WO2018080168A1 - 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법 - Google Patents

방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법 Download PDF

Info

Publication number
WO2018080168A1
WO2018080168A1 PCT/KR2017/011850 KR2017011850W WO2018080168A1 WO 2018080168 A1 WO2018080168 A1 WO 2018080168A1 KR 2017011850 W KR2017011850 W KR 2017011850W WO 2018080168 A1 WO2018080168 A1 WO 2018080168A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
oriented electrical
grain
annealing
Prior art date
Application number
PCT/KR2017/011850
Other languages
English (en)
French (fr)
Inventor
권민석
노태영
박창수
최헌조
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/345,521 priority Critical patent/US11225700B2/en
Priority to EP17865788.8A priority patent/EP3533885B1/en
Priority to JP2019523026A priority patent/JP6861809B2/ja
Priority to CN201780066821.7A priority patent/CN109923223B/zh
Publication of WO2018080168A1 publication Critical patent/WO2018080168A1/ko
Priority to US17/550,366 priority patent/US11946114B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • Annealed separator composition for grain-oriented electrical steel sheet It relates to a method for producing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet.
  • the grain-oriented electrical steel sheet is steel sheet 3.1 (as containing the Si component before and after, the orientation of the crystal grain ⁇ 1 (: 0 ⁇ ⁇ 001> I has a texture aligned in a direction, the rolling direction is extremely An electrical steel sheet with excellent magnetic properties.
  • Annealed separator composition, grain-oriented electrical steel sheet and aromatic grain for grain-oriented electrical steel sheet Provides a method for manufacturing electrical steel sheet.
  • Annealing separator composition for grain-oriented electrical steel sheet according to an embodiment of the present invention, based on solids, 5 to 70% by weight of the compound chestnut. And residual magnet oxide or magnet hydroxide.
  • the ceramic powder may further comprise 1 to 10% by weight.
  • Cera ⁇ powder may be at least one selected from Si0 2 , Ti0 2, and ⁇ ⁇ ⁇ 2.
  • Sb 2 (S0,), SrS0 4 , BaS0 4 or a combination thereof may further include 1 to 10% by weight.
  • Calcium compounds include calcium oxide (CaO), calcium hydroxide (Ca (0H) 2 ). 3 ⁇ 4 calcium cobalt oxide (Ca,; Co4), chel: calcium silicate (CaSiC, chamo titanate (CaTi), calcium zirconate (CaZr0 3 ), hydroxyapatite (Ca5 (0H) (P () 4 ) 3 ) , Calcium carbonate (CaC0 3 ) .
  • a Monticeliteite film is formed on one or both surfaces of the grain-oriented electrical steel substrate.
  • Monticelite coating may contain 0.5 to 90% by weight of Ca.
  • the Monticelite coating may further include 3 to 80% by weight of Mg, 3 to 80% by weight of Si, 0 to 3 to 80% by weight, and a balance of Fe.
  • Monticelite coatings may have a thickness of 0.1 to 10 / ziii.
  • a ceramic layer may be further formed on the Monticelite coating.
  • the ceramic layer may comprise ceramic powder.
  • Ceramic powder is Al O., Si0 3 , Ti0 2 , Zr0 2 , Al 0, rTi0 2 , Y 2 . 9 ⁇ 1 2 0 3 ⁇ 2 ⁇ 2 0 3 . It may be at least one selected from ⁇ , CrN, BaTi0 3 , SiC and TiC.
  • the ceramic layer may further comprise a metal phosphate.
  • the metal phosphate may include one or more selected from Mg, Ca, Ba, Sr, Zn, Al, and Mn.
  • the grain-oriented electrical steel sheet substrate is silicon (Si): 2.8 to 6.8 increase 3 ⁇ 4.
  • Method for producing a grain-oriented electrical steel sheet comprises the steps of preparing a steel slab; Heating the steel slab: hot rolling the heated steel slab to produce a hot rolled sheet: cold rolling the hot rolled sheet to produce a cold rolled sheet; Decarburizing annealing and nitriding annealing the cold rolled sheet: On the surface of the decarburizing annealing and nitriding annealing steel sheet. Applying an annealing separator: and annealing the steel sheet to which the annealing separator is applied.
  • Annealing separators comprise 30 to 70 weight of the calcium compound and the balance magnesium oxide or magnesium hydroxide on a solids basis.
  • the method may further include forming a ceramic layer on the monticelite film.
  • Forming the ceramic layer Spraying the ceramic powder on the Monticelite film may form a ceramic layer.
  • Forming the ceramic layer It may be a step of forming a ceramic layer by applying a ceramic filling composition comprising a ceramic powder and a metal phosphate on the Monticulite coating.
  • the decarburizing annealing and nitriding annealing of the cold rolled plate may be a step of decarburizing annealing and nitriding annealing the cold rolled plate at the same time, or after the decarburization annealing, nitriding annealing.
  • the grain-oriented electrical steel sheet excellent in the adhesiveness and insulation of a film, and its manufacturing method can be provided.
  • 1 is a view schematically showing a Monticellite atomic unit structure.
  • 2 is a schematic side cross-sectional view of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 3 is a method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention Flowchart.
  • FIG. 4 is an X-ray diffraction analysis (XRD) result of the monticelite film prepared in Example 1.
  • XRD X-ray diffraction analysis
  • Example 5 is a scanning electron microscope (SEM) photograph of the grain-oriented electrical steel sheet prepared in Example 1;
  • FIG. 6 is a scanning electron microscope-based energy dispersive spectroscopy (SEM EDS) analysis result of the monticelite film prepared in Example 1.
  • SEM EDS scanning electron microscope-based energy dispersive spectroscopy
  • FIG. 7 shows Fourier Transform Infrared Spectroscopy (FT-IR) analysis results of the monticelite film and the forsterite film prepared in Example 1 and Comparative Example 2.
  • FT-IR Fourier Transform Infrared Spectroscopy
  • Article 1 The terms such as 12 and 3 are various parts. ingredient. Area. Used to describe layers and / or sections, but not limited to these. What part of these terms? A component, region, layer or section that is another part, component, region. Only used to distinguish it from layers or sections. therefore .
  • the first part, component, region, layer or section described below is a second partial component, region within the scope of the present invention. It may be referred to as a layer or section.
  • lppm means 0.001%.
  • Annealing separator composition for grain-oriented electrical steel sheet according to an embodiment of the present invention is based on a solid content.
  • Calcium compound 30-70% evaporative ring %, and the balance magnesium oxide or magnesium hydroxide.
  • Solid content here means setting solid content except 100 components, such as a solvent, to di-.
  • the annealing separator composition according to an embodiment of the present invention is applied to the grain-oriented electrical steel sheet substrate 10 to form the monticelite film 20.
  • Monticellite is an olivine group and is composed of an atomic structure as shown in FIG. 1.
  • Magnesium silver is present at the Ml site. Iii. This is present at the M2 site.
  • oxygen (0) is a red circle.
  • Silicon (Si) is shown as a pink circle and Ca and Mg are shown as a blue circle.
  • Monticellite film 20 is applied to the M2 site compared to the conventional forsterite film.
  • Kalseup compounds i handi serves to supply the Ca Monty Celite.
  • the Monticellite film 20 is formed on the steel sheet substrate 10 by adding a calumen compound.
  • the chamomile compound can be used as long as it is a compound which can supply Ca. Specifically calcium oxide (CaO), calcium hydroxide (Ca (0H) 2 ). Calcium Cobalt Oxide (Ca.) 40 y , Calcium Silicate (CaSKW.Calm titanate (CaTiO: Calm zirconate (CaZ W.
  • hydroxyapatite Ca 5 (0H) (P0 4 )
  • Calm carbonate CaC0 : Chestnut hydride (Ca), chestnut carbide (CaC 2 ), calcium phosphate (Ca : 3 ⁇ 4 (P () 4) 2), chestnut sulfate (CaS3 ⁇ 4) .chest oxylate (CaC 2 C) 4), chestnut fur It may be one or more selected from oxides (Ca0 2 ) and kale chromate (CaCi '0 4 ).
  • the chamomile compound may comprise 30 to 70% by weight of the annealing separator composition. If too little calcium compound is included, the amount of Ca in the Monticelite film 20 to be formed is low, and the iron loss may be lost. When too much of the chame compound is included, the Ca content in the Monticulite film 20 to be formed may increase, resulting in inferior corrosion resistance. Therefore, it is possible to include the chamomile compound in the aforementioned range. More specifically, the calcium compound may include 40 to 60% by weight increase. More specifically, the chamomile compound may include 45 to 55% by weight.
  • Magnesium oxide or magnesium hydroxide serves to supply Mg of Monticelite. Magnesium oxide or magnesium hydroxide may be magnesium oxide (MgO).
  • the magnesium oxide (MgO) is generally known as such. Detailed description will be omitted.
  • the annealing separator composition for a grain-oriented electrical steel sheet may further comprise 1 to 10% by weight of ceramic powder. Ceramic powder is A1 2 0 3, Si 0 2 , Ti0 2 and Zr0 2 itdi be at least one element from among, Suntec. When the ceramic powder further contains a crystal amount. The insulating property of the Monticelite film 20 to be formed can be further improved.
  • BaS0 4 or a combination thereof may further comprise 1 to 10% by weight.
  • Sb, (S0,) 3 By further including an appropriate amount of SrS0 4 , BaS0 4, or a combination thereof, it is possible to produce a grain-oriented electrical steel sheet having excellent surface gloss and very beautiful roughness.
  • the annealing separator composition may further comprise a solvent for even dispersion and easy application of the solids .
  • the solvent may be water, alcohol, or the like, and may include 300 to 1000 parts by weight based on 100 parts by weight of solids. like this
  • the annealed separator composition may be in the form of a slurry.
  • the Monticelliite coating 20 is formed on one or both surfaces of the grain-oriented electrical steel sheet substrate 10.
  • Figure 2 shows a schematic side cross-sectional view of a grain-oriented electrical steel sheet according to an embodiment of the present invention. In FIG . 2, FIG.
  • the Monticulite film 20 has a chemical structural change due to the substitution of Ca ions at the M2 site compared to the conventional forsterite film. Can be.
  • the Monticellite film produced in the low temperature region has an effect of suppressing the decomposition of the A1N-based inhibitors, which have a decisive effect on the secondary recrystallization, thereby ensuring excellent magnetic quality.
  • Monticellite has a merit of lowering Mohs hardness than forsterite and has excellent film adhesion.
  • Monticelite coatings may contain from 0.5 to 90% Ca increase. If the Ca content in the monticelite film 20 is too small, iron loss of the grain-oriented electrical steel sheet may be lost.
  • the Ca content in the Monticello light film 20 has a very "high, corrosion resistance can be inferior. Therefore, the above-mentioned range may include C ' a " . More specifically, it may include 4 to 65 weight, C ' a.
  • Monticelite coating may include 3 to 80% by weight of Mg. If the Mg content is too small, the amount of Monticellite film formation is insufficient, resulting in surface blistering. If the Mg content is too much. Forsterite may form, resulting in inferior iron loss properties. Therefore, Mg may be included in the above range. Specifically, Mg may include 5 to 50% by weight. More specifically, Mg may include 7 to 15% by weight.
  • Monticelite coating may contain 3 to 80% by weight of Si. If the Si content is too small, the amount of Monticelite coating film is insufficient, resulting in inferior adhesion. If the Si content is too high, surface defects of whitening may occur . . Therefore, Si may be included in the above range. Specifically, it may include 5 to 50% by weight of Si. More specifically, it may include 7 to 15% by weight of Si Can be.
  • Monticelite coating may contain 3 to 80% by weight of oxygen (0). More specifically, it may include 5 to 50% by weight of 0. More specifically, 0 to 7 to 15% by weight may be included.
  • the monticelite coating contains Fe as the balance.
  • Other carbons (C) may also be included as impurities.
  • monticelite is formed by reacting silicon (Si) contained in the grain-oriented electrical steel sheet with calms (Ca) and magnesium (Mg).
  • Such monticelite film 20 is excellent in the coating force imparting effect.
  • the Monticulite coating 20 may have a thickness of 0.1 to 10 mm 3. If the thickness of the montysilite film 20 is too thin, the film tension imparting ability may be negligible, which may cause a problem of heat loss. If the thickness of the Monticelite film 20 is too thick. The adhesion of the montisealite film 20 may be inferior and peeling may occur. Therefore, the thickness of the Monticellite film 20 can be adjusted to the above-mentioned range. More specifically, the thickness of the Monticelite coating 20 may be 0.8 to 6 / mi.
  • the ceramic layer 30 may be further formed on the monticelite film 20.
  • 2 shows an example in which the ceramic layer 30 is further formed on the monticelite film 20.
  • the thickness of the ceramic layer 30 may be 0.5 to 5. If the thickness of the ceramic layer 30 is too thin. Problems may occur in which the three-way effect of the ceramic layer 30 is less likely. If the thickness of the ceramic layer 30 is too thick, the adhesion of the ceramic layer 30 becomes low. ⁇ Peeling may occur. Therefore, the thickness of the ceramic layer 30 can be adjusted within the above-mentioned range. More specifically, the thickness of the ceramic layer 30 may be 0.8 to 3.2.
  • Ceramic layer 30 may comprise a ceramic powder.
  • Ceramic powder is A1 2 0 3 Si, TiO ,, ⁇ ', ⁇ , ⁇ , - ⁇ ,, ⁇ , ⁇ ,. 9AI, 0. 2B, 0 : j , ⁇ , CrN. ⁇ At least one species selected from BaTiO.j, SiC and TiC grades may be used.
  • the particle diameter of the ceramic powder may be 2 to 900 nm. If the particle diameter of the ceramic powder is too small. Of ceramic layer Formation can be difficult. If the particle size of the ceramic powder is too large. Roughness of the surface may cause surface defects. Therefore, the particle diameter of the ceramic powder can be adjusted to the above-mentioned range.
  • the ceramic powder may be in any one or more forms selected from the group including spherical, plate-shaped, and needle-shaped.
  • Ceramic layer 30 may further comprise metal phosphate.
  • Metal phosphates are Mg, Ca. It may include one or more selected from Ba, Sr, Zn, Al and Mn. If it further contains a metal phosphate. The insulation of the ceramic layer 30 is further improved.
  • the metal phosphate may be composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (PO 4 ).
  • Metal phosphates It consists of a compound by chemical reaction of metal hydroxides and phosphoric acid ( ⁇ 0 4 ). Metal hydroxides are Ca (0H) 2 . AK0H), g (0H) 2 . It may be at least one selected from the group comprising B (0H) ; j , Co (0H) 2 and Cr (0H) ri.
  • the metal atom of the metal hydroxide is reacted with phosphorus of phosphoric acid to form a single bond double bond. Or it may be made by forming a triple bond, the amount of unbanung free phosphoric acid (H: 'P () is less than 25 weight 3 ⁇ 4' compound.
  • Metal phosphates It is composed of a compound by the chemical reaction of the metal hydroxide and phosphoric acid ( ⁇ 3 ⁇ 4), the increase ratio of the metal hydroxide to phosphoric acid may be represented by 1: 100 to 40: 100.
  • the chemical reaction may not be completed and sediment may occur. If too little metal hydroxide is included, the corrosion resistance may be poor. The range can be defined as described above.
  • Si Silicon
  • Si increases the specific resistance of steel to reduce iron loss. If the Si content is too small, the specific resistance of steel is small and iron loss is reduced. Due to the deterioration of characteristics and the presence of phase transformation zones during high temperature annealing, problems may occur, resulting in unstable secondary recrystallization. If the content of Si is too large, brittleness may increase, which may make it difficult to cold roll. therefore.
  • the content of Si can be adjusted in the above-described range. More specifically, Si may be included in an amount of 3.8 to 5.8 wt%.
  • Aluminum (A1) is finally A1N, (Al.Si) N.
  • Nitride in (Al.Si.Mn) N form and acts as an inhibitor. It is difficult to expect a sufficient effect as an inhibitor in cattle with too little A1 content.
  • the A1 content is too high, nitrides of the A1 system precipitate too coarsened. As it grows, its effect as an inhibitor may be lacking. Therefore, the content of A1 can be adjusted in the above-described range.
  • Manganese (Mn) has the effect of reducing the iron loss by increasing the specific resistance similar to Si, and reacts with nitrogen introduced by nitriding treatment together with Si to form a precipitate of (Al.Si.Mn) N. It is an important element for suppressing growth of grains and causing secondary recrystallization. So ⁇ If the content of Mn is too high. It promotes austenite phase transformation during hot rolling, thereby reducing the size of the primary recrystallized grains and making the secondary recrystallization unstable.
  • the austenite-forming element increases the austenite fraction during hot rolling reheating to increase the high capacity of the precipitates, so that the primary recrystallization through refining the precipitate and MnS formation is not excessive. It can happen inadequately. Therefore, it is possible to adjust the content of Mn in the above range.
  • Sb or Sn is an important element in controlling grain size because Sb or Sn is an element that hinders the movement of grain boundaries as a grain boundary segregation element, thereby promoting the formation of goth grains in the ⁇ > orientation as grain growth inhibitors. If the content of Sb or Sn added alone or in combination is too small, there may be a problem that the effect is reduced. If the content of Sb or Sn alone or in combination is too high, grain boundary segregation will be severe and -Because brittleness increases, plate break may occur when rolling.
  • Sb may include 0.01 to 0.05% by weight, 0.01 to 0.1% by weight.
  • C is a component that does not greatly help to improve the magnetic properties of the grain-oriented electrical steel sheet, so it is preferable to remove it if possible. However, if it contains more than a certain level in the rolling process, so that the effect to accelerate the lecture austenite help which the hinge ⁇ uniform microstructure by refining the hot rolling during hot rolling tissue formation.
  • the C content in the slab is preferably included at least 0.03% by weight. However, an excessive C content produces coarse carbides and is difficult to remove upon decarburization, preferably 0.08% by weight or less.
  • Carbon is decarburized through the decarburization annealing process in the manufacturing of the grain-oriented electrical steel sheet, and C is included in the final grain-oriented electrical steel sheet in an amount of 0.01 wt% or less.
  • N is an element which reacts with A 1 or the like to refine the crystal grains. If these elements are properly distributed, as described above, after cold rolling, the structure is appropriately fined to secure an appropriate primary recrystallization grain size. It can be helpful. However, if the content is excessive, the primary recrystallized grains are excessively refined, and as a result, the driving force causing grain growth during the secondary recrystallization may be increased due to the fine grains, thereby growing up to grains of undesirable orientation. Also. Excessive N content is undesirable because it takes a long time to remove in the final annealing process. Therefore, the upper limit of the nitrogen content is to be 0.005% by weight increase, and the content of nitrogen to be dissolved during slab reheating should be more than 0.001% by weight / /. Nitrogen is partially infiltrated through the immersion annealing process in the manufacturing of the grain-oriented electrical steel sheet, N is contained in the final grain-oriented electrical steel sheet 0.005 to 0.05% by weight.
  • Figure 3 schematically shows a flow chart of a method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • the flowchart is only for illustrating the present invention, but the present invention is not limited thereto. Therefore, the manufacturing method of the grain-oriented electrical steel sheet can be variously modified.
  • the method for producing a grain-oriented electrical steel sheet comprises the steps of preparing a steel slab (S10): heating the steel slab (S20): by hot rolling the heated steel slab. Step of producing a hot rolled sheet (S30): by cold rolling the hot rolled sheet. Manufacturing a cold rolled plate (S40); Decarburizing annealing and nitriding annealing the cold rolled sheet (S50): On the surface of the decarburizing annealing and nitriding annealing steel sheet. Applying an annealing separator (S60): and (S70) hot annealing the steel sheet to which the annealing separator is applied.
  • the method for producing a grain-oriented electrical steel sheet may further include other steps.
  • the first step (S10 1 standing preparing steel slabs. Hayeoteumeuro be described in detail with respect to the components of ⁇ a grain-oriented electrical steel sheet described above for the components of the steel slab. Repetitive description will be omitted.
  • step S20 the steel slab is heated.
  • the slab heating may be heated by a low temperature slab method at i, 20 (rc or less).
  • step (S30) by hot rolling the heated steel slab.
  • the hot rolled sheet is manufactured. After KS30).
  • the produced hot rolled sheet can be hot rolled annealed.
  • step S40 the hot rolled sheet is cold rolled to produce a cold rolled sheet. Step S40 may be performed once cold rolling, or may be performed cold rolling two or more times including intermediate annealing.
  • step S50 the cold rolled sheet is subjected to decarburization annealing and nitriding annealing.
  • Nitride can be annealed.
  • step S60 on the surface of the decarburization annealing and nitride annealing steel sheet. Annealing separator is applied. Since the annealing separator is specifically described above, repeated descriptions are omitted.
  • the primary cracking temperature was 700 r and the secondary cracking temperature was 1200 ° c.
  • the power can be controlled at 15 r / hr in the temperature range of the section.
  • Gas atmosphere may be furnace cooling (cooling furnace) and then with 25% nitrogen and 75% heunhap gas atmosphere of hydrogen to 1200 ° C and held for 100 (15 hours in a hydrogen atmosphere after reaching to 1200 ° C.
  • the method may further include forming the ceramic layer 30. Since the ceramic layer 30 has also been specifically described above. Repeated descriptions are omitted.
  • a method of forming the ceramic layer 30 it is possible to form a ceramic layer by spraying ceramic powder on the monticelite film. Specifically, plasma spray coating. High velocity oxy fuel, aerosol deposition. Cold spray coating can be applied. More specifically, Ar. 3 ⁇ 4. N 2 .
  • the plasma spray coating method may be used, in which a ceramic layer is formed by supplying ceramic powder to a heat source in which a gas containing He is plasmatized at an output of 20 to 300 kW. Also.
  • Ar, H 2 As a plasma spray coating method, Ar, H 2 .
  • the ceramic filling 30 may be formed by supplying a gas containing N 2 or He in the form of a mixture suspension of a ceramic powder and a solvent to a heat source that has been plasmaified at an output of 20 to 300 kW.
  • the solvent may be water or alcohol.
  • a method of forming a ceramic layer by applying a ceramic layer forming composition comprising ceramic powder and metal phosphate may be used.
  • the domain can be refined as necessary.
  • Example 1 Silicon (Si) 3.4 weight Aluminum (Al): 0.03 weight%, Manganese (Mn): 0.05 weight% Antimony (Sb) 0.04 weight%, Tin (Sn) 0.11 weight Carbon (C) 0.06 weight%, Nitrogen 40 parts by weight of (N) and the balance were prepared with a slab consisting of Fe and other unavoidable impurities.
  • the slab was heated at 1150 ° C for 220 minutes and then hot rolled to 2.3 thickness.
  • a hot rolled plate was prepared.
  • the hot-rolled steel 1120 ° C to the post-heated 920 ° (:..
  • the mixture was kept at 95 seconds by pickling followed by rapid cooling in water and then, cold rolled to 0.23 thickness, to prepare a cold-rolled sheet keeping the cold-rolled sheet to 850 ° C
  • the dew point temperature and the oxidizing capacity were adjusted, and decarburization and primary recrystallization annealing were simultaneously performed in a hydrogen, nitrogen, and ammonia mixed gas atmosphere to prepare a decarburization and annealing steel sheet.
  • annealing separator composition 50% by weight of calcium titanate (CaTi0 3 ), 40% by weight of magnesium oxide, 5% by weight of titanium oxide and 5% by weight of Sb 2 (S0 4 ) 3 were mixed with distilled water to prepare a slurry. The slurry was finally annealed by applying to the decarburized, quenched, annealed steel sheet.
  • CaTi0 3 calcium titanate
  • magnesium oxide magnesium oxide
  • titanium oxide 5% by weight of titanium oxide
  • Sb 2 (S0 4 ) 3 Sb 2
  • the primary crack degree was 70CTC and the secondary crack temperature was 1200 ⁇ . It was set at 15 ° C. 7 hr in the silverware section in the elevated temperature section. Also.
  • the mixed gas atmosphere of 50% by volume of nitrogen and 50% by volume of hydrogen was maintained up to 1200 " C, and after reaching 1200 ° C, it was maintained in 100% by volume of hydrogen gas atmosphere for 20 hours and then furnace coo ling.
  • the Monticellite film prepared through the final annealing was quantitatively analyzed using X-ray diffraction (X D), and the results are shown in FIG. 4.
  • the SEM EDS analysis of the monticelite coating is shown in FIG. 6. As shown in FIG. 6, it was analyzed as Ca: 11.27 weight Mg: 8.23 weight%, Si: 8.30 weight%, and 0: 7.45 weight% in the monticelite film.
  • ⁇ 3 ⁇ 4 was supplied as a ceramic powder to a heat source in which argon (Ar) gas was converted into plasma at an output of 250, thereby forming a ceramic layer having a thickness of 0.9 / thickness on the surface of the final annealing plate.
  • Example 2 In the same manner as in Example 1, the chame compound and the ceramic powder in the annealing separator were replaced with the chame compound and the ceramic powder summarized in Table 1 to form a monticelite coating and a ceramic layer.
  • Example 13 An annealing separator composition comprising 90 wt% magnesium oxide ( 3 ⁇ 4, 5 wt% titanium oxide and 2 (53 ⁇ 4) 3 5 wt% I was used.
  • Example 1 but the same embodiment, and 5% by weight of titanium oxide 90 parts by weight magnesium oxide and Sb 2 (S0 4): was used as the annealing separator composition comprising 5% by weight.
  • FIG. 7 shows the results of Fourier transform infrared spectroscopy (FT-IR) analysis of the monticelite film and the forsterite film prepared in Example 1 and Comparative Example 2.
  • FT-IR Fourier transform infrared spectroscopy
  • W17 / 50 is the power loss that occurs when a magnetic field with a frequency of 50 Hz is magnetized by alternating current up to 1.7 Tesla.
  • Tesla is the unit of flux density, which means flux per unit area.
  • B8 is the amount of current of 800 A / m in a winding wound around an electrical steel sheet. The magnetic flux density value flowing through the electrical steel sheet is shown.
  • insulation properties were measured on the top of the coating using a Franklin meter according to ASTM A717 International Standard.
  • adhesion is 3 ⁇ 4 of the specimen 10 to 100 ⁇ arc 180 to "bend In this case, the minimum arc diameter without film peeling is shown.
  • the slab was heated at 115 C for 220 minutes and hot rolled to 2.3 thickness to prepare a hot rolled sheet.
  • the hot rolled sheet was heated to 1120'C and held at 920 ° C for 95 seconds, quenched with water, pickled, and cold rolled to 0.23 thick.
  • Cold rolled plates were prepared. After the cold rolled plate is immersed in a furnace maintained at 8 TC. Controlling dew point silver and oxidation capacity. Hydrogen. Decarburization and primary recrystallization annealing were performed simultaneously in an atmosphere of 3 ⁇ 4 and ammonia mixed gas. A decarburized precipitated annealed steel sheet was prepared.
  • the primary crack temperature was 7tXTC
  • the secondary crack degree was 1200 ° C
  • the temperature range was 15 ° C7hr in the temperature range.
  • 1200 o C up was as nitrogen 50 vol.%
  • heunhap gas atmosphere of hydrogen 50% by volume after reaching 1200 ° C is maintained in a hydrogen gas atmosphere of 100 vol% 20 hours and then furnace cooling (furnace coo 1 i ng) It was.
  • Colloidyl- silica 45 increase V monobasic aluminum phosphate 45% increase
  • the ceramic layer-forming composition mixed with 5% by weight of oxide oxide and 5% by weight of nickel hydroxide was stirred, applied to the surface of the final annealing plate to 4.5 g / m 2 , and then treated in a drying furnace set at 860 ° C. for 120 seconds. After that, the laser micronization process was performed, and the result of evaluation at 60 Hz condition according to the design magnetic flux density by fabricating a 100kVA transformer is shown in Table 2 below.
  • Example 14 In the same manner as in Example 14, an annealing separator composition including 90% by weight of magnesium oxide, 5% by weight of titanium oxide, and 5% by weight of Sb 2 (SO 4 ) 3 was used. The spot rate was measured using a measuring instrument in accordance with J IS C2550 International Standard. After stacking a plurality of electrical steel specimens, the uniform pressure of IMPa was applied to the surface, and the weight ratio of electrical steel lamination was measured by dividing the theoretical weight by the theoretical weight through four height height measurements of the specimens.
  • the noise evaluation method is evaluated in the same manner as the international standard IEC61672-L, but the vibration (vibration) data of electrical steel sheet is obtained instead of the sound pressure and evaluated by the noise conversion value [dBA].
  • the tremor of the electrical steel plate produces a magnetic field with a frequency of 60 Hz.
  • the vibration pattern is measured over time non-contactedly using the laser Doppler method.
  • Example 14 As shown in Table 2, it can confirm that the characteristic of Example 14 was much better than the comparative example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법을 제공한다. 본 발명의 일 실시예에 의한 방향성 전기강판용 소둔 분리제 조성물은 고형분 기준으로, 칼슘 화합물 30 내지 70 중량 및 잔부 마그네슘 산화물 또는 마그네슘 수산화물을 포함한다.

Description

【명세서】
【발명의 명칭】
방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
【기술분야】
방향성 전기강판용 소둔 분리제 조성물. 방향성 전기강판 및 방향성 전기강판의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로, 방향성 전기강판이란 강판에 3. 1( 전후의 Si성분을 함유한 것으로서, 결정립의 방위가 { 1(:)0 }<001> 방향으로 정렬된 집합 조직을 가지고 있어, 압연방향으로 극히 우수한 자기적 특성을 가진 전기강판을 말한다.
일반적으로 알려진 방향성 전기강판의 경우. 포스테라이트 (Forster i te , Mg2S i04)계 바탕 피막 위에 절연피막을 형성하고 이러한 절연피믹'의 열팽창계수 차이를 이용하여 강판에 인장 웅력을 부여함으로써 , 철손을 개선하고 자기 변형에 기인한 소음 감소 효과를 도모하고 있지만, 최근 요구되고 있는 고급 방향성 전기강판에서의 특성 수준을 만족시키기애는 한계가 있다.
종래 방향성 전기강판 제조 공정에서 포스테라이트 피막 특성을 개선하기 위해 MgO를 주성분으로 하는 융착방지제를 도포하는 단계에서 MgO에 Ti02분말을 표면특성을 개선하는 방법이 제안되어 있다.
또한 방향성 전기강판의 철손을 개선하는 방법으로 융착방지세로 알루미나 분말 흑은 콜로이달 실리카와 MgC ^ 흔합물을 도포하여 포스테라이트 피막을 제거하는 방법이 알려져 있다. 그러나 상기와 같은 방법은 포스테라이트 피막을 제거힘어) 따라 전기강판의 ¾손이 오히려 열위해지는 문제점이 있고, 차후 공정에서 절연피막을 형성하기 곤란한 문제가 있다.
【발명의 내용】
【해결하고자 하는 과제】
방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법을 제공한다 .
【과제의 해결 수단】
본 발명의 일 실시예에 의한 방향성 전기강판용 소둔 분리제 조성물은 고형분 기준으로, 칼슴 화합물 5 내지 70 증량 %. 및 잔부 마그네슴 산화물 또는 마그네숨 수산화물을 포함한다.
세라믹 분말을 1 내지 10 중량 % 더 포함할 수 있다.
세라^ 분말은 Si02, Ti02 및 Ζι·θ2 증에서 선택되는 1종 이상이 될 수 있다.
Sb2(S0,),,, SrS04, BaS04 또는 이들의 조합을 1 내지 10 증량 % 더 포함할 수 있다.
칼슘 화합물은 칼슘 옥사이드 (CaO), 칼슘 하이드록사이드 (Ca(0H)2). ¾슘 코발트 옥사이드 (Ca,;Co4 ), 킬:슘 실리케이트 (CaSiC , 칼슴 티타네이트 (CaTi ), 칼슘 지르코네이트 (CaZr03), 하이드록시아파타이트 (Ca5(0H)(P()4)3), 칼슘 카보네이트 (CaC03). 칼슘 하이드라이드 (Ca ), 칼슘 카바이드 (CaC2), 칼슘 포스페이트 (Ca3(P04)2), 칼슘 설페이트 (CaS04), 칼슘 옥실레이트 (CaC204). 칼슘 퍼옥사이드 (Ca02) 및 칼슘 크로메이트 ( CaCrO, ) 증에서 선택되는 1종 이상이 될 수 있다 .
본 발명의 일 실시예에 의한 방향성 전기강판은 방향성 전기강판 기재의 일면 또는 양면에 몬티셀라이트 피막이 형성된다.
몬티셀라이트 피막은 Ca를 0.5 내지 90 증량 % 포함할 수 있다.
몬티셀라이트 피막은 Mg를 3 내지 80 증량 %, Si를 3 내지 80 중량% 및 0를 3 내지 80 중량 % 및 Fe를 잔부로 더 포함할 수 있다.
몬티셀라이트 피막은 두께가 0.1 내지 10 /ziii가 될 수 있다.
몬티셀라이트 피막 상에 세라믹 층이 더 형성될 수 있다.
세라믹 층은 세라믹 분말을 포함할 수 있다.
세라믹 분말은 Al O. , Si03, Ti02, Zr02, Al 0,rTi02, Y2 . 9Α1203·2Β203. ΒΝ, CrN, BaTi03, SiC 및 TiC 중에서 선택되는 1종 이상이 될 수 있다.
세라믹 층은 금속 인산염을 더 포함할 수 있다.
금속 인산염은 Mg, Ca, Ba, Sr, Zn, Al 및 Mn 중에서 선택되는 1종 이상을 포함할 수 있다. 방향성 전기강판 기재는 실리콘 (Si): 2.8 내지 6.8증량¾. 알루미늄 (A1): 0.020 내지 0.040 증량 망간 (Mn): 0.01 내지 0.20 중량 %, 및 안티몬 (Sb), 주석 (Sn), 또는 이들의 조합을 0.01 내지 0.15 중량 % 포함하고, 잔부는 Fe 및 기타 블가피한 블순물로 이루어질 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 강 슬라브를 준비하는 단계; 강 슬라브를 가열하는 단계: 가열된 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계: 열연판을 냉간 압연하여, 냉연판을 제조하는 단계; 냉연판을 탈탄 소둔 및 질화 소둔하는 단계: 탈탄 소둔 및 질화 소둔된 강판의 표면 상에. 소둔 분리제를 도포하는 단계: 및 소둔 분리제가 도포된 강판을 고은 소둔하는 단계를 포함한다.
소둔 분리제는 고형분 기준으로, 칼슘 화합물 30 내지 70 중량 및 잔부 마그네슘 산화물 또는 마그네슘 수산화물을 포함한다.
고온 소둔하는 단계 이후에, 몬티셀라이트 피막 상에 세라믹 층을 형성하는 단계를 더 포함할 수 있다.
세라믹 층을 형성하는 단계는. 몬티셀라이트 피막 상에 세라믹 분말을 분사하여 세라믹 층을 형성하는 단계일 수 있다.
세라믹 층을 형성하는 단계는. 몬티썰라이트 피막 상에 세라믹 분말 및 금속 인산염을 포함하는 세라믹 충 형성 조성물을 도포하여 세라믹 층을 형성하는 단계일 수 있다.
냉연판을 탈탄 소둔 및 질화 소둔하는 단계는, 냉연판을 동시에 탈탄 소둔 및 질화 소둔 하거나, 탈탄 소둔 이후, 질화 소둔하는 단계일 수 있다. 【발명의 효과】
본 발명의 일 구현예에 따르면. 철손 및 자속밀도가 우수하고. 피막의 밀착성 및 절연성이 우수한 방향성 전기강판 및 그 제조 방법을 제공할 수 있다.
【도면의 간단한 설명】
도 1은 몬티셀라이트 원자단위 구조를 개략적으로 나타낸 도면이다. 도 2는 본 발명의 일 실시예에 의한 방향성 전기강판의 개략적인 측 단면도이다.
도 3은 본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법의 순서도이다.
도 4는 실시예 1에서 제조한 몬티셀라이트 피막의 X선 회절 분석 (XRD) 결과이다.
도 5는 실시예 1에서 제조한 방향성 전기강판의 주사전자현미경 ( SEM) 사진이다.
도 6은 실시예 1에서 제조한 몬티셀라이트 피막의 주사전자현미경 기반 에너지 분산 분광 (SEM EDS ) 분석 결과이다.
도 7은 실시예 1 및 비교예 2에서 제조한 몬티셀라이트 피막 및 포스테라이트 피막의 퓨리에 변환 적외선분광 (FT- I R) 분석 결과이다.
【발명을 실시하기 위한 구체적인 내용】
제 1 . 저 12 및 제 3 등의 용어들은 다양한 부분. 성분. 영역 . 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분. 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역. 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서 . 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분 성분, 영역. 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 ^한 것이며. 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성 , 영역, 정수, 딘계 . 동작 요소 및 /또는 성분을 구체화하며 , 다른 특성. 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
또한 본 발명에서 lppm은 0. 0001%를 의미한다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다 .
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 방향성 전기강판용 소둔 분리제 조성물은 고형분 기준으로. 칼슘 화합물 30 내지 70 증링 =%, 및 잔부 마그네슘 산화물 또는 마그네슴 수산화물을 포함한다. 여기서 고형분 기준이란, 용매 등의 성분을 제외한 고형분을 100증량 %로 설정한 것을 의미한디-.
본 발명의 일 실시예에 의한 소둔 분리제 조성물은 방향성 전기강판 기재 (10)에 도포되어 몬티셀라이트 피막 (20)을 형성하게 된다.
몬티셀라이트는 올리빈 그룹 (olivine group)으로 도 1과 같은 원자단위 구조로 구성된다. 마그네슘 이은은 Ml 사이트에 존재하고. 붸. 이은은 M2 사이트에 존재한다. 도 1에서 산소 (0)는 붉은색 원으로. 실리콘 (Si)는 핑크색 원으로, Ca 및 Mg는 푸른색 원으로 표시하였다.
몬티셀라이트 피막 (20)은 종래 포스테라이트 피막 대비 M2 사이트에
Ca 이온이 치환되어 화학구조적 변화가 있으며, 융점이 저하되어 고은소둔 공정에서 글라스 피막 형성 온도가 낮아져 양호한 품질의 표면특성을 확보할 수 있다. 또한, 낮은 은도영역에서 생성된 몬티셀라이트 피막은 2차 재결정 형성에 결정적인 영향을 미치는 A1N계 인히비터의 분해를 억제하는 효과가 있어 우수한 자성품질을 확보할 수 있디. 그리고, 몬티셀라이트는 포스테라이트 보다 모스 경도 (Mohs hardness) 낮아 피막 밀착성이 우수한 장점이 있다.
칼습 화합물은 몬티셀라이트의 Ca를 공급하는 역할을 한디. 종래의 소둔 분리제 조성물과는 달리 본 발명의 일 실시예에서는 칼습 화합물을 첨가하여 강판 기재 (10) 상에 몬티셀라이트 피막 (20)이 형성되게 된다. 칼슴 화합물은 Ca를 공급할 수 있는 화합물이면 제한 없이 사용할 수 있다. 구체적으로 칼슘 옥사이드 (CaO), 칼슘 하이드록사이드 (Ca(0H)2). 칼슘 코발트 옥사이드 (Ca. )40y), 칼슘 실리케이트 (CaSKW. 칼슴 티타네이트 (CaTiO: 칼슴 지르코네이트 (CaZ W. 하이드록시아파타이트 (Ca5(0H)(P04) ), 칼슴 카보네이트 (CaC0: ). 칼슴 하이드라이드 (Ca ), 칼슴 카바이드 (CaC2), 칼슘 포스페이트 (Ca(P()4)2), 칼슴 설페이트 (CaS¾). 칼슴 옥실레이트 (CaC2C)4), 칼슴 퍼옥사이드 (Ca02) 및 칼슴 크로메이트 (CaCiᅳ 04) 중에서 선텍되는 1종 이상이 될 수 있다.
칼슴 화합물은 소둔 분리제 조성물 내에 30 내지 70 증량 % 포함할 수 있다. 칼슘 화합물이 너무 적게 포함될 경우, 형성되는 몬티셀라이트 피막 (20) 내의 Ca 함량이 적어져 철손이 열위해 질 수 있다. 칼슴 화합물이 너무 많이 포함될 경우, 형성되는 몬티썰라이트 피막 (20) 내의 Ca 함량이 많아져 내식성이 열위해질 수 있다. 따라서 전술한 범위로 칼슴 화합물을 포함할 수 있다. 더욱 구체적으로 칼슘 화합물은 40 내지 60 증량 % 포함할 수 있다. 더욱 구체적으로 칼슴 화합물은 45 내지 55 중량 % 포함할 수 있다. 마그네슴 산화물 또는 마그네슘 수산화물은 몬티셀라이트의 Mg를 공급하는 역할을 한다.. 마그네슴 산화물 또는 마그네슴 수산화물은, 마그네슘 산화물 (MgO)인 것일 수 있다. 상기 마그네습 산화물 (MgO)에 관해서는 통상적으로 널리 알려진 바와 같으므로. 자세한 설명을 생략한다. 방향성 전기강판용 소둔 분리제 조성물은 세라믹 분말을 1 내지 10 중량 % 더 포함할 수 있다. 세라믹 분말은 A1203, Si 02, Ti02 및 Zr02 중에서 선텍되는 1종 이상이 될 수 있디 ·. 세라믹 분말을 석정량 더 포함하는 경우. 형성되는 몬티셀라이트 피막 (20)의 절연 특성이 더욱 향상될 수 있다.
방향성 전기강판용 소둔 분리제 조성물은 Sbj(S(:)4)3, SrS04. BaS04 또는 이들의 조합을 1 내지 10 증량 % 더 포함할 수 있다. Sb,(S0,)3. SrS04, BaS04 또는 이들의 조합을 적정량 더 포함함으로써, 표면광택이 우수하고 조도가 매우 미려한 방향성 전기강판을 제조할 수 있디-.
소둔 분리제 조성물은 고형물들의 고른 분산 및 용이한 도포를 위해 용매를 더 포함할 수 있디. 용매로는 물, 알코올 등을 사용할 수 있으몌 고형분 100 증량부에 대해 300 내지 1000 증량부 포함할 수 있다. 이처럼 소둔 분리제 조성물은 슬러리 형태일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판 (100)은 방향성 전기강판 기재 (10)의 일면 또는 양면에 몬티셀라이트 피막 (20)이 형성된다. 도 2는 본 발명의 일 실시예에 의한 방향성 전기강판의 개략적인 측 단면도를 나타낸다. 도, 2에서는 방향성 전기강판 기재 (10)의 상면에 몬티썰라이트 피막 (20)이 형성된 ¾우를 나타낸다.
몬티썰라이트 피막 (20)은 종래 포스테라이트 피막 대비 M2 사이트에 Ca 이온이 치환되어 화학구조적 변화가 있으며, 융점이 저하되어 고온소둔 공정에서 글라스 피막 형성 온도가 낮아져 양호한 품질의 표면특성을 확보할 수 있다. 또한, 낮은 온도영역에서 생성된 몬티셀라이트 피막은 2차 재결정 형성에 결정적인 영향을 미치는 A1N계 인히비터의 분해를 억제하는 효과가 있어 우수한 자성품질을 확보할 수 있다. 그리고, 몬티셀라이트는 포스테라이트 보다 모스 경도 (Mohs hardness) 낮아 피막 밀착성이 우수한 장점이 있다.
몬티셀라이트 피막은 Ca를 0.5 내지 90 증량 % 포함 ¾ 수 있다. 몬티셀라이트 피막 (20) 내의 Ca 함량이 너무 적으면 방향성 전기강판의 철손이 열위해 질 수 있다. 몬티셀라이트 피막 (20) 내의 Ca 함량이 너무' 많으면 내식성이 열위해질 수 있다. 따라서 전술한 범위로 C'a " 포함할 수 있다. 더욱 구체적으로 C'a를 4 내지 65 중량 , 포함할 수 있다.
몬티셀라이트 피막은 Mg를 3 내지 80 중량 % 포함할 수 있다. Mg 함량이 너무 적으면, 몬티셀라이트 피막형성량이 부족하여 표면블량이 발생되고. Mg 함량이 너무 많으면. 포스테라이트가 형성되어 철손 특성이 열위해질 수 있다. 따라서 전술한 범위로 Mg를 포함할 수 있다. 구체적으로 Mg를 5 내지 50 중량 % 포함할 수 있다. 더욱 구체적으로 Mg를 7 내지 15 중량 % 포함할 수 있다.
몬티셀라이트 피막은 Si를 3 내지 80 중량 % 포함할 수 있다. Si 함량이 너무 적으면 , 몬티셀라이트 피막형성량이 부족하여 밀착성이 열위해지고. Si 함량이 너무 많으면, 백화현상의 표면결함이 발생될 수 있디.. 따라서 전술한 범위로 Si를 포함할 수 있다. 구체적으로 Si를 5 내지 50 증량 % 포함할 수 있다. 더욱 구체적으로 Si를 7 내지 15 증량 % 포함할 수 있다.
몬티셀라이트 피막은 산소 (0)를 3 내지 80 중량 % 포함할 수 있다. 더욱 구체적으로 0를 5 내지 50 중량 % 포함할 수 있다. 더욱 구체적으로 0를 7 내지 15 중량 % 포함할 수 있다.
몬티셀라이트 피막은 Fe를 잔부로 포함한다. 그 밖의 탄소 (C)도 불순물로서 포함할 수 있다.
이러한 몬티셀라이트는 소둔 분리제 조성물을 도포하는 과정에서 조성물의 주성분인 칼슴 (Ca)과 마그네습 (Mg)이 방향성 전기강판에 함유된 실리콘 (Si)과 반웅하여 형성되게 된다. 이러한 몬티셀라이트 피막 (20)은 피막장력 부여 효과가 우수하다.
몬티썰라이트 피막 (20)은 두께가 0.1 내지 10 卿 일 수 있다. 몬티씰라이트 피막 (20)의 두께가 너무 얇으면, 피막장력 부여능이 쩌하되어 철손이 열위한 문제가 생길 수 있다. 몬티셀라이트 피막 (20)의 두께가 너무 두꺼우면. 몬티씰라이트 피막 (20)의 밀착성이 열위해져 박리가 일어날 수 있다. 따라서, 몬티셀라이트 피막 (20)의 두께를 전술한 범위로 조절할 수 있다. 더욱 구체적으로 몬티셀라이트 피막 (20)의 두께는 0.8 내지 6 /mi일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강핀( 100)은 몬티셀라이트 피막 (20) 상에 세라믹 층 (30)이 더 형성될 수 있다. 도 2에서는 몬티셀라이트 피막 (20) 상에 세라믹 층 (30)이 더 형성된 일 예를 나타낸다. 에라믹 층 (30)의 두께는 0.5 내지 5 일 수 있다. 세라믹 층 (30)의 두께가 너무 얇으면. 세라익 층 (30)의 ¾연 효과가 적게 나타나는 문제가 생길 수 있다. 세라믹 층 (30)의 두께가 너무 두꺼우면, 세라믹 층 (30)의 밀착성이 낮아지고. 박리가 일어닐 수 있다. 따라서, 세라믹 층 (30)의 두께를 전술한 범위로 조절.할 수 있디-. 더욱 구체적으로 세라믹 층 (30)의 두께는 0.8 내지 3.2 일 수 있다.
세라믹 층 (30)은 세라믹 분말을 포함할 수 있다. 세라믹 분말은 A1203 Si , TiO,, ΖΚλ', ΑΙ,Ο,-ΤίΟ,, Υ,Ο,. 9AI,0. 2B,0:j, ΒΝ, CrN. BaTiO.j , SiC 및 TiC 증에서 선택되는 1종 이상이 ¾ 수 있디. 세라믹 분말의 입경은 2 내지 900nm가 될 수 있다. 세라믹 분말의 입경이 너무 작으면. 세라믹 층의 형성이 곤란해 질 수 있다. 세라믹 분말의 입경이 너무 크면. 표면조도가 거칠어져 표면 결함이 발생할 수 있다. 따라서 세라믹 분말의 입경을 전술한 범위로 조절할 수 있다.
세라믹 분말은 구형 , 판상형, 및 침상형을 포함하는 군에서 선택된 어느 하나 이상의 형태일 수 있다.
세라믹 층 (30)은 금속 인산염을 더 포함할 수 있다. 금속 인산염은 Mg, Ca. Ba, Sr, Zn, Al 및 Mn 중에서 선택되는 1종 이상을 포함할 수 있다. 금속 인산염을 더 포함하는 경우. 세라믹 층 (30)의 절연성이 더욱 향상된다. 금속 인산염은 금속 수산화물 및 인산 ( P04)의 화학적인 반웅에 의한 화합물로 이루어진 것일 수 있다.
금속 인산염은. 금속 수산화물 및 인산 ( Ρ04)의 화학적인 반웅에 의한 화합물로 이루어진 것이고. 금속 수산화물은 Ca(0H)2. AK0H),, g(0H)2. B(0H);j, Co(0H)2 및 Cr(0H)ri 포함하는 군으로부터 선택된 적어도 1종 이상인 것일 수 있다.
구체적으로, 상기 금속 수산화물의 금속원자는 인산의 인과 치환 반웅하여 단일결 이중결합. 또는 삼중 결합을 형성하여 이루어진 것이고, 미반웅 자유인산 (H:'P( )의 양이 25 중량 ¾ '이하인 화합물로 이루어진 것일 수 있다.
금속 인산염은. 금속 수산화물 및 인산 (Η3Ρθ4)의 화학적인 반웅에 의한 화합물로 이루어진 것이고, 인산에 대한 금속 수산화물의 증량 비율은 1:100 내지 40: 100으로 표시되는 것일 수 있다.
금속 수산화물이 너무 많이 포함될 경우에는 화학적인 반응이 완결되지 않아 침전물이 생기는 문제가 발생할 수 있고, 금속 수산화물이 너무 적게 포함될 경우에는 내식성이 열위한 문제가 발생할 수 있기에. 상기와 같이 범위를 한정할 수 있다.
이하에서는 방향성 전기강판 기재 (10) 성분의 한정 이유에 대해 설명한다.
Si : 2.8 내지 6.8중량¾
실리콘 (Si)은 강의 비저항을 증가시켜 철손을 감소시키는 역할을 하는데, Si의 함량이 너무 적은 경우에는 강의 비저항이 작게 되어 철손 특성이 열화되고 고온소둔시 상변태구간이 존재하여 2차 재결정이 블안정해지는 문재가 발생할수 있다. Si의 함량이 너무 많은 경우에는 취성이 커져 냉간압연이 어려워지는 문제가 발생 수 있다. 따라서. 전술한 범위에서 Si의 함량을 조절할 수 있다. 더욱 구체적으로 Si는 3.8 내지 5.8 중량 % 포함될 수 있다.
A1: 0.020 내지 0.040중량 %
알루미늄 (A1)은 최종적으로 A1N, (Al.Si)N. (Al.Si.Mn)N 형태의 질화물로 되어 억제제로 작용하는 성분이다. A1의 함량이 너무 적은 ¾우에는 억제제로서 충분한 효과를 기대하기 어렵다. 또한, A1의 함량이 너무 많은 경우에는 A1계통의 질화물이 너무 조대하게 석출. 성장하므로 억제제로의 효과가 부족해질 수 있다. 따라서 , 전술한 범위에서 A1의 함량을 조절할 수 있다.
Mn: 0.01 내지 0.20중량 %
망간 (Mn)은 Si과 동일하게 비저항을 증가시켜 철손을 감소시키는 효과가 있으며 , Si과 함께 질화처리에 의해서 도입되는 질소와 반웅하여 (Al.Si.Mn)N의 석출물을 형성함으로서 1차재결정립의 성장을 억제하여 2차재결정을 일으키는데 중요한 원소이다. 그러니 Mn의 함량이 너무 많은 경우. 열연도중 오스테나이트 상변태를 촉진하므로 1차 재결정립의 크기를 감소시켜 2차 재결정을 불안정하게 한다. 또한, Mn의 함량이 너무 적은 경우, 오스테나이트 형성 원소로서 열연 재가열시 오스테나이트 분율을 높여 석출물들의 고용량을 많게 하여 재석출시 석출물 미세화와 MnS 형성을 통한 1차 재결정립이 너무 과대하지 않게 하는 효과가 불충분하게 일어날 수 있다. 따라서, 전술한 범위에서 Mn의 함량을 조절할 수 있다.
Sb, Sn 또는 이들의 조합: 0.01 내지 0.15중량 %
Sb 또는 Sn는 결정립계 편석원소로서 결정립계의 이동을 방해하는 원소이기 때문에 결정립 성장 억제제로서 {ΐκηοοι>방위의 고스결정립의 생성을 촉진하여 2차 재결정이 잘 발달하도록 하므로 결정립 크기 제어에 중요한 원소이다. 만약, Sb 또는 Sn을 단독 또는 복합 첨가한 함량이 너무 적으면 그 효과가 떨어지는 문제가 생길 수 있다. Sb 또는 Sn을 단독 또는 복합 첨가한 함량이 너무 많으면 결정립계 편석이 심하게 일어나 강판의 취성이 커져서 압연시 판파단이 발생할 수 있디- .
더욱 구체적으로 Sb를 0. 01 내지 0.05 증량 % , 을 0.01 내지 0. 12 중량 % 포함할 수 있다.
C : 0.이증량 % 이하
C는 본 발명에 따른 실시예에서 방향성 전기강판의 자기적 특성 향상에 크게 도움이 되지 않는 성분이므로 가급적 제거하는 것이 바람직하다. 그러나, 일정수준 이상 포함되어 있을 경우 압연과정에서는 강의 오스테나이트 변태를 촉진하여 열간압연시 열간압연 조직을 미세화시켜서 균일힌 미세조직이 형성되는 것을 도와주는 효과가 있으므로. 슬라브에서의 C 함량은 0.03중량 % 이상으로 포함되는 것이 바람직하다. 그러나 C 함량이 과다하면 조대한 탄화물이 생성되고 탈탄시 제거가 곤란해지므로 0. 08중량 % 이하인 것이 바람직하다. 방향성 전기강판의 제조 과정에서 탈탄 소둔과정을 통해 탄소가 탈탄되며, 최종 제조되는 방향성 전기강판 내에는 C가 0.01 중량 % 이하로 포함되게 된다.
N : 0.001 내지 0.005 중량 %
N은 A 1 등과 반응하여 결정립을 미세화시키는 원소이다. 이들 원소들이 적절히 분포될 경우에는 상술한 바와 같이 냉간압연 이후 조직을 적절히 미세하게 하여 적절한 1차 재결정 입도를 확보하는데. 도움이 될 수 있다. 그러나, 그 함량이 과도하면 1차 재결정립이 과도하게 미세화되고 그 결과 미세한 결정립으로 인하여 2차 재결정시 결정립 성장을 초래하는 구동력이 커져서 바람직하지 않은 방위의 결정립까지 성장할 수 있다. 또한. N 함량이 과다하면 최종 소둔 과정에서 제거하는데도 많은 시간이 소요되므로 바람직하지 않다. 따라서 , 상기 질소 함량의 상한은 0.005 증량 %으로 하고, 슬라브 재가열시 고용되는 질소의 함량이 0.001 중량。 /。 이상이 되어야 할 것이므로 상기 질소 함량의 하한은 0.001 증량 %으로 하는 것이 바람직하다. 방향성 전기강판의 제조 과정에서 침질 소둔과정을 통해 질소가 일부 침투되며, 최종 제조되는 방향성 전기강판 내에는 N이 0.005 내지 0.05 중량 %로 포함되게 된다.
도 3은 본 발명의 일 실시예에 따른 방향성 전기강판의 제조 방법의 순서도를 개략적으로 나타낸다. 도 3의 방향성 전기강판의 제조 방법의 순서도는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 방향성 전기강판의 제조 방법을 다양하게 변형할 수 있다.
도 3에 도시한 바와 같이. 방향성 전기강판의 제조 방법은 강 슬라브를 준비하는 단계 (S10): 강 슬라브를 가열하는 단계 (S20): 가열된 강 슬라브를 열간 압연하여. 열연판을 제조하는 단계 (S30): 열연판을 냉간 압연하여. 냉연판을 제조하는 단계 (S40); 냉연판을 탈탄 소둔 및 질화 소둔하는 단계 (S50): 탈탄 소둔 및 질화 소둔된 강판의 표면 상에. 소둔 분리제를 도포하는 단계 (S60): 및 소둔 분리제가 도포된 강판을 고온 소둔하는 단계 (S70)를 포함한다/이외에 . 방향성 전기강판의 제조 방법은 다른 단계들을 더 포함할 수 있다.
먼저 단계 (S10 1서는 강 슬라브를 준비한다. 강 슬라브의 성분에 대해서는 전술한 방향성 전기강판의 성분에 대해서 구체적으로 설명하였으므로. 반복되는 설명은 생략한다.
다음으로 단계 (S20)에서는 강 슬라브를 가열한다. 이때 슬라브 가열은 i,20(rc 이하에서 저온 슬라브법으로 가열할 수 있다.
다음으로, 단계 (S30)에서는 가열된 강 슬라브를 열간 압연하여. 열연판을 제조한다. 단겨 KS30)이후. 제조된 열연판을 열연 소둔할 수 있다. 다음으로, 단계 (S40)에서는 열연판을 냉간 압연하여, 냉연판을 제조한다. 단계 (S40)은 냉간 압연을 1회 실시하거나, 중간소둔을 포함하는 2회 이상의 냉간 압연을 실시 할 수 있다.
다음으로, 단계 (S50)에서는 냉연판을 탈탄 소둔 및 질화 소둔한다. 이 때, 냉연판을 탈탄 소둔 및 질화 소둔하는 단계는, 냉연판을 동시에 탈탄 소둔 및 질화 소둔 하거나. 랄탄 소둔 이후. 질화 소둔할 수 있다. 다음으로, 단계 (S60)에서는 탈탄 소둔 및 질화 소둔된 강판의 표면 상에 . 소둔 분리제를 도포한다. 소둔 분리제에 대해서는 구체적으로 전술하였으므로, 반복되는 설명은 생략한다.
다음으로, 단겨 KS7())에서는 소둔 분리제가 도포된 강판을 고온 소둔한다. 고온 소둔하는 과정에서 소둔 분리제 내의 Ca 및 Mg와 방향성 전기강판 기재 (10)내의 Si가 반응하여 몬티셀라이트 피막 (20)을 형성하게 된다.
고온소둔 시 1차 균열온도는 700 r , 2차 균열온도는 1200 °c로 하였고. 승은 구간의 온도 구간에서는 15 r/hr 조건으로 통제할 수 있다. 또한. 기체 분위기는 1200 °C까지 25% 질소 및 75% 수소의 흔합 기체 분위기로 하고, 1200 °C에 도달한 뒤에는 100( 수소 분위기에서 15시간 동안 유지한 후 노냉 (furnace cooling)할 수 있다.
단계 (S70) 이후에 세라믹 층 (30)을 형성하는 단계를 더 포함할 수 있다. 세라믹 층 (30)에 대해서도 구체적으로 전술하였으므로. 반복되는 설명은 생략한다. 세라믹 층 (30)을 형성하는 방법으로서 , 몬티셀라이트 피막 상에 세라믹 분말을 분사하여 세라믹 층을 형성할 수 있다. 구체적으로 플라즈마 스프레이 코팅 (Plasma spray). 고속화염 스프레이 코팅 (High velocity oxy fuel), 에어로졸 디포지션 (Aerosol deposition). 저온 스프레이 코팅 (Cold spray)의 방법을 적용할 수 있다. 더욱 구체적으로, Ar. ¾. N2. 또는 He를 포함하는 가스를 20 내지 300kW의 출력으로 플라즈마화한 열원에 세라믹 분말을 공급하여 세라믹 층을 형성하는 플라즈마 스프레이 코팅방법을 사용할 수 있다. 또한. 플라즈마 스프레이 코팅방법으로서, Ar, H2. N2, 또는 He를 포함하는 가스를 20 내지 300kW의 출력으로 플라즈마화한 열원에 세라믹 분말 및 용매의 혼합물 서스펜션 형태로 공급하여 세라믹 충 (30)을 형성할 수 있다. 이 때, 용매는 물 또는 알코올이 될 수 있다.
또한 . 세라믹 층 (30)을 형성하는 방법으로서 . 세라믹 분말 및 금속 인산염을 포함하는 세라믹 층 형성 조성물을 도포하여 세라믹 층을 형성하는 방법을 사용할 수 있다.
세라믹 층 (30) 형성 이후, 필요에 따라 자구 미세화를 수행할 수 있다.
이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며. 본 발명이 여기에 한정되는 것은 아니디-.
실험예 1 : 세라믹 분말의 종류별 특성
실시예 1 실리콘 (Si)을 3.4 중량 알루미늄 (Al): 0.03 증량 %, 망간 (Mn): 0.05 증량 % 안티몬 (Sb)을 0.04 중량 % 및 주석 (Sn)을 0.11 중량 탄소 (C)를 0.06 중량 %, 질소 (N)를 40 중량 ppm 포함하고, 잔부는 Fe 및 기타 불가피한 블순물로 이루어진 슬라브를 준비하였다.
슬라브를 1150°C 에서 220분간 가열한 뒤 2.3 두께로 열간 압연하여. 열연판을 제조하였다.
열연판을 1120°C까지 가열한 후 920°(: 에서 95초간 유지한 후. 물에 급냉하여 산세한 다음, 0.23 두께로 냉간 압연하여, 냉연판을 제조하였다. 냉연판을 850°C 로 유지 된 노 (Furnace) 속에 투입한 뒤, 이슬점 온도 및 산화능을 조절하고. 수소. 질소. 및 암모니아 흔합 기체 분위기에서 탈탄 침질 및 1차 재결정 소둔을 동시에 수행하여 . 탈탄 침질 소둔된 강판을 제조하였다.
소둔 분리제 조성물로서 칼슘 티타네이트 (CaTi03) 50 중량 %, 산화 마그네슘 40 증량 %, 산화티탄 5 증량 % 및 Sb2(S04)3 5중량 %를 증류수와 흔합하여 슬러리 형태로 제조하고. 를을 이용하여 슬러리를 탈탄 침질 소둔된 강판에 도포한 최종 소둔하였다.
최종 소둔시 1차 균열은도는 70CTC, 2차 균열온도는 1200Γ로 하였고. 승온구간의 은도구간에서는 15°C7hr로 하였다. 또한. 1200 "C까지는 질소 50 부피 % 및 수소 50 부피 %의 흔합 기체 분위기로 하였고, 1200 °C 도달한 후에는 100 부피 %의 수소 기체 분위기에서 20시간 유지한 다음 노냉 (furnace coo ling)하였다.
최종 소둔을 통해 제조된 몬티셀라이트 피막을 X-ray 회절분석법 (X D)을 이용하여 정량분석을 진행하여 그 결과를 도 4에 나타내었다. 몬티셀라이트 피막의 SEM EDS 분석결과를 도 6에 나타내었다. 도 6에서 나타나듯이 몬티셀라이트 피막 내의 Ca: 11.27 중량 Mg : 8.23 중량 %, Si :8.30 증량 %, 0: 7.45 증량 %로 분석되었다.
그 뒤, 아르곤 (Ar) 가스를 250 의 출력으로 플라즈마화한 열원에 세라믹 분말로서 , ^¾을 공급하여 , 최종 소둔판 표면에 0.9/ 두께의 세라믹 층을 형성하였다.
도 5에서는 실시예 1에서 제조한 방향성 전기강판의 주사전자현미경 (SEM) 사진을 나타낸다. 방향성 전기강판 기재 상에 칼슴 성분을 포함하는 몬티셀라이트 피막 및 세라믹 층이 순차적으로 형성되었음을 확인할 수 있다.
실시예 2내지 12
실시예 1과 동일하게 실시하되, 소둔 분리제 내의 칼슴 화합물 및 세라믹 분말을 하기 표 1에 정리된 칼슴 화합물 및 세라믹 분말로 교체하여 몬티셀라이트 피막 및 세라믹 층을 형성하였다.
모든 칼슴 화합물에서 몬티썰라이트 피막이 형성되었음을 확인하였다. 실시예 13
실시예 1과 동일하게 실시하되. 세라믹 층을 형성하지 아니하였다. 비교예 1
실시예 13과 동일하게 실시하되. 산화마그네슘 90중량 (¾, 산화티탄 5 중량 % 및 2(5¾)3 5중량? I 포함하는 소둔 분리제 조성물을 사용하였다. 비교예 2
실시예 1과 동일하게 실시하되, 산화마그네슘 90중량 산화티탄 5 중량 % 및 Sb2(S04): 5중량%를 포함하는 소둔 분리제 조성물을 사용하였다. 도 7은 실시예 1 및 비교예 2에서 제조한 몬티셀라이트 피막 및 포스테라이트 피막의 퓨리에 변환 적외선분광 (FT-IR) 분석 결과를 나타내었다.
실시예 및 비교예에서 제조한 방향성 전기강판을 1.7T. 50Hz 조건에서, 자기 특성 및 소음 특성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
전기강판의 자기 특성은 통상 W17/50과 B8을 사용한다. W17/50은 주파수 50Hz의 자기장을 1.7Tesla까지 교류로 자화시켰을 때 나타나는 전력 손실을 의미한다. 여기서, Tesla 는 단위면적당 자속 (flux)를 의미하는 자속 밀도의 단위이다. B8은 전기강판 주위를 감은 권선에 800 A/m 크기의 전류량을 홀렸을때 . 전기강판에 흐르는 자속 밀도 값을 나타낸다.
또한, 절연특성은 ASTM A717 국제규격에 따라 Franklin 측정기를 활용하여 코팅상부를 측정하었다.
또한, 밀착성은 시편을 10 내지 100 隱 원호에 ¾하여 180" 구부릴 때에 피막박리가 없는 최소원호직경으로 나타낸 것이다.
【표 11
철손 (W17,/50 자속밀도 (BS 절연 (mA 밀착성 (™)φ 구분 칼습 화합물 에라익 분말
) ) ) ) 실시
CaTiO:; TiO, 0.650 1.916 420 20 예 1
실시
CaO SiO, 0.770 1.907 520 35 예 2
실시
Ca(OH), A 1,0 0.634 1.922 340 20 예 3
실시
C Co4 ZrO, 0.752 1.904 615 25 예 4
실시
CaSiO, A1,0:; - Ti¾ 0.682 1.932 440 15 예 5
실시
CaZi-0;; Y.0:; 0.711 1.935 G15 15 예 G
실시 Cas(0H)(P04) 9A1,0;; · 2B,0
0.655 1.945 210 20 예 7
실시
CaCO,; BN 0.764 1.909 820 15 예 S
실 '
CaHv CrN 0.710 1.905 790 15 예 9
실시
CaC, BaTiOo 0.815 1.911 120 20 예 10
1
Ca:i(P0,) SiC 0.789 1.915 350 25 예 11
실이
C SO, TiC 0.750 1.910 4(35 25 예 12
실시
CaTiO, - 0.920 1.913 750 15 예 13 비교
- - 0.981 1.910 982 30 예 1
비교
- Ti03 0.765 1.915 670 25 예 2
표 1에 나타나듯이. 비교예 1 및 비교예 2 보다. 실시예 1 내지 13 특성이 우수한 것을 확인할 수 있다.
실험예 2: lOOOkVA변압기의 자기특성 , 점적율 및 소음 특성 평가 실시예 14
실리콘 (Si )을 3.3 증량 ¾, 알루미늄 (A1): 0.03 증량%, 안티몬 (Sb)을
0.03 증량 % 및 주석 (Sn)을 0.06 중량 탄소 (C)를 0.05 중량 %. 질소 (N)를 30 증량 ppm 하고, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 슬라브를 준비하였다.
슬라브를 115( C 에서 220분간 가열한 뒤 2.3 두께로 열간 압연하여 . 열연판을 제조하였다.
열연판을 1120'C까지 가열한 후 920°C 에서 95초간 유지한 후, 물에 급냉하여 산세한 다음, 0.23 두께로 냉간 압연하여. 냉연판을 제조하였다. 냉연판을 8 TC 로 유지 된 노 (Furnace) 속에 루입한 뒤 . 이슬점 은도 및 산화능을 조절하고. 수소. ¾소, 및 암모니아 흔합 기체 분위기에서 탈탄 침질 및 1차 재결정 소둔을 동시에 수행하여 . 탈탄 침질 소둔된 강판을 제조하였다.
소둔 분리제 조성물로서 칼슘 티타네이트 (CaTi03) 50 중량 %. 산화 마그네슘 40 증량 산화티탄 5 증량 % 및 Sb2(S04)3 5중량 %를 증류수와 흔합하여 슬러리 형태로 제조하고. 롤을 이용하여 슬러리를 탈탄 침질 소둔된 강판에 도포한 후, 최종 소둔하였다.
최종 소둔시 1차 균열온도는 7tXTC , 2차 균열은도는 1200°C로 하였고, 승온구간의 온도구간에서는 15°C7hr로 하였다. 또한, 1200oC까지는 질소 50 부피 % 및 수소 50 부피 %의 흔합 기체 분위기로 하였고, 1200 °C 도달한 후에는 100 부피 %의 수소 기체 분위기에서 20시간 유지한 다음 노냉 ( furnace coo 1 i ng )하였다 .
그 뒤 . 콜로이딜- 실리카 45 증량 V 제 1인산알루미늄 45 증량 %, 산화크름 5 증량 % , 수산화니켈 5 중량 ¾로 흔합된 세라믹 층 형성 조성물을 교반하고, 최종 소둔판 표면에 4.5g/m2이 되도록 도포한 다음, 860 °C로 설정된 건조로에서 120초 동안 처리한 후, 레이저 자구미세화 처리를 실행하고, lOOOkVA 변압기를 제작하여 설계 자속밀도에 따라 60Hz 조건에서 평가한 결과를 하기 표 2에 나타내었다.
비교예 3
실시예 14와 동일하게 실시하되 , 산화마그네슘 90증량 % , 산화티탄 5 증량 % 및 Sb2( S04 ) 3 5중량%를 포함하는 소둔 분리제 조성물을 사용하였다. 점적율은 J IS C2550 국제규격에 따라 측정기를 활용하여 측정하였다. 전기강판 시편을 복수개로 적층한 후 표면에 IMPa의 균일한 압력을 가한 뒤 시편의 4면의 높이 정밀 측정을 통해 전기강판 적층에 따른 실무게 비율을 이론 무게로 나누어 측정하였다.
소음 평가 방법은, 국제규정 IEC61672- L와 동일하게 평가하되, 음압 대신 전기강판의 떨림 (진동) 데이터를 취득하여 소음환산값 [dBA]으로 평가한다. 전기강판의 떨림은 주파수 60Hz의 자기장을 l . TTes l a까지 교류로 자화시켰을 때, 레이저도플러 방식을 활용하여 비접촉식으로 시간에 따라 진동 패턴을 측정한다.
【표 2]
Figure imgf000019_0001
표 2에 나타나듯이 , 비교예 3 보다 실시예 14의 특성이 월등히 우수한 것을 확인할 수 있다.
본 발명은 실시예들에 한정되는- 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특정을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예돌은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
【부호의 설명】 100 : 방향성 전기강판 10 : 방향성 전기강판 0 : 몬티셀라이트 피막 30 : 세라믹 층

Claims

【청구범위】
【청구항 11
고형분 기준으로, 칼슴 화합물 30 내지 70 중량 ¾, 및 잔부 마그네습 산화물 또는 마그네슘 수산화물을 포함하는 방향성 전기강판용 소둔 분리제 조성물.
【청구항 2】
제 1항에 있어서,
세라익 분말을 1 내지 10 중량 % 더 포함하는 방향성 전기강판용 소둔 분리제 조성물.
【청구항 3】
제 2항에 있어세
상기 세라믹 분말은 Al2 . Si02. Ti()2 및 Zr( 중에서 선택되는 1종 이상인 방향성 전기강판용 소둔 분리제 조성물.
【청구항 4】
저 U항에 있어서,
Sb2(S0. , SrS04, BaS04 또는 이들의 조합을 1 내지 10 증량 % 더 포함하는 방향성 전기강판용 소둔 분리제 조성물.
【청구항 5]
제 1항에 있어서,
상기 칼슴 화합물은 칼슘 옥사이드 (CaO), 칼슘 하이드록사이드 (Ca(0H)2), 칼슘 코발트 옥사이드 (Ca3Co409), 칼습 실리케이트 (CaSi03), 칼슘 티타네이트 (CaTi( ), 칼슘 지르코네이트 (CaZr ) , 하이드록시아파타이트 (C (0H)(P04)3), 칼습 카보네이트 (CaC( ). 칼습 하이드라이드 (CaH2), 칼슘 카바이드 (CaC2 칼슘 포스페이트 (Ca3(P04 D . ¾슘 설페이트 (CaS04), 칼습 옥실레이트 (CaC204), 칼슘 퍼옥사이드 (Ca02) 및 칼숨 크로메이트 (CaCrO 증에서 선텍되는 1종 이상인 방향성 전기강판용 소둔 분리제 조성물.
【청구항 6】
방향성 전기강판 기재의 일면 또는 양면에 몬티씰라이트 피막이 형성된 방향성 전기강판. 【청구항 71
제 6항에 있어서 ,
상기 몬티셀라이트 피막은 Ca를 0.5 내지 90 중량 ¾ 포함하는 방향성 전기강판 .
【청구항 8】
제 7항에 있어서,
상기 몬티셀라이트 피막은 Mg를 3 내지 80 증량 Si를 3 내지 80 중량 % 0를 3 내지 80 중량 % 및 Fe를 잔부로 더 포함하는 방향성 전기강판. 【청구항 9】
제 6항에 있어서 ,
상기 몬티셀라이트 피막은 두께가 0.1 내지 10 /ill인 방향성 전기강판. 【청구항 10]
제 6항에 있어서 ,
상기 몬티셀라이트 피막 상에 세라믹 층이 더 형성된 방향성 전기강판 .
【청구항 111
제 10항에 있어서,
상기 세라믹 층은 세라믹 분말을 포함하는 방향성 전기강핀-.
【청구항 12]
제 11항에 있어서,
상기 세라믹 분말은 A1203, Si02, Τί02, Ζι 2, Α1203·Ή02. Υ2 , 9Α12 .2Β , ΒΝ, CrN. BaTi03. SiC 및 TiC 중에서 선택되는 1종 이상인 방향성 전기강판.
【청구항 13]
제 11항에 있어서,
상기 세라믹 층은 금속 인산염을 더 포함하는 방향성 전기강판.
【청구항 14】
제 13항에 있어서,
상기 금속 인산염은 Mg, Ca, Ba, Sr , Zn, Al 및 Mn 중에서 선택되는 1종 이상을 포함하는 방향성 전기강판. 【청구항 15】
제 6항에 있어서,
상기 방향성 전기강판 기재는 실리콘 (Si): 2.8 내지 6.8증량%, 알루미늄 (A1): 0.020 내지 0.040 중량 %, 망간 (Mn): 0.01 내지 0.20 중량 및 안티몬 (Sb), 주석 (Sn), 또는 이들의 조합을 0.01 내지 0.15 증량? ¾ 포함하고. 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인 방향성 전기강판.
【청구항 16】
강 슬라브를 준비하는 단계:
상기 강 슬라브를 가열하는 단계:
상기 가열된 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계: 상기 열연판을 냉간 압연하여. 냉연판을 제조하는 단계:
상기 냉연판을 탈탄 소둔 및 질화 소둔하는 단계:
상기 탈탄 소둔 및 질화 소둔된 강판의 표면 상에, 소둔 분리제를 도포하는 단계; 및
상기 소둔 분리제가 도포된 강판을 고온 소둔하는 단계를 포함하며 . ^기 소 .¾· 분리제는 고형분 기준으로, 칼슘 화합물 30 내지 70 중량 %. 및 잔부 마그네슘 산화물 또는 마그네슴 수산화물을 포함하는 방향성 전기강판의 제조 방법 .
【청구항 17】
제 16항에 있어서,
상기 고은 소둔하는 단계 이후에, 몬티셀라이트 피막 상에 세라믹 층을 형성하는 단계를 더 포함하는 방향성 전기강판의 제조 방법 .
【청구힝- 18]
제 17항에 있어서,
상기 세라믹 층을 형성하는 단계는,
상기 몬티셀라이트 피막 상에 세라믹 분말을 분아하여 세라믹 층을 형성하는 단계인 방향성 전기강판의 제조 방법 .
【청구항 19]
제 17항에 있어서. 상기 세라믹 층을 형성하는 단계는.
상기 몬티셀라이트 피막 상에 세라믹 분말 및 금속 인산염을 포함하는 세라믹 층 형성 조성물을 도포하여 세라믹 층을 형성하는 단계인 방향성 전기강판의 제조 방법 .
【청구항 20】
제 16항에 있어서 ,
상기 냉연판을 탈탄 소둔 및 질화 소둔하는 단계는,
상기 냉연판을 동시에 탈탄 소둔 및 질화 소둔 하거나, 탈탄 소둔 이후. 질화 소둔하는 단계인 방향성 전기강판의 제조 방법 .
PCT/KR2017/011850 2016-10-26 2017-10-25 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법 WO2018080168A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/345,521 US11225700B2 (en) 2016-10-26 2017-10-25 Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
EP17865788.8A EP3533885B1 (en) 2016-10-26 2017-10-25 Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
JP2019523026A JP6861809B2 (ja) 2016-10-26 2017-10-25 方向性電磁鋼板用焼鈍分離剤組成物、方向性電磁鋼板及び方向性電磁鋼板の製造方法
CN201780066821.7A CN109923223B (zh) 2016-10-26 2017-10-25 取向电工钢板用退火隔离剂组合物、取向电工钢板及其制造方法
US17/550,366 US11946114B2 (en) 2016-10-26 2021-12-14 Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160139936A KR101850133B1 (ko) 2016-10-26 2016-10-26 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
KR10-2016-0139936 2016-10-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/345,521 A-371-Of-International US11225700B2 (en) 2016-10-26 2017-10-25 Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
US17/550,366 Division US11946114B2 (en) 2016-10-26 2021-12-14 Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
WO2018080168A1 true WO2018080168A1 (ko) 2018-05-03

Family

ID=62025244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011850 WO2018080168A1 (ko) 2016-10-26 2017-10-25 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법

Country Status (6)

Country Link
US (2) US11225700B2 (ko)
EP (1) EP3533885B1 (ko)
JP (1) JP6861809B2 (ko)
KR (1) KR101850133B1 (ko)
CN (1) CN109923223B (ko)
WO (1) WO2018080168A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913097A4 (en) * 2019-01-16 2022-12-21 Nippon Steel Corporation GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD FOR FORMING INSULATING COATING FOR GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET, AND METHOD FOR PRODUCING GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145314A1 (ja) 2019-01-08 2020-07-16 日本製鉄株式会社 方向性電磁鋼板、焼鈍分離剤、及び方向性電磁鋼板の製造方法
WO2021125900A1 (ko) * 2019-12-20 2021-06-24 주식회사 포스코 방향성 전기강판의 절연피막 형성용 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
KR102390830B1 (ko) * 2019-12-20 2022-04-25 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법
KR102438473B1 (ko) * 2019-12-20 2022-08-31 주식회사 포스코 방향성 전기강판 및 그 제조 방법
CN113388725B (zh) * 2021-06-18 2022-12-02 协和化学工业株式会社 退火隔离剂的制备方法以及退火隔离剂和方向性电磁钢板
CN114395663B (zh) * 2021-12-31 2024-06-14 重庆望变电气(集团)股份有限公司 一种退火隔离剂及退火隔离剂悬浮液的制备方法与无底层低温高磁感取向硅钢的制备方法
EP4273280A1 (en) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
CN115491622B (zh) * 2022-09-29 2023-10-13 宝鸡市德立钛业有限责任公司 一种钛棒及钛合金棒材的退火炉及退火方法
CN116042986A (zh) * 2023-01-13 2023-05-02 山西银圣科技有限公司 一种氢氧化钴液体添加剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683036B2 (ja) * 1987-06-10 1997-11-26 川崎製鉄株式会社 焼鈍分離剤
JPH11343579A (ja) * 1998-04-02 1999-12-14 Kawasaki Steel Corp 超低鉄損一方向性珪素鋼板およびその製造方法
JP2000260631A (ja) * 1999-03-11 2000-09-22 Kawasaki Steel Corp ビルディングファクターが小さく、かつ実機鉄損が低い巻きトランス
JP2002241955A (ja) * 2001-02-20 2002-08-28 Kawasaki Steel Corp 方向性電磁鋼板用の焼鈍分離剤及びそれを用いた方向性電磁鋼板の製造方法
KR100865316B1 (ko) * 2006-10-18 2008-10-27 주식회사 포스코 균일한 글라스피막과 우수한 자기특성을 갖는 방향성전기강판용 소둔분리제

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615903A (en) * 1968-10-03 1971-10-26 Armco Steel Corp High-purity ferrous material and method of making it
JPS5652117B2 (ko) * 1973-11-17 1981-12-10
JPS5844152B2 (ja) * 1978-12-27 1983-10-01 川崎製鉄株式会社 下地被膜をほとんど有しない方向性珪素鋼板の製造方法
JPH0579442A (ja) * 1991-09-19 1993-03-30 Hitachi Ltd 点火用配電器のロータヘツド
JP3209850B2 (ja) * 1994-02-17 2001-09-17 新日本製鐵株式会社 方向性電磁鋼板の絶縁被覆剤、絶縁被膜形成方法及び方向性電磁鋼板
US5685920A (en) 1994-05-13 1997-11-11 Nippon Steel Corporation Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
US5885371A (en) * 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
KR100325534B1 (ko) 1997-12-27 2002-07-18 이구택 미려한표면특성을갖는방향성전기강판의제조방법
JPH11222654A (ja) 1998-01-30 1999-08-17 Kawasaki Steel Corp 鉄損が極めて低い方向性電磁鋼板
JPH11335861A (ja) 1998-03-23 1999-12-07 Kawasaki Steel Corp 超低鉄損一方向性珪素鋼板の製造方法
JP3386727B2 (ja) * 1998-09-29 2003-03-17 川崎製鉄株式会社 保磁力の低い低鉄損一方向性珪素鋼板の製造方法
KR100435456B1 (ko) 1999-11-30 2004-06-10 주식회사 포스코 글라스피막이 없는 저온재가열 방향성 전기강판의 제조방법
KR100526122B1 (ko) 2001-03-20 2005-11-08 주식회사 포스코 그라스피막이 없는 저온가열 방향성전기강판의 제조방법
KR100544615B1 (ko) 2001-12-24 2006-01-24 주식회사 포스코 글래스피막이 없는 저온가열 방향성 전기강판의 제조방법
TWI272311B (en) * 2003-12-03 2007-02-01 Jfe Steel Corp Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
JP4598624B2 (ja) 2005-08-16 2010-12-15 新日本製鐵株式会社 皮膜密着性の極めて優れた方向性電磁鋼板およびその製造方法
JP4893259B2 (ja) 2006-11-21 2012-03-07 Jfeスチール株式会社 方向性電磁鋼板用焼鈍分離剤の塗布方法および方向性電磁鋼板の製造方法
BRPI0719586B1 (pt) * 2006-11-22 2017-04-25 Nippon Steel Corp folha de aço elétrica de grão orientado excelente na adesão de revestimento e método de produção da mesma
JP5181571B2 (ja) 2007-08-09 2013-04-10 Jfeスチール株式会社 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP5594252B2 (ja) * 2010-08-05 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101568627B1 (ko) 2011-10-04 2015-11-11 제이에프이 스틸 가부시키가이샤 방향성 전기강판용 어닐링 분리제
KR101410474B1 (ko) 2011-10-10 2014-06-30 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101448596B1 (ko) 2012-12-27 2014-10-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2014104391A1 (ja) * 2012-12-28 2014-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法および方向性電磁鋼板製造用の一次再結晶鋼板
KR101480498B1 (ko) 2012-12-28 2015-01-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP5862582B2 (ja) 2013-02-15 2016-02-16 Jfeスチール株式会社 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
JP6079580B2 (ja) 2013-11-20 2017-02-15 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN104726662B (zh) * 2013-12-23 2017-12-29 Posco公司 取向电工钢板及其制造方法
KR101596446B1 (ko) 2014-08-07 2016-03-07 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법
JP6479381B2 (ja) * 2014-09-19 2019-03-06 株式会社クラレ 耐水性組成物の製造方法
KR101651431B1 (ko) 2014-11-14 2016-08-26 주식회사 포스코 방향성 전기강판의 제조방법
KR101696627B1 (ko) 2014-11-26 2017-01-16 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 및 이를 이용한 방향성 전기강판의 제조방법
KR101762339B1 (ko) 2015-12-22 2017-07-27 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683036B2 (ja) * 1987-06-10 1997-11-26 川崎製鉄株式会社 焼鈍分離剤
JPH11343579A (ja) * 1998-04-02 1999-12-14 Kawasaki Steel Corp 超低鉄損一方向性珪素鋼板およびその製造方法
JP2000260631A (ja) * 1999-03-11 2000-09-22 Kawasaki Steel Corp ビルディングファクターが小さく、かつ実機鉄損が低い巻きトランス
JP2002241955A (ja) * 2001-02-20 2002-08-28 Kawasaki Steel Corp 方向性電磁鋼板用の焼鈍分離剤及びそれを用いた方向性電磁鋼板の製造方法
KR100865316B1 (ko) * 2006-10-18 2008-10-27 주식회사 포스코 균일한 글라스피막과 우수한 자기특성을 갖는 방향성전기강판용 소둔분리제

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533885A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913097A4 (en) * 2019-01-16 2022-12-21 Nippon Steel Corporation GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD FOR FORMING INSULATING COATING FOR GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET, AND METHOD FOR PRODUCING GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET

Also Published As

Publication number Publication date
CN109923223B (zh) 2021-07-13
EP3533885A1 (en) 2019-09-04
JP2020509154A (ja) 2020-03-26
EP3533885B1 (en) 2024-09-18
US11946114B2 (en) 2024-04-02
US20220119910A1 (en) 2022-04-21
US11225700B2 (en) 2022-01-18
CN109923223A (zh) 2019-06-21
US20190276911A1 (en) 2019-09-12
EP3533885A4 (en) 2019-09-04
JP6861809B2 (ja) 2021-04-21
KR101850133B1 (ko) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2018080168A1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
JP6778265B2 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP2020050955A (ja) 方向性電磁鋼板用絶縁被膜組成物、これを利用した方向性電磁鋼板の絶縁被膜形成方法、及び方向性電磁鋼板
JP6861822B2 (ja) 方向性電磁鋼板用焼鈍分離剤組成物、方向性電磁鋼板および方向性電磁鋼板の製造方法
KR20160057753A (ko) 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
KR101919546B1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
WO2017105111A1 (ko) 방향성 전기강판용 절연피막 조성물, 방향성 전기강판의 절연피막 형성 방법, 및 절연피막이 형성된 방향성 전기강판
KR101904308B1 (ko) 방향성 전기강판용 절연피막 조성물 및 이를 이용한 절연피막 형성방법, 방향성 전기강판 및 방향성 전기강판의 제조 방법
JPWO2020149347A1 (ja) 方向性電磁鋼板の製造方法
KR102080165B1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법
KR20210111812A (ko) 방향성 전자 강판의 제조 방법
JP7453379B2 (ja) 方向性電磁鋼板用焼鈍分離剤組成物、方向性電磁鋼板およびその製造方法
KR20230095020A (ko) 방향성 전기강판용 소둔 분리제 조성물 및 방향성 전기강판의 제조방법
JP2001200317A (ja) 良好な被膜を有する低鉄損方向性電磁鋼板の製造方法
JPH06336617A (ja) 方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017865788

Country of ref document: EP

Effective date: 20190527