganic particles can be 10 nm or more.
  • the average primary particle size can be measured with a laser diffraction particle size distribution measuring device or an electron micrograph.
  • auxiliary agents can be further added.
  • chelating agents can be added.
  • polyhydroxycarboxylic acids such as citric acid, malic acid and tartaric acid, dicarboxylic acids such as oxalic acid, sugar acids such as gluconic acid, iminodiacetic acid, ethylenediaminetetra Aminopolycarboxylic acids such as acetic acid and their alkali metal salts, alkali metal salts of polyphosphoric acid such as hexametaphosphoric acid and tripolyphosphoric acid, amino acids such as glutamic acid and aspartic acid and their alkali metal salts, acetylacetone, methyl acetoacetate, acetoacetic acid Examples include ketones such as allyl, saccharides such as sucrose, and polyols such as sorbitol.
  • saturated fatty acids such as palmitic acid and stearic acid
  • unsaturated fatty acids such as oleic acid and linoleic acid
  • resin acids such as alicyclic carboxylic acid and abietic acid, salts, esters and ethers thereof
  • alcohols Activators sorbitan fatty acid esters, amide or amine surfactants
  • polyoxyalkylene alkyl ethers polyoxyethylene nonyl phenyl ether
  • sodium alpha olefin sulfonate long chain alkyl amino acids, amine oxides, alkyl amines
  • fourth A quaternary ammonium salt aminocarboxylic acid, phosphonic acid, polyvalent carboxylic acid, condensed phosphoric acid and the like
  • a dispersing agent can also be used as needed.
  • the dispersant include sodium polyacrylate, sucrose fatty acid ester, glycerin fatty acid ester, acrylic acid-maleic acid copolymer ammonium salt, methacrylic acid-naphthoxypolyethylene glycol acrylate copolymer, methacrylic acid-polyethylene glycol.
  • examples include monomethacrylate copolymer ammonium salts and polyethylene glycol monoacrylate. These can be used alone or in combination.
  • the timing of addition may be before or after the synthesis reaction.
  • Such additives can be added in an amount of preferably 0.001 to 20%, more preferably 0.1 to 10% with respect to the inorganic particles.
  • the reaction conditions are not particularly limited, and can be appropriately set according to the application.
  • the temperature of the synthesis reaction can be 0 to 90 ° C., preferably 10 to 80 ° C., more preferably 50 to 70 ° C., and particularly preferably about 60 ° C.
  • the reaction temperature can be controlled by a temperature controller, and if the temperature is low, the reaction efficiency decreases and the cost increases, whereas if it exceeds 90 ° C., coarse inorganic particles tend to increase.
  • the reaction can be a batch reaction or a continuous reaction. In general, it is preferable to perform a batch reaction step for the convenience of discharging the residue after the reaction.
  • the scale of the reaction is not particularly limited, but the reaction may be performed on a scale of 100 L or less, or may be performed on a scale of more than 100 L.
  • the size of the reaction vessel can be, for example, about 10 L to 100 L, or about 100 L to 1000 L.
  • the reaction can be controlled, for example, by monitoring the pH of the reaction solution.
  • the reaction solution is less than pH 9, preferably less than pH 8, More preferably, the reaction can be performed until the pH reaches around 7.
  • the reaction can be controlled by monitoring the conductivity of the reaction solution. If it is a carbonation reaction of calcium carbonate, for example, it is preferable to carry out the carbonation reaction until the conductivity is reduced to 1 mS / cm or less.
  • reaction can be controlled simply by the reaction time, and specifically, it can be controlled by adjusting the time that the reactants stay in the reaction tank.
  • reaction can also be controlled by stirring the reaction liquid of a reaction tank or making reaction multistage reaction.
  • the weight ratio of the fibers to the inorganic particles can be 5/95 to 95/5, and can be 10/90 to 90/10, 20/80 to 80/20, 30/70 to 70/30, 40/60 to It may be 60/40.
  • the fiber composite as a reaction product is obtained as a suspension, it is stored in a storage tank or subjected to treatments such as concentration, dehydration, pulverization, classification, aging, and dispersion as necessary. be able to. These can be performed by known processes, and may be appropriately determined in consideration of the application and energy efficiency.
  • concentration / dehydration treatment is performed using a centrifugal dehydrator, a sedimentation concentrator, or the like.
  • the centrifugal dehydrator include a decanter and a screw decanter.
  • the type is not particularly limited and a general one can be used.
  • a pressure-type dehydrator such as a filter press, a drum filter, a belt press, a tube press,
  • a calcium carbonate cake can be obtained by suitably using a vacuum drum dehydrator such as an Oliver filter.
  • a vacuum drum dehydrator such as an Oliver filter.
  • Examples of the classification method include a sieve such as a mesh, an outward type or inward type slit or round hole screen, a vibrating screen, a heavy foreign matter cleaner, a lightweight foreign matter cleaner, a reverse cleaner, a sieving tester, and the like.
  • Examples of the dispersion method include a high-speed disperser and a low-speed kneader.
  • the fiber composite obtained according to the present invention can be blended into a filler or pigment in a suspension state without being completely dehydrated, but can also be dried into a powder.
  • a drying in this case For example, an airflow dryer, a band dryer, a spray dryer etc. can be used conveniently.
  • water is used for the preparation of the suspension.
  • this water normal tap water, industrial water, ground water, well water, etc. can be used, ion-exchanged water, distilled water, Pure water, industrial waste water, and water obtained during the production process can be suitably used.
  • the fiber composite obtained by the present invention can be modified by a known method.
  • the surface can be hydrophobized to improve miscibility with a resin or the like.
  • the fiber composite of the fiber according to the present invention 15% or more of the fiber surface is coated with inorganic particles, and when the fiber surface is coated with such an area ratio, characteristics due to the inorganic particles are greatly generated. On the other hand, the characteristic attributed to the fiber surface is reduced.
  • the fiber composite of the fiber and inorganic particles of the present invention is not simply a mixture of fibers and inorganic particles, but the fibers and inorganic particles are bound to some extent by hydrogen bonding or the like. Is less likely to fall off.
  • the binding strength between fibers and inorganic particles in the fiber composite can be evaluated by, for example, a numerical value such as ash yield (%), that is, (sheet ash content ⁇ fiber composite ash content before disaggregation) ⁇ 100. it can.
  • the fiber composite is dispersed in water, adjusted to a solid content concentration of 0.2%, disaggregated for 5 minutes with a standard disintegrator specified in JIS P 8220-1: 2012, and then JIS P 8222: 1998.
  • the ash yield when formed into a sheet using a 150 mesh wire can be used for evaluation.
  • the ash yield is 20% by mass or more, and in a more preferred embodiment, the ash yield is 50% by mass or more. It is.
  • the present invention includes a fiber composite of fibers and inorganic particles, and is in the form of an aqueous suspension, pulp, sheet, powder, microsphere, granule, pellet, mold, thread, or foam. Used.
  • the aqueous suspension is a mixture of a liquid and a solid and has a moisture content of 90% by mass to 99% by mass.
  • Pulp is a mixture of a liquid and a solid, having a moisture content lower than that of an aqueous suspension, and having a moisture content of 10% by mass or more and 90% by mass.
  • the sheet refers to a thin and wide sheet, and a sheet having a moisture content of less than 10% by mass.
  • a moisture content can be calculated
  • a powder is a collection of powder, particles, etc.
  • the average particle size is less than 100 ⁇ m.
  • the microspherical particles are particles obtained by forming a fiber composite into a spherical shape, and mean particles having an average particle diameter of 100 ⁇ m or more and less than 1000 ⁇ m.
  • the granule means a particle having a particle size larger than that of the powder and has an average particle size of 1 mm or more and less than 10 mm.
  • Solids refer to small-size compacts obtained by compression molding of fiber composites.
  • Mold refers to a molded body obtained by pouring a fiber composite of fibers and inorganic particles into a mold and dehydrating it.
  • Thread refers to a thread-like thread processed from a fiber composite.
  • yarn processing include fiber making yarn.
  • Textile yarn refers to yarn made from paper. Specifically, it refers to a piece of paper that has been made and wound on a roll into a piece of tape of about 1 to 30 mm that is twisted into a thread.
  • the yarn can be produced by spinning, extruding from a fine hole to produce a continuous yarn, drawing, or heat processing.
  • “Foam” refers to a fiber composite containing bubbles.
  • a product including a fiber composite of fibers and inorganic particles is a process of synthesizing inorganic particles in a solution in the presence of fibers, and synthesizing a fiber composite of fibers and inorganic particles.
  • moisture content of the fiber composite of a fiber and an inorganic particle can be manufactured by the method of including.
  • a foam can also be formed by adding a cellulose nanofiber to the slurry containing the composite_body
  • the stirring speed for foaming is not particularly limited, but is preferably 1000 to 10000 rpm, more preferably 2000 to 9000 rpm, and further preferably 4000 to 7000 rpm.
  • the stirring device used in the present invention is preferably compatible with high-speed stirring.
  • the shape of the stirring blade is preferably a set of three.
  • a disperser such as a multidisperser PB95 (manufactured by SMT) can be used.
  • foam in another aspect, in the present invention, can be formed using an extruder or the like. That is, the kneaded material can be extruded to the outside from the nozzle of the extrusion die, and water can be evaporated under atmospheric pressure to foam the material.
  • a foam having a desired shape can be produced by using a mold (mold), and various kinds of foams can be obtained by converging them into a desired shape before the foamed bubbles are solidified. Shaped foams can also be produced.
  • the formed foam is dried to produce a foam (foam).
  • the drying temperature is, for example, 50 to 150 ° C., more preferably 70 to 130 ° C., and further preferably 90 to 110 ° C. is there.
  • foaming can be facilitated by adding a surfactant to the slurry containing the composite.
  • a surfactant any of cationic, anionic and nonionic surfactants may be used. Among these, it is preferable to use an anionic surfactant.
  • light calcium carbonate or heavy calcium carbonate can be blended as inorganic powder, and the particle shape of the powder can be a regular shape such as a spherical shape, an irregular shape, a whisker shape, or the like. Either may be sufficient.
  • the average particle size is not particularly limited, but may be 0.5 to 5 ⁇ m, for example.
  • the calcium carbonate it is possible to use a surface treated with a fatty acid such as stearic acid, palmitic acid or lauric acid, or a salt of these fatty acids with an alkali metal.
  • a papermaking yield may be added to the slurry containing the composite. It is also possible to improve foam stability and foam strength by adding a retention agent.
  • the retention agent used may be either positive or negative in surface charge, but more preferably has a positive surface charge.
  • Hymo Lock ND-300 manufactured by Hymo Co., Ltd.
  • a paper strength improver can be blended with the slurry containing the composite.
  • the paper strength improver used in the present invention may be, for example, a wet paper strength agent, a dry paper strength agent, etc., for example, WS-2024 (manufactured by Seiko PMC Co., Ltd.) Hermide C-10 (manufactured by Harima Chemicals Group Co., Ltd.) can be mentioned as a power agent. Of these, wet paper strength agents are preferred.
  • hydrophilic polymer materials such as starch, pectin, guar gum, gum arabic and alginic acid can be preferably used.
  • the foam of the present invention can be blended with a resin such as polyolefin resin or vinyl chloride resin.
  • a resin such as polyolefin resin or vinyl chloride resin.
  • polypropylene or polyethylene can be used as the polyolefin resin, and a recycled polyolefin resin can also be used in consideration of cost and recycling.
  • vinyl chloride resin low-polymerization degree PVC, high-polymerization degree PVC or the like can be suitably used, and not only virgin resin but also recycled resin (soft vinyl chloride resin etc.) may be used.
  • the plasticizer for example, phthalate plasticizers, trimellitate plasticizers, fatty acid plasticizers, epoxy plasticizers, adipate plasticizers, polyester plasticizers, and the like can be preferably used.
  • a centrifugal dehydrator In the step of adjusting the water content of the fiber composite of fiber and inorganic particles, a centrifugal dehydrator, a sedimentation concentrator, a solid-liquid separation device, or the like is used as a device for adjusting the water.
  • solid-liquid separators include decanters, screw decanters, disk filters, DNT washers, FUNDABAC filters, nip washers, suction filters, etc., filter presses, compact washers, drum filters, belt presses, tube presses, etc. Or a vacuum drum dehydrator such as an oliver filter can be used.
  • the moisture content can be adjusted to 92% to 97% by mass, or the moisture content can be adjusted to 94% to 95% by mass.
  • the moisture content can be adjusted to 10% by mass or more and 90% by mass, a pulp containing a fiber composite of fibers and inorganic particles can be produced. At that time, the moisture content can be adjusted to 20% to 80% by mass, or the moisture content can be adjusted to 30% to 60% by mass.
  • a sheet containing a fiber composite of fibers and inorganic particles can be produced by adjusting the moisture content to less than 10% by mass. At that time, the moisture content can be adjusted to 1% by mass or more and 8% by mass or less, or the moisture content can be adjusted to 3% by mass or more and 6% by mass or less.
  • a long net paper machine In the process for producing a sheet containing a fiber composite of fibers and inorganic particles, a long net paper machine, a short net paper machine, a circular net paper machine, an inclined wire type paper machine, a hybrid paper machine, or the like can be used.
  • a product containing a fiber composite of fibers and inorganic particles is a process of synthesizing inorganic particles in a solution in the presence of fibers to synthesize a fiber composite of fibers and inorganic particles, fiber And a step of adjusting the particle diameter of the fiber composite of inorganic particles.
  • the particle diameter of the fiber composite of fiber and inorganic particles can be confirmed by observation with an electron microscope or laser diffraction particle size distribution measurement. Furthermore, by adjusting the conditions for synthesizing the inorganic particles, the inorganic particles having various sizes and shapes can be made into a fiber composite with the fiber.
  • a method for adjusting the particle size of the fiber composite of fibers and inorganic particles for example, ball mill, sand grinder mill, impact mill, high pressure homogenizer, low pressure homogenizer, dyno mill, ultrasonic mill, kanda grinder, attritor, millstone mill, A vibration mill, a cutter mill, a jet mill, a disaggregator, a beating machine, a short screw extruder, a twin screw extruder, an ultrasonic stirrer, a household juicer mixer, a roller compactor and the like can be mentioned.
  • the powder containing the fiber composite of fiber and inorganic particles is adjusted by adjusting the average particle diameter of the fiber composite of fibers and inorganic particles to less than 100 ⁇ m.
  • the body can be manufactured.
  • the average particle diameter of the fiber composite of fibers and inorganic particles may be 1 ⁇ m or more and less than 90 ⁇ m, or the average particle diameter of the fiber composite of fibers and inorganic particles may be 10 ⁇ m or more and less than 80 ⁇ m.
  • the fiber composite of fiber and inorganic particles is contained by adjusting the average particle size of the fiber composite of fiber and inorganic particles to 100 ⁇ m or more and less than 1000 ⁇ m.
  • Microspheres can be produced.
  • the average particle diameter of the fiber composite of fiber and inorganic particles may be 200 ⁇ m or more and less than 800 ⁇ m, or the average particle diameter of the fiber composite of fiber and inorganic particles may be 300 ⁇ m or more and less than 600 ⁇ m.
  • the fiber composite of fiber and inorganic particles is adjusted by adjusting the average particle diameter of the fiber composite of fiber and inorganic particles to 1 mm or more and less than 10 mm.
  • the average particle diameter of the fiber composite of fiber and inorganic particles may be 2 mm or more and less than 8 mm, or the average particle diameter of the fiber composite of fiber and inorganic particles may be 3 mm or more and less than 6 mm.
  • the pellet containing the fiber composite of the fiber and the inorganic particles is obtained by synthesizing the inorganic particle in the solution in the presence of the fiber, and then synthesizing the fiber composite of the fiber and the inorganic particle. It can manufacture by pelletizing the fiber composite of an inorganic particle.
  • the pelletizing apparatus include a pelletizer.
  • the moisture content of the fiber composite of fiber and inorganic particles was solid-liquid separated by the above-described solid-liquid separator, and adjusted to 45% by mass or more and 85% by mass or less, preferably 50% by mass or more and 70% by mass or less. Later, it can be pelletized.
  • a step of synthesizing inorganic particles in a solution in the presence of fibers to synthesize a fiber composite of fibers and inorganic particles a step of pouring the fiber composite of fibers and inorganic particles into a mold and dehydrating
  • a mold containing a fiber composite of fibers and inorganic particles can be produced.
  • fibers are synthesized by synthesizing inorganic particles in a solution in the presence of fibers, synthesizing a fiber composite of fibers and inorganic particles, and processing a fiber composite of fibers and inorganic particles.
  • a yarn containing a fiber composite of inorganic particles can be produced.
  • yarn processing include fiber making (twisting processing), spinning, drawing, thermal processing, and the like.
  • fiber making tilting
  • slitting the sheet containing the fiber-inorganic particle fiber composite adjusted to a moisture content of less than 10% by mass. It is preferable to perform a process.
  • the yarn is preferably a yarn having a fiber diameter of 1 mm or more and 10 mm or less.
  • a slitter etc. are mentioned as a slitting apparatus.
  • a step of synthesizing inorganic particles in a solution in the presence of fibers to synthesize a fiber composite of fibers and inorganic particles a step of stirring the fiber composite of fibers and inorganic particles with a stirrer, fiber With the composite, a foam containing a fiber composite of fibers and inorganic particles can be produced.
  • Examples of the apparatus used for stirring include a homogenizer and a disperser.
  • rate at the time of stirring it can be set to 6000 rpm or more and less than 10000 rpm, or can be set to 7000 rpm or more and less than 9000 rpm.
  • the density of the foam is preferably in the range of 0.01 to 0.1 g / cm 3 .
  • the density can be obtained by the following formula.
  • Density (g / cm 3 ) mass of foam (g) / volume of foam (cm 3 )
  • an air dryer, a band dryer, a spray dryer, or the like can be preferably used.
  • the product containing the fiber composite obtained by the present invention can be mixed with other products to obtain a mixture.
  • the product or mixture of the present invention can be used in various applications, such as paper, fiber, cellulosic composite material, filter material, paint, plastic and other resins, rubber, elastomer, ceramic, glass, tire, construction, etc.
  • the fiber composite of the present invention may be applied to papermaking applications, for example, printing paper, newspaper, inkjet paper, PPC paper, kraft paper, fine paper, coated paper, fine coated paper, wrapping paper, thin paper, color High-quality paper, cast coated paper, non-carbon paper, label paper, thermal paper, various fancy papers, water-soluble paper, release paper, process paper, base paper for wallpaper, incombustible paper, flame retardant paper, laminated board base paper, printed electronics paper, Battery separator, cushion paper, tracing paper, impregnated paper, ODP paper, building material paper, decorative paper, envelope paper, tape paper, heat exchange paper, chemical fiber paper, sterilized paper, water resistant paper, oil resistant paper, heat resistant paper, Photocatalyst paper, decorative paper (grease paper, etc.), various sanitary paper (toilet paper, tissue paper, wipers, diapers, sanitary products, etc.), tobacco paper, paperboard (liner) , Corrugating
  • the conventional inorganic filler having a particle size of more than 1 ⁇ m Different characteristics can be exhibited. Furthermore, unlike the case where the inorganic particles are simply blended with the fibers, if the inorganic particles are made into a fiber composite, the inorganic particles are not only easily retained on the sheet, but also a sheet in which the particles are uniformly dispersed without agglomeration. Can be obtained. In the preferred embodiment, the inorganic particles in the present invention are not only fixed on the outer surface of the fiber and the inner side of the lumen, but are also generated on the inner side of the microfibril.
  • particles generally called inorganic fillers and organic fillers and various fibers can be used in combination.
  • inorganic filler calcium carbonate (light calcium carbonate, heavy calcium carbonate), magnesium carbonate, barium carbonate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, clay (kaolin, calcined kaolin, deramikaolin) ), Talc, zinc oxide, zinc stearate, titanium dioxide, silica made from sodium silicate and mineral acid (white carbon, silica / calcium carbonate fiber composite, silica / titanium dioxide fiber composite), white clay, bentonite, Examples thereof include diatomaceous earth, calcium sulfate, zeolite, an inorganic filler that regenerates and uses the ash obtained from the deinking process, and an inorganic filler that forms a fiber complex with silica or calcium carbonate in the regenerating process.
  • amorphous silica such as white carbon may be used together with calcium carbonate and / or light calcium carbonate-silica composite.
  • Organic fillers include urea-formalin resin, polystyrene resin, phenol resin, fine hollow particles, acrylamide fiber composites, wood-derived materials (fine fibers, microfibril fibers, powdered kenaf), modified insolubilized starch, ungelatinized starch Etc.
  • Fibers include natural fibers such as cellulose, synthetic fibers that are artificially synthesized from raw materials such as petroleum, regenerated fibers (semi-synthetic fibers) such as rayon and lyocell, and inorganic fibers. Can be used.
  • the natural fibers include protein fibers such as wool, silk thread and collagen fibers, and complex sugar chain fibers such as chitin / chitosan fibers and alginic acid fibers.
  • the cellulose-based raw material include pulp fibers (wood pulp and non-wood pulp), animal-derived cellulose such as bacterial cellulose and sea squirt, and algae.
  • the wood pulp may be produced by pulping the wood raw material.
  • Wood materials include red pine, black pine, todomatsu, spruce, beech pine, larch, fir, tsuga, cedar, hinoki, larch, syrup, spruce, hiba, douglas fir, hemlock, white fur, spruce, balsam fur, cedar, pine, Coniferous trees such as Merck pine, Radiata pine, etc., and mixed materials thereof, beech, hippopotamus, alder tree, oak, tab, shii, birch, broadleaf tree, poplar, tamo, dragonfly, eucalyptus, mangrove, lawan, acacia, etc. Examples are materials.
  • the method for pulping the wood raw material is not particularly limited, and examples thereof include a pulping method generally used in the paper industry.
  • Wood pulp can be classified by pulping method, for example, chemical pulp digested by methods such as kraft method, sulfite method, soda method, polysulfide method; mechanical pulp obtained by pulping by mechanical force such as refiner, grinder; Semi-chemical pulp obtained by carrying out pulping by mechanical force after pretreatment by; waste paper pulp; deinked pulp and the like. Wood pulp may be unbleached (before bleaching) or bleached (after bleaching).
  • non-wood-derived pulp examples include cotton, hemp, sisal hemp, manila hemp, flax, straw, bamboo, bagasse, kenaf, sugar cane, corn, rice straw, straw, honey and so on.
  • Wood pulp and non-wood pulp may be either unbeaten or beaten.
  • these cellulose raw materials are further processed to give finely pulverized cellulose such as powdered cellulose, chemically modified cellulose such as oxidized cellulose, and cellulose nanofiber: CNF (microfibrillated cellulose: MFC, TEMPO oxidized CNF, phosphoric acid esterified) CNF, carboxymethylated CNF, mechanically ground CNF).
  • CNF microfibrillated cellulose: MFC, TEMPO oxidized CNF, phosphoric acid esterified
  • Synthetic fibers include polyester, polyamide, polyolefin, acrylic fiber, semi-spun fibers include rayon and acetate, and inorganic fibers include glass fiber, carbon fiber, and various metal fibers. About these, these may be used alone or in combination of two or more.
  • various organic materials such as polymers and various inorganic materials such as pigments may be added to the fiber composite molding later.
  • the reaction temperature was about 36 ° C.
  • the carbon dioxide gas was supplied from a commercially available liquefied gas, and the amount of carbon dioxide blown was 4 L / min.
  • the pH of the reaction solution reaches about 7.8, the introduction of CO 2 is stopped (the pH before the reaction is about 9.5), and then cavitation is generated and the slurry is circulated in the apparatus for 30 minutes.
  • Sample 1 (water content: 96% by mass) was obtained.
  • the obtained fiber composite had a fiber: inorganic particle weight ratio of 45:55.
  • the weight ratio was calculated based on the ash content obtained from the ratio of the weight of the remaining ash to the original solid content after heating the fiber composite at 525 ° C. for about 2 hours (JIS P 8251: 2003). .
  • cavitation bubbles were generated in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel as shown in FIG. Specifically, the reaction solution was injected at high pressure through a nozzle (nozzle diameter: 1.5 mm) to generate cavitation bubbles.
  • the jet velocity was about 70 m / s, and the inlet pressure (upstream pressure) was The outlet pressure (downstream pressure) was 7 MPa and 0.3 MPa.
  • Sample 2 aqueous suspension containing a fiber composite of magnesium carbonate fine particles and fibers (no CV) A 3L stainless steel container was used as the reaction vessel, the amount of pulp charged was 20 g, the amount of carbon dioxide blown was 0.57 L / min, and the carbonation reaction was stirred (800 rpm) with a three-one motor in a 35 ° C water bath. Sample 2 (water content: 96% by mass) was obtained in the same manner as Sample 1, except that the procedure was carried out. The fiber / inorganic particle weight ratio of the obtained fiber composite was 45:55.
  • Sample 4 A sample containing a slurry of 0.8% aramid fibers (Twaron RD-1094, Teijin, 625 g) as an aqueous suspension fiber containing a fiber composite of barium sulfate particles and aramid fibers. 1 was obtained in the same manner as in Example 1 to obtain Sample 4 (water content: 98.4%).
  • the obtained fiber composite slurry (3 g in terms of solid content) was suction filtered with a filter paper, the residue was dried in an oven (105 ° C., 2 hours), and the ash content was measured.
  • the fiber of the fiber composite inorganic particles The weight ratio was 55:45.
  • the weight ratio of fiber: inorganic particles of the obtained fiber composite was 58:42.
  • Sample 6 Pulp containing a fiber composite of hydrotalcite and fibers (1) Preparation of alkali solution and acid solution A solution for synthesizing hydrotalcite (HT) was prepared.
  • a solution a mixed aqueous solution of Na 2 CO 3 (Wako Pure Chemical Industries) and NaOH (Wako Pure Chemical Industries) was prepared.
  • B solution a mixed aqueous solution of MgCl 2 (Wako Pure Chemical Industries) and AlCl 3 (Wako Pure Chemical Industries)
  • a mixed aqueous solution of ZnCl 2 (Wako Pure Chemical Industries) and AlCl 3 (Wako Pure Chemical Industries) were prepared. .
  • the reaction temperature was 60 ° C.
  • the dropping rate was 15 ml / min, and dropping was stopped when the pH of the reaction solution reached about 7. After completion of the dropping, the reaction solution was stirred for 30 minutes and washed with about 10 times the amount of water to remove the salt.
  • Cellulose fiber was used as the fiber to be converted into a fiber composite. Specifically, it contains hardwood bleached kraft pulp (LBKP, manufactured by Nippon Paper Industries) and softwood bleached kraft pulp (NBKP, manufactured by Nippon Paper Industries) at a weight ratio of 8: 2, and is a Canadian standard drainage using a single disc refiner (SDR). Pulp fibers with a degree adjusted to 390 ml were used.
  • LLKP hardwood bleached kraft pulp
  • NNKP softwood bleached kraft pulp
  • SDR single disc refiner
  • Pulp fiber was added to the alkaline solution to prepare an aqueous suspension containing pulp fiber (pulp fiber concentration: 1.56%, pH: about 12.4).
  • This aqueous suspension (pulp solid content 30 g) is put into a 10 L reaction vessel, and while stirring the aqueous suspension, an acid solution (Mg-based) is dropped to form a fiber composite of hydrotalcite fine particles and fibers.
  • an acid solution (Mg-based) is dropped to form a fiber composite of hydrotalcite fine particles and fibers.
  • the reaction temperature was 60 ° C.
  • the dropping rate was 15 ml / min
  • dropping was stopped when the pH of the reaction solution reached about 7.
  • the reaction solution was stirred for 30 minutes and washed with 10 times the amount of water to remove the salt.
  • a pulp was produced from the synthesized fiber composite with a filter press (manufactured by Nippon Kara Kogyo Co., Ltd.) to obtain Sample 6 (water content 62.5% by mass).
  • the fiber / inorganic particle weight ratio of the obtained fiber composite was 56:44.
  • Sample 7 Pulp was produced from the synthesized fiber composite by a filter press (manufactured by Fuji Powder Co., Ltd.) using pulp sample 3 containing barium sulfate particles and fiber fiber composite , and sample 7 (water content) 65.0% by mass). The fiber / inorganic particle weight ratio of the obtained fiber composite was 56:44.
  • Sample 8 Sheet calcium hydroxide containing calcium carbonate particles and fiber composite (slaked lime: Ca (OH) 2 , 300 g) and softwood bleached kraft pulp (NBKP, Canadian standard freeness CSF: 215 mL, 300 g)
  • An aqueous suspension 30 L containing was prepared. This aqueous suspension was put into a 40 L sealed device, carbon dioxide was blown into the reaction vessel to generate cavitation, and a fiber composite of calcium carbonate particles and fibers was synthesized by the carbon dioxide method.
  • the reaction temperature was about 25 ° C.
  • carbon dioxide was supplied from a commercial liquefied gas
  • the amount of carbon dioxide blown was 12 L / min
  • the reaction was stopped when the pH of the reaction solution reached about 7 (before the reaction). PH is about 12.8).
  • the fiber / inorganic particle weight ratio of the obtained fiber composite was 45:55.
  • cavitation bubbles were generated in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel as shown in FIG. Specifically, the reaction solution is injected at high pressure through a nozzle (nozzle diameter: 1.5 mm) to generate cavitation bubbles, the jet velocity is about 70 m / s, the inlet pressure (upstream pressure) is 7 MPa, The outlet pressure (downstream pressure) was 0.3 MPa.
  • a cationic retention agent (ND300, Hymo) and an anionic retention agent (FA230, Hymo) were added at a solid content of 100 ppm each to make a paper slurry.
  • ND300, Hymo cationic retention agent
  • F230, Hymo anionic retention agent
  • the fiber / inorganic particle weight ratio of the obtained fiber composite was 56:44.
  • Sample 9 A slurry having a concentration of about 0.2% was prepared using tap water from the residue obtained by suction-filtering the sheet sample 1 containing a fiber composite of magnesium carbonate particles and fibers with a filter paper. This slurry was disaggregated for 5 minutes with a standard disaggregator specified in JIS P 8220-1: 2012, and then a handsheet having a basis weight of 60 g / m 2 was prepared using a 150 mesh wire in accordance with JIS P 8222: 1998. It produced and the sample 9 (water content 8.0 mass%) was obtained. The fiber / inorganic particle weight ratio of the obtained fiber composite was 56:44.
  • Sample 10 Powder containing fiber composite of calcium carbonate fine particles and fiber ⁇ Synthesis of calcium carbonate / fiber fiber composite>
  • 9.5 L of this aqueous suspension was put into a 45 L cavitation apparatus, carbon dioxide gas was blown into the reaction vessel, and a fiber composite of calcium carbonate fine particles and fibers was synthesized by a carbon dioxide gas method.
  • the reaction temperature was about 25 ° C.
  • carbon dioxide was supplied from a commercial liquefied gas
  • the amount of carbon dioxide blown was 12 L / min
  • the reaction was stopped when the pH of the reaction solution reached about 7 (before the reaction). PH is about 12.8).
  • cavitation bubbles were generated in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel as shown in FIG. Specifically, the reaction solution was injected at high pressure through a nozzle (nozzle diameter: 1.5 mm) to generate cavitation bubbles.
  • the jet velocity was about 70 m / s, and the inlet pressure (upstream pressure) was The outlet pressure (downstream pressure) was 7 MPa and 0.3 MPa.
  • the obtained fiber composite was dried by a spray dryer (manufactured by Okawara Kako Co., Ltd.) to produce a powder, and sample 10 was obtained (particle diameter: 100 ⁇ m).
  • the weight ratio of fiber: inorganic particles was 45:55.
  • Sample 11 Powder as in Sample 10 except that the powdered softwood bleached kraft pulp containing a fiber composite of calcium carbonate fine particles and fibers was replaced with powdered cellulose (KC Flock W-06MG, manufactured by Nippon Paper Industries Co., Ltd.) The sample 11 was obtained. (Particle diameter: 100 ⁇ m). The weight ratio of fiber: inorganic particles was 43:57.
  • Sample 12 was obtained by preparing microspherical particles using an extrusion kneading granulator (manufactured by Kansai Kikai Seisakusho Co., Ltd.) using microspherical particle sample 1 containing a fiber composite of magnesium carbonate particles and fibers. (Particle diameter: 800 ⁇ m). The weight ratio of fiber: inorganic particles was 47:53.
  • Sample 13 A granule was prepared using a roller sampler (manufactured by Matsubo Co., Ltd.) using a granule sample 1 containing a fiber composite of magnesium carbonate particles and fibers to obtain a sample 13 (particle diameter: 6 mm). The weight ratio of fiber: inorganic particles was 44:56.
  • Fiber composites of inorganic particles and fibers with high moisture content are less expensive to manufacture than fiber composites of inorganic particles and fibers with low moisture content (samples 6 to 13). In addition, the manufacturing process was short and the fiber composite could be produced efficiently.
  • the fiber composites (samples 6 to 13) of inorganic particles and fibers having a low water content are compared with the fiber composites (samples 1 to 5) of inorganic particles and fibers having a high water content. Compared with a fiber composite sheet having no fiber (Comparative Example 1), transfer and blending into a product were easy.
  • Sample 14 A pellet sample 1 containing a fiber composite of magnesium carbonate particles and fibers was pelletized by a pelletizer (Fuji Paudal Co., Ltd.) (absolutely dry 4 g, pellet diameter 35 mm).
  • Sample 15 was prepared in the same manner as Sample 14, except that the pelleted softwood bleached kraft pulp containing a fiber composite of magnesium carbonate particles and powdered cellulose was replaced with powdered cellulose (KC Flock W-06MG, Nippon Paper Industries). (Absolutely 4 g, pellet diameter: 35 mm) was obtained.
  • Sample 16 A sample 16 was obtained by using a mold sample 1 containing a fiber composite of magnesium carbonate particles and fibers to produce a mold using an injection molding machine (Leo Lab Co., Ltd.).
  • Sample 17 A sheet of the fiber-making yarn sample 9 containing a fiber composite of magnesium carbonate particles and fibers was processed into a width of 8 mm with a slitter and then processed with a twisting machine to obtain a paper-making yarn of 1 mm.
  • Sample 18 Calcium carbonate in the same manner as Sample 10, except that the foamed softwood bleached kraft pulp containing a fiber composite of calcium carbonate particles and fibers was replaced with powdered cellulose (KC Flock W-06MG, Nippon Paper Industries). A fiber composite of particles and powdered cellulose was obtained. The obtained fiber composite was stirred with a three-one motor at 6000 rpm for 5 minutes. Thereafter, the obtained sample (12 g) was dried in an aluminum cup with a dryer at 60 ° C. for 24 hours to produce a foam (density: 0.06 g / cm 3 ) to obtain Sample 18.
  • KC Flock W-06MG powdered cellulose
  • Fiber composites of inorganic particles and fibers in the form of pellets, molds, fiber threads, and foams (samples 14 to 18) are excellent in handling and function of fiber composites of fibers and inorganic particles alone (difficulty)
  • a product having flammability, opacity, radiation shielding, adsorbability, antibacterial properties, etc. is obtained.
  • Experiment 1 Production of Composite of Inorganic Particles and Fibers A composite of inorganic particles and pulp fibers was synthesized by the following procedure and used in Experiment 3.
  • Example 1 Composite of calcium carbonate and pulp fiber, Fig. 2
  • a composite of calcium carbonate and fiber was synthesized by the carbon dioxide gas method.
  • Ultra fine bubble generator UFB generator, YJ-9
  • the reaction liquid was circulated at a pump flow rate of 80 L / min using Envirovision (FIG. 6) (injection speed from nozzle: 125 L / min ⁇ cm 2 ).
  • a large amount of fine bubbles (diameter: 1 ⁇ m or less, average particle size: 137 nm) containing carbon dioxide are generated in the reaction liquid by blowing carbon dioxide from the air supply port of the ultra fine bubble generator, and calcium carbonate is formed on the pulp fiber. Particles were synthesized.
  • the reaction was carried out at a reaction temperature of 20 ° C. and the amount of carbon dioxide blown at 20 L / min. The reaction was stopped when the pH of the reaction solution reached about 7, and sample 2 was obtained (the pH before the reaction was about 13). ).
  • the obtained calcium carbonate and pulp fiber composite had an ash content of 53%, and the average primary particle size of the inorganic particles was 50 nm.
  • Example 2 Composite of magnesium carbonate and pulp fiber, FIG. 3
  • magnesium hydroxide Ube Materials, UD653
  • 35 L of this aqueous suspension is put into a cavitation apparatus (45 L volume), and while circulating the reaction solution, carbon dioxide gas is blown into the reaction vessel and the magnesium carbonate fine particles and the fibers are separated by the carbon dioxide method.
  • a complex was synthesized.
  • the reaction start temperature was about 40 ° C.
  • the carbon dioxide gas was supplied with a commercially available liquefied gas, and the amount of carbon dioxide blown was 20 L / min.
  • cavitation bubbles were generated in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel. Specifically, the reaction solution was injected at high pressure through a nozzle (nozzle diameter: 1.5 mm) to generate cavitation bubbles. The jet velocity was about 70 m / s, and the inlet pressure (upstream pressure) was The outlet pressure (downstream pressure) was 2 MPa and 0.2 MPa.
  • Measured weight ratio of fiber: inorganic particles for the obtained composite was 40:60 (ash content: 60%).
  • the weight ratio (ash content) was determined by suction-filtering the composite slurry (3 g in terms of solid content) using filter paper, then drying the residue in an oven (105 ° C., 2 hours), and burning the organic content at 525 ° C. It was calculated from the weight before and after combustion.
  • Pulp fiber was added to the alkaline solution to prepare an aqueous suspension containing pulp fiber (pulp fiber concentration: 1.56%, pH: about 12.4).
  • This aqueous suspension (pulp solid content 30 g) is put into a 10 L reaction vessel, and while stirring the aqueous suspension, an acid solution (Mg-based) is dropped to form a composite of hydrotalcite fine particles and fibers. Synthesized.
  • the reaction temperature was 60 ° C.
  • the dropping rate was 15 ml / min
  • the dropping was stopped when the pH of the reaction solution reached about 7.
  • Sample 3 (average primary particle size of inorganic particles: 20 nm). Sample 3 had an ash content of 50%.
  • Experiment 2 Production of cellulose nanofiber (cationized cellulose nanofiber: cationized CNF) To a pulper that can stir the pulp, 200 g by dry weight of pulp (LBKP, Nippon Paper Industries) and 24 g by dry weight of sodium hydroxide were added, and water was added so that the pulp solid concentration was 15%. Thereafter, the mixture was stirred at 30 ° C. for 30 minutes, and then the temperature was raised to 70 ° C., and 190 g (converted as an active ingredient) of 3-chloro-2-hydroxypropyltrimethylammonium chloride as a cationizing agent was added. After reacting for 1 hour, the reaction product was taken out, neutralized and washed to obtain a cation-modified pulp.
  • LKP dry weight of pulp
  • sodium hydroxide sodium hydroxide
  • a 1% slurry of cationized pulp was treated with a small high-pressure filter press (YTOH2 type, manufactured by Iwata Kikai Co., Ltd.) at 2 MPa for 15 minutes to produce cationized cellulose nanofibers (solid content: 7% by mass).
  • a small high-pressure filter press (YTOH2 type, manufactured by Iwata Kikai Co., Ltd.) at 2 MPa for 15 minutes to produce cationized cellulose nanofibers (solid content: 7% by mass).
  • CCM CNF Carboxymethylated cellulose nanofiber: CCM CNF
  • a reactor capable of stirring the pulp 112 g of a 50 wt% sodium hydroxide aqueous solution and 67 g of water were added while stirring 250 g of pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) in dry weight.
  • LKP manufactured by Nippon Paper Industries Co., Ltd.
  • 364 g of 35 wt% aqueous sodium monochloroacetate solution was added with stirring. Then, it stirred at 30 degreeC for 30 minutes, heated up to 70 degreeC over 30 minutes, and reacted at 70 degreeC for 1 hour.
  • carboxymethylated cellulose (carboxymethylated pulp) having a carboxymethyl substitution degree of 0.25 per glucose unit.
  • Cellulose nanofibers were produced by treating 1% slurry of carboxymethylated pulp at 2 MPa for 15 minutes using a small high-pressure filter press (YTOH type 2, manufactured by Iwata Kikai Co., Ltd.).
  • TEMPO oxidized cellulose nanofiber TEMPO oxidized CNF
  • powdered cellulose particle size: 24 ⁇ m, manufactured by Nippon Paper Chemicals
  • the mixture was added to 500 ml of an aqueous solution in which 755 mg (7 mmol) of sodium was dissolved, and stirred until the powdered cellulose was uniformly dispersed.
  • a 2% (w / v) slurry of oxidized powdered cellulose was treated with a mixer at 12000 rpm for 15 minutes, and the powdered cellulose slurry was further treated with an ultrahigh pressure homogenizer 5 times at a pressure of 140 MPa to produce cellulose nanofibers. .
  • Experiment 3 Production and evaluation of foam (1)
  • Experiment 3-1 Stability of foam (Experiment b) 395 ml of a slurry (concentration 1.0%) of calcium carbonate / inorganic composite (sample 1) synthesized in Experiment 1
  • 1.3 ml of a paper strength improver (WS-2024, manufactured by Starlight PMC, concentration 3.0%) and a retention agent (ND-300, manufactured by Hymo, concentration 0.05%) were added while stirring.
  • 6 ml of anionic surfactant sodium dodecyl sulfate, Wako first grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • 0.24 g was added to prepare a slurry for producing a foam.
  • Using a multi-disperser (MULTI DISPERSER SMT, manufactured by SMT) the slurry was stirred at 6000 rpm for 10 minutes to foam.
  • the stability of the foam could be improved by adding cellulose nanofiber (CNF).
  • CNF cellulose nanofiber
  • the strength of the obtained foam (foam) was evaluated by tactile sensation. Specifically, the surface of the foam was pushed in by about 5 mm with a finger, and the repulsive force at this time was evaluated in three stages according to the following criteria. ⁇ : Feeling repulsive force, the shape of the foam does not collapse by pushing. ⁇ : A certain amount of repulsive force is felt, but the shape of the foam collapses when pressed. X: Feels almost no repulsive force, and the shape of the foam collapses when pressed.
  • Foam density The weight of the aluminum cup containing the foam was measured, and the weight of the aluminum cup measured in advance was subtracted therefrom to obtain the weight of the foam.
  • the foam radius was obtained by measuring the radius and thickness of the foam and dividing the weight of the foam by the volume to obtain the density of the foam.
  • the strength of the obtained foam was improved by adding cellulose nanofiber (CNF) based on the present invention.
  • CNF cellulose nanofiber
  • structural strength is imparted to the foam by the interaction between CNFs or the interaction between composite pulp fibers or inorganic particles and CNF (intermolecular interaction, hydrogen bonding, etc.). It is thought that it was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Paper (AREA)

Abstract

本発明の課題は、無機粒子と繊維との繊維複合体を含む製品を提供することである。 本発明によって、無機粒子と繊維との繊維複合体を含む製品であって、前記製品が水性懸濁液、パルプ、シート、粉体、微小球形粒、顆粒、ペレット、モールド、糸、または、発泡体の形態である製品が提供される。

Description

繊維と無機粒子の複合体
 本発明は、繊維と無機粒子の複合体を含む製品、およびその製造方法に関する。特に本発明は、繊維と無機粒子の複合体を含み、水性懸濁液、パルプ、シート、粉体、微小球形粒、顆粒、ペレット、ペースト、モールド、糸、または、発泡体の形態である製品、およびその製造方法に関する。
 近年、繊維と無機粒子を結合させることによって、繊維と無機粒子の双方の特徴を持ち合わせたユニークな複合体を得ることができることがわかってきた。
例えば、特許文献1には、無機化合物と微細繊維状セルロースを混合することによって、透明性や光透過性、光拡散性を維持したままに無機化合物の特性(耐熱性、熱伝導性、抗菌性等)を付与することができることが記載されている。また、繊維上に無機粒子を析出させる技術について、特許文献2には、結晶質の炭酸カルシウムが繊維上に機械的に結合した複合体が記載されている。特許文献3には、パルプ懸濁液中で炭酸ガス法により炭酸カルシウムを析出させることによって、パルプと炭酸カルシウムの複合体を製造する技術が記載されている。特許文献4には、歩留まり向上剤によってパルプ繊維に付着した粒子材料を使用することによって、吸収性製品中の硫化水素を除去または低減する方法が記載されている。
特開2012-007247号公報 特開平06-158585号公報 米国特許第5679220号 特開2005-48351号公報
 本発明の課題は、繊維と無機粒子の複合体を含む製品、およびその製造方法を提供することである。特に本発明は、繊維と無機粒子の複合体を含み、水性懸濁液、パルプ、シート、粉体、糸、微小球形粒、顆粒、ペレット、ペースト、モールド、または、発泡体の形態である製品、およびその製造方法を提供することを、その課題にする。
 本発明は、これに制限されるものでないが、以下の発明を包含する。
(1) 繊維と無機粒子の複合体を含み、水性懸濁液、パルプ、シート、粉体、微小球形粒、顆粒、ペレット、モールド、糸、または、発泡体の形態である製品。
(2) 前記製品が水性懸濁液である、(1)に記載の製品。
(3) 前記水性懸濁液の水分率が90質量%以上99%質量以下である、(2)に記載の製品。
(4) 前記製品がパルプである、(1)に記載の製品。
(5) 前記パルプの水分率が10質量%以上90質量%未満である、(4)に記載の製品。
(6) 前記製品がシートである、(1)に記載の製品。
(7) 前記シートの水分率が10質量%未満である、(6)に記載の製品。
(8) 前記シートが前記複合体を内添填料として配合した紙である、(6)または(7)に記載の製品。
(9) 前記製品が粉体である、(1)に記載の製品。
(10) 前記粉体の平均粒子径が100μm未満である、(10)に記載の製品。
(11) 前記製品が微小球形粒である、(1)に記載の製品。
(12) 前記微小球形粒の平均粒子径が100μm以上、1000μm未満である、(11)に記載の製品。
(13) 前記製品が顆粒である、(1)に記載の製品。
(14) 前記顆粒の平均粒子径が1.0mm以上、10mm未満である、(13)に記載の製品。
(15) 前記製品がペレットである、(1)に記載の製品。
(16) 前記製品のペレット径が10mm以上、50mm以下である、(15)に記載の製品。
(17) 前記製品がモールドである、請求項1に記載の製品。
(18) 前記モールドの直径が5cm以上、100cm以下である、(17)に記載の製品。
(19) 前記製品が糸である、(1)に記載の製品。
(20) 前記糸の繊維径が1mm以上、10mm以下である、(19)に記載の製品。
(21) 前記製品が発泡体である、(1)に記載の製品。
(22) 前記発泡体の密度が0.01~0.1g/cm以下である、(21)に記載の製品。
(23) 前記無機粒子の平均一次粒子径が200nm以下である、(1)~(22)のいずれかに記載の製品。
(24) 前記無機粒子の少なくとも一部が、カルシウム、マグネシウムまたはバリウムの金属塩である、(6)~(8)のいずれかに記載の製品。
(25) 前記無機粒子の少なくとも一部が、ケイ酸、またはアルミニウムの金属塩、あるいはチタン、銅、銀、鉄、マンガンまたは亜鉛を含む金属粒子である、(1)~(5)、(9)~(23)のいずれかに記載の製品。
(26) 前記繊維が、化学繊維、再生繊維または天然繊維である、(1)~(25)のいずれかに記載の製品。
(27) 前記繊維が、木材由来のセルロース繊維である、(26)に記載の製品。
(28) 繊維と無機粒子の重量比が5/95~95/5である、(1)~(27)のいずれかに記載の製品。
(29) (1)~(28)のいずれかに記載の製品を含む混合物。
(30) 繊維と無機粒子の複合体を含有する製品の製造方法であって、
 繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
 繊維と無機粒子の複合体の水分を調整する工程、
 を含む上記方法。
(31) 繊維と無機粒子の複合体を含有する水性懸濁液の製造方法であって、
 前記繊維と無機粒子の複合体の水分を調整する工程において、水分率を90質量%以上、99質量%以下に調整する、
 (30)に記載の方法。
(32) 繊維と無機粒子の複合体を含有するパルプの製造方法であって、
 前記繊維と無機粒子の複合体の水分を調整する工程において、水分率を10質量%以上、90質量%未満に調整する、
 (30)に記載の方法。
(33) 繊維と無機粒子の複合体を含有するシートの製造方法であって、
 前記繊維と無機粒子の複合体中の水分を調整する工程において、水分率10質量%未満に調整する、
 (30)に記載の方法。
(34) 繊維と無機粒子の複合体を含有する製品の製造方法であって、
 繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
 繊維と無機粒子の複合体の粒子径を調整する工程、
 を含む上記方法。
(35) 繊維と無機粒子の複合体を含有する粉体の製造方法であって、
 前記繊維と無機粒子の複合体の粒子径を調整する工程において、繊維と無機粒子の複合体の平均粒子径を100μm未満に調整する、
 (34)に記載の方法。
(36) 繊維と無機粒子の複合体を含有する微小球形粒の製造方法であって、
 前記繊維と無機粒子の複合体の粒子径を調整する工程において、繊維と無機粒子の複合体の平均粒子径を100μm以上、1000μm未満でに調整する、
 (34)に記載の方法。
(37) 繊維と無機粒子の複合体を含有する顆粒の製造方法であって、
 前記繊維と無機粒子の複合体の粒子径を調整する工程において、繊維と無機粒子の複合体の平均粒子径を1.0mm以上、10mm未満に調整する、
 (34)に記載の方法。
(38) 繊維と無機粒子の複合体を含有するペレットの製造方法であって、
 繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
 繊維と無機粒子の複合体をペレット化する工程、
 を含む上記方法。
(39) 繊維と無機粒子の複合体の水分率を固液分離装置にて固液分離し、45質量%以上80質量%に調整する工程、
 を含む、(38)に記載の方法。
(40) 繊維と無機粒子の複合体を含有するモールドの製造方法であって、
 繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
 繊維と無機粒子の複合体の水分率を固液分離装置にて固液分離し、10質量%以上35質量%に調整する工程、
 を含む、上記方法。
(41) 繊維と無機粒子の複合体を含有する糸の製造方法であって、
 繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、
 繊維と無機粒子の複合体を撚糸加工する工程、
を含む、上記方法。
(42) 繊維と無機粒子の繊維複合体を撚糸加工する工程の前に、水分率10質量%未満に調整した繊維と無機粒子の繊維複合体を含むシートをスリット加工する工程、
 を含む、(41)に記載上記方法。
(43) 繊維と無機粒子の繊維複合体を含有する発泡体の製造方法であって、
 繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、
 繊維と無機粒子の繊維複合体を攪拌機で撹拌する工程、
 を含む、上記方法。
(44) 発泡させた泡を乾燥させる工程をさらに含む、(43)に記載の方法。
 本発明によれば、繊維と無機粒子の繊維複合体を含む製品、およびその製造方法を提供することができる。特に本発明によれば、繊維と無機粒子の繊維複合体を含み、水性懸濁液、パルプ、シート、粉体、顆粒、微小球形粒、ペレット、ペースト 、モールド、糸、または、発泡体の形態である製品、およびその製造方法を提供することができる。
 すなわち、繊維と無機粒子の繊維複合体を含み、水性懸濁液の形態である製品を得ることによって、繊維と無機粒子の繊維複合体に製造費が安価であり、かつ、製造プロセスが短く、繊維複合体を効率良く作製することができる。また、繊維と無機粒子の繊維複合体を含み、パルプ、シート、粉体、顆粒、微小球形粒の形態である製品を得ることによって、繊維と無機粒子の繊維複合体の移送や他の製品への配合が容易になる。さらに、繊維と無機粒子の繊維複合体を含み、ペレット、ペースト、モールド、糸、または、発泡体の形態である製品を得ることによって、ハンドリングが優れるとともに、単独で繊維と無機粒子の繊維複合体の機能(難燃性や不透明性、放射線遮蔽性、吸着性や抗菌性など)を有する製品が得られる。そして、繊維と無機粒子の繊維繊維複合体を含み、水性懸濁液、パルプ、シート、粉体、顆粒、微小球形粒、ペレット、ペースト、モールド、糸、または、発泡体の形態である製品を含有させることにより、繊維と無機粒子の繊維繊維複合体の機能(難燃性や不透明性、放射線遮蔽性、吸着性や抗菌性など)を付与した組成物を得ることが可能になる。
実験Aにおいてサンプル1の製造に用いた反応装置を示す概略図である。 実験1で合成した複合体の電子顕微鏡写真である(サンプル1、左:10000倍、右:50000倍)。 実験1で合成した複合体の電子顕微鏡写真である(サンプル2、左:10000倍、右:50000倍)。 実験1で合成した複合体の電子顕微鏡写真である(サンプル3、左:10000倍、右:50000倍)。 実験1(サンプル1)で用いた反応装置を示す概略図である。 実験1で用いたウルトラファインバブル発生装置を示す模式図である。 実験1(サンプル2)で用いた反応装置を示す概略図である。 実験1のサンプル3を製造するための装置の概略図である(P:ポンプ)。 実験3のフォームCの外観写真である(左:上面、右:横面)。 実験3のフォームEの外観写真である(左:上面、右:横面)。
 本発明は、繊維と無機粒子の繊維複合体を含む製品、およびその製造方法に関する。特に本発明は、繊維と無機粒子の繊維複合体を含み、水性懸濁液、パルプ、シート、粉体、顆粒、微小球形粒、ペレット、ペースト、モールド、糸、または、発泡体の形態である製品、およびその製造方法に関する。
 本発明においては、無機粒子と繊維とを繊維複合体化する。本発明において、繊維複合体とは、単に無機粒子と繊維とが混在しているのではなく、水素結合やファンデルワールス力等によって無機粒子が繊維の表面に結着しているものをいう。そのため、離解処理によっても無機粒子が繊維から脱落することが少ない。複合体における無機粒子と繊維の結着の強さは、例えば、灰分歩留(%、すなわち、シートの灰分÷離解前の複合体の灰分×100)といった数値によって評価することができる。具体的には、繊維複合体を水に分散させて固形分濃度0.2%に調整してJIS P 8220-1:2012に規定される標準離解機で5分間離解後、JIS P 8222:1998に従って150メッシュのワイヤーを用いてシート化した際の灰分歩留を評価に用いることができ、好ましい態様において灰分歩留は20質量%以上であり、より好ましい態様において灰分歩留は50質量%以上である。
 繊維
 繊維複合体を構成する繊維は、繊維であれば特に制限されないが、例えば、天然の繊維はもちろん、レーヨンやリヨセルなどの再生繊維(半合成繊維)や合成繊維などを制限なく使用することができる。繊維の原料としては、パルプ繊維(木材パルプや非木材パルプ)、セルロースナノファイバー、バクテリアセルロース、ホヤなどの動物由来セルロース、藻類が例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、ラジアータパイン等の針葉樹、及びこれらの混合材、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、アカシア等の広葉樹及びこれらの混合材が例示される。
 木材原料(木質原料)などの天然材料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、ポリサルファイド法等の方法により蒸解した化学パルプ;リファイナー、グラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。
 非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、みつまた等が例示される。
 パルプ繊維は、未叩解及び叩解のいずれでもよく、繊維複合体シートの物性に応じて選択すればよいが、叩解を行う方が好ましい。これにより、シート強度の向上並びに無機粒子の定着促進が期待できる。
 また、これらセルロース原料はさらに処理を施すことで、微粉砕セルロース、酸化セルロースなどの化学変性セルロース、およびセルロースナノファイバー:CNF(ミクロフィブリル化セルロース:MFC、TEMPO酸化CNF、リン酸エステル化CNF、カルボキシメチル化CNF、機械粉砕CNFなど)として使用することもできる。本発明で用いる微粉砕セルロースとしては、一般に粉末セルロースと呼ばれるものと、上記機械粉砕CNFのいずれも含む。粉末セルロースとしては、例えば、精選パルプを未処理のまま機械粉砕したもの、もしくは、酸加水分解した後に得られる未分解残渣を精製・乾燥し、粉砕・篩い分けするといった方法により製造される棒軸状である一定の粒径分布を有する結晶性セルロース粉末を用いてもよいし、KCフロック(日本製紙製)、セオラス(旭化成ケミカルズ製)、アビセル(FMC社製)などの市販品を用いてもよい。粉末セルロースにおけるセルロースの重合度は好ましくは100~1500程度であり、X線回折法による粉末セルロースの結晶化度は好ましくは70~90%であり、レーザー回折式粒度分布測定装置による体積平均粒子径は好ましくは1μm以下100μm以下である。本発明で用いる酸化セルロースは、例えばN-オキシル化合物、及び、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いて水中で酸化することで得ることができる。セルロースナノファイバーとしては、上記セルロース原料を解繊する方法が用いられる。解繊方法としては、例えばセルロースや酸化セルロース等の化学変性セルロースの水懸濁液等を、リファイナー、高圧ホモジナイザー、グラインダー、一軸または多軸混練機、ビーズミル等による機械的な磨砕、ないし叩解することにより解繊する方法を使用することができる。上記方法を1種または複数種類組み合わせてセルロースナノファイバーを製造してもよい。製造したセルロースナノファイバーの繊維径は電子顕微鏡観察などで確認することができ、例えば5nm~1000nm、好ましくは5nm~500nm、より好ましくは5nm~300nmの範囲にある。このセルロースナノファイバーを製造する際、セルロースを解繊及び/又は微細化する前及び/又は後に、任意の化合物をさらに添加してセルロースナノファイバーと反応させ、水酸基が修飾されたものにすることもできる。修飾する官能基としては、アセチル基、エステル基、エーテル基、ケトン基、ホルミル基、ベンゾイル基、アセタール、ヘミアセタール、オキシム、イソニトリル、アレン、チオール基、ウレア基、シアノ基、ニトロ基、アゾ基、アリール基、アラルキル基、アミノ基、アミド基、イミド基、アクリロイル基、メタクリロイル基、プロピオニル基、プロピオロイル基、ブチリル基、2-ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、ベンゾイル基、ナフトイル基、ニコチノイル基、イソニコチノイル基、フロイル基、シンナモイル基等のアシル基、2-メタクリロイルオキシエチルイソシアノイル基等のイソシアネート基、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、パルミチル基、ステアリル基等のアルキル基、オキシラン基、オキセタン基、オキシル基、チイラン基、チエタン基等が挙げられる。これらの置換基の中の水素が水酸基、カルボキシ基等の官能基で置換されても構わない。また、アルキル基の一部が不飽和結合になっていても構わない。これらの官能基を導入するために使用する化合物としては特に限定されず、例えば、リン酸由来の基を有する化合物、カルボン酸由来の基を有する化合物、硫酸由来の基を有する化合物、スルホン酸由来の基を有する化合物、アルキル基を有する化合物、アミン由来の基を有する化合物等が挙げられる。リン酸基を有する化合物としては特に限定されないが、リン酸、リン酸のリチウム塩であるリン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、ポリリン酸リチウムが挙げられる。更にリン酸のナトリウム塩であるリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウムが挙げられる。更にリン酸のカリウム塩であるリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、ポリリン酸カリウムが挙げられる。更にリン酸のアンモニウム塩であるリン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウムなどが挙げられる。これらのうち、リン酸基導入の効率が高く、工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがより好ましいが、特に限定されない。カルボキシル基を有する化合物としては特に限定されないが、マレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸などトリカルボン酸化合物が挙げられる。カルボキシル基を有する化合物の酸無水物としては特に限定されないが、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。カルボキシル基を有する化合物の誘導体としては特に限定されないが、カルボキシル基を有する化合物の酸無水物のイミド化物、カルボキシル基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシル基を有する化合物の酸無水物のイミド化物としては特に限定されないが、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。カルボキシル基を有する化合物の酸無水物の誘導体としては特に限定されない。例えば、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等の、カルボキシル基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。上記カルボン酸由来の基を有する化合物のうち、工業的に適用しやすく、ガス化しやすいことから、無水マレイン酸、無水コハク酸、無水フタル酸が好ましいが、特に限定されない。また、化学的に結合させなくても、修飾する化合物がセルロースナノファイバーに物理的に吸着する形でセルロースナノファイバーを修飾してもよい。物理的に吸着する化合物としては界面活性剤等が挙げられ、アニオン性、カチオン性、ノニオン性いずれを用いてもよい。セルロースを解繊及び/又は粉砕する前に上記の修飾を行った場合、解繊及び/又は粉砕後にこれらの官能基を脱離させ、元の水酸基に戻すこともできる。以上のような修飾を施すことで、セルロースナノファイバーの解繊を促進したり、セルロースナノファイバーを使用する際に種々の物質と混合しやすくしたりすることができる。
 合成繊維と繊維との複合繊維も本発明において使用することができ、例えば、ポリエステル、ポリアミド、ポリオレフィン、アクリル繊維、ガラス繊維、炭素繊維、各種金属繊維などと繊維との複合繊維も使用することができる。
 以上に示した繊維は単独で用いても良いし、複数を混合しても良い。中でも、木材パルプを含むか、若しくは、木材パルプと非木材パルプ及び/又は合成繊維との組み合わせを含むことが好ましく、木材パルプのみであることがより好ましい。
 好ましい態様において、本発明の繊維複合体を構成する繊維はセルロース繊維、またはパルプ繊維である。また、例えば、製紙工場の排水から回収された繊維状物質を本発明の炭酸化反応に供給してもよい。このような物質を反応槽に供給することにより、種々の複合粒子を合成することができ、また、形状的にも繊維状粒子などを合成することができる。
 本発明においては、繊維の他にも、炭酸化反応には直接的に関与しないが、生成物である無機粒子に取り込まれて複合粒子を生成するような物質を用いることができる。本発明にいては、パルプ繊維を始めとする繊維を使用するが、それ以外にも無機粒子、有機粒子、ポリマーなどを含む溶液中で無機粒子を合成することによって、さらにこれらの物質が取り込まれた複合粒子を製造することが可能である。
 複合化する繊維の繊維長は特に制限されないが、例えば、平均繊維長が0.1μm~15mm程度とすることができ、1μm~12mm、100μm~10mm、500μm~8mmなどとしてもよい。
 無機粒子
 本発明において、繊維と複合化する無機粒子は特に制限されないが、水に不溶性または難溶性の無機粒子であることが好ましい。無機粒子の合成を水系で行う場合があり、また、繊維複合体を水系で使用することもあるため、無機粒子が水に不溶性または難溶性であると好ましい。
 ここで言う無機粒子とは、金属もしくは金属化合物のことを言う。また金属化合物とは、金属の陽イオン(例えば、Na、Ca2+、Mg2+、Al3+、Ba2+など)と陰イオン(例えば、O2-、OH、CO 2-、PO 3-、SO 2-、NO-、Si 2-、SiO 2-、Cl、F、S2-など)がイオン結合によって結合してできた、一般に無機塩と呼ばれるものを言う。本発明において、無機粒子の少なくとも一部が、カルシウム、マグネシウムまたはバリウムの金属塩、または、無機粒子の少なくとも一部が、ケイ酸、またはアルミニウムの金属塩、あるいはチタン、銅、銀、鉄、マンガンまたは亜鉛を含む金属粒子であることが好ましい。
 これら無機粒子の合成法は公知の方法によることができ、気液法と液液法のいずれでも良い。気液法の一例としては炭酸ガス法があり、例えば水酸化マグネシウムと炭酸ガスを反応させることで、炭酸マグネシウムを合成することができる。液液法の例としては、酸(塩酸、硫酸など)と塩基(水酸化ナトリウムや水酸化カリウムなど)を中和によって反応させさたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化バリウムと硫酸を反応させることで硫酸バリウムを得たり、硫酸アルミニウムと水酸化ナトリウムを反応させることで水酸化アルミニウムを得たり、炭酸カルシウムと硫酸アルミニウムを反応させることでカルシウムとアルミニウムが複合化した無機粒子を得ることができる。また、このようにして無機粒子を合成する際、反応液中に任意の金属や金属化合物を共存させることもでき、この場合はそれらの金属もしくは金属化合物が無機粒子中に効率よく取り込まれ、複合化できる。例えば、炭酸カルシウムにリン酸を添加してリン酸カルシウムを合成する際に、二酸化チタンを反応液中に共存させることで、リン酸カルシウムとチタンの複合粒子を得ることができる。
 炭酸カルシウムを合成する場合であれば、例えば、炭酸ガス法、可溶性塩反応法、石灰・ソーダ法、ソーダ法などによって炭酸カルシウムを合成することができ、好ましい態様において、炭酸ガス法によって炭酸カルシウムを合成する。
 一般に、炭酸ガス法によって炭酸カルシウムを製造する場合、カルシウム源として石灰(ライム)が使用され、生石灰CaOに水を加えて消石灰Ca(OH)2を得る消和工程と、消石灰に炭酸ガスCO2を吹き込んで炭酸カルシウムCaCO3を得る炭酸化工程とによって炭酸カルシウムが合成される。この際、生石灰に水を加えて調製した消石灰の懸濁液をスクリーンに通して、懸濁液中に含まれる低溶解性の石灰粒を除去してもよい。また、消石灰を直接カルシウム源としてもよい。本発明において炭酸ガス法によって炭酸カルシウムを合成する場合、キャビテーション気泡の存在下で炭酸化反応を行えばよい。
 一般に、炭酸ガス法によって炭酸カルシウムを製造する際の反応容器(炭酸化反応機:カーボネーター)として、ガス吹き込み型カーボネーターと機械攪拌型カーボネーターが知られている。ガス吹き込み型カーボネーターでは、消石灰懸濁液(石灰乳)を入れた炭酸化反応槽に炭酸ガスを吹き込み、消石灰と炭酸ガスとを反応させるが、単純に炭酸ガスを吹き込むだけでは気泡の大きさを均一かつ微細に制御することが難しく、反応効率の点からは制限がある。一方、機械攪拌型カーボネーターでは、カーボネーター内部に攪拌機を設け、その攪拌機の近くに炭酸ガスを導入することによって、炭酸ガスを細かな気泡とし、消石灰と炭酸ガスとの反応効率を向上させている(『セメント・セッコウ・石灰ハンドブック』技報堂出版、1995年、495頁)。
 しかし、機械攪拌型カーボネーターのように、炭酸化反応槽内部に設けた攪拌機で攪拌を行う場合、反応液の濃度が高かったり炭酸化反応が進むと反応液の抵抗が大きく十分な攪拌が困難になるため炭酸化反応を的確に制御することが難しかったり、十分な攪拌を行うには攪拌機に相当な負荷がかかりエネルギー的に不利となることがあった。また、ガスの吹込口がカーボネーターの下部にあり、攪拌をよくするために攪拌機の羽根がカーボネーターの底部の近くに設置されている。溶解性が低いライムスクリーン残渣は沈降が速いために、常に底部に滞留しており、ガス吹込口を塞いだり、攪拌機のバランスを崩したりする。さらに、従来の方法では、カーボネーターに加えて、攪拌機や、カーボネーターに炭酸ガスを導入するための設備が必要であり、設備面でもコストがかかるものであった。そして、機械攪拌型カーボネーターでは、攪拌機の近くに供給した炭酸ガスを攪拌機によって細かくすることによって消石灰と炭酸ガスとの反応効率を向上させるものの、反応液の濃度が高い場合などは十分に炭酸ガスを微細化できず、炭酸化反応の面でも、生成する炭酸カルシウムの形態等を正確に制御することが難しいことがあった。本発明においては、キャビテーション気泡の存在下で炭酸カルシウムを合成することによって、効率的に炭酸化反応を進行させ、均一な炭酸カルシウム微粒子を製造することが可能になる。特に噴流キャビテーションを用いることで、羽根などの機械的な攪拌機なしに、十分な攪拌を行うことができる。本発明においては、従来からの公知の反応容器を用いることができ、もちろん、上述したようなガス吹き込み型カーボネーターや機械攪拌型カーボネーターを問題なく使用することができ、これらの容器にノズルなどを用いた噴流キャビテーションを組合せても良い。
 炭酸ガス法によって炭酸カルシウムを合成する場合、消石灰の水性懸濁液の固形分濃度は、好ましくは0.1~40重量%、より好ましくは0.5~30重量%、さらに好ましくは1~20重量%程度である。固形分濃度が低いと反応効率が低く、製造コストが高くなり、固形分濃度が高すぎると流動性が悪くなり、反応効率が落ちる。本発明においては、キャビテーション気泡の存在下で炭酸カルシウムを合成するため、固形分濃度の高い懸濁液(スラリー)を用いても、反応液と炭酸ガスを好適に混合することができる。
 消石灰を含む水性懸濁液としては、炭酸カルシウム合成に一般に用いられるものを使用でき、例えば、消石灰を水に混合して調製したり、生石灰(酸化カルシウム)を水で消和(消化)して調製することができる。消和する際の条件は特に制限されないが、例えば、CaOの濃度は0.1重量%以上、好ましくは1重量%以上、温度は20~100℃、好ましくは30~100℃とすることができる。また、消和反応槽(スレーカー)での平均滞留時間も特に制限されないが、例えば、5分~5時間とすることができ、2時間以内とすることが好ましい。当然であるが、スレーカーはバッチ式であっても連続式であってもよい。なお、本発明においては炭酸化反応槽(カーボネーター)と消和反応槽(スレーカー)とを別々にしてもよく、また、1つの反応槽を炭酸化反応槽および消和反応槽として用いてもよい。
 炭酸マグネシウムを合成する場合、炭酸マグネシウムの合成方法は、公知の方法によることができる。例えば、水酸化マグネシウムと炭酸ガスから重炭酸マグネシウムを合成し、重炭酸マグネシウムから正炭酸マグネシウムを経て塩基性炭酸マグネシウムを合成することができる。炭酸マグネシウムは合成方法によって重炭酸マグネシウム、正炭酸マグネシウム、塩基性炭酸マグネシウムなどを得ることができるが、本発明の繊維複合体に係る炭酸マグネシウムは、塩基性炭酸マグネシムにすることが特に好ましい。なぜならば、重炭酸マグネシウムは安定性が比較的低く、柱状(針状)結晶である正炭酸マグネシウムは繊維へ定着しにくい場合があるためである。一方、繊維の存在下で塩基性炭酸マグネシウムにまで化学反応させることで、繊維表面をうろこ状などに被覆した炭酸マグネシウムと繊維の繊維複合体を得ることができる。
 また本発明においては、反応槽の反応液を循環させて使用することができる。このように反応液を循環させて、反応液と炭酸ガスとの接触を増やすことにより、反応効率を上げ、所望の無機粒子を得ることが容易になる。
 本発明においては、二酸化炭素(炭酸ガス)などのガスが反応容器に吹き込まれ、反応液と混合することができる。本発明によれば、ファン、ブロワなどの気体供給装置がなくとも炭酸ガスを反応液に供給することができ、しかも、キャビテーション気泡によって炭酸ガスが微細化されるため反応を効率よく行うことができる。
 本発明において、二酸化炭素を含む気体の二酸化炭素濃度に特に制限はないが、二酸化炭素濃度が高い方が好ましい。また、インジェクターに導入する炭酸ガスの量に制限はなく適宜選択することができるが、例えば、消石灰1kgあたり100~10000L/時の流量の炭酸ガスを用いると好ましい。
 本発明の二酸化炭素を含む気体は、実質的に純粋な二酸化炭素ガスでもよく、他のガスとの混合物であってもよい。例えば、二酸化炭素ガスの他に、空気、窒素などの不活性ガスを含む気体を、二酸化炭素を含む気体として用いることができる。また、二酸化炭素を含む気体としては、二酸化炭素ガス(炭酸ガス)の他、製紙工場の焼却炉、石炭ボイラー、重油ボイラーなどから排出される排ガスを二酸化炭素含有気体として好適に用いることができる。その他にも、石灰焼成工程から発生する二酸化炭素を用いて炭酸化反応を行うこともできる。
 硫酸バリウム(BaSO)を合成する場合、硫酸バリウム(BaSO)で表されるバリウムイオンと硫酸イオンからなるイオン結晶性の化合物であり、板状あるいは柱状の形態であることが多く、水には難溶性である。純粋な硫酸バリウムは無色の結晶であるが、鉄、マンガン、ストロンチウム、カルシウムなどの不純物を含むと黄褐色または黒灰色を呈し、半透明となる。天然の鉱物としても得られるが、化学反応によって合成することもできる。特に、化学反応による合成品は医薬用(X線造影剤)に用いられるほか、化学的に安定な性質を応用して塗料、プラスチック、蓄電池等に広く使用されている。
 ハイドロタルサイトを合成する場合、ハイドロタルサイトの合成方法は公知の方法によることができる。例えば、反応容器内に中間層を構成する炭酸イオンを含む炭酸塩水溶液とアルカリ溶液(水酸化ナトリウムなど)に繊維を浸漬し、次いで、酸溶液(基本層を構成する二価金属イオン及び三価金属イオンとを含む金属塩水溶液)を添加し、温度、pHなどを制御して共沈反応により、ハイドロタルサイトを合成する。また、反応容器内において、酸溶液(基本層を構成する二価金属イオン及び三価金属イオンを含む金属塩水溶液)に繊維を浸漬し、次いで、中間層を構成する炭酸イオンを含む炭酸塩水溶液とアルカリ溶液(水酸化ナトリウム等)を滴下し、温度、pH等を制御して共沈反応により、ハイドロタルサイトを合成することもできる。常圧での反応が一般的ではるが、それ以外にも、オートクレーブなどを使用しての水熱反応により得る方法もある(特開昭60-6619号公報)。
 本発明においては、基本層を構成する二価金属イオンの供給源として、マグネシウム、亜鉛、バリウム、カルシウム、鉄、銅、コバルト、ニッケル、マンガンの各種塩化物、硫化物、硝酸化物、硫酸化物を用いることができる。また、基本層を構成する三価金属イオンの供給源として、アルミニウム、鉄、クロム、ガリウムの各種塩化物、硫化物、硝酸化物、硫酸化物を用いることができる。
 本発明においては、層間陰イオンとして陰イオンとして炭酸イオン、硝酸イオン、塩化物イオン、硫酸イオン、リン酸イオンなどを用いることができる。炭酸イオンを層間陰イオンとする場合、炭酸ナトリウムが供給源として使用される。ただし炭酸ナトリウムは、二酸化炭素(炭酸ガス)を含む気体で代替可能で、実質的に純粋な二酸化炭素ガスや、他のガスとの混合物であってもよい。例えば、製紙工場の焼却炉、石炭ボイラー、重油ボイラーなどから排出される排ガスを二酸化炭素含有気体として好適に用いることができる。その他にも、石灰焼成工程から発生する二酸化炭素を用いて炭酸化反応を行うこともできる。 
 繊維複合体の合成
 本発明の繊維複合体は、繊維の存在下で無機粒子を合成することによって得ることができる。繊維表面が、無機粒子の析出における好適な場となるため、無機粒子と繊維との繊維複合体を合成しやすいためである。
 本発明に係る繊維複合体の合成方法は、繊維を含む溶液において無機粒子を合成することを必須とするものである。例えば、繊維と無機粒子の前駆体を含む溶液を開放型の反応槽中で撹拌、混合して繊維複合体を合成しても良いし、繊維と無機粒子の前駆体を含む水性懸濁液を反応容器内に噴射することによって合成してもよい。無機物の前駆体の水性懸濁液を反応容器内に噴射する際に、キャビテーション気泡を発生させ、その存在下で無機粒子を合成してもよい。
 無機粒子の前駆体の一方がアルカリ性の場合、あらかじめ繊維をアルカリ性前駆体の溶液に分散させておくと繊維を膨潤させることができるため、効率よく無機粒子と繊維の繊維複合体を得ることができる。混合後15分以上撹拌することで繊維の膨潤を促進してから反応を開始することもできるが、混合後すぐに反応を開始してもよい。また、硫酸アルミニウム(硫酸バンド、ポリ塩化アルミニウム等)のようにセルロースと相互作用しやすい物質を無機粒子の前駆体の一部として用いる場合には、硫酸アルミニウム側をあらかじめ繊維と混合しておくことで、無機粒子が繊維に定着する割合を向上させられることもある。
 本発明においては、反応容器内にキャビテーション気泡を生じさせるような条件で液体を噴射してもよいし、キャビテーション気泡を生じさせないような条件で噴射してもよい。また、反応容器はいずれの場合においても圧力容器であることが好ましい。なお、本発明における圧力容器とは0.005MPa以上の圧力をかけることのできる容器のことである。キャビテーション気泡を生じさせないような条件の場合、圧力容器内の圧力は、静圧で0.005MPa以上0.9MPa以下であることが好ましい。
 一つの好ましい態様として、本発明の繊維複合体における無機粒子の平均一次粒子径を、例えば、1μm以下とすることができるが、平均一次粒子径が500nm以下の無機粒子や平均一次粒子径が200nm以下の無機粒子、さらには平均一次粒子径が100nm以下の無機粒子、平均一次粒子径が50nm以下の無機粒子を用いることができる。また、無機粒子の平均一次粒子径は10nm以上とすることも可能である。なお、平均一次粒子径は、レーザー回折式粒度分布測定装置や電子顕微鏡写真で測定することができる。
 本発明の繊維複合体を製造する際には、さらに公知の各種助剤を添加することができる。例えば、キレート剤を添加することができ、具体的には、クエン酸、リンゴ酸、酒石酸などのポリヒドロキシカルボン酸、シュウ酸などのジカルボン酸、グルコン酸などの糖酸、イミノ二酢酸、エチレンジアミン四酢酸などのアミノポリカルボン酸およびそれらのアルカリ金属塩、ヘキサメタリン酸、トリポリリン酸などのポリリン酸のアルカリ金属塩、グルタミン酸、アスパラギン酸などのアミノ酸およびこれらのアルカリ金属塩、アセチルアセトン、アセト酢酸メチル、アセト酢酸アリルなどのケトン類、ショ糖などの糖類、ソルビトールなどのポリオールが挙げられる。また、表面処理剤としてパルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸等の不飽和脂肪酸、脂環族カルボン酸、アビエチン酸等の樹脂酸、それらの塩やエステルおよびエーテル、アルコール系活性剤、ソルビタン脂肪酸エステル類、アミド系やアミン系界面活性剤、ポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテル、アルファオレフィンスルホン酸ナトリウム、長鎖アルキルアミノ酸、アミンオキサイド、アルキルアミン、第四級アンモニウム塩、アミノカルボン酸、ホスホン酸、多価カルボン酸、縮合リン酸などを添加することができる。また、必要に応じ分散剤を用いることもできる。この分散剤としては、例えば、ポリアクリル酸ナトリウム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、アクリル酸-マレイン酸共重合体アンモニウム塩、メタクリル酸-ナフトキシポリエチレングリコールアクリレート共重合体、メタクリル酸-ポリエチレングリコールモノメタクリレート共重合体アンモニウム塩、ポリエチレングリコールモノアクリレートなどがある。これらを単独または複数組み合わせて使用することができる。また、添加のタイミングは合成反応の前でも後でも良い。このような添加剤は、無機粒子に対して、好ましくは0.001~20%、より好ましくは0.1~10%の量で添加することができる。
 本発明において繊維複合体を合成する場合、反応条件は特に制限されず、用途に応じて適宜設定することができる。例えば、合成反応の温度は0~90℃とすることができ、10~80℃とすることが好ましく、50~70℃がより好ましく、60℃程度とすると特に好ましい。反応温度は、反応液の温度を温度調節装置によって制御することができ、温度が低いと反応効率が低下しコストが高くなる一方、90℃を超えると粗大な無機粒子が多くなる傾向がある。
 また、本発明において反応はバッチ反応とすることもでき、連続反応とすることもできる。一般に、反応後の残存物を排出する便利さから、バッチ反応工程を行うことが好ましい。反応のスケールは特に制限されないが、100L以下のスケールで反応させてもよいし、100L超のスケールで反応させてもよい。反応容器の大きさは、例えば、10L~100L程度とすることもできるし、100L~1000L程度としてもよい。
 さらに、反応は、例えば、反応液のpHをモニターすることにより制御することができ、反応液のpHプロファイルに応じて、炭酸カルシウムの炭酸化反応であれば、例えばpH9未満、好ましくはpH8未満、より好ましくはpH7のあたりに到達するまで反応を行うことができる。
 一方、反応液の電導度をモニターすることにより反応を制御することも出来る。炭酸カルシウムの炭酸化反応であれば、例えば電導度が1mS/cm以下に低下するまで炭酸化反応を行うことが好ましい。
 さらにまた、単純に反応時間によって反応を制御することができ、具体的には、反応物が反応槽に滞留する時間を調整して制御することができる。その他、本発明においては、反応槽の反応液を攪拌したり、反応を多段反応とすることによって反応を制御することもできる。
 繊維と無機粒子の重量比は、5/95~95/5とすることができ、10/90~90/10、20/80~80/20、30/70~70/30、40/60~60/40としてもよい。
 本発明においては、反応生成物である繊維複合体が懸濁液として得られるため、必要に応じて、貯蔵タンクに貯蔵したり、濃縮、脱水、粉砕、分級、熟成、分散などの処理を行うことができる。これらは公知の工程によることができ、用途やエネルギー効率などを考慮して適宜決定すればよい。例えば濃縮・脱水処理は、遠心脱水機、沈降濃縮機などを用いて行われる。この遠心脱水機の例としては、デカンター、スクリューデカンターなどが挙げられる。濾過機や脱水機を用いる場合についてもその種類に特に制限はなく、一般的なものを使用することができるが、例えば、フィルタープレス、ドラムフィルター、ベルトプレス、チューブプレス等の加圧型脱水機、オリバーフィルター等の真空ドラム脱水機などを好適に用いて炭酸カルシウムケーキとすることができる。粉砕の方法としては、ボールミル、サンドグラインダーミル、インパクトミル、高圧ホモジナイザー、低圧ホモジナイザー、ダイノーミル、超音波ミル、カンダグラインダ、アトライタ、石臼型ミル、振動ミル、カッターミル、ジェットミル、離解機、叩解機、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。分級の方法としては、メッシュ等の篩、アウトワード型もしくはインワード型のスリットもしくは丸穴スクリーン、振動スクリーン、重量異物クリーナー、軽量異物クリーナー、リバースクリーナー、篩分け試験機等が挙げられる。分散の方法としては、高速ディスパーザー、低速ニーダーなどが挙げられる。
 本発明によって得られた繊維複合体は、完全に脱水せずに懸濁液の状態で填料や顔料に配合することもできるが、乾燥して粉体とすることもできる。この場合の乾燥機についても特に制限はないが、例えば、気流乾燥機、バンド乾燥機、噴霧乾燥機などを好適に使用することができる。
 本発明においては、懸濁液の調製などに水を使用するが、この水としては、通常の水道
水、工業用水、地下水、井戸水などを用いることができる他、イオン交換水や蒸留水、超
純水、工業廃水、製造工程中に得られる水を好適に用いることできる。
 本発明によって得られる繊維複合体は、公知の方法によって改質することが可能である。例えば、ある態様においては、その表面を疎水化し、樹脂などとの混和性を高めたりすることが可能である。
 本発明に係る繊維の繊維複合体は、繊維表面の15%以上が無機粒子で被覆されており、このような面積率で繊維表面が被覆されていると無機粒子に起因する特徴が大きく生じるようになる一方、繊維表面に起因する特徴が小さくなる。
 本発明の繊維と無機粒子の繊維複合体は、単に繊維と無機粒子が混在しているのではなく、水素結合等によってある程度繊維と無機粒子が結着しているので、離解処理によっても無機粒子が脱落することが少ない。繊維複合体における繊維と無機粒子の結着の強さは、例えば、灰分歩留(%)、すなわち、(シートの灰分÷離解前の繊維複合体の灰分)×100といった数値によって評価することができる。具体的には、繊維複合体を水に分散させて固形分濃度0.2%に調整してJIS P 8220-1:2012に規定される標準離解機で5分間離解後、JIS P 8222:1998に従って150メッシュのワイヤーを用いてシート化した際の灰分歩留を評価に用いることができ、好ましい態様において灰分歩留は20質量%以上であり、より好ましい態様において灰分歩留は50質量%以上である。
 繊維複合体の形態
 本発明は、繊維と無機粒子の繊維複合体を含み、水性懸濁液、パルプ、シート、粉体、微小球形粒、顆粒、ペレット、モールド、糸、または、発泡体の形態にして用いる。
 本発明において、水性懸濁液とは、液体と固体との混合物であって、水分率が90質量%以上99%質量以下をいう。パルプとは、液体と固体との混合物であって水性懸濁液より水分率が低く、水分率が10質量%以上90質量%のものをいう。シートとは、薄くて広いものをいい、水分率10質量%未満のものをいう。なお、水分率は下記の式で求めることができる。
 水分率(%)=(乾燥前の重量(g)-乾燥後の重量(g))/乾燥後の重量(g)×100 本発明において、粉体とは、粉、粒などの集まったものをいい、平均粒子径が100μm未満であるものをいう。微小球形粒とは、繊維複合体を球状に成形した粒をいい、平均粒子径を100μm以上1000μm未満であるものをいう。顆粒とは、粉体よりも粒径の大きい粒をいい、平均粒子径が1mm以上、10mm未満であるものをいう。
 ペレットとは、繊維複合体を圧縮成型した小粒の成形体のことをいう。
 モールドとは、鋳型に繊維と無機粒子の繊維複合体を流し込んで脱水した成形体のことをいう。
 糸とは繊維複合体を糸加工した糸状のものをいう。糸加工の例として抄繊糸が挙げられる。抄繊糸とは、紙からつくった糸のことをいう。具体的には、製紙されてロールに巻かれたものを輪切りにして1~30mmくらいのテープとし、これに撚りをかけて糸にしたものをいう。糸加工の他の手段として、細い孔から押し出して連続した糸をつくる紡糸や、延伸、熱加工などの方法により製造することができる。
 発泡体とは、気泡を含ませた繊維複合体のことをいう。
 その際、一つの好ましい態様として、繊維と無機粒子の繊維複合体を含む製品は、繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、繊維と無機粒子の繊維複合体の水分を調整する工程、を含む方法により製造することができる。また、本発明の1つの態様においては、無機粒子と繊維との複合体を含むスラリーにセルロースナノファイバーを添加し、撹拌装置を用いて撹拌することによって泡を形成させることもできる。その際、炭酸カルシウムと繊維との複合体のスラリーから得られる泡沫は、他の無機粒子の複合体から得られる泡沫と比較し、粘度が高く、扱いやすい。
 発泡させる際の撹拌速度は、特に制限されないが、好ましくは1000~10000rpm、より好ましくは2000~9000rpm、さらに好ましくは4000~7000rpmである。
 本発明で使用する撹拌装置は、高速撹拌に対応したものが良い。撹拌羽の形状は、例えば、3本1組のものが好ましい。好ましい撹拌装置としては、例えば、マルチディスパーサーPB95(エスエムテー製)などのディスパーサーが挙げられる。
 また別の態様において、本発明では、押出成形機などを用いて泡(フォーム)を形成させることもできる。すなわち、混練した材料を、押出ダイスのノズルから外部に押し出し、大気圧下で水を蒸発させて材料を発泡させることができる。
 本発明においては、モールド(型)を用いて所望の形状の発泡体を製造することもできるし、また、発泡させた泡が固まる前にこれらを収束して所望の形状にすることによって種々の形状の発泡体を製造することもできる。
 本発明においては、形成させた泡を乾燥させて発泡体(フォーム)を製造するが、乾燥温度は、例えば、50~150℃、より好ましくは70~130℃、さらに好ましくは90~110℃である。
 本発明の好ましい態様において、複合体を含有するスラリーに界面活性剤を添加して、起泡を容易にすることができる。使用する界面活性剤は、陽イオン性、陰イオン性、非イオン性のいずれの界面活性剤を使用してもよい。このうち、陰イオン性の界面活性剤を使用することが好ましい。
 本発明の発泡体には、例えば、無機粉末としては、軽質炭酸カルシウムや重質炭酸カルシウムを配合することができ、また粉末の粒子形状は、球状等の定形、或いは不定形、ウィスカー状等の何れであってもよい。また平均粒子径についても特に制限はないが、例えば、0.5~5μmとしてもよい。炭酸カルシウムは、ステアリン酸、パルミチン酸、ラウリン酸などの脂肪酸、並びにこれらの脂肪酸とアルカリ金属との塩などによって表面処理されたものを使用することも可能である。
 本発明においては、微細繊維や無機分(灰分)の歩留りを向上させるため、複合体を含有するスラリーに製紙用歩留剤を添加してもよい。また、歩留剤の添加によって、泡の安定性および発泡体の強度を向上させることも可能である。使用する歩留剤は、表面電荷が正のものと負のもののどちらでも良いが、表面電荷が正のものの方がより好ましい。例えば、ハイモロック ND―300(ハイモ株式会社製)である。
 本発明の好ましい態様において、複合体を含有するスラリーに紙力向上剤を配合することができる。本発明で使用する紙力向上剤は、例えば、湿潤紙力剤、乾燥紙力剤などを使用することができる、例えば、湿潤紙力剤としてWS-2024(星光PMC株式会社製)、乾燥紙力剤としてハーマイドC-10(ハリマ化成グループ株式会社製)が挙げられる。このうち、湿潤紙力剤が好ましい。紙力向上剤としては、例えば、デンプンやペクチン、グアガム、アラビアガム、アルギン酸などの親水性高分子材料を好適に使用することができる。
 また、本発明の発泡体には、ポリオレフィン系樹脂や塩化ビニル系樹脂などの樹脂を配合することもできる。ポリオレフィン系樹脂としては、例えば、ポリプロピレンやポリエチレンなどを使用することができ、またコスト面やリサイクル面を考慮して再生ポリオレフィン樹脂を使用することもできる。塩化ビニル樹脂としては、低重合度PVCや高重合度PVCなどを好適に使用することができ、バージン樹脂だけでなく再生樹脂(軟質塩化ビニル樹脂など)を使用してもよい。さらに、本発明の発泡体には、可塑剤を配合してもよい。可塑剤としては、例えば、フタレート系可塑剤やトリメリテート系可塑剤、脂肪酸系可塑剤、エポキシ系可塑剤、アジペート系可塑剤、ポリエステル系可塑剤などを好適に使用することができる。
 繊維と無機粒子の繊維複合体の水分を調整する工程において、水分を調整する装置として、遠心脱水機、沈降濃縮機、固液分離装置などを用いて行われる。固液分離装置の例としては、デカンター、スクリューデカンター、ディスクフィルター、DNTウォッシャー、FUNDABACフィルタ、ニップウォッシャー、サクションフィルター等の濃縮・脱水機、フィルタープレス、コンパクトウォッシャー、ドラムフィルター、ベルトプレス、チューブプレス等の加圧型脱水機、オリバーフィルター等の真空ドラム脱水機などを用いることができる。
 繊維と無機粒子の繊維複合体の水分を調整する工程において、水分率を90質量%以上99%質量以下に調整することにより、繊維と無機粒子の繊維複合体を含む水性懸濁液を得ることができる。その際、水分率を92%質量以上97質量%以下とすることや、水分率を94質量%以上95%質量以下に調整することもできる。
 また、水分率を10質量%以上90質量%に調整することにより、繊維と無機粒子の繊維複合体を含むパルプを製造することができる。その際、水分率を20%質量以上80質量%以下とすることや、水分率を30%質量以上60質量%以下に調整することもできる。
 さらに、水分率10質量%未満に調整することにより、繊維と無機粒子の繊維複合体を含むシートを製造することができる。その際、水分率を1質量%以上8%質量以下とすることや、水分率を3質量%以上6%質量以下に調整することもできる。
 繊維と無機粒子の繊維複合体を含むシートを製造する工程においては、長網抄紙機、短網抄紙機、円網抄紙機、傾斜ワイヤー型抄紙機、ハイブリッド抄紙機などを用いることもできる。
 また、一つの好ましい態様として、繊維と無機粒子の繊維複合体を含む製品は、繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、繊維と無機粒子の繊維複合体の粒子径を調整する工程、を含む方法により製造することができる。
 繊維と無機粒子の繊維複合体の粒子径を調整する工程において、粒子径は電子顕微鏡による観察やレーザー回折式粒度分布測定により確認することができる。さらに、無機粒子を合成する際の条件を調整することによって、種々の大きさや形状を有する無機粒子を繊維と繊維複合体化することができる。
 繊維と無機粒子の繊維複合体の粒子径を調整する方法としては、例えば、ボールミル、サンドグラインダーミル、インパクトミル、高圧ホモジナイザー、低圧ホモジナイザー、ダイノーミル、超音波ミル、カンダグラインダ、アトライタ、石臼型ミル、振動ミル、カッターミル、ジェットミル、離解機、叩解機、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー、ローラーコンパクター等が挙げられる。
 繊維と無機粒子の繊維複合体の粒子径を調整する工程において、繊維と無機粒子の繊維複合体の平均粒子径を100μm未満に調整することによって、繊維と無機粒子の繊維複合体を含有する粉体を製造することができる。好ましくは、繊維と無機粒子の繊維複合体の平均粒子径を1μm以上90μm未満とすることや、繊維と無機粒子の繊維複合体の平均粒子径を10μm以上80μm未満とすることもできる。
 繊維と無機粒子の繊維複合体の粒子径を調整する工程において、繊維と無機粒子の繊維複合体の平均粒子径を100μm以上1000μm未満に調整することにより、繊維と無機粒子の繊維複合体を含有する微小球形粒を製造することができる。好ましくは、繊維と無機粒子の繊維複合体の平均粒子径を200μm以上800μm未満とすることや、繊維と無機粒子の繊維複合体の平均粒子径を300μm以上、600μm未満とすることもできる。
 繊維と無機粒子の繊維複合体の平均粒子径を調整する工程において、繊維と無機粒子の繊維複合体の平均粒子径を1mm以上、10mm未満に調整することにより、繊維と無機粒子の繊維複合体を含有する顆粒を製造することができる。好ましくは、繊維と無機粒子の繊維複合体の平均粒子径を2mm以上、8mm未満とすることや、繊維と無機粒子の繊維複合体の平均粒子径を3mm以上、6mm未満とすることもできる。
 さらに、一つの好ましい態様として、繊維と無機粒子の繊維複合体を含むペレットは、繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成した後、繊維と無機粒子の繊維複合体をペレット化することにより製造することができる。ペレット化装置としては、ペレタイザーなどが挙げられる。
 また、繊維と無機粒子の繊維複合体の水分率を上述の固液分離装置にて固液分離し、45質量%以上85質量%以下、好ましくは、50質量%以上70質量%以下に調整した後、ペレット化することもできる。
 一つの好ましい態様として、繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、鋳型に繊維と無機粒子の繊維複合体を流し込んで脱水する工程、により、繊維と無機粒子の繊維複合体を含有するモールドを製造することができる。
 一つの好ましい態様として、繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、繊維と無機粒子の繊維複合体を糸加工する工程、により繊維と無機粒子の繊維複合体を含有する糸を製造することができる。糸加工の例としては、抄繊(撚糸加工)、紡糸、延伸、熱加工などの方法が挙げられる。抄繊(撚糸加工)する場合、繊維と無機粒子の繊維複合体を撚糸加工する工程の前に、水分率10質量%未満に調整した繊維と無機粒子の繊維複合体を含むシートをスリット加工する工程を行うことが好ましい。また、糸としては、繊維径が1mm以上、10mm以下の糸とすることが好ましい。スリット化装置としては、スリッターなどが挙げられる。
 一つの好ましい態様として、繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の繊維複合体を合成する工程、繊維と無機粒子の繊維複合体を攪拌機で撹拌する工程、繊維複合体により、繊維と無機粒子の繊維複合体を含有する発泡体を製造方法することができる。
 撹拌に用いる装置としては、ホモジナイザー、ディスパーザーなどが挙げられる。また、撹拌する際の速度としては、6000rpm以上、10000rpm未満とすることや、7000rpm以上、9000rpm未満とすることができる。
 発泡体の密度は、0.01~0.1g/cmの範囲であることが好ましい。なお、密度は下記の式で求めることができる。
 密度(g/cm)=発泡体の質量(g)/発泡体の体積(cm
繊維と無機粒子の繊維複合体を乾燥する場合の乾燥機についても特に制限はないが、例えば、気流乾燥機、バンド乾燥機、噴霧乾燥機などを好適に使用することができる。
 繊維複合体の用途
 本発明によって得られた繊維複合体を含む製品は、他の製品に混合し、混合物を得ることができる。本発明の製品または混合物は、種々の用途に用いることができ、例えば、紙、繊維、セルロース系複合材料、フィルター材料、塗料、プラスチックやその他の樹脂、ゴム、エラストマー、セラミック、ガラス、タイヤ、建築材料(アスファルト、アスベスト、セメント、ボード、コンクリート、れんが、タイル、合板、繊維板など)、各種担体(触媒担体、医薬担体、農薬担体、微生物担体など)、吸着剤(不純物除去、消臭、除湿など)、しわ防止剤、粘土、研磨材、改質剤、補修材、断熱材、防湿材、撥水材、耐水材、遮光材、シーラント、シールド材、防虫剤、接着剤、インキ、化粧料、医用材料、ペースト材料、変色防止剤、食品添加剤、錠剤賦形剤、分散剤、保形剤、保水剤、濾過助材、精油材、油処理剤、油改質剤、電波吸収材、絶縁材、遮音材、防振材、半導体封止材、放射線遮断材、化粧品、肥料、飼料、香料、塗料・接着剤用添加剤、難燃材料、衛生用品(使い捨ておむつ、生理用ナプキン、失禁者用パッド、母乳パッドなど)等のあらゆる用途に広く使用することができる。また、前記用途における各種充填剤、コーティング剤などに用いることができる。本発明の繊維複合体は、製紙用途に適用してもよく、例えば、印刷用紙、新聞紙、インクジェット用紙、PPC用紙、クラフト紙、上質紙、コート紙、微塗工紙、包装紙、薄葉紙、色上質紙、キャストコート紙、ノンカーボン紙、ラベル用紙、感熱紙、各種ファンシーペーパー、水溶紙、剥離紙、工程紙、壁紙用原紙、不燃紙、難燃紙、積層板原紙、プリンテッドエレクトロニクス用紙、バッテリー用セパレータ、クッション紙、トレーシングペーパー、含浸紙、ODP用紙、建材用紙、化粧材用紙、封筒用紙、テープ用紙、熱交換用紙、化繊紙、減菌紙、耐水紙、耐油紙、耐熱紙、光触媒紙、化粧紙(脂取り紙など)、各種衛生紙(トイレットペーパー、ティッシュペーパー、ワイパー、おむつ、生理用品等)、たばこ用紙、板紙(ライナー、中芯原紙、白板紙など)、紙皿原紙、カップ原紙、ベーキング用紙、研磨紙、合成紙などが挙げられる。すなわち、本発明によれば、一次粒子径が小さくかつ粒度分布の狭い無機粒子と繊維との繊維複合体を得ることができるため、1μm超の粒子径を有していた従来の無機填料とは異なった特性を発揮させることができる。更には、単に無機粒子を繊維に単に配合した場合と異なり、無機粒子を繊維と繊維複合体化しておくと、無機粒子がシートに歩留易いだけでなく、凝集せずに均一に分散したシートを得ることができる。本発明における無機粒子は、好ましい態様において、繊維の外表面・ルーメンの内側に定着するだけでなく、ミクロフィブリルの内側にも生成することが電子顕微鏡観察の結果から明らかとなっている。
 また、本発明によって得られる繊維複合体を使用する際には、一般に無機填料及び有機填料と呼ばれる粒子や、各種繊維を併用することができる。例えば、無機填料として、炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム)、炭酸マグネシウム、炭酸バリウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、クレー(カオリン、焼成カオリン、デラミカオリン)、タルク、酸化亜鉛、ステアリン酸亜鉛、二酸化チタン、ケイ酸ナトリウムと鉱酸から製造されるシリカ(ホワイトカーボン、シリカ/炭酸カルシウム繊維複合体、シリカ/二酸化チタン繊維複合体)、白土、ベントナイト、珪藻土、硫酸カルシウム、ゼオライト、脱墨工程から得られる灰分を再生して利用する無機填料および再生する過程でシリカや炭酸カルシウムと繊維複合体を形成した無機填料などが挙げられる。炭酸カルシウム-シリカ複合物としては、炭酸カルシウムおよび/または軽質炭酸カルシウム-シリカ複合物以外に、ホワイトカーボンのような非晶質シリカを併用しても良い。有機填料としては、尿素-ホルマリン樹脂、ポリスチレン樹脂、フェノール樹脂、微小中空粒子、アクリルアミド繊維複合体、木材由来の物質(微細繊維、ミクロフィブリル繊維、粉体ケナフ)、変性不溶化デンプン、未糊化デンプンなどが挙げられる。繊維としては、セルロースなどの天然繊維はもちろん、石油などの原料から人工的に合成される合成繊維、さらには、レーヨンやリヨセルなどの再生繊維(半合成繊維)、さらには無機繊維などを制限なく使用することができる。天然繊維としては上記の他にウールや絹糸やコラーゲン繊維等の蛋白系繊維、キチン・キトサン繊維やアルギン酸繊維等の複合糖鎖系繊維等が挙げられる。セルロース系の原料としては、パルプ繊維(木材パルプや非木材パルプ)、バクテリアセルロース、ホヤなどの動物由来セルロース、藻類が例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、ラジアータパイン等の針葉樹、及びこれらの混合材、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、アカシア等の広葉樹及びこれらの混合材が例示される。木材原料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、ポリサルファイド法等の方法により蒸解した化学パルプ;リファイナー、グラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、みつまた等が例示される。木材パルプ及び非木材パルプは、未叩解及び叩解のいずれでもよい。また、これらセルロース原料はさらに処理を施すことで粉末セルロースなどの微粉砕セルロース、酸化セルロースなどの化学変性セルロース、およびセルロースナノファイバー:CNF(ミクロフィブリル化セルロース:MFC、TEMPO酸化CNF、リン酸エステル化CNF、カルボキシメチル化CNF、機械粉砕CNF)として使用することもできる。合成繊維としてはポリエステル、ポリアミド、ポリオレフィン、アクリル繊維、半合繊維としてはレーヨン、アセテートなどが挙げられ、無機繊維としては、ガラス繊維、炭素繊維、各種金属繊維などが挙げられる。以上について、これらは単独でも2種類以上の組み合わせで用いても構わない。
 また、繊維複合体の成形物に後からポリマーなどの各種有機物や顔料などの各種無機物を付与しても良い。
 以下、具体的な実験例を挙げて本発明をより詳細に説明するが、本発明は下記の実験例に限定されるものではない。また、本明細書において特に記載しない限り、濃度や部などは重量基準であり、数値範囲はその端点を含むものとして記載される。
 実験A
 サンプル1:炭酸マグネシウム微粒子と繊維との繊維複合体を含有する水性懸濁液
 水酸化マグネシウム140g(和光純薬)と広葉樹晒クラフトパルプ140g(LBKP、CSF:370ml、平均繊維長:0.75mm)を含む水性懸濁液を準備した。この水性懸濁液14Lを、図1に示す45L容のキャビテーション装置に入れ、反応溶液を循環させながら、反応容器中に炭酸ガスを吹き込んで炭酸ガス法によって炭酸マグネシウム微粒子と繊維との繊維複合体を合成した。反応温度は約36℃、炭酸ガスは市販の液化ガスを供給源とし、炭酸ガスの吹き込み量は4L/minとした。反応液のpHが約7.8になった段階でCOの導入を停止し(反応前のpHは約9.5)、その後30分間、キャビテーションの発生と装置内でのスラリーの循環を続け、サンプル1(水分率:96質量%)を得た。また、得られた繊維複合体の繊維:無機粒子の重量比は、45:55であった。ここで、重量比は、繊維複合体を525℃で約2時間加熱した後、残った灰の重量と元の固形分との比率から求めた灰分に基づいて算出した(JIS P 8251:2003)。
 繊維複合体の合成においては、図1に示すように反応溶液を循環させて反応容器内に噴射することよって、反応容器内にキャビテーション気泡を発生させた。具体的には、ノズル(ノズル径:1.5mm)を介して高圧で反応溶液を噴射してキャビテーション気泡を発生させたが、噴流速度は約70m/sであり、入口圧力(上流圧)は7MPa、出口圧力(下流圧)は0.3MPaだった。
 サンプル2:炭酸マグネシウム微粒子と繊維との繊維複合体を含有する水性懸濁液(CVなし)
 反応容器に3Lのステンレス製容器を用い、パルプの仕込み量を20g、炭酸ガスの吹き込み量を0.57L/minとし、炭酸化反応を35℃のウォーターバス中でスリーワンモーターで撹拌(800rpm)しながら行った以外は、サンプル1と同様にしてサンプル2(水分率:96質量%)を得た。得られた繊維複合体の繊維:無機粒子の重量比は、45:55であった。
 サンプル3:硫酸バリウム粒子と繊維との繊維複合体を含有する水性懸濁液
 1%のパルプスラリー(LBKP/NBKP=8/2、500g)と水酸化バリウム八水和物(和光純薬、5.82g)をスリーワンモーター(1000rpm)で混合後、硫酸(和光純薬、2.1g)を滴下した。滴下終了後、そのまま30分間撹拌を継続してサンプル3(水分率:96.0%)を得た。なお、用いた混合パルプの平均繊維長をファイバーテスター(Lorentzen&Wettre社)で測定したところ、1.21mmであった。得られた繊維複合体の繊維:無機粒子の重量比は56:44であった。
 サンプル4:硫酸バリウム粒子とアラミド繊維との繊維複合体を含有する水性懸濁液
 繊維分として0.8%のアラミド繊維(トワロンRD-1094、帝人、625g)のスラリーを用いた他は、サンプル1と同様に合成し、サンプル4(水分率:98.4%)を得た。
 得られた繊維複合体スラリー(固形分換算で3g)をろ紙で吸引濾過した後、残渣をオーブンで乾燥し(105℃、2時間)、灰分を測定したところ、繊維複合体の繊維:無機粒子の重量比は55:45であった。
 サンプル5:水酸化アルミニウム粒子と繊維との繊維複合体を含有する水性懸濁液
 1%のパルプスラリー(LBKP/NBKP=8/2、500g)と硫酸アルミニウム水溶液(Al(SO)換算で11g)をスリーワンモーター(1000rpm)で混合後、水酸化ナトリウム(和光純薬、15.4g)の水溶液(濃度5%)を滴下した。滴下終了後、そのまま30分間撹拌を継続してサンプル5(水分率:98.0%)を得た。
 得られた繊維複合体の繊維:無機粒子の重量比は58:42であった。
 サンプル6:ハイドロタルサイトと繊維の繊維複合体を含有するパルプ
(1)アルカリ溶液と酸溶液の調製
 ハイドロタルサイト(HT)を合成するための溶液を準備した。アルカリ溶液(A溶液)として、NaCO(和光純薬)およびNaOH(和光純薬)の混合水溶液を調製した。また、酸溶液(B溶液)として、MgCl(和光純薬)およびAlCl(和光純薬)の混合水溶液、ZnCl(和光純薬)およびAlCl(和光純薬)の混合水溶液を調製した。
・アルカリ溶液(A溶液、NaCO濃度:0.05M、NaOH濃度:0.8M)
・酸溶液(B溶液、Mg系、MgCl濃度:0.3M、AlCl濃度:0.1M)
・酸溶液(B溶液、Zn系、ZnCl濃度:0.3M、AlCl濃度:0.1M)
(2)繊維複合体の合成
 アルカリ溶液を10L容の反応容器に入れ、撹拌しながら酸溶液(Mg系)を滴下してハイドロタルサイト微粒子(MgAl(OH)16CO・4HO)を合成した。反応温度は60℃、滴下速度は15ml/minであり、反応液のpHが約7になった段階で滴下を停止した。滴下終了後、30分間、反応液を撹拌し、約10倍量の水を用いて水洗して塩を除去した。
 繊維複合体化する繊維として、セルロース繊維を使用した。具体的には、広葉樹晒クラフトパルプ(LBKP、日本製紙製)と針葉樹晒クラフトパルプ(NBKP、日本製紙製)を8:2の重量比で含み、シングルディスクリファイナー(SDR)を用いてカナダ標準濾水度を390mlに調整したパルプ繊維を用いた。
 アルカリ溶液にパルプ繊維を添加し、パルプ繊維を含む水性懸濁液を準備した(パルプ繊維濃度:1.56%、pH:約12.4)。この水性懸濁液(パルプ固形分30g)を10L容の反応容器に入れ、水性懸濁液を撹拌しながら、酸溶液(Mg系)を滴下してハイドロタルサイト微粒子と繊維との繊維複合体を合成した。図1に示すような装置を用いて、反応温度は60℃、滴下速度は15ml/minであり、反応液のpHが約7になった段階で滴下を停止した。滴下終了後、30分間、反応液を撹拌し、10倍量の水を用いて水洗して塩を除去した。
 フィルタープレス(日本カラ-工業社製、)により、合成した繊維複合体からパルプを製造し、サンプル6(水分率62.5質量%)を得た。得られた繊維複合体の繊維:無機粒子の重量比は56:44であった。
 サンプル7:硫酸バリウム粒子と繊維の繊維複合体を含有するパルプ
 サンプル3を用いて、フィルタープレス(不二パウダル株式会社製)により、合成した繊維複合体からパルプを製造し、サンプル7(水分率65.0質量%)を得た。得られた繊維複合体の繊維:無機粒子の重量比は56:44であった。
 サンプル8:炭酸カルシウム粒子と繊維との繊維複合体を含有するシート
 水酸化カルシウム(消石灰:Ca(OH)、300g)と針葉樹晒クラフトパルプ(NBKP、カナダ標準濾水度CSF:215mL、300g)を含む水性懸濁液30Lを準備した。この水性懸濁液を、40L容の密閉装置に入れ、反応容器中に炭酸ガスを吹き込んでキャビテーションを発生させ、炭酸ガス法によって炭酸カルシウム粒子と繊維との繊維複合体を合成した。反応温度は約25℃、炭酸ガスは市販の液化ガスを供給源とし、炭酸ガスの吹き込み量は12L/minであり、反応液のpHが約7になった段階で反応を停止した(反応前のpHは約12.8)。得られた繊維複合体の繊維:無機粒子の重量比は45:55であった。
 繊維複合体の合成においては、図1に示すように反応溶液を循環させて反応容器内に噴射することよって、反応容器内にキャビテーション気泡を発生させた。具体的には、ノズル(ノズル径:1.5mm)を介して高圧で反応溶液を噴射してキャビテーション気泡を発生させ、噴流速度は約70m/sであり、入口圧力(上流圧)は7MPa、出口圧力(下流圧)は0.3MPaだった。
 得られた繊維複合体(濃度:1%)に、カチオン性の歩留剤(ND300、ハイモ)とアニオン性の歩留剤(FA230、ハイモ)を対固形分で100ppmずつ添加して紙料スラリーを調製した。次いで、長網抄紙機を用いて、抄速10m/minの条件でこの紙料スラリーからシートを製造した。また、対照として、パルプスラリー(LBKP/NBKP=8/2、CSF=380mL、平均繊維長:1.5mm)にカチオン性歩留剤(ND300、ハイモ)とアニオン性歩留剤(FA230、ハイモ)を対固形分で100ppmずつ添加して、長網抄紙機を用いてシートを製造し、サンプル8(水分率8.0質量%)を得た。得られた繊維複合体の繊維:無機粒子の重量比は56:44であった。
 サンプル9:炭酸マグネシウム粒子と繊維との繊維複合体を含有するシート
 サンプル1をろ紙で吸引濾過した残渣を、水道水を用いて濃度約0.2%のスラリーを調製した。このスラリーをJIS P 8220-1:2012に規定される標準離解機で5分間離解後、JIS P 8222:1998に準じて150メッシュのワイヤーを用いて坪量60g/mの手抄きシートを作製し、サンプル9(水分率8.0質量%)を得た。得られた繊維複合体の繊維:無機粒子の重量比は56:44であった。
 サンプル10:炭酸カルシウム微粒子と繊維との繊維複合体を含む粉体
 <炭酸カルシウム・繊維繊維複合体の合成>
 水酸化カルシウム(消石灰:Ca(OH)、和光純薬、2重量%)と繊維(0.5%、LBKP/NBKP=8/2、500g))を含む水性懸濁液を準備した。この水性懸濁液9.5Lを、45L容のキャビテーション装置に入れ、反応容器中に炭酸ガスを吹き込んで炭酸ガス法によって炭酸カルシウム微粒子と繊維との繊維複合体を合成した。反応温度は約25℃、炭酸ガスは市販の液化ガスを供給源とし、炭酸ガスの吹き込み量は12L/minであり、反応液のpHが約7になった段階で反応を停止した(反応前のpHは約12.8)。
 繊維複合体の合成においては、図1に示すように反応溶液を循環させて反応容器内に噴射することよって、反応容器内にキャビテーション気泡を発生させた。具体的には、ノズル(ノズル径:1.5mm)を介して高圧で反応溶液を噴射してキャビテーション気泡を発生させたが、噴流速度は約70m/sであり、入口圧力(上流圧)は7MPa、出口圧力(下流圧)は0.3MPaだった。
 得られた繊維複合体をスプレードライヤー(大川原化工機株式会社製)により乾燥して粉体を作製し、サンプル10を得た(粒子径:100μm)。繊維:無機粒子の重量比は45:55であった。
 サンプル11:炭酸カルシウム微粒子と繊維との繊維複合体を含む粉体
 針葉樹晒クラフトパルプを粉末セルロース(KCフロック W-06MG、日本製紙製)に替えた以外は、サンプル10と同様にして粉体を作製し、サンプル11を得た。(粒子径:100μm)。繊維:無機粒子の重量比は43:57であった。
 サンプル12:炭酸マグネシウム粒子と繊維との繊維複合体を含有する微小球形粒
 サンプル1を用いて、押出混練造粒機(株式会社関西機器製作所製)により微小球形粒を作成してサンプル12を得た(粒子径:800μm)。繊維:無機粒子の重量比は47:53であった。
 サンプル13:炭酸マグネシウム粒子と繊維との繊維複合体を含有する顆粒
 サンプル1を用いて、ローラーコンパクター(株式会社マツボー製)により顆粒を作成してサンプル13を得た(粒子径:6mm)。繊維:無機粒子の重量比は44:56であった。
 水分率の高い無機粒子と繊維との繊維複合体(サンプル1~5)は、水分率の低い無機粒子と繊維との繊維複合体(サンプル6~13)と比較して、製造費が安価であり、また、製造プロセスが短く、繊維複合体を効率良く作製することができた。一方、水分率の低い無機粒子と繊維との繊維複合体(サンプル6~13)は、水分率の高い無機粒子と繊維との繊維複合体(サンプル1~5)と比較して、張り合わせ工程のない繊維複合体シート(比較例1)と比較して、移送や製品への配合が容易であった。
 サンプル14:炭酸マグネシウム粒子と繊維との繊維複合体を含有するペレット
 サンプル1を用いて、ペレタイザー(不二パウダル株式会社製)によりペレット化した(絶乾4g、ペレット径35mm)。
 サンプル15:炭酸マグネシウム粒子と粉末セルロースとの繊維複合体を含有するペレット
 針葉樹晒クラフトパルプを粉末セルロース(KCフロック W-06MG、日本製紙製)に替えた以外は、サンプル14と同様にしてサンプル15を得た(絶乾4g、ペレット径:35mm)。
 サンプル16:炭酸マグネシウム粒子と繊維との繊維複合体を含有するモールド
 サンプル1を用いて、射出成型機(レオ・ラボ株式会社)によりモールドを作成してサンプル16を得た。
 サンプル17:炭酸マグネシウム粒子と繊維との繊維複合体を含有する抄繊糸
 サンプル9のシートをスリッターで幅8mmに加工後、撚糸機で加工することで1mmの抄紙糸を得た。
 サンプル18:炭酸カルシウム粒子と繊維との繊維複合体を含有する発泡体
 針葉樹晒クラフトパルプを粉末セルロース(KCフロック W-06MG、日本製紙製)に替えた以外は、サンプル10と同様にして炭酸カルシウム粒子と粉末セルロースとの繊維複合体を得た。得られた繊維複合体を、スリーワンモーターにて6000rpm、5分間撹拌した。その後、得られたサンプル(12g)をアルミカップに乾燥器にて60℃、24時間乾燥させ、発泡体(密度:0.06g/cm)を作製してサンプル18を得た。
 ペレット、モールド、抄繊糸、発泡体の形態である無機粒子と繊維との繊維複合体(サンプル14~18)は、ハンドリングが優れるとともに、単独で繊維と無機粒子の繊維複合体の機能(難燃性や不透明性、放射線遮蔽性、吸着性や抗菌性など)を有する製品が得られる。
 実験1:無機粒子と繊維との複合体の製造
 以下に示す手順により無機粒子とパルプ繊維の複合体を合成し、実験3において使用した。
 (サンプル1:炭酸カルシウムとパルプ繊維の複合体、図2)
 図5に示すような反応装置を用いて、炭酸カルシウムと繊維の複合体を炭酸ガス法によって合成した。水酸化カルシウム(奥多摩工業、タマエースU)15kgとLBKP(CSF=500mL、平均繊維長=0.76mm)15kgの水性懸濁液1500Lに対し、ウルトラファインバブル発生装置(UFB発生装置、YJ-9、エンバイロビジョン社、図6)を用いてポンプ流量80L/minで反応液を循環させた(ノズルからの噴射速度:125L/min・cm)。ウルトラファインバブル発生装置の給気口から炭酸ガスを吹き込むことによって、炭酸ガスを含む大量の微細気泡(直径1μm以下、平均粒子径:137nm)を反応液中に発生させ、パルプ繊維上に炭酸カルシウム粒子を合成した。反応温度は20℃、炭酸ガスの吹き込み量は20L/minとして反応を行い、反応液のpHが約7になった段階で反応を停止し、サンプル2を得た(反応前のpHは約13)。得られた炭酸カルシウムとパルプ繊維の複合体の灰分は53%、無機粒子の平均一次粒径は50nmだった。
 (サンプル2:炭酸マグネシウムとパルプ繊維の複合体、図3)
 水酸化マグネシウム350g(宇部マテリアルズ、UD653)とクラフトパルプ350g(LBKP/NBKP=1/1、CSF:370ml、平均繊維長:0.9mm)を水中に添加して水性懸濁液を準備した。
 図7に示すように、この水性懸濁液35Lをキャビテーション装置(45L容)に入れ、反応溶液を循環させながら、反応容器中に炭酸ガスを吹き込んで炭酸ガス法によって炭酸マグネシウム微粒子と繊維との複合体を合成した。反応開始温度は約40℃、炭酸ガスは市販の液化ガスを供給源とし、炭酸ガスの吹き込み量は20L/minとした。反応液のpHが約7.8になった段階でCOの導入を停止し(反応前のpHは10.3)、その後30分間、キャビテーションの発生と装置内でのスラリーの循環を続け、炭酸マグネシウム微粒子とパルプ繊維の複合体を得た(無機粒子の平均一次粒径:1.0μm)。
 複合体の合成においては、反応溶液を循環させて反応容器内に噴射することよって、反応容器内にキャビテーション気泡を発生させた。具体的には、ノズル(ノズル径:1.5mm)を介して高圧で反応溶液を噴射してキャビテーション気泡を発生させたが、噴流速度は約70m/sであり、入口圧力(上流圧)は2MPa、出口圧力(下流圧)は0.2MPaだった。
 得られた複合体について、繊維:無機粒子の重量比を測定したところ、40:60であった(灰分:60%)。重量比(灰分)は、ろ紙を用いて複合体スラリー(固形分換算で3g)を吸引濾過した後、残渣をオーブンで乾燥し(105℃、2時間)、さらに525℃で有機分を燃焼させ、燃焼前後の重量から算出した。
 (サンプル3:ハイドロタルサイトとパルプ繊維の複合体、図4)
 ハイドロタルサイト(HT)としてMgAl(OH)16CO・4HOを合成するため、アルカリ溶液(A溶液)として、NaCO(和光純薬)およびNaOH(和光純薬)の混合水溶液、酸溶液(B溶液)として、MgCl(和光純薬)およびAlCl(和光純薬)の混合水溶液を調製した。
・アルカリ溶液(A溶液、NaCO濃度:0.05M、NaOH濃度:0.8M)
・酸溶液(B溶液、Mg系、MgCl濃度:0.3M、AlCl濃度:0.1M)
 複合化する繊維として、セルロース繊維を使用した。具体的には、広葉樹晒クラフトパルプ(LBKP、日本製紙製)と針葉樹晒クラフトパルプ(NBKP、日本製紙製)を8:2の重量比で含み、シングルディスクリファイナー(SDR)を用いてカナダ標準濾水度を390mlに調整したパルプ繊維を用いた(平均繊維長0.8mm)。
 アルカリ溶液にパルプ繊維を添加し、パルプ繊維を含む水性懸濁液を準備した(パルプ繊維濃度:1.56%、pH:約12.4)。この水性懸濁液(パルプ固形分30g)を10L容の反応容器に入れ、水性懸濁液を撹拌しながら、酸溶液(Mg系)を滴下してハイドロタルサイト微粒子と繊維との複合体を合成した。図8に示すような装置を用いて、反応温度は60℃、滴下速度は15ml/minであり、反応液のpHが約7になった段階で滴下を停止した。滴下終了後、30分間、反応液を撹拌し、10倍量の水を用いて水洗して塩を除去することで、サンプル3を得た(無機粒子の平均一次粒径:20nm)。サンプル3の灰分は50%だった。
 実験2:セルロースナノファイバーの製造
 (カチオン化セルロースナノファイバー:カチオン化CNF)
 パルプを攪拌することができるパルパーに、パルプ(LBKP、日本製紙製)を乾燥重量で200g、水酸化ナトリウムを乾燥重量で24g加え、パルプ固形濃度が15%になるように水を加えた。その後、30℃で30分攪拌した後に70℃まで昇温し、カチオン化剤として3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドを190g(有効成分換算)添加した。1時間反応した後に、反応物を取り出して中和、洗浄してカチオン変性されたパルプを得た。カチオン化パルプの1%スラリーを小型高圧フィルタープレス(YTOH2型、薮田機械社製)で2MPa、15分間処理して、カチオン化セルロースナノファイバーを製造した(固形分:7質量%)。
 (カルボキシメチル化セルロースナノファイバー:CM化CNF)
 パルプを撹拌することができる反応器に、パルプ(LBKP、日本製紙製)を乾燥重量で250gを撹拌しながら50重量%水酸化ナトリウム水溶液を112gと、水67gを添加した。30℃で30分攪拌した後、撹拌しながら35重量%モノクロロ酢酸ナトリウム水溶液を364g添加した。その後、30℃で30分攪拌し、30分かけて70℃まで昇温し、70℃で1時間反応した。その後、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.25のカルボキシメチル化されたセルロース(カルボキシメチル化パルプ)を得た。カルボキシメチル化パルプの1%スラリーを、小型高圧フィルタープレス(YTOH2型、薮田機械社製)を用いて2MPaで15分間処理してセルロースナノファイバーを製造した。
 (TEMPO酸化セルロースナノファイバー:TEMPO酸化CNF)
 粉末セルロース(粒径24μm、日本製紙ケミカル製)15g(絶乾)を、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル、Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム755mg(7mmol)を溶解した水溶液500mlに加え、粉末セルロースが均一に分散するまで攪拌した。反応系に次亜塩素酸ナトリウム水溶液(有効塩素5%)50mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応した後、遠心操作(6000rpm、30分、20℃)で酸化した粉末セルロースを分離し、十分に水洗することで酸化処理した粉末セルロースを得た。酸化処理した粉末セルロースの2%(w/v)スラリーを、ミキサーにより12000rpmで15分処理し、さらに粉末セルローススラリーを超高圧ホモジナイザーにより140MPaの圧力で5回処理して、セルロースナノファイバーを製造した。
 実験3:発泡体の製造と評価
 (1)実験3-1:泡沫の安定性
 (実験b) 実験1で合成した炭酸カルシウム・無機複合体(サンプル1)のスラリー(濃度1.0%)395mlに対して、撹拌しながら、紙力向上剤(WS-2024、星光PMC製、濃度3.0%)1.3ml、歩留剤(ND-300、ハイモ製、濃度0.05%)1.6ml、アニオン性界面活性剤(ドデシル硫酸ナトリウム、和光一級、和光純薬工業製)0.24gを添加し、発泡体を製造するためのスラリーを調製した。マルチディスパーサー(MULTI DISPERSER SMT、エスエムテー社製)を用いて、このスラリーを、6000rpmで10分間撹拌して発泡させた。
 (実験c) 実験2で製造したカチオン化セルロースナノファイバー0.4gをさらにスラリーに添加してから発泡させたこと、炭酸カルシウムを加えていないこと以外は、実験Bと同様にして実験を行った。
 (結果)
 実験bと実験cを比較すると、セルロースナノファイバー(CNF)を添加することによって、泡の安定性を改善することができた。発泡体を製造するにあたって、泡(泡沫)の安定性が重要になるところ、本発明によってCNFを添加することによって泡の安定性を向上させることができた。
 (2)実験3-2:発泡体(フォーム)の製造
(フォームB~C) 実験b~cで得た泡をアルミカップ(直径:約7cm、高さ:約2cm)に入れ、自然対流式恒温機(DSN-115S、ISUZU製)を用いて105℃で18時間乾燥し、発泡体を得た(フォームC:図9)。
(フォームD~E) カチオン化CNFに代えてCM化CNFまたはTEMPO酸化CNFを用いた以外は、フォームCと同様にして発泡体を得た(フォームD:CM化CNF、フォームE:TEMPO酸化CNF、図10)。
(フォームF~G) サンプル1の複合体に代えてサンプル2またはサンプル3の複合体を用いた以外は、フォームCと同様にして発泡体を得た(フォームF:炭酸マグネシウムとパルプ繊維の複合体、フォームG:ハイドロタルサイトとパルプ繊維の複合体)。
(フォームH) カチオン化CNFに代えてTEMPO酸化CNFを用いた以外は、フォームGと同様にして発泡体を得た。
 (発泡体の強度)
 得られた発泡体(フォーム)の強度を、触感により評価した。具体的には、フォームの表面を指で5mm程度押しこみ、このときの反発力を下記の基準により3段階で評価した。
○:反発力を感じ、押し込みによりフォームの形状が崩れない。
△:ある程度の反発力を感じるが、押し込むことによりフォームの形状が崩れる。
×:反発力をほとんど感じず、押し込むことによりフォームの形状が崩れる。
 (発泡体の灰分)
 発泡体を525℃で約2時間加熱した後、残った灰の重量と元の固形分との比率から、無機分の重量比率(灰分)を算出した(JIS P 8251:2003)。
 (発泡体の密度)
 フォームを含むアルミカップの重さを測定し、そこから事前に測定したアルミカップの重さを引き、フォームの重さを得た。フォームの半径と厚さを測定して体積を求め、フォームの重さを体積で除してフォームの密度を得た。
Figure JPOXMLDOC01-appb-T000001
 上記の表に示すように、本発明に基づいてセルロースナノファイバー(CNF)を添加することによって、得られた発泡体の強度が向上した。本発明による強度向上の要因としては、CNF同士の相互作用や複合体のパルプ繊維や無機粒子とCNFとの相互作用(分子間相互作用や水素結合等)によって、フォームに構造的な強度が付与されたと考えられる。

Claims (44)

  1.  繊維と無機粒子の繊維複合体を含み、水性懸濁液、パルプ、シート、粉体、微小球形粒、顆粒、ペレット、モールド、糸、または、発泡体の形態である製品。
  2.  前記製品が水性懸濁液である、請求項1に記載の製品。
  3.  前記水性懸濁液の水分率が90質量%以上99%質量以下である、請求項2に記載の製品。
  4.  前記製品がパルプである、請求項1に記載の製品。
  5.  前記パルプの水分率が10質量%以上90質量%未満である、請求項4に記載の製品。
  6.  前記製品がシートである、請求項1に記載の製品。
  7.  前記シートの水分率が10質量%未満である、請求項6に記載の製品。
  8.  前記シートが前記複合体を配合した紙である、請求項6または7に記載の製品。
  9.  前記製品が粉体である、請求項1に記載の製品。
  10.  前記粉体の平均粒子径が100μm未満である、請求項9に記載の製品。
  11.  前記製品が微小球形粒である、請求項1に記載の製品。
  12.  前記微小球形粒の平均粒子径が100μm以上、1000μm未満である、請求項11に記載の製品。
  13.  前記製品が顆粒である、請求項1に記載の製品。
  14.  前記顆粒の平均粒子径が1.0mm以上、10mm未満である、請求項13に記載の製品。
  15.  前記製品がペレットである、請求項1に記載の製品。
  16.  前記製品のペレット径が10mm以上、50mm以下である、請求項15に記載の製品。
  17.  前記製品がモールドである、請求項1に記載の製品。
  18.  前記モールドの直径が5cm以上、100cm以下である、請求項17に記載の製品。
  19.  前記製品が糸である、請求項1に記載の製品。
  20.  前記糸の繊維径が1mm以上、10mm以下である、請求項19に記載の製品。
  21.  前記製品が発泡体である、請求項1に記載の製品。
  22.  前記発泡体の密度が0.01~0.1g/cm以下である、請求項21に記載の製品。
  23.  前記無機粒子の平均一次粒子径が200nm以下である、請求項1~22のいずれかに記載の製品。
  24.  前記無機粒子の少なくとも一部が、カルシウム、マグネシウムまたはバリウムの金属塩である、請求項6~8のいずれかに記載の製品。
  25.  前記無機粒子の少なくとも一部が、ケイ酸、またはアルミニウムの金属塩、あるいはチタン、銅、銀、鉄、マンガンまたは亜鉛を含む金属粒子である、請求項1~5、9~23のいずれかに記載の製品。
  26.  前記繊維が、化学繊維、再生繊維または天然繊維である、請求項1~25のいずれかに記載の製品。
  27.  前記繊維が、木材由来のセルロース繊維である、請求項26に記載の製品。
  28.  繊維と無機粒子の重量比が5/95~95/5である、請求項1~27のいずれかに記載の製品。
  29.  請求項1~28のいずれかに記載の製品を含む混合物。
  30.  繊維と無機粒子の複合体を含有する製品の製造方法であって、
     繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
     繊維と無機粒子の複合体の水分を調整する工程、
     を含む上記方法。
  31.  繊維と無機粒子の複合体を含有する水性懸濁液の製造方法であって、
     前記繊維と無機粒子の複合体の水分を調整する工程において、水分率を90質量%以上、99質量%以下に調整する、
     請求項30に記載の方法。
  32.  繊維と無機粒子の複合体を含有するパルプの製造方法であって、
     前記繊維と無機粒子の複合体の水分を調整する工程において、水分率を10質量%以上、90質量%未満に調整する、
     請求項30に記載の方法。
  33.  繊維と無機粒子の複合体を含有するシートの製造方法であって、
     前記繊維と無機粒子の複合体中の水分を調整する工程において、水分率10質量%未満に調整する、
     請求項30に記載の方法。
  34.  繊維と無機粒子の複合体を含有する製品の製造方法であって、
     繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
     繊維と無機粒子の複合体の粒子径を調整する工程、
     を含む上記方法。
  35.  繊維と無機粒子の複合体を含有する粉体の製造方法であって、
     前記繊維と無機粒子の複合体の粒子径を調整する工程において、繊維と無機粒子の複合体の平均粒子径を100μm未満に調整する、
     請求項34に記載の方法。
  36.  繊維と無機粒子の複合体を含有する微小球形粒の製造方法であって、
     前記繊維と無機粒子の複合体の粒子径を調整する工程において、繊維と無機粒子の複合体の平均粒子径を100μm以上、1000μm未満でに調整する、
     請求項34に記載の方法。
  37.  繊維と無機粒子の複合体を含有する顆粒の製造方法であって、
     前記繊維と無機粒子の複合体の粒子径を調整する工程において、繊維と無機粒子の複合体の平均粒子径を1.0mm以上、10mm未満に調整する、
     請求項34に記載の方法。
  38.  繊維と無機粒子の複合体を含有するペレットの製造方法であって、
     繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
     繊維と無機粒子の複合体をペレット化する工程、
     を含む上記方法。
  39.  繊維と無機粒子の複合体の水分率を固液分離装置にて固液分離し、45質量%以上80質量%に調整する工程、
     を含む、請求項38に記載の方法。
  40.  繊維と無機粒子の複合体を含有するモールドの製造方法であって、
     繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
     鋳型に繊維と無機粒子の複合体を流し込んで脱水する工程、
     を含む、上記方法。
  41.  繊維と無機粒子の複合体を含有する糸の製造方法であって、
     繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
     繊維と無機粒子の複合体を糸加工する工程を含む、上記方法。
  42.  繊維と無機粒子の複合体を糸加工する工程の前に、水分率10質量%未満に調整した繊維と無機粒子の複合体を含むシートをスリット加工する工程、
     を含む、請求項41に記載の上記方法。
  43.  繊維と無機粒子の複合体を含有する発泡体の製造方法であって、
     繊維の存在下で、溶液中で無機粒子を合成し、繊維と無機粒子の複合体を合成する工程、
     繊維と無機粒子の複合体を攪拌機で撹拌する工程、
     を含む、上記方法。
  44.  発泡させた泡を乾燥させる工程をさらに含む、請求項43に記載の方法。
PCT/JP2017/042614 2016-11-28 2017-11-28 繊維と無機粒子の複合体 WO2018097312A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17873231.9A EP3546640A4 (en) 2016-11-28 2017-11-28 COMPOSITE FIBER AND INORGANIC PARTICLE
CN201780073162.XA CN110023558A (zh) 2016-11-28 2017-11-28 纤维与无机粒子的复合体
US16/464,014 US20200385547A1 (en) 2016-11-28 2017-11-28 Complexes of fibers and inorganic particles

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-230128 2016-11-28
JP2016230128 2016-11-28
JP2016255144A JP2018104624A (ja) 2016-12-28 2016-12-28 無機粒子と繊維との複合体を含有する発泡体、および、その製造方法
JP2016-255144 2016-12-28
JP2017-017509 2017-02-02
JP2017017509A JP2018090939A (ja) 2016-11-28 2017-02-02 繊維と無機粒子の複合体

Publications (1)

Publication Number Publication Date
WO2018097312A1 true WO2018097312A1 (ja) 2018-05-31

Family

ID=62195092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042614 WO2018097312A1 (ja) 2016-11-28 2017-11-28 繊維と無機粒子の複合体

Country Status (1)

Country Link
WO (1) WO2018097312A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210384A (ja) * 2018-06-05 2019-12-12 花王株式会社 アスファルト組成物
US20200308359A1 (en) * 2019-03-29 2020-10-01 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and processes for renewable rigid foam
CN111893801A (zh) * 2020-07-16 2020-11-06 苏州德尔赛电子有限公司 一种高吸液负离子干法工业擦拭纸原纸及工艺
CN112516685A (zh) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 一种可见光光催化空气净化玻璃纤维滤芯及其制备方法
WO2021054312A1 (ja) * 2019-09-20 2021-03-25 日本製紙株式会社 繊維と無機粒子との複合繊維を含有する顆粒
WO2021145278A1 (ja) * 2020-01-16 2021-07-22 東洋製罐グループホールディングス株式会社 ガスバリア性成形体及びその製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606619A (ja) 1983-06-27 1985-01-14 Kyowa Chem Ind Co Ltd 鉄分欠乏症処置剤及びその製法
JPH06158585A (ja) 1992-04-07 1994-06-07 Aussedat Rey 繊維およびフィラーをベースにした新規な複合製品およびそのような新規な製品の製法
US5679220A (en) 1995-01-19 1997-10-21 International Paper Company Process for enhanced deposition and retention of particulate filler on papermaking fibers
JP2004339650A (ja) * 2003-05-16 2004-12-02 Toray Ind Inc 紡績糸および編織物
JP2005048351A (ja) 2003-07-16 2005-02-24 Weyerhaeuser Co 吸収性製品中の臭気の低減
JP2006503997A (ja) * 2002-10-24 2006-02-02 アムーレアル オサケ ユキチュア ユルキネン 繊維製品の製造方法
JP2007262145A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 発泡成形体およびその製造方法ならびにその再生方法
JP2011506789A (ja) * 2007-12-12 2011-03-03 オムヤ ディベロプメント アーゲー 表面無機化有機繊維
WO2012002390A1 (ja) * 2010-06-29 2012-01-05 花王株式会社 ナノファイバ積層シート
JP2012007247A (ja) 2010-06-22 2012-01-12 Oji Paper Co Ltd 微細繊維状セルロースと無機化合物ナノ粒子のコンポジットシート
JP2015199655A (ja) * 2014-03-31 2015-11-12 日本製紙株式会社 炭酸カルシウム微粒子と繊維との複合体、および、その製造方法
WO2017043580A1 (ja) * 2015-09-08 2017-03-16 日本製紙株式会社 炭酸マグネシウム微粒子と繊維との複合体、および、その製造方法
WO2017057154A1 (ja) * 2015-09-30 2017-04-06 日本製紙株式会社 セルロース繊維と無機粒子の複合体

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606619A (ja) 1983-06-27 1985-01-14 Kyowa Chem Ind Co Ltd 鉄分欠乏症処置剤及びその製法
JPH06158585A (ja) 1992-04-07 1994-06-07 Aussedat Rey 繊維およびフィラーをベースにした新規な複合製品およびそのような新規な製品の製法
US5679220A (en) 1995-01-19 1997-10-21 International Paper Company Process for enhanced deposition and retention of particulate filler on papermaking fibers
JP2006503997A (ja) * 2002-10-24 2006-02-02 アムーレアル オサケ ユキチュア ユルキネン 繊維製品の製造方法
JP2004339650A (ja) * 2003-05-16 2004-12-02 Toray Ind Inc 紡績糸および編織物
JP2005048351A (ja) 2003-07-16 2005-02-24 Weyerhaeuser Co 吸収性製品中の臭気の低減
JP2007262145A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 発泡成形体およびその製造方法ならびにその再生方法
JP2011506789A (ja) * 2007-12-12 2011-03-03 オムヤ ディベロプメント アーゲー 表面無機化有機繊維
JP2012007247A (ja) 2010-06-22 2012-01-12 Oji Paper Co Ltd 微細繊維状セルロースと無機化合物ナノ粒子のコンポジットシート
WO2012002390A1 (ja) * 2010-06-29 2012-01-05 花王株式会社 ナノファイバ積層シート
JP2015199655A (ja) * 2014-03-31 2015-11-12 日本製紙株式会社 炭酸カルシウム微粒子と繊維との複合体、および、その製造方法
JP2015199660A (ja) * 2014-03-31 2015-11-12 日本製紙株式会社 繊維複合体およびその製造方法
WO2017043580A1 (ja) * 2015-09-08 2017-03-16 日本製紙株式会社 炭酸マグネシウム微粒子と繊維との複合体、および、その製造方法
WO2017057154A1 (ja) * 2015-09-30 2017-04-06 日本製紙株式会社 セルロース繊維と無機粒子の複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546640A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210384A (ja) * 2018-06-05 2019-12-12 花王株式会社 アスファルト組成物
JP7075823B2 (ja) 2018-06-05 2022-05-26 花王株式会社 アスファルト組成物
US20200308359A1 (en) * 2019-03-29 2020-10-01 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and processes for renewable rigid foam
WO2021054312A1 (ja) * 2019-09-20 2021-03-25 日本製紙株式会社 繊維と無機粒子との複合繊維を含有する顆粒
EP4032942A4 (en) * 2019-09-20 2023-10-11 Nippon Paper Industries Co., Ltd. GRANULES CONTAINING COMPOSITE FIBERS COMPOSED OF FIBERS AND INORGANIC PARTICLES
WO2021145278A1 (ja) * 2020-01-16 2021-07-22 東洋製罐グループホールディングス株式会社 ガスバリア性成形体及びその製造方法
JP2021113244A (ja) * 2020-01-16 2021-08-05 東洋製罐グループホールディングス株式会社 ガスバリア性成形体及びその製造方法
JP7484175B2 (ja) 2020-01-16 2024-05-16 東洋製罐グループホールディングス株式会社 ガスバリア性成形体及びその製造方法
CN111893801A (zh) * 2020-07-16 2020-11-06 苏州德尔赛电子有限公司 一种高吸液负离子干法工业擦拭纸原纸及工艺
CN112516685A (zh) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 一种可见光光催化空气净化玻璃纤维滤芯及其制备方法

Similar Documents

Publication Publication Date Title
JP6516854B2 (ja) セルロース繊維と無機粒子の複合体
JP6661644B2 (ja) 炭酸マグネシウム微粒子と繊維との複合体、および、その製造方法
WO2018097312A1 (ja) 繊維と無機粒子の複合体
JP6833699B2 (ja) リン酸カルシウム微粒子と繊維との複合体、および、その製造方法
WO2015152269A1 (ja) 炭酸カルシウム微粒子およびその製造方法
US20200385547A1 (en) Complexes of fibers and inorganic particles
EP3546641B1 (en) Method for producing composite body of fibers and inorganic particles, and laminate containing composite body of fibers and inorganic particles
JP2018119220A (ja) 加工紙
WO2018047749A1 (ja) 無機炭酸塩の製造方法
JP6411934B2 (ja) 炭酸カルシウム微粒子の製造方法
JP2021011674A (ja) セルロース繊維と無機粒子の複合繊維およびその製造方法
JP6713891B2 (ja) 硫酸バリウムと繊維との複合体およびその製造方法
JP2019137948A (ja) 難燃複合繊維およびその製造方法
JP2020165058A (ja) 複合体の製造方法
JP2019049063A (ja) フェロシアン化金属化合物と繊維との複合繊維およびその製造方法
WO2017043588A1 (ja) 炭酸マグネシウム微粒子の製造方法
JP2018090939A (ja) 繊維と無機粒子の複合体
JP2022133416A (ja) セルロース繊維と無機粒子の複合繊維およびその製造方法
JP2018145553A (ja) 炭酸マグネシウムと繊維の複合繊維の溶解抑制
JP2024051717A (ja) 無機粒子と繊維の複合繊維を含むx線造影材
JP2023140486A (ja) 繊維と無機粒子の複合体
JP2023012082A (ja) 繊維と無機粒子との複合繊維を含有する固形物の製造方法
JP2023150971A (ja) セルロース繊維と無機粒子の複合繊維の調製方法
JP2024093260A (ja) セルロース繊維と硫酸バリウムの複合繊維からシートを製造する方法
CN114174388A (zh) 含有纤维与无机粒子的复合纤维的颗粒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017873231

Country of ref document: EP

Effective date: 20190628