WO2018079334A1 - ヒュームドシリカ及びその製造方法 - Google Patents

ヒュームドシリカ及びその製造方法 Download PDF

Info

Publication number
WO2018079334A1
WO2018079334A1 PCT/JP2017/037482 JP2017037482W WO2018079334A1 WO 2018079334 A1 WO2018079334 A1 WO 2018079334A1 JP 2017037482 W JP2017037482 W JP 2017037482W WO 2018079334 A1 WO2018079334 A1 WO 2018079334A1
Authority
WO
WIPO (PCT)
Prior art keywords
fumed silica
less
ppm
content
sieve
Prior art date
Application number
PCT/JP2017/037482
Other languages
English (en)
French (fr)
Inventor
上田 雅英
幸宏 高田
純哉 堀常
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to KR1020197013358A priority Critical patent/KR102442003B1/ko
Priority to JP2018531261A priority patent/JP6442116B2/ja
Priority to CN201780066958.2A priority patent/CN110167879A/zh
Priority to US16/344,285 priority patent/US20190270914A1/en
Priority to PCT/JP2017/037482 priority patent/WO2018079334A1/ja
Priority to EP17864976.0A priority patent/EP3533760A4/en
Publication of WO2018079334A1 publication Critical patent/WO2018079334A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/183Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to fumed silica and a method for producing the same, and more particularly to fumed silica for chemical mechanical polishing capable of reducing scratches and a method for producing the same.
  • CMP chemical mechanical polishing
  • silica, cerium oxide or the like is used as the abrasive particles for CMP.
  • fumed silica that has been frequently used in the past has excellent purity and high polishing efficiency
  • the CMP method has a problem that many scratches are generated due to the influence of chemical components.
  • colloidal silica reduces scratches, it has a lower polishing efficiency than fumed silica and has a problem in purity.
  • cerium oxide is known to have a high polishing efficiency, but there are many scratches due to poor dispersion stability, and there is also a problem in terms of purity.
  • Fumed silica forms secondary particles in which primary particles are strongly aggregated by fusion or the like, and the secondary particles are gradually aggregated to form tertiary particles. It exists as the tertiary particles.
  • the fumed silica is strongly dispersed in water, it is dispersed up to the size of the secondary particles, but not up to the primary particles. Therefore, CMP is considered to be performed in the state of secondary particles, and the occurrence of scratches is considered to decrease if the secondary particles are prevented from becoming large (Miya Yoshio et al., “Fumed Silica”). Production and Properties of Flames-Flame Analysis and Adaptability of Generated Particles to CMP ", Proceedings of the 2008 Annual Meeting of the Japan Society for Precision Engineering, p857-858).
  • the polishing composition is filtered with a filter, and abrasive particles having a particle size of 0.56 ⁇ m or more and less than 1 ⁇ m or abrasive particles having a particle size of 3 ⁇ m or more are reduced to a certain amount or less.
  • a polishing composition is described. Specifically, the particle size of the abrasive particles in the polishing composition using the colloidal silica slurry is determined using a number counting method (Sizing Particle Optical Sensing Method), specifically, Accusizer 780APS manufactured by Particle Sizing Systems. Measuring.
  • the ratio of coarse particles defined as sintered coarse particles having a density of 200 g / l to 2,500 g / l and a particle size of 0.5 ⁇ m to 500 ⁇ m is less than 0.03% by weight.
  • Shown is fumed silica with less than 100,000 coarse particles per ml of 10 wt% aqueous dispersion.
  • the ratio of coarse particles is dispersed in silica in a dispersion medium such as water, and is dispersed for 5 minutes or more at a rotational speed of 25,000 rpm or more using a rotor-stator disperser, and further, alkaline stability is maintained at a pH of 9.9 to 10.2.
  • the silica dispersion prepared by removing fine fumed silica is converted into a light shielding method such as white light and laser light, specifically, Accusizers 680 and 780, PSM Liquilaz, Topas It is described that coarse particles of 0.5 ⁇ m to 500 ⁇ m are measured using FAS.
  • the slurry used for polishing is on the order of 100 ml and the amount of silica is on the order of 10 g.
  • the amount of slurry used for quantification is on the order of 1 ⁇ l and the amount of silica. Therefore, the sample to be used for the measurement is extracted from a silica slurry that is likely to have non-uniform silica, rather than the total amount of silica powder measured. For these reasons, it is thought that there remains a problem in the accuracy of the evaluated coarse grain amount.
  • An object of the present invention is to provide a fumed silica for CMP capable of remarkably reducing scratches generated on the surface of an object after polishing, which is important in miniaturization and multilayering.
  • the present inventors have conducted intensive research to solve the above problems.
  • the remaining amount on the screen (hereinafter referred to as “mesh”) when the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m is used.
  • “The remaining amount on the screen when the wet sieving method using an electric sieve having an opening of 5 ⁇ m is also referred to as“ the remaining amount on the screen having an opening of 5 ⁇ m ”) has a particularly important influence on the occurrence of scratches. I found out.
  • the present invention is a fumed silica having a BET specific surface area of 57 m 2 / g or more and 400 m 2 / g or less, and the fumed silica is added to water so that the amount is 6.25% by mass.
  • the residual amount on the screen by the wet sieving method using an electroforming screen having an opening of 5 ⁇ m is 5 ppm or less. Fumed silica.
  • One embodiment of the fumed silica of the present invention has an Fe content of 0.3 ppm or less, an Al content of 0.3 ppm or less, a Ni content of 0.1 ppm or less, a Cr content of 0.1 ppm or less, and a Ti content.
  • the amount is 0.1 ppm or less and the boron content is 0.1 ppm or less.
  • the fumed silica of the present invention is suitably used as fumed silica for CMP.
  • the fumed silica of the present invention can be suitably used for CMP. If the fumed silica is used as polishing abrasive grains for polishing semiconductor wafers, devices, etc., there is no contamination by impurities, excellent polishing efficiency, The scratch at the time of polishing can be remarkably reduced.
  • the fumed silica of the present embodiment is not particularly limited in its raw materials, reaction conditions, etc., but the combustion reaction or flame hydrolysis reaction of the silane compound, that is, the silane compound is converted into a combustible gas such as hydrogen gas. It refers to general silica powder obtained by a production method in which it is burned or hydrolyzed in a flame formed with an oxygen-containing gas such as air. Fumed silica is generally produced by flame hydrolysis of silicon chloride such as chlorosilane as described in Patent Document 3.
  • the fumed silica of the present embodiment has a BET specific surface area of 57 m 2 / g or more and 400 m 2 / g or less.
  • the BET specific surface area is preferably 60 m 2 / g or more and 400 m 2 or less, more preferably 60 m 2 / g or more and 160 m 2 / g or less, and 60 m 2 / g or more and 90 m 2 / g or less. Further preferred.
  • the BET specific surface area is smaller than the lower limit of the above range, scratching during polishing increases when used for CMP. Scratches are scratches caused by polishing. Further, when the BET specific surface area is larger than the upper limit of the above range, the polishing rate is remarkably lowered, so that the production efficiency of the semiconductor device is significantly deteriorated.
  • the greatest feature of the fumed silica of this embodiment is that the remaining amount on the sieve having an opening of 5 ⁇ m is remarkably small. Specifically, 6.25% by mass of fumed silica was added to water and dispersed by ultrasonic waves (vibration frequency 20 kHz, amplitude 15 ⁇ m to 25 ⁇ m, 3 minutes). It is fumed silica whose remaining amount on the screen when sieving by the wet sieving method used is 5 ppm or less. The residual amount on the sieve is preferably 3 ppm or less, and more preferably 1 ppm or less.
  • fumed silica forms secondary particles in which primary particles generated by reaction in a flame are strongly aggregated by fusion or the like, and the secondary particles are gradually aggregated to form tertiary particles. Particles are formed. Usually, it exists as the above-mentioned tertiary particles in the powder, but when the fumed silica is strongly dispersed in water (the degree of dispersion is increased), it is dispersed to the size of the secondary particles.
  • the abrasive grains in CMP are considered to be in the state of secondary particles. As described above, in the CMP method, the abrasive particles are dispersed in a polishing liquid to obtain a polishing liquid composition, and then a filter is used. Coarse grains are generally removed. Nevertheless, when fumed silica was used as the abrasive particles, it was found that there was a good reproducible correlation between the remaining amount on the sieve having an opening of 5 ⁇ m and the number of scratches per unit area.
  • the quantification method of the remaining amount on the sieve having an opening of 5 ⁇ m is a wet sieving method using an electroforming sieve. According to this method, the amount of silica used in the test can be made sufficiently large. Specifically, the sample amount can be set to the order of 10 g, and the total amount of the sample can be used for measurement.
  • the residual amount on the sieve is a value obtained when sieving 20 g or more of fumed silica as a sample quantity.
  • the 6.25 mass% ultrasonic dispersion liquid can be prepared at one time or can be prepared by dividing. For example, 20 g of fumed silica may be measured in one container, 300 g of water may be added, and then ultrasonic waves may be irradiated under conditions of a vibration frequency of 20 kHz, an amplitude of 15 ⁇ m to 25 ⁇ m, and 3 minutes.
  • Each container may be weighed in an amount of 5 g and water may be added in an amount of 75 g, and then each may be irradiated with ultrasonic waves under conditions of vibration frequency 20 kHz, amplitude 15 ⁇ m to 25 ⁇ m, and 3 minutes.
  • the ultrasonic dispersion treatment can be performed under conditions of a vibration frequency of 20 kHz, an amplitude of 15 ⁇ m to 25 ⁇ m, and 3 minutes.
  • a vibration frequency 20 kHz
  • an amplitude 15 ⁇ m to 25 ⁇ m
  • 3 minutes 3 minutes.
  • the vibration frequency is 20 kHz
  • the output scale is 6, the amplitude corresponds to 22.5 ⁇ m.
  • the temperature of the dispersion used for the ultrasonic irradiation is 20 to 30 ° C.
  • the fumed silica of the present embodiment preferably has an Fe content of 0.3 ppm or less, and more preferably 0.1 ppm or less. It is not clear how the Fe content affects the generation of scratches during polishing, but generally there is a tendency for scratches to increase as the Fe content increases, and the Fe content is in the above range. The scratch at the time of polishing can be remarkably reduced.
  • the Fe is usually derived from the raw material and contained, but there may be contamination of wear powder from a reaction vessel, piping or the like.
  • the fumed silica of this embodiment has an Al content of 0.3 ppm or less, an Ni content of 0.1 ppm or less, a Cr content of 0.1 ppm or less, a Ti content of 0.1 ppm or less, and a boron content. Is preferably 0.1 ppm or less.
  • fumed silica with highly reduced impurities is preferable because it can be suitably used in applications requiring the use of high-purity abrasive grains, such as the CMP process of semiconductor devices.
  • boron is generally derived from raw materials among the above impurities, and Al, Ni, Cr, Ti are not only derived from raw materials, The thing derived from abrasion powder, such as a reaction container and piping, is also contained.
  • abrasion powder such as a reaction container and piping
  • the fumed silica of the present embodiment has a remarkably small residual amount on a sieve having an opening of 5 ⁇ m, and thus the generation of scratches is reduced, so that it can be suitably used as a fumed silica for CMP.
  • it is preferably used for CMP of a metal film as a conductor, CMP of polysilicon as a semiconductor, or CMP of a silicon oxide film (insulating film) as a nonconductor in a CMP process of a semiconductor device.
  • the fumed silica of the present embodiment may be used after appropriately performing a known surface treatment using a known surface treatment agent.
  • the surface-treated fumed silica can be used for various uses, for example, various resin fillers, thickeners, fluidizing agents, and external additives for electrophotographic toners.
  • the method for producing the fumed silica of the present embodiment is not particularly limited, and the produced silica fine particles have a BET specific surface area of 57 m 2 / g or more and 400 m 2 / g or less, and are wet using an electric sieve having an opening of 5 ⁇ m. Any method for producing silica fine particles can be employed as long as the residual amount on the sieve by the sieving method is 5 ppm or less. Specifically, a method of supplying a silane compound to a reactor and burning or hydrolyzing in a flame can be mentioned.
  • JP-B-47-46274 JP-B-58-54085, JP-A-59-169922, JP-A-59-184721, and JP-A-60-011218. be able to.
  • Fumed silica is produced by supplying a raw material gas containing a silane compound into a flame in the reaction step and burning or hydrolyzing the silane compound in the flame.
  • the fumed silica generated from the reaction step is cooled in the cooling step and then sent to the separation and recovery step. In this step, the solid content is separated from the reaction gas and recovered, and then deoxidized in the deoxidation step as necessary.
  • the fumed silica thus obtained is a powder with a small bulk density of about 0.023 g / cm 3, and packaging it as it is increases the packaging and transportation costs of the product, and also has a high powder scattering property and handling of the powder. Because of the above problems, usually, the bulk density is largely adjusted in the compression process, and then sent to the packaging process.
  • the method for producing the fumed silica of the present embodiment is not particularly limited, but as one aspect, the classification step of classifying and removing the enlarged secondary particles by a dry method is described in detail later. After that, it is preferably provided before the compression step, whereby the remaining amount on the sieve having an opening of 5 ⁇ m can be significantly reduced.
  • the preferred embodiment will be described.
  • a raw material silane gas is supplied to the reactor and burned or hydrolyzed in a flame to produce fumed silica.
  • the raw material silane gas is heated and vaporized in a raw material vaporizer, and premixed with a combustible gas such as hydrogen or a hydrogen-containing gas, and a combustion-supporting gas such as oxygen or air, and an incombustible gas such as nitrogen or argon as necessary.
  • a combustible gas such as hydrogen or a hydrogen-containing gas
  • a combustion-supporting gas such as oxygen or air
  • an incombustible gas such as nitrogen or argon as necessary.
  • the reactor that flame-combusts or hydrolyzes the premixed gas easily maintains the pressure in the reactor and prevents intrusion of contaminants, so that the atmosphere in the reactor is completely the same as the atmosphere.
  • a closed system that is blocked is preferable. That is, a burner is installed in the reactor, and the gas supplied to the burner and the reactor, the gas
  • the pressure in the reactor is not particularly limited, but the higher the flame pressure, the shorter the flame length and the smaller the temperature distribution in the flame, resulting in a fumed silica with a uniform primary particle diameter and a small primary particle variation coefficient. be able to.
  • the pressure in the reactor can be easily measured by installing a pressure gauge at an arbitrary location (a location other than the vicinity of the reactor outlet where gas is discharged from the reactor). The pressure in the vicinity of the reactor outlet is likely to fluctuate depending on the flow rate of the exhaust gas. In consideration of adhesion of the produced fumed silica, measurement is usually performed by installing a pressure gauge on the burner installation surface of the reactor or on the upstream side wall surface of the gas flow flowing from the burner to the reactor outlet.
  • the method for adjusting the pressure in the reactor is not particularly limited, but can be adjusted by applying pressure loss to the amount of gas introduced into the reactor and the outlet of the reactor or the lower process.
  • the pressure in the reactor is The pressure is preferably 1 MPaG or less for reasons such as the pressure resistance of the apparatus and the pressure upper limit of the raw material supply pump.
  • the adiabatic flame temperature during the reaction is not particularly limited, but generally it is often carried out at 1500 ° C. or higher and 2300 ° C. or lower.
  • the flame is usually formed by a burner.
  • a burner it is preferable to use a multi-tube burner having a concentric cross section in terms of ease of ignition, stability of combustion, and the like.
  • the multi-tube burner is composed of a central tube and a plurality of annular tubes extending concentrically from the central tube. Generally, a double tube, a triple tube, and a quadruple tube are used, and a triple tube is particularly preferable.
  • These multi-tube burners generally have a central tube diameter of about 5 to 150 mm.
  • the flame formation by the multi-tube burner is such that the combustible gas and the oxygen-containing gas at the combustion port of the burner are placed in the central tube and each annular tube so that the desired combustion ratio at which the adiabatic flame temperature is obtained is obtained. Or may be supplied as a mixed gas with different mixing ratios. Specifically, in the case of a triple pipe in which the first annular pipe and the second annular pipe are arranged in this order from the central pipe side to the radially outer side of the central pipe, hydrogen and air are supplied to the central pipe. It is preferable to supply hydrogen and / or air to the first annular tube and supply only air to the second annular tube.
  • the vaporized silane compound is also supplied to any gas supply pipe of the multi-tube burner so that the combustion reaction or hydrolysis reaction proceeds in the flame. good. Since the silane compound is supplied to the center of the flame base and the combustion reaction or hydrolysis reaction proceeds stably, it is particularly preferable to supply the silane compound to the central tube.
  • the silane compound that is a raw material of fumed silica is organic silane, halogenated silane, or the like, and is not particularly limited, but preferably has a boiling point of 250 ° C. or lower so that it can be gasified and easily supplied to a multi-tube burner.
  • tetraethoxysilane octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, methyltrichlorosilane, methyldichlorosilane, trimethylchlorosilane, dimethyldichlorosilane, 1,1,2,2-tetrachloro-1,2 -Dimethyldisilane, 1,1,2-trimethyltrichlorodisilane, 1,2-dichlorotetramethyldisilane, 1,1,1,2-tetramethyldichlorodisilane, tetrachlorosilane, trichlorosilane and the like.
  • the CMP silica of this embodiment preferably has an Fe content of 0.3 ppm or less.
  • the Fe content in the source gas is preferably 0.12 ppm or less.
  • the silane compound can realize an impurity content suitable as the fumed silica of the present embodiment described above with respect to Al, Ni, Cr, Ti, and boron as impurities other than Fe.
  • the impurity content in the source gas is such that the Al content is 0.12 ppm or less, the Ni content is 0.04 ppm or less, the Cr content is 0.04 ppm or less, and the boron content Is preferably 0.04 ppm or less.
  • the center tube 75 to a silane compound 1.1 ⁇ 4.2kmol / h, hydrogen to 200 Nm 3 / h, air was respectively supplied in the range of 25 ⁇ 500Nm 3 / h, the hydrogen to the first annular pipe 10 ⁇ 40 Nm 3 / H, air is supplied in the range of 10 to 50 Nm 3 / h, and air is supplied to the second annular pipe in the range of 25 to 75 Nm 3 / h.
  • the fumed silica obtained preferably has reaction conditions such that the BET specific surface area is 57 m 2 / g or more and 400 m 2 / g or less, and the adiabatic flame temperature is set so that the desired BET specific surface area is obtained.
  • the conditions such as the pressure of the reactor, the supply ratio of oxygen (air) and hydrogen to the burner, and the supply amount of raw materials can be adjusted.
  • Fumed silica produced and grown in a reaction flame is rapidly cooled to prevent sintering, fusing, or surface changes, and to a temperature above the dew point of water or other condensable reactants. It is sent to the separation and recovery process.
  • the cooling method is not particularly limited, and may be a known method such as spraying in an additional gas such as nitrogen or cooling with a heat exchanger.
  • the classification step is preferably provided after the cooling step and before the compression step described later. More preferably, after the separation and recovery step described later, before the compression step, and when the deoxidation step described later is provided, it is better to provide the classifier with the acid after the deoxidation step and before the compression step. It is more preferable because it has less influence and is easy to design.
  • the secondary particles are aggregated to form tertiary particles. Therefore, when the secondary particles that have become large are efficiently removed by dry classification. It is difficult to distinguish from the tertiary particles, and it is difficult to accurately reduce the residual particles on the sieve as in this embodiment.
  • the fumed silica before the compression step having a small bulk density is in the most highly dispersed state in the gas phase.
  • the dry classifying means is not particularly limited, and examples include classifying means using a sieve, a gravity classifier, an inertia classifier, a centrifugal classifier, a fluidized bed classifier, an air classifier, an electrostatic classifier, and the like.
  • the classification means may be one type or a combination of two or more types.
  • the combination in the case of using two or more classification means is not particularly limited.
  • each classification means can be used repeatedly a plurality of times. By repeating the classification operation a plurality of times by combining or repeating the classification means, the residual particles on the sieve can be reduced more accurately.
  • the installation location of the classification process when it is repeatedly performed a plurality of times is not particularly limited as long as it is after the cooling process and before the compression process, and may be installed at one location or separately at multiple locations.
  • the classification operation when it is provided twice, it may be provided once after the separation and recovery step and after the deoxidation step, or twice after the deoxidation step.
  • the degree of classification may be sequentially adjusted according to the selected classification means, the number of classifications, etc., so that the final amount of fumed silica obtained is 5 ppm or less on the sieve.
  • a drying step is essential, and particles are strongly aggregated during the drying, and on the contrary, residual particles on the sieve are generated. This is inappropriate.
  • the cooled fumed silica is recovered as a powder by separating solids and gas with a filter, a cyclone or the like.
  • the purpose of this separation and recovery process is to separate fumed silica that is solid from the reaction gas that is gaseous with a high yield, and to remove the enlarging secondary particles in fumed silica that is solid.
  • the classification process is distinguished from the present specification.
  • the fumed silica after the separation step is sent to the deoxidation step as necessary, and deoxidized.
  • the deoxidation treatment is required when a halogenated silane is used as the raw material silane compound. Specifically, when chlorosilanes are used, hydrogen chloride is used as a by-product of the flame hydrolysis reaction. Produces. Since such an acid has corrosiveness, it is deoxidized in the deoxidation step.
  • the method of deoxidation treatment is not particularly limited, and a known method can be adopted, but a dry method is preferable.
  • the fumed silica after the separation step is put into a heated deoxidizer such as a moving bed method or a fluidized bed method, and preferably a gas such as heated air or nitrogen is circulated. It is more preferable to add water vapor to the flowing gas as it increases the deoxidation efficiency.
  • the means for compressing is not particularly limited, and examples thereof include a known means such as a method of compressing powder by processing with a press, ball mill, mixer or other device. It is done. Even if it does not take the compression means by the above apparatus, since it is compressed by its own weight in the silo by collecting in the silo and the bulk density increases, the step of storing in the product silo shall also be included in the compression step .
  • the compression in the present embodiment may be performed by selecting a compression means and appropriately adjusting the degree of compression so that a desired bulk density with appropriate applied physical properties can be obtained. Two or more types of compression means may be combined.
  • the bulk density is preferably 0.03 to 0.1 g / cm 3 , more preferably 0.05 to 0.1 g / cm 3 .
  • Electroformed sieve Wet sieving was performed using an electroformed sieve having a mesh size of 5 ⁇ m, and the residue on the sieve mesh was quantified.
  • the measurement sample was prepared by measuring 20 g of fumed silica fine particles, adding 300 g of distilled water at 25 ° C., and then using an ultrasonic homogenizer (US-600T) manufactured by Nippon Seiki Seisakusho Co., Ltd., output scale 6 (vibration frequency). 20 kHz, corresponding to a vibration amplitude value of 22.5 ⁇ m) and a dispersion time of 3 minutes to make a 6.25 mass% ultrasonic dispersion, and the whole amount was used as a measurement sample.
  • US-600T ultrasonic homogenizer
  • Impurity content measurement Pretreatment was performed by adding hydrofluoric acid and nitric acid to the fumed silica of each example and comparative example and heating, and using a residue as an aqueous solution, each impurity was analyzed by ICP emission analysis. The content was measured.
  • ICP emission analysis device Vista-MPX manufactured by Agilent Technologies, Inc. is used as ICP standard solution for ICP multi-element standard IX (for 23 elements) as ICP standard solution.
  • ICP emission analysis device Vista-MPX manufactured by Agilent Technologies, Inc. is used as ICP standard solution for ICP multi-element standard IX (for 23 elements) as ICP standard solution.
  • ICP standard solution for Ti, ICP standard manufactured by Wako Pure Chemical Industries, Ltd. The solution was used.
  • Scratch density measurement method -Slurry preparation conditions-
  • the sample slurry used for evaluation of scratch density and polishing rate is Yamaguchi et al., “Relationship between Fumed Silica Slurry for CMP and Scratch Defect Generation”, Proc. It was prepared according to “2.1 Slurry Preparation Conditions” of “Preliminary Collection” and the preparation conditions of the prototype slurry sample 2 shown in FIG. However, in preparing this sample slurry, fumed silica of each of Examples and Comparative Examples was used as silica. Further, various stirring / dispersing devices and dispersion conditions used for the preparation of the slurry were changed as follows with respect to the conditions described in “Preliminary Collection”.
  • the polishing using the slurry was performed except that the sample slurry prepared in the above-described procedure was used as the sample slurry used in the CMP process (main CMP), “2.2 Copper Wafer Polishing Conditions” in the Preliminary Book, Table 1 and FIG. It carried out on the conditions shown in.
  • the polishing apparatus used was a table type polishing apparatus NF-300 manufactured by Nano Factor Co., Ltd., and the object to be polished (copper wafer) was a 3-inch Cu plated Si wafer (Cu plating thickness: 5 ⁇ m) manufactured by D-process Co., Ltd. is there. Further, Clean 100 manufactured by Wako Pure Chemical Industries, Ltd. was used as a residual abrasive grain / organic matter remover (cleaning liquid) on the surface of the copper wafer after CMP processing (main CMP).
  • the scratch density and the polishing rate were measured for a copper wafer on which the surface provided with the Cu plating film was polished under the above polishing conditions.
  • the scratch density was measured according to the procedure shown in “2.3 Measurement of Scratch Number” in FIG. Note that the scratch evaluation of the Cu plating film has a correlation with the scratch evaluation of the silicon oxide film (insulating film) (refer to the proceedings). Therefore, it is estimated that the same tendency as the measurement result of the scratch density described later can be obtained even when the silicon oxide film (insulating film) is polished.
  • polishing rate The allowable polishing rate is 12 nm / min or more, and more preferably 17 nm / min or more.
  • Examples 1 to 3 Fumed silica was manufactured by using a tetrachlorosilane as a halogenated silane by a flame hydrolysis reaction under the manufacturing conditions shown in Table 1, and recovered after the separation and recovery step.
  • the amount of impurities in the tetrachlorosilane gas is Fe: less than 0.1 ppm, Al: less than 0.1 ppm, Ni: less than 0.01 ppm, Cr: less than 0.01 ppm, Ti: less than 0.01 ppm, boron: less than 0.01 ppm Met.
  • this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. Preheated air heated to the same level as the fumed silica was introduced from the lower part at 5 Nm 3 / h for 30 minutes, and then 225 g of the introduced silica was extracted from the upper part of the tube. The fumed silica after classification was subjected to a deoxidation step and recovered again. 225 g of fumed silica recovered from the deoxidation step was again introduced into the fluidized bed, fluidized under the above conditions, and then classified by extracting 203 g from the top of the tube.
  • the fumed silica obtained after classification was compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
  • Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
  • Example 4 Using the same tetrachlorosilane as in Example 1 as the halogenated silane, fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the deoxidation step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. After introducing preheated air heated to the same level as the temperature of fumed silica from the lower part at 5 Nm 3 / h for 30 minutes, 225 g of the introduced silica was extracted from the upper part of the tube and classified. This classification process was repeated twice to obtain 203 g of fumed silica.
  • the obtained fumed silica was compressed by a deaeration press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
  • Table 1 shows the specific surface area of the fumed silica obtained, the impurity content, the remaining amount on the screen by the wet sieving method using an electroformed screen having a mesh size of 5 ⁇ m, the scratch density, and the polishing rate.
  • Example 5 Using the same tetrachlorosilane as in Example 1 as the halogenated silane, fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the separation and recovery step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. After introducing preheated air heated to the same level as the fumed silica from the lower part at 10 Nm 3 / h for 30 minutes, 225 g of the introduced silica was extracted from the upper part of the tube. The fumed silica after classification was subjected to a deoxidation step and recovered again.
  • fumed silica recovered from the deoxidation step was again introduced into the fluidized bed, fluidized under the above conditions, and then classified by extracting 203 g from the top of the tube.
  • the fumed silica obtained after classification was compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
  • Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
  • Example 6 Using the same tetrachlorosilane as in Example 1 as the halogenated silane, fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the separation and recovery step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. Preheated air heated to the same level as the temperature of fumed silica was introduced from the lower part at 5 Nm 3 / h for 60 minutes, and then 225 g of the introduced silica was extracted from the upper part of the tube.
  • the fumed silica obtained after classification was subjected to a deoxidation step and then compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
  • Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
  • fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the separation and recovery step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. After introducing preheated air heated to the same level as the temperature of fumed silica from the lower part at 5 Nm 3 / h for 30 minutes, 225 g of the introduced silica was extracted from the upper part of the tube and classified. The fumed silica after classification was subjected to a deoxidation step and recovered again.
  • fumed silica recovered from the deoxidation step was again introduced into the fluidized bed, fluidized under the above conditions, and then classified by extracting 203 g from the top of the tube.
  • the fumed silica obtained after classification was compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
  • Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
  • Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
  • Table 1 shows the specific surface area, impurity content, residual amount on the screen by the wet sieving method using a 5 ⁇ m mesh sieve, scratch density, and polishing rate for three types of fumed silica that are commercially available from three companies. It shows together with.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

微細化、多層化において重要となる研磨後の被研磨物表面に発生するスクラッチを顕著に低減することができる化学機械研磨用ヒュームドシリカを提供することにある。本発明にかかるヒュームドシリカは、BET比表面積が57m/g以上400m/g以下であり、水の中に6.25質量%の量を、振動周波数20kHz、振幅15μm~25μm、3分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法での篩上残量が5ppm以下である。

Description

ヒュームドシリカ及びその製造方法
 本発明はヒュームドシリカ及びその製造方法、詳しくはスクラッチを低減可能な化学機械研磨用ヒュームドシリカ及びその製造方法に関するものである。
 半導体デバイスの高集積化は年々進行しており、その配線はますます微細化および多層化することが求められている。これに伴い半導体デバイスの製造工程においても、各層表面に要求される品質は年々厳しくなってきており、許容される表面単位面積あたりのスクラッチ数は少なく、その大きさおよび深さはますます小さくなってきている。
 本要求に対応するため、半導体表面加工技術である化学機械研磨法(以下、化学機械研磨をCMPと略することもある)においては、研磨対象に対して汚染の少ないこと、スクラッチの少ないこと、研磨能率が高いこと、目的研磨対象物に対する選択比が高いことなどが求められている。
 一般に、上記CMPの研磨粒子として、シリカや酸化セリウム等が使用される。例えば、従来よく使用されているヒュームドシリカは、純度が優れており、研磨能率が高いものの、CMP法においては、化学成分の影響もあってスクラッチが多く発生するという課題があった。一方、コロイダルシリカは、スクラッチが低減されるものの、ヒュームドシリカと比較して研磨能率が低く、純度面でも課題があった。更に、酸化セリウムは、研磨能率が高いことは知られているが、分散安定性が悪いことに起因するスクラッチが多く、純度面でも課題があった。
 ヒュームドシリカは、1次粒子が融着等によって強固に凝集した2次粒子を形成しており、該2次粒子が緩やかに凝集して3次粒子を形成しており、通常粉体では、上記3次粒子として存在している。該ヒュームドシリカを水中で強分散させると、2次粒子の大きさまで分散されるが、1次粒子までは分散されない。したがって、CMPは2次粒子の状態で行われると考えられており、スクラッチの発生は、2次粒子の巨大化が抑制されれば減少すると考えられている(美谷芳雄他、「フュームドシリカの生成と特性-火炎解析と生成粒子のCMPへの適合性-」、2008年度精密工学会秋季大会学術講演会講演論文集、p857-858)。
 特許文献1には、上記スクラッチを低減する目的で、研磨液組成物をフィルタでろ過し、粒径0.56μm以上1μm未満の研磨粒子や粒径3μm以上の研磨粒子が一定量以下に低減された研磨液組成物が記載されている。具体的にはコロイダルシリカスラリーを用いた研磨液組成物中の研磨粒子の粒径を、個数カウント方式(Sizing Particle Optical Sensing法)、具体的には、 Particle Sizing Systems社製アキュサイザー780APSを用いて測定している。
 また、特許文献2には、密度が200g/l~2,500g/l、粒径が0.5μm~500μmの焼結粗粒子として定義される粗粒子の割合が0.03重量%未満であり、10重量%水分散体1ml当り粗粒子が100,000個未満であるヒュームドシリカが示されている。粗粒子の割合を、水等の分散媒にシリカを分散し、ローターステーター分散機を用いて例えば25,000rpm以上の回転速度で5分間以上分散し、さらにpH9.9~10.2にアルカリ性安定化した後、微細なヒュームドシリカを除去して調整したシリカ分散液について、白色光やレーザー光等の光遮蔽法、具体的には、アキュサイザー680や780、PSM社製Liquilaz、Topas社製FASを用いて0.5μm~500μmの粗粒を測定することが記載されている。
 しかしながら、上記の方法を用いても、0.56μm超の粒子カウント個数とスクラッチへの影響とが相関しない場合がしばしば見られ、スクラッチに影響する粗大な2次粒子の評価方法として課題が残されていた。即ち、研磨に使用するスラリーは100mlオーダー、シリカ量にして10gオーダーであるのに対し、上記引用文献に記載された粗粒の評価方法では、定量に供されるスラリー量は1μlオーダー、シリカ量にしてサブmgオーダーと極少量あること、さらには該測定に供される試料が、計り取ったシリカ粉末全量ではなく、よりシリカが不均一に存在しやすいと思われるシリカスラリーから抽出していること、これらの理由により、評価された粗粒量の精度に課題が残されていたのではないかと考えている。
特開2006-136996号公報 特表2010-510151号公報 特公昭47-46274号公報 特開2008-19157号公報
 本発明の目的は、微細化、多層化において重要となる研磨後の被研磨物表面に発生するスクラッチを顕著に低減することができるCMP用ヒュームドシリカを提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、CMP法の研磨粒子としてヒュームドシリカを用いた場合、該ヒュームドシリカにおける、目開き5μmの電成篩を用いた湿式篩法を実施した際の篩上残量(以下、「目開き5μmの電成篩を用いた湿式篩法を実施した際の篩上残量」を「目開き5μmの篩上残量」ともいう)がスクラッチの発生に対し、特に重要な影響を及ぼしていることを見出した。
 CMP法において、研磨粒子は、研磨液に分散させて研磨液組成物とした後、引用文献1の如くフィルタを用いて粗粒を除去する等の調整がなされるのが一般的である。にもかかわらず、研磨粒子としてヒュームドシリカを用いた場合において、該目開き5μmの篩上残量と単位面積あたりのスクラッチ数との間に、再現性の良い相関があることを見出し、本発明を完成するに至った。
 前記ヒュームドシリカの目開き5μmの篩上残量が研磨時のスクラッチ発生にどのように影響するのか、そのメカニズムについては定かではないが、巨大化したヒュームドシリカの2次粒子の存在が、目開き5μmの篩上に残留する凝集体の形成にも関与するため、目開き5μmの篩上残量を低減することにより、前記スクラッチの原因となる粗粒も低減されるのではないかと考えている。
 即ち本発明は、BET比表面積が57m/g以上400m/g以下であるヒュームドシリカであって、水の中にそのヒュームドシリカを6.25質量%となるように加え、振動周波数20kHz、振幅15μm~25μm、3分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法での篩上残量が5ppm以下であることを特徴とするヒュームドシリカである。
 本発明のヒュームドシリカの一実施形態は、Fe含有量が0.3ppm以下、Al含有量が0.3ppm以下、Ni含有量が0.1ppm以下、Cr含有量が0.1ppm以下、Ti含有量が0.1ppm以下、且つホウ素含有量が0.1ppm以下であることが好ましい。
 更に本発明のヒュームドシリカは、CMP用ヒュームドシリカとして好適に用いられる。
 本発明のヒュームドシリカはCMPに好適に使用することができ、該ヒュームドシリカを半導体ウエハーやデバイス等を研磨する研磨砥粒として使用すれば、不純物による汚染がなく、研磨効率に優れ、さらに、研磨時のスクラッチを顕著に低減可能である。
 本実施形態のヒュームドシリカは、その原料や反応条件等は特に限定されるものではないが、シラン化合物の燃焼反応もしくは火炎加水分解反応、即ち、シラン化合物を、水素ガス等の可燃性ガスと空気等の酸素含有ガスとで形成する火炎中で燃焼もしくは加水分解させる製造方法で得られるシリカ粉体全般を指す。なお、ヒュームドシリカは一般的には、特許文献3に記載されているようにクロロシラン等の珪素の塩化物を火炎加水分解法によって製造されるものである。
 本実施形態のヒュームドシリカは、BET比表面積が57m/g以上400m/g以下である。該BET比表面積は60m/g以上400m以下であることが好ましく、60m/g以上160m/g以下であることがより好ましく、60m/g以上90m/g以下であることがさらに好ましい。BET比表面積が上記範囲の下限より小さくなると、CMP用途に用いた場合に、研磨時のスクラッチが増加する。スクラッチとは研磨によるひっかき傷のことである。また、BET比表面積が上記範囲の上限を超えて大きくなると、研磨速度が著しく低下するため半導体デバイスの生産効率が著しく悪化する。
 本実施形態のヒュームドシリカにおける最大の特徴は、目開き5μmの篩上残量が格段に少ないことである。具体的には、水中にヒュームドシリカを6.25質量%加えて、超音波によって分散させた(振動周波数20kHz、振幅15μm~25μm、3分)分散液において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が5ppm以下であるヒュームドシリカである。篩上残量は、3ppm以下であることが好ましく、1ppm以下であることがより好ましい。
 前述のとおり、ヒュームドシリカは、火炎中の反応で生成した1次粒子が、融着等によって強固に凝集した2次粒子を形成しており、該2次粒子が緩やかに凝集して3次粒子を形成している。通常粉体では、上記3次粒子として存在しているが、該ヒュームドシリカを水中で強分散させる(分散の度合を大きくさせる)と、2次粒子の大きさまで分散される。CMPにおける砥粒は、この2次粒子の状態であると考えられており、前述の通り、CMP法において、研磨粒子は、研磨液に分散させて研磨液組成物とした後、フィルタを用いて粗粒が除去されるのが一般的である。にもかかわらず、研磨粒子としてヒュームドシリカを用いた場合において、目開き5μmの篩上残量と単位面積あたりのスクラッチ数との間に、再現性の良い相関があることがわかった。
 目開き5μmの篩上残量が研磨時のスクラッチ発生にどのように影響するのか、そのメカニズムについては明らかではないが、前記電成篩を用いた湿式篩法によれば、巨大化した2次粒子と相関があると思われる目開き5μmの篩上残量を精度良く定量することが可能であって、該目開き5μmの篩上残量が上記範囲であることにより、研磨時のスクラッチの発生を顕著に低減することが可能である。
 なお、前記目開き5μmの篩上残量の定量法は、電成篩を用いた湿式篩法であることが重要である。該方法によれば、試験に用いるシリカ量を十分に大きくすることができる。具体的には試料量を10gオーダーとすることができ、さらに該試料全量を測定に供することができる。
 具体的には、上記篩上残量は、試料量としてヒュームドシリカ20g以上を篩分けした際の値である。篩い分けに際し前記6.25質量%超音波分散液は、一度に調製することもできるし、分割して調製することもできる。たとえば、1つの容器にヒュームドシリカ20gを計りとり、300gの水を加えた後、振動周波数20kHz、振幅15μm~25μm、3分の条件で超音波を照射してもよいし、後述の如く4つの容器に5gづつ計りとり、それぞれ75gづつ水を加えた後、それぞれに振動周波数20kHz、振幅15μm~25μm、3分の条件で超音波を照射してもよい。
 上記ヒュームドシリカが6.25質量%添加された超音波分散液を調整するにあたって、振動周波数20kHz、振幅15μm~25μm、3分の条件で超音波分散処理が実施できればよく、超音波処理装置は特に制限されない。たとえば、株式会社日本精機製作所製超音波ホモジナイザー(US-600T)を用いた場合、振動周波数は20kHzであり、出力目盛6の時、振幅が22.5μmに相当する。
 なお、上記超音波照射に供する分散液の温度は、20~30℃とする。
 別法としてレーザー回折・散乱法による粒度分布測定法も挙げられるが、かかる方法は、特許文献4に記載されているように、検出レベルがパーセントの程度で検出感度が低いため、たとえば、本実施形態のようにシリカ微粒子中における微量の5μm超えの粒子量の定量には不適当である。なお、該測定法においても、測定に供されるのはシリカの分散液であり、測定に供されるシリカ量は少量である。
 本実施形態のヒュームドシリカは、Fe含有量が0.3ppm以下であることが好ましく、0.1ppm以下であることがより好ましい。Fe含有量が研磨時におけるスクラッチ発生にどのように影響するのか、そのメカニズムについては明らかではないが、一般にFe含有量が多くなるとスクラッチが増加する傾向にあり、Fe含有量が上記範囲であると、研磨時のスクラッチを顕著に低減可能である。上記Feは、通常、原料に由来して含有されるが、反応容器、配管等からの摩耗粉の混入もあり得る。
 更に本実施形態のヒュームドシリカは、Al含有量が0.3ppm以下、Ni含有量が0.1ppm以下、Cr含有量が0.1ppm以下、Ti含有量が0.1ppm以下、且つホウ素含有量が0.1ppm以下であることが好ましい。このように高度に不純物が低減されたヒュームドシリカは、半導体デバイスのCMP工程等、高純度の研磨砥粒の使用が要求される用途で好適に使用できるため好ましい。
 なお、シラン化合物の火炎中での燃焼もしくは加水分解により製造されるヒュームドシリカにおいては、一般に、上記不純物のうちホウ素は原料由来であり、Al、Ni、Cr、Tiは原料由来だけでなく、反応容器、配管等の摩耗粉に由来するものも含まれる。これら不純物量が多くなると、研磨時に被研磨面を汚染しやすくなる。被研磨面が汚染されると、研磨対象物の材質・用途によっては、基板等の電気特性を低下する原因となるため好ましくない。
 本実施形態のヒュームドシリカは前述の通り、目開き5μmの篩上残量が格段に少なく、これによりスクラッチの発生が低減されるため、CMP用ヒュームドシリカとして好適に用いることができる。なかでも、半導体デバイスのCMP工程における、導体である金属膜のCMP、半導体であるポリシリコンのCMP、または不導体であるシリコン酸化膜(絶縁膜)のCMP等に好適に使用される。
 また、本実施形態のヒュームドシリカは、適宜、公知の表面処理剤を用いて公知の表面処理を行って使用しても良い。斯様に表面処理されたヒュームドシリカは、各種用途、例えば各種樹脂の充填剤、増粘剤、流動化剤、電子写真用トナーの外添剤などに供することができる。
 本実施形態のヒュームドシリカの製造方法については特に限定されず、製造したシリカ微粒子のBET比表面積が57m/g以上400m/g以下であり、目開き5μmの電成篩を用いた湿式篩法での篩上残量が5ppm以下であれば、如何様なシリカ微粒子の製造方法でも採用できる。具体的には、反応器にシラン化合物を供給し、火炎中で燃焼もしくは加水分解する方法が挙げられる。例えば、特公昭47-46274、特公昭58-54085、特開昭59-169922号公報、特開昭59-184721号公報、特開昭60-011218号公報の各公報に記載の方法を参照することができる。
 ヒュームドシリカは、反応工程においてシラン化合物を含有する原料ガスを火炎中に供給し、該火炎中でシラン化合物が燃焼もしくは加水分解することにより生成する。上記反応工程より生成したヒュームドシリカは、冷却工程において冷却された後、分離回収工程に送られる。該工程で固形分を反応ガスと分離して回収した後、必要に応じて脱酸工程にて脱酸処理される。
 こうして得られるヒュームドシリカは、嵩密度が約0.023g/cmと小さい粉体であり、それをそのまま包装すると製品の包装・輸送コストが高いうえ、粉の飛散性が大きく粉体の取り扱い上問題があるため、通常は、圧縮工程において嵩密度を大きく調整した後、包装工程へと送られる。
 本実施形態のヒュームドシリカの製造方法は、特に限定されるものではないが、一態様として、詳しくは後述するが、巨大化した2次粒子を乾式で分級除去する分級工程を、前記冷却工程の後、前記圧縮工程の前に設けることが好ましく、これにより、目開き5μmの篩上残量を格段に低減することができる。以下、上記好ましい態様について説明する。
 (反応工程)
 本実施形態の反応工程では、反応器に原料シランガスを供給し火炎中で燃焼もしくは加水分解させてヒュームドシリカを生成する工程である。上記原料シランガスは、原料気化器で加熱気化され、水素または水素含有ガスなどの可燃性ガスおよび酸素または空気などの支燃性ガス、必要に応じ窒素、アルゴンなどの不燃性ガスと予混合される。該予混合ガスを火炎燃焼もしくは火炎加水分解する反応器は、反応器内の圧力の維持が容易であることと、汚染物質の侵入を防ぐことから、該反応器内の雰囲気が大気と完全に遮断されるクローズド系とすることが好ましい。即ち、反応器内にバーナーが設置され、該バーナー及び反応器に供給するガス、該反応器から排出するガス、及びヒュームドシリカは各々配管を流通する。
 上記反応器内の圧力は特に限定されないが、高いほど火炎長が短く、火炎内での温度分布が小さくなり、結果として一次粒子径の揃った、一次粒子の変動係数が小さいヒュームドシリカを得ることができる。反応器内の圧力は、任意の箇所(反応器からガスを排出する反応器出口付近以外の場所)に圧力計を設置することにより容易に測定できる。上記反応器出口付近の圧力は、排出ガスの流速等によって変動しやすい。なお、生成したヒュームドシリカの付着を考慮し、通常は反応器のバーナー設置面若しくは、バーナーから反応器出口へ流れるガス流の上流側壁面に圧力計を設置して測定する。
 反応器内の圧力の調整方法は特に制限されないが、反応器内に導入するガス量と反応器出口もしくは下工程に圧損をつけることにより調整することができ、一般に、反応器内の圧力は、装置の耐圧や原料供給ポンプの圧力上限などの理由から1MPaG以下とすることが好ましい。
 反応時の断熱火炎温度は特に限定されないが、一般に1500℃以上2300℃以下で実施されることが多い。
 反応器内において、火炎の形成は、通常、バーナーにより行なう。バーナーとしては、断面が同心円状の多重管バーナーを用いて行うのが、点火の容易さや燃焼の安定性等の面から好ましい。多重管バーナーは、中心管および中心管から同心円状に広がる複数の環状管より構成され、一般に、2重管、3重管、4重管が使用され、特に、3重管が好ましい。これら多重管バーナーは、中心管径が5~150mm程度のものを用いるのが一般的である。
 多重管バーナーによる火炎の形成は、バーナーの燃焼口で、可燃性ガスと酸素含有ガスとが、前記断熱火炎温度が得られる所望の燃焼比率になるように、中心管及び各環状管に、それぞれを分けたり、混合比率を変えた混合ガスとしたりして各供給すれば良い。具体的には、中心管側から中心管の半径方向外側へと第一環状管および第二環状管がこの順に配置された3重管の場合であれば、水素および空気を中心管に供給し、第一環状管に水素と空気またはどちらか一方のガスを供給し、第二環状管に空気のみを供給するのが好適である。
 こうした多重管バーナーを用いての火炎の形成に際して、多重管バーナーのいずれかのガス供給管に、気化したシラン化合物も供給して、火炎中で燃焼反応もしくは加水分解反応が進行するようにすれば良い。火炎の基底部中心に、シラン化合物が供給され、安定的に燃焼反応もしくは加水分解反応が進行することから、シラン化合物は中心管に供給するのが特に好ましい。
 ヒュームドシリカの原料であるシラン化合物は、有機シラン、ハロゲン化シラン等であって特に制限されないが、ガス化して多重管バーナーに供給し易いように、沸点が250℃以下のものが好ましい。具体的には、テトラエトキシシラン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、メチルトリクロロシラン、メチルジクロロシラン、トリメチルクロロシラン、ジメチルジクロロシラン、1,1,2,2-テトラクロロ-1,2-ジメチルジシラン、1,1,2-トリメチルトリクロロジシラン、1,2-ジクロロテトラメチルジシラン、1,1,1,2-テトラメチルジクロロジシラン、テトラクロロシラン、トリクロロシラン等が挙げられる。
 前記したように本実施形態のCMP用シリカは、Fe含有量が0.3ppm以下であることが好ましい。こうしたFe含有量のヒュームドシリカを得るためには、バーナーに供給される原料ガス中のFe含有量が低減されたものを用いることが好ましい。例えば、テトラクロロシランを原料ガスとして用いる場合、この原料ガス中のFe含有量は0.12ppm以下であることが好ましい。
 同様にシラン化合物は、Fe以外のその他の不純物であるAl、Ni、Cr、Ti、ホウ素に関しても、既述した本実施形態のヒュームドシリカとして好適な不純物含有量を実現できるものが好ましい。例えば、テトラクロロシランを原料ガスとして用いる場合、原料ガス中の不純物含有量は、Al含有量が0.12ppm以下、Ni含有量が0.04ppm以下、Cr含有量が0.04ppm以下、ホウ素含有量が0.04ppm以下であることが好ましい。
 本実施形態のヒュームドシリカの製造方法において、シラン化合物を火炎中で燃焼もしくは加水分解する具体的な実施態様としては、中心管径が50mmの3重管バーナーを使用するのであれば、中心管にシラン化合物を1.1~4.2kmol/h、水素を75~200Nm/h、空気を25~500Nm/hの範囲内で各々供給し、第一環状管に水素を10~40Nm/h、空気を10~50Nm/hの範囲内で各々供給し、第二環状管に空気を25~75Nm/hの範囲内で供給する実施態様があげられる。
 本実施形態の製造方法において、得られるヒュームドシリカのBET比表面積が57m/g以上400m/g以下となる反応条件であることが好ましく、所望のBET比表面積となるよう上記断熱火炎温度、反応器の圧力、バーナーへの酸素(空気)と水素の供給比率、原料の供給量等条件を調整することができる。
 (冷却工程)
 反応火炎中にて生成成長したヒュームドシリカは、焼結や融着あるいは表面変化などが生じないように急速に冷却し、水または他の凝縮しやすい反応物の露点以上の温度に冷却して分離回収工程に送られる。
 上記冷却の方法は特に限定されないが、公知の方法、例えば窒素等の追加気体中での吹き付け、あるいは熱交換器による冷却等が挙げられる。
 (分級工程)
 反応工程や冷却工程の高温部では融着等の強固な凝集により2次粒子が形成されるが、この凝集によって巨大化した2次粒子が存在すると目開き5μmの篩上残量が増加すると考えられる。前述の通り、本実施形態のヒュームドシリカの製造方法における態様として、上記反応工程及び/または冷却工程で生成した巨大化した2次粒子を乾式で分級除去する分級工程を設ける。これにより、湿式篩法において目開き5μmの電成篩上に残留する粒子(以下、篩上残留粒子ともいう)を効果的に除去することができる。
 該分級工程は、前記冷却工程の後、後述する圧縮工程の前に設けることが好ましい。より好ましくは、後述する分離回収工程の後、圧縮工程の前に設け、後述する脱酸工程を設ける場合であれば、該脱酸工程の後、圧縮工程の前に設けるほうが分級装置に酸の影響が少なく設計しやすいためさらに好ましい。
 冷却工程以降、即ち2次粒子形成後に該分級工程を設けることにより、効果的に篩上残留粒子を低減することができるが、分離回収工程より前で分級することは、多量の反応ガスをシリカが同伴していることから処理量が膨大となり、分級設備が巨大化する傾向があり不経済である。
 他方、嵩密度が調整された圧縮工程以降のヒュームドシリカにおいては2次粒子が凝集し3次粒子を形成しているため、乾式分級により効率よく巨大化した2次粒子を除去しようとした場合、3次粒子との区別が難しく、篩上残留粒子を本実施形態の如く精度よく低減することは困難である。
 即ち、嵩密度が小さい上記圧縮工程前のヒュームドシリカは、気相中において最も高分散した状態である。斯様な状態のヒュームドシリカを乾式で分級することにより、篩上残留粒子を精度よく低減することが可能となる。
 上記乾式分級手段は特に限定されないが、篩、重力分級機、慣性分級機、遠心分級機、流動層分級機、風力分級機、静電分級機等を用いた分級手段が挙げられる。
 本実施形態の分級工程において、上記分級手段は1種類でもよく、2種類以上を組み合わせてもよい。2種類以上の分級手段を用いる場合の組合せは特に限定されない。また、分級手段が1種類であっても複数種類であっても、個々の分級手段について、複数回繰り返し用いることができる。分級手段の組合せや繰り返しにより、分級操作を複数回繰り返すことによって、より精度よく篩上残留粒子を低減することができる。
 複数回繰返し実施する場合の分級工程の設置箇所は冷却工程後から圧縮工程前であれば特に限定されず、1カ所でもよく、複数箇所に別けて設置しても良い。例えば分級操作を2回設ける場合において、分離回収工程後と脱酸工程後にそれぞれ1回ずつ設けてもよく、脱酸工程後に2回設けても良い。
 分級の程度は、選択した分級手段、分級回数等により、最終的に得られるヒュームドシリカにおいて、目開き5μmの篩上残量が5ppm以下となるよう、逐次調整されればよい。
 なお、上記分級手段として、湿式篩や水簸分級等の湿式分級法を用いた場合、乾燥工程が必須となり、該乾燥時に粒子同士が強く凝集し、逆に篩上残留粒子を発生させてしまうことになるため不適である。
 (分離回収工程)
 冷却されたヒュームドシリカは、分離回収工程において、フィルタやサイクロン等により固形分とガスを分離し、粉体として回収される。この分離回収工程は固体であるヒュームドシリカを気体である反応ガスより収率良く分離することが目的であり、固体であるヒュームドシリカ中の巨大化した2次粒子の除去を目的とする前述の分級工程と本願明細書中では区別される。
 (脱酸工程)
 分離工程後のヒュームドシリカは、必要に応じて脱酸工程に送られ、脱酸処理される。脱酸処理が必要となるのは、原料であるシラン化合物として、特にハロゲン化シランを用いた場合であって、具体的にはクロロシラン類を用いると、火炎加水分解反応の副生成物として塩化水素が生成する。斯様な酸は、腐食性を有するため、該脱酸工程において脱酸処理される。
 脱酸処理の方法は、特に限定されず公知の方法を採用することができるが、乾式であることが好ましい。具体的には、移動床方式、流動床方式等の加熱した脱酸器に分離工程後のヒュームドシリカを投入し、好ましくは加熱した空気や窒素などのガスを流通する。流通するガスに水蒸気を適宜添加すると脱酸効率が高まるのでさらに好ましい。
 (圧縮工程)
 通常、回収されたヒュームドシリカの嵩密度は、約0.023g/cmと小さいため、往々にして処理および包装が困難であるとともに、輸送や保管の際に多くのスペースをとるため不経済である。したがって、脱酸工程がある場合は脱酸工程後に、脱酸工程がない場合は分離回収工程の後に、嵩密度を大きくする圧縮工程を設ける。
 該圧縮工程において嵩密度が大きくなればよいのであって、圧縮する手段は特に限定されず、公知の手段、たとえば、プレスやボールミル、混合機その他の装置で処理し粉体を圧縮する方法が挙げられる。上記装置による圧縮手段を取らない場合であっても、サイロに回収することにより、サイロ内で自重により圧縮されて嵩密度が大きくなるため、製品サイロにて保管する工程も該圧縮工程に含むものとする。
 圧縮後の嵩密度は大きい程粉体として取扱い易くなるが、大きくしすぎると溶媒や樹脂に分散する際に分散性が悪化し応用物性が損なわれる。本実施形態における圧縮は、適切な応用物性となる所望の嵩密度が得られるよう、圧縮手段を選択し、圧縮の程度を適宜調整すればよい。なお、圧縮手段は2種類以上を組み合わせてもよい。
 該圧縮工程により、嵩密度を0.03~0.1g/cmとすることが好ましく、0.05~0.1g/cmとすることがより好ましい。
 <実施例>
 以下、実施例によって本実施形態をさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
 なお、以下の実施例および比較例における各種の物性測定等は以下の方法による。
 (1)比表面積測定:株式会社マウンテック製全自動比表面積測定装置(Macsorb HM-1201)を用いて、窒素吸着BET1点法により測定した。
 (2)電成篩:目開き5μmの電成篩を用いて湿式篩を行い、篩網上の残留分を定量した。測定試料の調製は、ヒュームドシリカ微粒子20gを計りとり、25℃の蒸留水300gを加えた後、株式会社日本精機製作所製超音波ホモジナイザー(US-600T)を用いて、出力目盛6(振動周波数20kHz、振動振幅値22.5μmに相当)、分散時間3分の条件で分散させて6.25質量%超音波分散液とし、全量を測定試料とした。
 (3)不純物含有量の測定:各実施例および比較例のヒュームドシリカに対してフッ酸および硝酸を添加して加熱することで前処理を行い、残留分を水溶液としICP発光分析により各不純物含有量を測定した。測定にはアジレントテクノロジー株式会社製ICP発光分析装置Vista-MPXを用い、ICP用標準液としてメルク株式会社製ICPマルチエレメントスタンダードIX(23元素用)、Tiについては和光純薬工業株式会社製ICPスタンダード溶液を使用した。
 (4)ホウ素含有量の測定:各実施例および比較例のヒュームドシリカをポリテトラフルオロエチレン樹脂製容器に入れメルク株式会社製のホウ素定量用マンニトールを加えた後、フッ酸および硝酸を添加して加熱することで前処理を行い、残留分を水溶液としICP発光分析により各不純物含有量を測定した。測定にはアジレントテクノロジー株式会社製ICP発光分析装置Vista-MPXを用い、ICP用標準液としてメルク株式会社製ICPマルチエレメントスタンダードIX(23元素用)を使用した。
 (5)スクラッチ密度の測定法:
 -スラリー調製条件-
 スクラッチ密度および研磨レートの評価に用いたサンプルスラリーは、山口他、「CMP用ヒュームドシリカスラリーとスクラッチ欠陥発生の関係」、2010年度精密工学会熊本地方講演論文集、p1-2(以下、単に「予稿集」と称す)の「2.1 スラリー調製条件」および図1に示す試作スラリーサンプル2の調製条件に準じ準備した。但し、このサンプルスラリーの調整に際しては、シリカとして各実施例および比較例のヒュームドシリカを用いた。また、スラリーの調整に用いた各種の撹拌・分散装置および分散条件は「予稿集」に記載された条件に対して以下のように変更した。撹拌はアズワン株式会社製トルネードSM-103およびタービン羽根を用いて600rpmで5分撹拌した後、プライミクス株式会社製T.K.ホモミクサーMARK IIを用いて10000rpmで10分撹拌した。次に分散は、吉田機械興業株式会社製Nano-Mizer Mark IIを用いて80MPa/分散1回とした。また、濾過にはポールコーポレーション製のフィルタ(プロファイルII、濾過精度:1μm、材質:ポリプロピレン製)を用いた。なお、上記予稿集の内容は本願明細書中の記載の一部として組み入れられる。
 -研磨条件-
 スラリーを用いた研磨は、CMP加工(本CMP)で用いるサンプルスラリーとして上述した手順で調整したサンプルスラリーを用いた以外は、予稿集の「2.2 銅ウエハー研磨条件」、表1および図2に示された条件にて実施した。なお、使用した研磨装置は株式会社ナノファクター製卓上型ポリッシング装置NF-300であり、研磨対象物(銅ウエハー)は株式会社D-process製3インチCuメッキSiウエハー(Cuメッキ厚み:5μm)である。また、CMP加工(本CMP)後における銅ウエハー表面の残留砥粒・有機物除去剤(洗浄液)として和光純薬工業株式会社製Clean100を10倍希釈して用いた。
 -スクラッチ密度および研磨レートの測定-
 上記研磨条件にてCuメッキ膜が設けられた面が研磨された銅ウエハーについてスクラッチ密度および研磨レートを測定した。ここで、スクラッチ密度は、予稿集の「2.3 スクラッチ数の計測」および図3に示された手順にて測定した。なお、Cuメッキ膜のスクラッチ評価は、シリコン酸化膜(絶縁膜)のスクラッチ評価と相関性がある(予稿集参照)。よって、後述するスクラッチ密度の測定結果と同様の傾向が、シリコン酸化膜(絶縁膜)を研磨した場合においても得られると推定される。
 -スクラッチ密度および研磨レートの判断基準-
 (a)スクラッチ密度
 スクラッチ密度は40pcs/mm以下が許容範囲であり、30pcs/mm以下がより望ましい。
 (b)研磨レート
 研磨レートは12nm/min以上が許容値であり、17nm/min以上がより望ましい。
 実施例1~3
 ハロゲン化シランとしてテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。上記テトラクロロシランガス中の不純物量はFe:0.1ppm未満、Al:0.1ppm未満、Ni:0.01ppm未満、Cr:0.01ppm未満、Ti:0.01ppm未満、ホウ素:0.01ppm未満であった。
 このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことにより分級した。分級後のヒュームドシリカは脱酸工程を行い再度回収した。脱酸工程より回収したヒュームドシリカ225gを再度上記流動層に導入し、上記条件にて流動させた後管上部から203gを抜き出すことで分級した。分級後得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 実施例4
 ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、脱酸工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。この分級工程を2回繰り返し、ヒュームドシリカ203gを得た。得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカの比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 実施例5
 ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を10Nm/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。分級後のヒュームドシリカは脱酸工程を行い再度回収した。脱酸工程より回収したヒュームドシリカ225gを再度上記流動層に導入し、上記条件にて流動させた後管上部から203gを抜き出すことで分級した。分級後得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 実施例6
 ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm/hで60分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。分級後得られたヒュームドシリカは脱酸工程を行った後、脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 比較例1
 ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、脱酸工程後のヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカの比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 比較例2、3
 ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。分級後のヒュームドシリカは脱酸工程を行い再度回収した。脱酸工程より回収したヒュームドシリカ225gを再度上記流動層に導入し、上記条件にて流動させた後管上部から203gを抜き出すことで分級した。分級後得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 比較例4
 ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、脱酸工程後のヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cmの嵩密度に調整しヒュームドシリカを得た。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことにより分級した。この分級工程を2回繰り返し、ヒュームドシリカ203gを得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
 比較例5~7
 市販されている、3社3種類のヒュームドシリカについて、比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 (その他の実施形態)
 上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。

Claims (4)

  1.  BET比表面積が57m/g以上400m/g以下であり、
     水の中に6.25質量%の量を、振動周波数20kHz、振幅15μm~25μm、3分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が5ppm以下であることを特徴とするヒュームドシリカ。
  2.  Fe含有量が0.3ppm以下、Al含有量が0.3ppm以下、Ni含有量が0.1ppm以下、Cr含有量が0.1ppm以下、Ti含有量が0.1ppm以下、且つホウ素含有量が0.1ppm以下である請求項1記載のヒュームドシリカ。
  3.  請求項1または2に記載のヒュームドシリカよりなるCMP用ヒュームドシリカ。
  4.  請求項1に記載されたヒュームドシリカを製造する方法であって、
     反応器に原料シランガスを供給し、火炎中で燃焼もしくは加水分解させてヒュームドシリカを生成させる反応工程と、
     生成させた前記ヒュームドシリカ及び反応ガスを冷却する冷却工程と、
     前記ヒュームドシリカを前記反応ガスより分離し回収する分離回収工程と、
     前記ヒュームドシリカの嵩密度を大きくする圧縮工程と
     を含み、さらに前記圧縮工程の前に5μm以上の粒径の前記ヒュームドシリカの除去を行う分級工程を含んでいることを特徴とするヒュームドシリカの製造方法。
PCT/JP2017/037482 2016-10-28 2017-10-17 ヒュームドシリカ及びその製造方法 WO2018079334A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197013358A KR102442003B1 (ko) 2016-10-28 2017-10-17 흄드 실리카 및 그 제조 방법
JP2018531261A JP6442116B2 (ja) 2016-10-28 2017-10-17 ヒュームドシリカ及びその製造方法
CN201780066958.2A CN110167879A (zh) 2016-10-28 2017-10-17 气相二氧化硅及其制备方法
US16/344,285 US20190270914A1 (en) 2016-10-28 2017-10-17 Fumed silica and method for producing the same
PCT/JP2017/037482 WO2018079334A1 (ja) 2016-10-28 2017-10-17 ヒュームドシリカ及びその製造方法
EP17864976.0A EP3533760A4 (en) 2016-10-28 2017-10-17 PYROGENATED SILICA AND ITS PRODUCTION METHOD

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-211229 2016-10-28
JP2016211229 2016-10-28
PCT/JP2017/037482 WO2018079334A1 (ja) 2016-10-28 2017-10-17 ヒュームドシリカ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018079334A1 true WO2018079334A1 (ja) 2018-05-03

Family

ID=62025055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037482 WO2018079334A1 (ja) 2016-10-28 2017-10-17 ヒュームドシリカ及びその製造方法

Country Status (7)

Country Link
US (1) US20190270914A1 (ja)
EP (1) EP3533760A4 (ja)
JP (1) JP6442116B2 (ja)
KR (1) KR102442003B1 (ja)
CN (1) CN110167879A (ja)
TW (1) TW201829312A (ja)
WO (1) WO2018079334A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294450A (zh) * 2018-11-26 2019-02-01 厦门大学 一种用于混合抛光液的机械分散方法
WO2022091953A1 (ja) * 2020-10-30 2022-05-05 株式会社トクヤマ ゴム組成物の製造方法、ゴム組成物用フュームドシリカおよびゴム組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976100B (zh) * 2019-12-13 2020-10-09 内蒙古鄂托克旗昊源煤焦化有限责任公司 一种氧化煤泥的分选方法
KR102379372B1 (ko) * 2020-02-28 2022-03-29 주식회사 케이씨씨실리콘 흄드 실리카용 조성물
CN112090215A (zh) * 2020-09-17 2020-12-18 郑州格矽科技发展有限公司 一种超细粉体表面吸附物的处理装置及其处理方法
CN114275786A (zh) * 2021-12-17 2022-04-05 上海交通大学 一种白炭黑制备方法和制备系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019157A (ja) * 2006-06-09 2008-01-31 Tokuyama Corp 乾式シリカ微粒子
JP2014214042A (ja) * 2013-04-24 2014-11-17 株式会社トクヤマ 乾式シリカ微粒子
WO2015012118A1 (ja) * 2013-07-24 2015-01-29 株式会社トクヤマ Cmp用シリカ、水性分散液およびcmp用シリカの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069347A1 (en) * 2001-09-28 2003-04-10 Hideki Oishi Calcined silica particle and manufacturing method of same
JP3984902B2 (ja) * 2002-10-31 2007-10-03 Jsr株式会社 ポリシリコン膜又はアモルファスシリコン膜研磨用化学機械研磨用水系分散体およびこれを用いた化学機械研磨方法ならびに半導体装置の製造方法
TWI364450B (en) * 2004-08-09 2012-05-21 Kao Corp Polishing composition
JP2006136996A (ja) 2004-10-12 2006-06-01 Kao Corp 研磨液組成物の製造方法
US7803341B2 (en) * 2006-06-09 2010-09-28 Tokuyama Corporation Fine dry silica particles
CN101454246A (zh) * 2006-06-09 2009-06-10 株式会社德山 干式二氧化硅微粒
DE102006054156A1 (de) * 2006-11-16 2008-05-21 Wacker Chemie Ag Pyrogene Kieselsäure hergestellt in einer Produktions-Anlage mit großer Kapazität
ATE497483T1 (de) * 2007-05-21 2011-02-15 Evonik Degussa Gmbh Pyrogen hergestelltes siliciumdioxid mit niedriger verdickungswirkung
JP5355099B2 (ja) * 2009-01-08 2013-11-27 ニッタ・ハース株式会社 研磨組成物
JP6011361B2 (ja) * 2013-01-25 2016-10-19 株式会社ニコン シリカ粒子分散液の製造方法およびシリカ粒子分散液を用いた研磨方法
KR102226441B1 (ko) * 2013-02-13 2021-03-12 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물, 연마용 조성물 제조 방법 및 연마물 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019157A (ja) * 2006-06-09 2008-01-31 Tokuyama Corp 乾式シリカ微粒子
JP2014214042A (ja) * 2013-04-24 2014-11-17 株式会社トクヤマ 乾式シリカ微粒子
WO2015012118A1 (ja) * 2013-07-24 2015-01-29 株式会社トクヤマ Cmp用シリカ、水性分散液およびcmp用シリカの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533760A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294450A (zh) * 2018-11-26 2019-02-01 厦门大学 一种用于混合抛光液的机械分散方法
WO2022091953A1 (ja) * 2020-10-30 2022-05-05 株式会社トクヤマ ゴム組成物の製造方法、ゴム組成物用フュームドシリカおよびゴム組成物

Also Published As

Publication number Publication date
KR20190077397A (ko) 2019-07-03
US20190270914A1 (en) 2019-09-05
EP3533760A4 (en) 2020-12-23
CN110167879A (zh) 2019-08-23
EP3533760A1 (en) 2019-09-04
TW201829312A (zh) 2018-08-16
JP6442116B2 (ja) 2018-12-19
JPWO2018079334A1 (ja) 2018-11-01
KR102442003B1 (ko) 2022-09-07

Similar Documents

Publication Publication Date Title
JP6442116B2 (ja) ヒュームドシリカ及びその製造方法
CN105264646B (zh) Cmp用二氧化硅、水性分散液以及cmp用二氧化硅的制造方法
US20100025373A1 (en) Pyrogenic silica produced in a production facility with high capacity
TW555691B (en) Aqueous dispersion, a process for the preparation and the use thereof
CN1289619C (zh) 硅石基淤浆
JP4541955B2 (ja) 熱分解法により製造された二酸化ケイ素粉末及びこの粉末を含有するシリコーンシーラント
US7803341B2 (en) Fine dry silica particles
JP2006193403A (ja) 熱分解法により製造された二酸化ケイ素粉末
TW460963B (en) Polishing slurry and polishing method
JP2006193401A (ja) 熱分解法により製造された二酸化ケイ素、その製法、その使用、および該二酸化ケイ素を含有する水性分散液
JP2006306651A (ja) シリカ・チタニア複合酸化物粒子
US20110256030A1 (en) Pyrogenic Silicic Acid Manufactured in a Small-Scale Production Plant
JP6901853B2 (ja) 親水性乾式シリカ粉末
JP2010085837A (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
JP6112888B2 (ja) 乾式シリカ微粒子
JP7430700B2 (ja) シリカ粉末、樹脂組成物および分散体
US20240254313A1 (en) Silica powder in which aggregation is reduced, resin composition, and semiconductor sealing material
JP2014214042A (ja) 乾式シリカ微粒子
WO2023189802A1 (ja) 微粒子及び微粒子の製造方法
WO2024128321A1 (ja) 球状アルミナ粉末
JP2011224751A (ja) 酸化セリウム研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2010280020A (ja) 酸化セリウム研磨剤及びこの研磨剤を用いた基板の研磨法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018531261

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013358

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017864976

Country of ref document: EP

Effective date: 20190528