WO2018072508A1 - 显示装置及其显示方法 - Google Patents

显示装置及其显示方法 Download PDF

Info

Publication number
WO2018072508A1
WO2018072508A1 PCT/CN2017/093879 CN2017093879W WO2018072508A1 WO 2018072508 A1 WO2018072508 A1 WO 2018072508A1 CN 2017093879 W CN2017093879 W CN 2017093879W WO 2018072508 A1 WO2018072508 A1 WO 2018072508A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
grating
layer
display device
refractive index
Prior art date
Application number
PCT/CN2017/093879
Other languages
English (en)
French (fr)
Inventor
王维
杨亚锋
陈小川
赵文卿
李忠孝
谭纪风
孟宪芹
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/742,721 priority Critical patent/US20190086699A1/en
Publication of WO2018072508A1 publication Critical patent/WO2018072508A1/zh
Priority to US16/996,222 priority patent/US11126022B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display device and a display method thereof.
  • image display is no longer limited to the screen plane of two-dimensional space (2D), and the display of three-dimensional space (3D) is more and more applied to people's daily work, study and entertainment. etc.
  • the use of light field display technology to realize three-dimensional display becomes one of the three-dimensional display modes. Since the three-dimensional display of the light field can not only truly reproduce the spatial characteristics of the three-dimensional scene, but also correctly represent the mutual positional relationship between different objects, it has become Research hotspots in recent years.
  • Embodiments of the present disclosure provide a display device and a display method thereof, which are capable of adjusting a light output amount in a waveguide grating by controlling a change in a refractive index of a liquid crystal layer to realize gray scale display.
  • a display device includes: a first substrate and a second substrate that are oppositely disposed, and a liquid crystal between the first substrate and the second substrate
  • the layer further includes: a waveguide grating between the liquid crystal layer and the first substrate, the waveguide grating is composed of a waveguide layer, and a grating layer located on a side surface of the waveguide layer toward the liquid crystal layer And the grating layer is in contact with the liquid crystal layer; a collimated light source located on a side of the waveguide layer, light emitted by the collimated light source is coupled into the waveguide layer and output through the grating layer.
  • a display method applied to any of the above display devices comprising: progressively scanning pixels in the display device; when scanning a row of pixels, liquid crystal to the row of pixels
  • the layer applies an electric field in accordance with the gray value of each pixel such that the refractive index of the liquid crystal layer of the pixel is between the minimum refractive index of the liquid crystal layer and the maximum refractive index of the liquid crystal layer.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a schematic diagram of a waveguide grating according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 5b is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 6b is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 8a is a schematic structural diagram of a grating layer according to an embodiment of the present disclosure.
  • FIG. 8b is a schematic structural diagram of another grating layer according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a display method applied to a display device according to an embodiment of the present disclosure.
  • the display device includes: a first substrate substrate 10 and a second substrate substrate 20 disposed opposite to each other, and a first substrate substrate 10 and a second substrate.
  • the first base substrate 10 and the second base substrate 20 are made of optical glass or a resin material, and the thickness is, for example, 0.1 mm to 2 mm.
  • the present disclosure is not limited thereto, and may be specifically determined according to product design or process conditions.
  • the display device further includes: a waveguide grating 40 between the liquid crystal layer 30 and the first substrate 10, the waveguide grating 40 includes a waveguide layer 401, and a surface of the waveguide layer 401 facing the liquid crystal layer 30.
  • the grating layer 402 is in contact with the liquid crystal layer 30; in addition, the collimated light source 50 located on the side of the waveguide layer 401 can couple the light emitted by the collimated light source 50 into the waveguide layer 401 and pass through the grating layer 402. This light is output.
  • the refractive index N of the liquid crystal layer 30 varies between the maximum refractive index N max and the minimum refractive index N min under the control of the driving signal of the display device, and the refractive index of the grating layer 402 is greater than or equal to the liquid crystal layer 30.
  • the minimum refractive index N min is less than or equal to the maximum refractive index N max of the liquid crystal layer 30, that is, N min ⁇ N ⁇ N max , so that the liquid crystal layer is adjusted by driving the liquid crystal molecules in the liquid crystal layer to deflect The magnitude of the refractive index.
  • the refractive index of the liquid crystal layer when the refractive index of the liquid crystal layer is adjusted to be equal to the refractive index of the grating layer, the effect of the grating layer is covered, and no light is output from the waveguide grating, which is a dark state;
  • the difference between the refractive index of the liquid crystal layer and the refractive index of the grating layer is the largest, the effect of the grating layer is most obvious, and the efficiency of the light output from the waveguide grating is the highest, and this is a bright state.
  • the difference between the refractive index of the liquid crystal layer and the refractive index of the grating layer can be adjusted, and the purpose of controlling the amount of light in the waveguide grating can be controlled, thereby realizing different gray scale display.
  • the change of the refractive index N of the liquid crystal layer 30 between the maximum refractive index N max and the minimum refractive index N min under the control of the driving signal of the display device means that the liquid crystal molecules in the liquid crystal layer 30 are The deflection occurs under the action of the electric field, and the refractive index of the liquid crystal layer 30 is adjusted by driving the angle between the optical axis of the liquid crystal molecules and the polarization direction of the light output from the waveguide grating.
  • the refractive index of the liquid crystal layer is the largest, and when the optical axis of the driving liquid crystal molecules is perpendicular to the polarization direction, the refractive index of the liquid crystal layer is the smallest.
  • the thickness of the liquid crystal layer 30 is set to be between 500 nm and 5 ⁇ m, and may be, for example, 1 ⁇ m. This disclosure is not limited thereto, and may be specifically set according to the type, parameters, and the like of the display device.
  • liquid crystal molecules in the liquid crystal layer in the display device may be a nematic liquid crystal, a blue phase liquid crystal, or other liquid crystals, which is not limited in the disclosure, as long as the adjustment can be ensured.
  • the intensity of the electric field applied to the liquid crystal layer 30 may be adjusted to adjust the change in the refractive index of the liquid crystal layer 30.
  • the display device in the present disclosure may be a general liquid crystal display device, such as a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, or a tablet computer, or any product or component having a display function, or may be a near-eye 3D display device, or It is a virtual reality display device, and may be an augmented reality display device or the like, which is not limited in the present disclosure.
  • FIG. 2 is a schematic diagram of the waveguide grating 40 shown in FIG. 2, wherein the dielectric layer is an air medium and has a refractive index n c ; the lower dielectric layer is a transparent substrate, and the refractive index is n s ; and the refractive index of the waveguide layer is n f as an example.
  • the refractive index of the waveguide layer 401 is greater than the refractive index of the upper dielectric layer and the refractive index of the lower dielectric layer, that is, n f is greater than n c and n s to achieve the normal function of the waveguide grating.
  • the waveguide grating 40 can externally couple external light into the waveguide layer 401, that is, input coupling, and can couple light from the waveguide layer 401 through the grating layer 402, that is, output coupling, wave vector edge of a certain order of diffracted light.
  • the waveguide layer 401 may be, for example, a transparent material such as resin, glass, silicon nitride, or the like, and the refractive index of the transparent material is at least greater than the refractive index of the adjacent layer.
  • the thickness of the waveguide layer 401 is set to be between 100 nm and 100 ⁇ m.
  • the above collimated light source 50 can be made of semiconductor laser chips of red, green and blue colors, and can also be collimated and expanded by red, green and blue light emitting diodes (LEDs). It can also be made by collimating and expanding the white LED chip, or by a strip-shaped cold cathode fluorescent lamp (CCFL) plus some light collimating structure. Not limited.
  • the grating layer 402 may also adopt a transparent material such as resin, silicon oxide, etc., and the maximum diffraction rate of the grating to light occurs, for example, when the duty ratio is 0.5.
  • the value may be deviated from the value, and the specific setting may be made according to the intensity of the light, the difference in brightness of the display panel at different positions, the process conditions, and the like, and the disclosure is not limited thereto.
  • the height of the grating strips in the grating layer 402 is, for example, between 100 nm and 1500 nm, for example, it can be set at 500 nm.
  • the heights of the grid bars corresponding to all the sub-pixel units can be set to the same height according to actual needs. Or, the heights of the grids corresponding to different sub-pixel units are set to be different, and the disclosure is not limited thereto.
  • N N max
  • the refractive index N of the grating layer 402 When the refractive index N of the grating layer 402 is equal to the minimum refractive index N min of the liquid crystal layer 30; or, the refractive index N of the grating layer 402 is equal to the maximum refractive index N max of the liquid crystal layer 30, the refractive index of the liquid crystal layer 30 and the grating layer
  • the magnitude of the difference between the refractive indices is between 0 and (N max - N min ), that is, the difference 0 to (N max - N min ) corresponds to the gray scales L0 to L255.
  • the difference between the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer The size is 0 to (N max -N) or 0 to (NN min ), and the difference 0 to (N max -N) or 0 to (NN min ) corresponds to gray scales L0 to L255.
  • N min ⁇ N ⁇ N max .
  • N max -N min the value of (N max -N min ) is greater than the values of (N max -N) and (NN min ), so that 0 to (N max -
  • the range of N min ) is greater than 0 to (N max -N) and 0 to (NN min ), so that the adjustment range of the corresponding gray scales L0 to L255 is increased, and the precision is increased.
  • the display device when no electric field is applied, when the refractive index of the grating layer 402 is equal to the refractive index of the liquid crystal layer 30, the display device is in a dark state, that is, the display device is in a normally black mode; In the case of an electric field, when the difference between the refractive index of the grating layer 402 and the refractive index of the liquid crystal layer 30 is the largest, the display device is in a bright state, and the display device is in a normally white mode; the present disclosure does not limit this, in the application process. In the middle, you can set the normal black mode or the normally white mode according to actual needs.
  • the grating layer 402 includes: an array of grating elements 412, the grating unit 412 including a first grating subunit 4121, a second grating subunit 4122, and a third grating subunit. 4123, the first grating sub-unit 4121 is configured to output first primary color light 501 (for example, red light) toward the human eye direction; the second grating sub-unit 4122 is configured to output second primary color light 502 (for example, green light) toward the human eye direction.
  • the third grating subunit 4123 is for outputting a third primary color light 503 (for example, blue light) toward the human eye.
  • the three primary color lights emitted by each of the grating units 412 of the grating layer 402 are concentrated to the human eye, thereby enabling near-eye display, while the display device using the waveguide grating is used in each of the grating units 412.
  • Different grating sub-units can directly emit light of different primary colors to the human eye, so that the display device can realize the color display of the display screen without setting a color film layer.
  • a color film layer can also be provided. Not limited.
  • the outgoing light of the conventional liquid crystal display (LCD) and the organic light-emitting diode (OLED) is, for example, divergent light, and it is difficult to achieve near-eye display with single eye focus;
  • the display device described above is capable of effectively concentrating the emitted light, thereby facilitating near-eye display of monocular focusing.
  • the array arrangement of the grating units 412 may be in one-to-one correspondence with the pixel units in the display device.
  • the pixel unit includes a first sub-pixel unit (eg, a red sub-pixel unit) and a second sub-pixel.
  • the grating unit 412 includes a first grating sub-unit 4121, a second grating sub-unit 4122, and a third grating sub-unit 4123 That is, the first grating sub-unit 4121 in the present disclosure corresponds to the first sub-pixel unit, the second grating sub-unit 4122 corresponds to the second sub-pixel unit, and the third grating sub-unit 4123 corresponds to the third sub-pixel unit.
  • the barrier unit 412 corresponds to a plurality of pixel units in the display device.
  • each of the grating subunits in the grating unit 412 has a one-to-one correspondence with each column of sub-pixel units in a column of pixel units in the display device, that is, the first grating sub-unit 4121 and a column of the first sub-pixel unit (for example, a red sub-pixel unit)
  • the second grating sub-unit 4122 corresponds to a column of second sub-pixel units (for example, a green sub-pixel unit)
  • the third grating sub-unit 4123 corresponds to a column of third sub-pixel units (for example, a blue sub-pixel unit). This disclosure does not limit this.
  • the grating period is small, for example, about 100 nm to 1 ⁇ m
  • the width of the first grating sub-unit 4121, the second grating sub-unit 4122, and the third grating sub-unit 4123 can be made small. Therefore, the size of the sub-pixel unit corresponding to the first grating sub-unit 4121, the second grating sub-unit 4122, and the third grating sub-unit 4123 is small, thereby facilitating the display device. High resolution implementation.
  • the first grating sub-unit 4121 is for outputting the first primary color light 501 toward the human eye direction
  • the second grating sub-unit 4122 is for outputting the second primary color light 502 toward the human eye direction
  • the third grating sub-unit 4123 is for The specific principle of outputting the third primary color light 503 toward the human eye direction will be further explained.
  • is the grating period.
  • n c is the refractive index of the air.
  • the angle ⁇ between the light-emitting direction of each sub-pixel unit and the normal to the panel plane is a fixed value
  • q and N m are known parameters, so that each sub-pixel unit can be different according to each
  • the color of the light emitted ie, the wavelength ⁇
  • the grating ⁇ is used to determine the grating period ⁇ of the grating layer 402 corresponding to each sub-pixel unit, that is, the grating ⁇ can be set to achieve a given color ray (wavelength ⁇ ) in a given direction ( The light at an angle ⁇ ) from the plane normal of the panel is emitted.
  • the display device is a near-eye display device as an example, and the present disclosure will
  • the conventional display device includes, for example, a vertical field display device and a flat field display device, wherein the vertical field display device is, for example, an ECB (Electrically Controlled Birefringence) type, a VA (Vertical Alignment) type; a planar field display device For example, an ADS (Advanced-Super Dimensional Switching) type, an IPS (In Plane Switch) type, or the like.
  • ECB Electrically Controlled Birefringence
  • VA Very Alignment
  • a planar field display device For example, an ADS (Advanced-Super Dimensional Switching) type, an IPS (In Plane Switch) type, or the like.
  • the display device is a vertical field (ECB-like) display device including a pixel electrode 101 and a common electrode 102, and the pixel electrode 101 and the common electrode 102 are located on both sides of the liquid crystal layer 30, and are applied to the pixel electrode by adjustment.
  • the voltage between the 101 and the common electrode 102 adjusts the difference between the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer 402 to achieve adjustment of different gray levels.
  • the refractive index of the liquid crystal layer 30 is the same as that of the grating layer 402, the effect of the grating layer 402 is covered, and no light is coupled from the waveguide grating 40.
  • the dark state corresponds to the gray level L0; when different voltages are applied to the pixel electrode 101 and the common electrode 102, the refractive index of the liquid crystal layer 30 has a different difference from the refractive index of the grating layer 402, corresponding gray scale Different brightness between L1 and L255.
  • the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer 402 are the largest, and the light state is corresponding to the gray level L255, when the pixel is in the pixel.
  • the refractive index of the liquid crystal layer 30 has a different difference from the refractive index of the grating layer 402, corresponding to different brightness between the gray levels L0 to L254. That is, the change in the refractive index of the liquid crystal layer 30 is driven by the pixel electrode 101 and the common electrode 102, and the amount of light coupled out from the waveguide grating 40 is adjusted to achieve adjustment of different gray levels.
  • the display device can realize near-eye display without setting a color film layer.
  • a color film layer may also be provided, which is not limited in the present disclosure.
  • the pixel electrode 101 and the common electrode 102 are located on both sides of the liquid crystal layer 30.
  • the pixel electrode 101 is located at the waveguide grating 40 toward the first substrate.
  • the common electrode 102 On the side of the waveguide grating 40 facing the second substrate 20; as shown in FIG. 4, the common electrode 102 is located on the side of the liquid crystal layer 30 facing the first substrate 10, and the pixel electrode 101 is located on the liquid crystal layer 30.
  • liquid crystal molecules in the liquid crystal layer 30 in the vertical field type display device may be nematic liquid crystal molecules or blue phase liquid crystal molecules.
  • the specific application of the nematic liquid crystal molecules and the blue phase liquid crystal molecules will be further described below.
  • an initial refractive index of the liquid crystal layer 30 is equal to n o, for example, when the refractive index of the liquid crystal layer and the refractive index grating layer 402 are equal, when both n o, the role of the grating layer 402 is masked, no light from the waveguide grating 40 is coupled out, at which time the gray scale is the smallest, which is the L0 state; when the refractive index of the liquid crystal layer 30 is n e and the refractive index n o of the grating layer 402 is the largest difference, the grating layer 402 has the most obvious effect, and the light is transmitted from the waveguide grating.
  • the coupling efficiency of 40 is the highest, and the gray scale is the largest, which is the L255 state; when the refractive index of the liquid crystal layer 30 is between the above two conditions, it is the other gray state.
  • the polarization direction of the light coupled by the waveguide grating 40 is parallel to the first substrate 10 and perpendicular.
  • the change of the refractive index can be felt, and the light of other polarization directions does not feel the change of the refractive index.
  • the display device does not need to add a polarizer on the light exiting side.
  • the light emitted by the collimated light source 50 is required to be polarized light, so that normal display can be realized.
  • the display device needs to add a polarizer on the light exiting side or require the light emitted by the backlight to be polarized light (in the side entrance).
  • a type of collimating light source 50 adds a polarizing plate to the light emitting side) to eliminate the interference of the polarized light controlled by the orientation deflection of the liquid crystal layer 30 to achieve normal display, and the display mode requires, for example, liquid crystal molecules Positive liquid crystal molecules.
  • the display device further includes an alignment layer 201 on both sides of the liquid crystal layer 30 and in contact with the liquid crystal layer 30, so that the nematic liquid crystal molecules can be in the same initial state under the action of the alignment layer 201, ensuring that the liquid crystal molecules can be applied under the applied voltage.
  • the mode is rotated and deflected according to a preset angle to achieve adjustment of the refractive index of the liquid crystal layer 30.
  • the alignment layer 201 may be located on the side of the liquid crystal layer 30 adjacent to the waveguide layer 401.
  • the alignment layer 201 is located on the side of the liquid crystal layer 30 facing away from the waveguide layer 401.
  • the present disclosure preferably places the alignment layer 201 on the deviation.
  • the alignment layer 201 is a polyimide (PI) film, and the initial state of the liquid crystal molecules is parallel to the plane of the display panel, and is deflected in a direction perpendicular to the plane of the display panel after being powered. It is of course possible to use a special nematic liquid crystal material, and to realize the initial orientation of the liquid crystal molecules by adding some materials without using the alignment layer 201, which is not limited in the present disclosure.
  • PI polyimide
  • the liquid crystal molecules are isotropic, and the refractive indices are the same in all directions, and the refractive indices of the two polarized light passing through the liquid crystal are the same, both are n.
  • the liquid crystal molecules are anisotropic, the ordinary light refractive index is n 1 , and the extraordinary light refractive index is n 2 , where n 1 ⁇ n ⁇ n 2 .
  • the isotropic state can be selected as the L0 state (the refractive index of the grating layer is also n), and the anisotropic state is the L255 state.
  • the anisotropic state may be selected as the L0 state (the refractive index of the grating layer is n 1 or n 2 ), and the isotropic state is the L255 state.
  • the incident light is required to be polarized light, or a polarizer is added to the light exiting side. To achieve a normal display.
  • the above display device can also select a display mode of the VA type, that is, the initial state
  • the liquid crystal molecules are oriented perpendicular to the direction of the display panel, and after applying the planar electric field, the orientation of the liquid crystal molecules is gradually changed to be parallel to the display panel.
  • an initial refractive index of the liquid crystal layer 30 is equal to n o, for example, when the refractive index of the liquid crystal layer and the refractive index grating layer 402 are equal, when both n o, the role of the grating layer 402 is masked, no light from the waveguide grating 40 is coupled out, at which time the gray scale is the smallest, which is the L0 state; when the refractive index of the liquid crystal layer 30 is n e and the refractive index n o of the grating layer 402 is the largest difference, the grating layer 402 has the most obvious effect, and the light is transmitted from the waveguide grating.
  • the coupling efficiency of 40 is the highest, and the gray scale is the largest, which is the L255 state; when the refractive index of the liquid crystal layer 30 is between the above two conditions, it is the other gray state.
  • the polarization direction of the light coupled by the waveguide grating 40 is parallel to the first substrate 10 and perpendicular. In the longitudinal direction of the grating layer 402, the change of the refractive index can be felt, and the light of other polarization directions does not feel the change of the refractive index.
  • the display device does not need to be provided with a polarizer;
  • the display device needs to add a polarizer on the light exiting side or require the side-entry collimated light source to be polarized light to eliminate the light output. It is not interfered by the polarized light controlled by the orientation deflection of the liquid crystal layer 30 to achieve normal display, and the display mode requires, for example, liquid crystal molecules to be positive liquid crystal molecules.
  • the display device when the nematic liquid crystal molecules are used, in order to ensure that the liquid crystal molecules have the same alignment state in the initial state, and the electric field can be deflected in an intended manner after the application of the electric field, in the case where the liquid crystal molecules in the liquid crystal layer 30 are nematic liquid crystal molecules, the display device further includes an alignment layer 201 on both sides of the liquid crystal layer 30 and in contact with the liquid crystal layer 30; of course, special nematic liquid crystal may also be used.
  • the initial orientation of the liquid crystal molecules is achieved by adding some materials, as long as the initial state of the nematic liquid crystal molecules can be made the same, ensuring that the liquid crystal molecules can be rotated in the above manner under the applied voltage, and deflected according to a preset angle. , The adjustment of the refractive index of the liquid crystal layer 30 is achieved.
  • the alignment layer 201 may not be provided.
  • the display device includes a pixel electrode 101 and a common electrode 102, and the pixel electrode 101 and the common electrode 102 are both located on the same side of the liquid crystal layer 30.
  • the display device is a planar field.
  • FIG. 5a and FIG. 5b are ADS-type planar field display devices, including strip electrodes and planar electrodes arranged in different layers;
  • FIGS. 6a and 6b are IPS-type planar field display devices, including the same layer and Strip electrodes arranged at intervals.
  • the planar field display device drives the liquid crystal molecules in the liquid crystal layer 30 to rotate in a plane close to the parallel display panel by applying a voltage to the same side pixel electrode 101 and the common electrode 102 located in the liquid crystal layer 30, thereby adjusting the refractive index of the liquid crystal layer 30.
  • the difference between the refractive indices of the grating layer 402 and the adjustment of the different gray levels is achieved.
  • the refractive index of the liquid crystal layer 30 is the same as that of the grating layer 402, the effect of the grating layer 402 is covered, and no light is coupled from the waveguide grating 40.
  • the dark state corresponds to the gray level L0; when different voltages are applied to the pixel electrode 101 and the common electrode 102, the refractive index of the liquid crystal layer 30 has a different difference from the refractive index of the grating layer 402, corresponding gray scale Different brightness between L1 and L255.
  • the refractive index of the liquid crystal layer 30 and the refractive index of the grating layer 402 are the largest, and the light state is corresponding to the gray level L255, when the pixel is in the pixel.
  • the refractive index of the liquid crystal layer 30 has a different difference from the refractive index of the grating layer 402, corresponding to different brightness between the gray levels L0 to L254. That is, the change in the refractive index of the liquid crystal layer 30 is driven by the pixel electrode 101 and the common electrode 102, and the amount of light coupled out from the waveguide grating 40 is adjusted to achieve adjustment of different gray levels.
  • the first grating subunit in each of the grating elements 402 in the grating layer 402 in the waveguide grating 40 can also be adjusted.
  • the second primary color light 502 and the third primary color light 503 emitted by the third grating sub-unit 4123 are all concentrated to the human eye to achieve near-eye display.
  • one of the pixel electrode 101 and the common electrode 102 includes a strip electrode and one is a planar electrode.
  • the pixel electrode 101 including the strip electrode and the planar electrode may be used.
  • the common electrode 102 is located between the waveguide grating 40 and the first substrate 10; as shown in FIG. 5b, the pixel electrode 101 including the strip electrodes and the planar common electrode 102 are both located on the liquid crystal layer 30 and the second substrate. Between the substrates 20; of course, FIG. 5a and FIG. 5b are only described by taking the pixel electrode 101 as a strip electrode and the common electrode 102 as a planar electrode.
  • the common electrode 102 may include a strip electrode, and the pixel electrode 101
  • the strip electrode is ensured to be close to the liquid crystal layer 30 with respect to the planar electrode, the liquid crystal molecules in the liquid crystal layer 30 can be deflected. This disclosure does not limit this.
  • the pixel electrode 101 and the common electrode 102 are strip electrodes arranged in the same layer and spaced apart.
  • the pixel electrodes 101 and the common electrode 102 which are spaced apart are located at the waveguide grating 40 and Between the first substrate 10 and the second substrate 20, the pixel electrode 101 and the common electrode 102 are disposed between the liquid crystal layer 30 and the second substrate 20, which is not limited in the present disclosure.
  • the liquid crystal molecules in the liquid crystal layer 30 in the above-mentioned ADS-type and IPS-like planar field display devices may be nematic liquid crystal molecules or blue phase liquid crystal molecules.
  • the differences between the specific phase liquid crystal molecules and the blue phase liquid crystal molecules in the specific application are further explained below.
  • an initial refractive index of the liquid crystal layer 30 is equal to n o, for example, when the refractive index of the liquid crystal layer and the refractive index grating layer 402 are equal, when both n o, the role of the grating layer 402 is masked, no light from the waveguide grating 40 is coupled out, at which time the gray scale is the smallest, which is the L0 state; when the refractive index of the liquid crystal layer 30 is n e and the refractive index n o of the grating layer 402 is the largest difference, the grating layer 402 has the most obvious effect, and the light is transmitted from the waveguide grating.
  • the coupling efficiency of 40 is the highest, and the gray scale is the largest, which is the L255 state; when the refractive index of the liquid crystal layer 30 is between the above two conditions, it is the other gray state.
  • the polarization direction of the light coupled by the waveguide grating 40 can be sensed in the first direction and the second direction, wherein the first direction is the polarization direction parallel to the first
  • the base substrate 10 is perpendicular to the longitudinal direction of the strip electrodes, and the second direction is that the polarization direction is parallel to the first base substrate 10 and parallel to the length direction of the strip electrodes, so that it is required to be on the light exit side of the liquid crystal layer 30 (for example) a polarizing plate is added to the light-emitting side of the light source side of the side-mounted collimated light source 50 to select a polarized light (first-direction polarized light or second-direction polarized light), To achieve the adjustment of the gray scale.
  • the display device further includes an alignment layer 201 on both sides of the liquid crystal layer 30 and in contact with the liquid crystal layer 30, so that the nematic liquid crystal molecules can be made to have the same initial state under the action of the alignment layer 201.
  • the liquid crystal molecules in the display mode are positive liquid crystal molecules and negative liquid crystal molecules.
  • the display panel is in a normally white mode (the initial direction of the liquid crystal is consistent with the polarization direction of the polarizer) or the normally black mode (the initial direction and polarization of the liquid crystal)
  • the slice is oriented perpendicular to the direction).
  • the alignment layer 201 on both sides of the liquid crystal layer 30 and in contact with the liquid crystal layer 30 is provided.
  • the alignment layer 201 may be disposed, for example, on the side of the liquid crystal layer 30 adjacent to the waveguide layer 401.
  • the alignment layer 201 may be disposed on the side of the liquid crystal layer 30 facing away from the waveguide layer 401.
  • a special nematic liquid crystal material can also be used, and the initial orientation of the liquid crystal molecules can be realized by adding some materials without using the alignment layer 201, which is not limited in the present disclosure.
  • the blue phase liquid crystal molecules are isotropic when no electric field is applied, in all directions.
  • the upper refractive index is the same, the two polarized light have the same refractive index through the liquid crystal, and are all n; and when the electric field is applied, the liquid crystal molecules are anisotropic, the ordinary light refractive index is n 1 , and the extraordinary light refractive index is n 2 , n 1 ⁇ n ⁇ n 2 , in this case, the isotropic state can be selected as the L0 state (the refractive index of the grating layer is also n), and the anisotropic state is the L255 state, in which case both polarized lights can be coupled out.
  • the device has high light-emitting efficiency, and the device does not require incident light to be polarized light, or a polarizer can be added on the light-emitting side to achieve normal display.
  • the anisotropic state may be selected as the L0 state (the refractive index of the grating layer is n 1 or n 2 ), and the isotropic state is the L255 state.
  • the incident light is required to be polarized light, or a polarizer is added to the light exiting side. To achieve a normal display.
  • the alignment layer 201 is not required to be disposed. The specific reason is the same as that of the alignment layer 201 in the first embodiment, which has been described in the first embodiment. I won't go into details here.
  • the grating layer 402 is mainly composed of a grating strip
  • the grating layer 402 can be used as a grating, and also as the pixel electrode 101, and/or the common electrode 102.
  • the grating layer 102 is a composite of a grating and an electrode. The structure and the grating electrode composite structure, because the grating period is small, the electric field density formed by the grating electrode composite structure is larger, thereby facilitating the control of the liquid crystal layer 30, so that the thickness of the liquid crystal cell can be reduced while making The corresponding speed of the display device is increased, and the refresh rate is increased.
  • the following further illustrates the use of the grating layer 402 as a grating, as the pixel electrode 101, and/or the common electrode 102.
  • the grating layer 402 includes both the pixel electrode 101 and the common electrode 102.
  • a part of the grating strips in the grating layer 402 are connected to form the pixel electrode 101, and a part of the gate strips are connected to form the common electrode 102, and the pixel electrode 101 is formed.
  • the grid strips are spaced apart from the grid bars forming the common electrode 102.
  • the display device is an IPS-like planar field display device.
  • a part of the grid bars are connected to form the pixel electrode 101, and a part of the grid bars are connected to form the common electrode 102.
  • adjacent gate bars in the grating layer 402 belong to the strip electrode electrodes of the pixel electrode 101 and the common electrode 102;
  • a strip which is only used as a grating may be further included between the strip-shaped sub-electrode of the pixel electrode 101 and the strip-shaped sub-electrode of the common electrode 102, which is disclosed in the present disclosure. Not limited.
  • the display device is an ADS-type planar field display device.
  • the display device in the present disclosure may not use a polarizer for the ECB-type, VA-like, and display devices using the blue phase liquid crystal. Compared to the prior art display device, it is necessary to use a polarizer.
  • the display of the present disclosure can greatly increase the transmittance of light, thereby improving the transparency of the display panel while improving the utilization of light.
  • the embodiment of the present disclosure further provides a display method applied to any of the foregoing display devices. As shown in FIG. 10, the display method includes:
  • Step S101 scanning pixels in the display device progressively.
  • Step S102 when scanning a row of pixels, applying an electric field to the liquid crystal layer of the row of pixels according to the gray value of each pixel, so that the refractive index of the liquid crystal layer of the pixel is between the minimum refractive index of the liquid crystal layer and the maximum refraction of the liquid crystal layer. Between the rates. That is, by controlling the change in the refractive index of the liquid crystal layer, the difference between the refractive index of the liquid crystal layer and the refractive index of the grating layer can be adjusted, and the purpose of controlling the amount of light in the waveguide grating can be controlled, thereby realizing different gray scale display. .
  • the grating layer is in contact with the liquid crystal layer, so that by driving the liquid crystal layer The liquid crystal molecules are deflected to adjust the refractive index of the liquid crystal layer.
  • the refractive index of the liquid crystal layer is adjusted to be equal to the refractive index of the grating layer, the effect of the grating layer is covered, and no light is output from the waveguide grating.

Abstract

一种显示装置及其显示方法。该显示装置包括:相对设置的第一衬底基板(10)和第二衬底基板(20),以及位于第一衬底基板(10)和第二衬底基板(20)之间的液晶层(30),还包括:位于液晶层(30)与第一衬底基板(10)之间的波导光栅(40),波导光栅(40)包括波导层(401)和位于波导层(401)朝向液晶层(30)一侧表面的光栅层(402),且光栅层(402)与液晶层(30)接触;位于波导层(401)侧面的准直光源(50),由所述准直光源(50)发出的光线耦合进所述波导层(401)中并且通过光栅层(402)输出。该显示装置能够通过控制液晶层的折射率的变化,调整波导光栅中的出光量,以实现灰阶显示。

Description

显示装置及其显示方法 技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置及其显示方法。
背景技术
随着光电技术以及器件的发展,图像显示已经不再局限于二维空间(2D)的屏幕平面中,三维空间(3D)的画面显示越来越多的应用于人们的日常工作、学习和娱乐等方面。
其中,利用光场显示技术来实现三维显示成为三维显示的方式之一,由于光场三维显示不仅能够真实的再现三维场景的空间特性,而且能够正确表现不同物体之间的相互位置关系,已经成为近年来的研究热点。
发明内容
本公开的实施例提供一种显示装置及其显示方法,能够通过控制液晶层的折射率的变化,调整波导光栅中的出光量,以实现灰阶显示。
根据本公开一方面,提供一种显示装置,包括:相对设置的第一衬底基板和第二衬底基板,以及位于所述第一衬底基板和所述第二衬底基板之间的液晶层,还包括:位于所述液晶层与所述第一衬底基板之间的波导光栅,所述波导光栅由波导层,和位于所述波导层朝向所述液晶层一侧表面的光栅层组成,且所述光栅层与所述液晶层接触;位于所述波导层侧面的准直光源,由所述准直光源发出的光线耦合进所述波导层中并且通过光栅层输出。
根据本公开另一方面,提供一种应用于上述任一种显示装置的显示方法,所述方法包括:逐行扫描所述显示装置中的像素;当扫描一行像素时,向该行像素的液晶层按照每个像素的灰度值施加电场,以使得所述像素的液晶层的折射率介于所述液晶层的最小折射率与所述液晶层的最大折射率之间。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的一种显示装置的结构示意图;
图2为本公开实施例提供的一种波导光栅的原理示意图;
图3为本公开实施例提供的另一种显示装置的结构示意图;
图4为本公开实施例提供的又一种显示装置的结构示意图;
图5a为本公开实施例提供的另一种显示装置的结构示意图;
图5b为本公开实施例提供的又一种显示装置的结构示意图;
图6a为本公开实施例提供的另一种显示装置的结构示意图;
图6b为本公开实施例提供的又一种显示装置的结构示意图;
图7为本公开实施例提供的另一种显示装置的结构示意图;
图8a为本公开实施例提供的一种光栅层的结构示意图;
图8b为本公开实施例提供的另一种光栅层的结构示意图;
图9为本公开实施例提供的又一种显示装置的结构示意图;
图10为本公开实施例提供的应用于显示装置的显示方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同, 并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例提供一种显示装置,如图1所示,该显示装置包括:相对设置的第一衬底基板10和第二衬底基板20,以及位于第一衬底基板10和第二衬底基板20之间的液晶层30。例如,第一衬底基板10和第二衬底基板20采用光学玻璃或者树脂材料构成,厚度例如在0.1mm~2mm,当然本公开对此不作限定,具体可以根据产品的设计或者工艺条件确定。
如图1所示,该显示装置还包括:位于液晶层30与第一衬底基板10之间的波导光栅40,波导光栅40包括波导层401,和位于波导层401朝向液晶层30一侧表面的光栅层402,且光栅层402与液晶层30接触;另外,位于波导层401侧面的准直光源50,能够将准直光源50发出的光线耦合进波导层401中,并且通过光栅层402将该光线进行输出。
在此基础上,液晶层30的折射率N在显示装置的驱动信号控制下,在最大折射率Nmax和最小折射率Nmin之间变化,且光栅层402的折射率大于或等于液晶层30的最小折射率Nmin,且小于或等于液晶层30的最大折射率Nmax,即Nmin≤N≤Nmax,这样一来,该通过驱动液晶层中的液晶分子发生偏转,来调整液晶层的折射率的大小,在此情况下,当调整液晶层的折射率与光栅层的折射率相等时,光栅层的作用被覆盖,没有光线从波导光栅中输出,此时为暗态;当调整液晶层的折射率与光栅层的折射率之间的差值最大时,光栅层的作用的最明显,光线从波导光栅中输出的效率最高,此时为亮态。即通过控制液晶层的折射率的变化,能够调整液晶层的折射率与光栅层的折射率之间的差值大小,进而能够控制波导光栅中的出光量目的,从而实现不同的灰阶显示。
此处需要说明的是,上述液晶层30的折射率N在显示装置的驱动信号控制下,在最大折射率Nmax和最小折射率Nmin之间变化是指,液晶层30中的液晶分子在电场的作用下发生偏转,通过驱动液晶分子的光轴与从波导光栅输出的光线的偏振方向之间的夹角,来调整该液晶层30的折射率。例如,当驱动液晶分子的光轴与偏振方向平行时,液晶层的折射率最大,当驱动液晶分子的光轴与偏振方向垂直时,液晶层的折射率最小。例如,液晶层30的厚度设置在500nm~5μm之间,例如可以是1μm,本公开对此不作限定,可以根据显示装置的类型、参数等,进行具体设定。
此处还需要说明的是,该显示装置中液晶层中的液晶分子可以是向列相液晶,也可以是蓝相液晶,还可以是其他液晶,本公开对此不作限定,只要能够保证通过调整施加在液晶层30上的电场强度,实现调整液晶层30折射率的变化即可。另外,本公开中的显示装置可以是普通的液晶显示装置,例如液晶显示器、液晶电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件,也可以是近眼3D显示装置,还可以是虚拟现实显示装置,也可以是增强现实显示装置等,本公开对此均不作限定。
以下对上述波导光栅40的工作原理以及相关设置做简单的说明。
如图2所示的波导光栅40的原理示意图,其中是以上介质层为空气介质,折射率为nc;下介质层为透明基板,折射率为ns;波导层折射率为nf为例进行说明的,需要保证波导层401的折射率大于上介质层的折射率以及下介质层的折射率,即,nf大于nc以及ns,以实现波导光栅的正常功能。该波导光栅40可以将外部的光从外部耦合进波导层401,即输入耦合,并且可以将光从波导层401通过光栅层402中耦合出去,即输出耦合,某一级衍射光的波矢量沿导模传播方向上分量的大小βm满足βq=βm-qK(q=±1,±2……)的相位匹配条件,βm为m阶导模的传播常数,βm=k0Nm,Nm为m阶导模的 有效折射率,k0为常数;K为光栅矢量。
另外,该波导层401例如可以为透明材料,例如树脂、玻璃、氮化硅等,且保证该透明材料的折射率至少大于相邻的层的折射率即可。另外,为了保证设置于波导层401侧面的准直光源50发出的光线尽可能的耦合至该波导层401中,例如将该波导层401的厚度设置在100nm~100μm之间。
对于上述准直光源50可以由红、绿、蓝三色的半导体激光器芯片制成,也可由红、绿、蓝三色的发光二极管(Light Emitting Diode,简称LED)芯片经过准直、扩束后制成,还可以由白光LED芯片经过准直、扩束后制成,或者由条状的冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,简称CCFL)加一些光线准直结构制成,本公开对此不作限定。
此外,对于位于该波导层401表面的光栅层402而言,该光栅层402也可以采用透明材料,例如树脂、氧化硅等,并且光栅对光的最大衍射率例如发生在占空比为0.5时,但在实际产品设计中也可以偏离此值,可以根据出光的强度,平衡显示面板不同位置亮度的差异、工艺条件等因素,进行具体设置,本公开对此不作限定。另外,对于该光栅层402中栅条的高度,例如设置在100nm~1500nm之间,例如,可以设置在500nm,当然也可以根据实际需要,将所有亚像素单元对应的栅条高度设置为相同高度,或者将不同的亚像素单元对应的栅条高度设置为不同,本公开对此均不做限定。
在此基础上,为了增大液晶层30的折射率与光栅层402的折射率之间的差值,例如,上述光栅层402的折射率N等于液晶层30的最小折射率Nmin,即N=Nmin;或者,光栅层402的折射率N等于液晶层30的最大折射率Nmax,即,N=Nmax。这样一来,能够使得灰阶显示的调整范围增大,进而使得灰阶调整的精度增大。
当光栅层402的折射率N等于液晶层30的最小折射率Nmin;或者,光栅层402的折射率N等于液晶层30的最大折射率Nmax时, 液晶层30的折射率与光栅层的折射率之间的差值大小均在0~(Nmax-Nmin)之间,即该差值0~(Nmax-Nmin)对应于灰阶L0~L255。当光栅层402的折射率N位于最小折射率Nmin和最大折射率Nmax之间,即Nmin<N<Nmax时,液晶层30的折射率与光栅层的折射率之间的差值大小在0~(Nmax-N)或者0~(N-Nmin),且该差值0~(Nmax-N)或者0~(N-Nmin)对应于灰阶L0~L255。
综上所述,由于Nmin<N<Nmax,可以看出(Nmax-Nmin)的值要大于(Nmax-N)以及(N-Nmin)的值,从而使得0~(Nmax-Nmin)的范围大于0~(Nmax-N)和0~(N-Nmin),进而使得对应的灰阶L0~L255的调节范围增大,精度增大。
此处需要说明的是,在未施加电场时,当光栅层402的折射率等于液晶层30的折射率的情况下,该显示装置为暗态,即该显示装置为常黑模式;在未施加电场时,光栅层402的折射率与液晶层30的折射率的差值最大的情况下,该显示装置为亮态,该显示装置为常白模式;本公开对此不做限定,在应用过程中,可以根据实际需要进行常黑模式或常白模式的设置。
至少一些实施例中,如图3所示,上述光栅层402包括:阵列排布的光栅单元412,该光栅单元412包括第一光栅子单元4121、第二光栅子单元4122和第三光栅子单元4123,第一光栅子单元4121用于输出朝向人眼方向的第一原色光501(例如红光);第二光栅子单元4122用于输出朝向人眼方向的第二原色光502(例如绿光);第三光栅子单元4123用于输出朝向人眼方向的第三原色光503(例如蓝光)。这样一来,通过该光栅层402的每个光栅单元412发出的三种原色光均汇聚至人眼,从而能够实现近眼显示,同时采用该波导光栅的显示装置,由于每个光栅单元412中的不同光栅子单元能够发出不同原色的光线直接汇聚至人眼,从而使得该显示装置无需设置彩膜层即可实现显示画面的色彩显示。当然为了有效的保证出射光线色彩的纯度以及饱和度,也可以设置彩膜层,本公开对此 不作限定。
另外,对于传统结构的液晶显示面板(Liquid Crystal Display,LCD)和有机电致发光显示面板(Organic Light-Emitting Diode,OLED)的出射光线例如为发散光线,难以实现单眼聚焦的近眼显示;而采用上述显示装置能够使得出射光线有效的汇聚,从而能够利于实现单眼聚焦的近眼显示。
至少一些实施例中,上述阵列排布的光栅单元412可以与显示装置中的像素单元一一对应,例如,例如,像素单元包括第一亚像素单元(例如红色亚像素单元)、第二亚像素单元(例如绿色亚像素单元)、第三亚像素单元(例如蓝色亚像素单元),本公开中,光栅单元412包括第一光栅子单元4121、第二光栅子单元4122和第三光栅子单元4123,即本公开中的第一光栅子单元4121与第一亚像素单元对应,第二光栅子单元4122与第二亚像素单元对应,第三光栅子单元4123与第三亚像素单元对应。
至少一些实施例中,光栅单元412与显示装置中的多个像素单元对应。例如,光栅单元412中的每个光栅子单元与显示装置中一列像素单元中的每列亚像素单元一一对应,即第一光栅子单元4121与一列第一亚像素单元(例如红色亚像素单元)相对应,第二光栅子单元4122与一列第二亚像素单元对应(例如绿色亚像素单元),第三光栅子单元4123与一列第三亚像素单元对应(例如蓝色亚像素单元)。本公开对此不作限定。
另外,随着对显示清晰度的要求越来越高,对于高分辨率(Pixels Per Inch,PPI)的显示器件的需求也越来越大,而高PPI的显示器件受限于制作工艺,难于发展。本公开中,由于上述光栅周期较小,例如为100nm~1μm左右,这样一来,能够使得第一光栅子单元4121、第二光栅子单元4122和第三光栅子单元4123的宽度尺寸较小,从而使得第一光栅子单元4121、第二光栅子单元4122和第三光栅子单元4123对应的亚像素单元的尺寸较小,进而有利于显示装置 高分辨率的实现。
以下对第一光栅子单元4121用于输出朝向人眼方向的第一原色光501,第二光栅子单元4122用于输出朝向人眼方向的第二原色光502,第三光栅子单元4123用于输出朝向人眼方向的第三原色光503的具体原理做进一步的说明。
如图2所示,从波导光栅40输出的光线中,对应光线波长λ与该输出光线的出光方向与面板平面法线的夹角θ满足2π/λ·Nm=2π/λ·ncsinθ+q2π/Λ的相匹配关系,其中Λ为光栅周期。其中nc为空气折射率。
在此基础上,对于近眼显示装置而言,人眼获取图像的位置是固定的,即每个亚像素单元的出光方向是固定的,即上式2π/λ·Nm=2π/λ·ncsinθ+q2π/Λ中,每个亚像素单元的出光方向与面板平面法线的夹角θ为固定值,而q以及Nm均为已知参数,从而可以根据不同每个亚像素单元的出光的颜色(即波长λ),来确定出每个亚像素单元对应的光栅层402的光栅周期Λ,即,可以通过设置光栅周期Λ,实现给定颜色光线(波长λ)在给定方向(与面板平面法线的夹角为θ)上的光线出射。以下实施例均是以该显示装置为近眼显示装置为例,对本公开做进一步的说明。
现有的显示装置例如包括垂直场显示装置和平面场显示装置,其中,垂直场显示装置,例如类ECB(Electrically Controlled Birefringence电控双折射)型、类VA(Vertical Alignment)型;平面场显示装置,例如类ADS(Advanced-Super Dimensional Switching,高级超维场开关)型、类IPS(In Plane Switch,横向电场效应)型等。
以下通过具体实施例对本公开中的显示装置在垂直场显示装置和平面场显示装置的应用做进一步的说明。
实施例一
如图3所示,该显示装置为垂直场(类ECB)显示装置,包括像素电极101和公共电极102,且像素电极101和公共电极102位于液晶层30的两侧,通过调整施加于像素电极101和公共电极102的电压,调整液晶层30的折射率与光栅层402的折射率之间的差值,实现不同灰阶的调整。
例如,当像素电极101和公共电极102在不加电压的情况下,液晶层30的折射率与光栅层402的折射率相同,该光栅层402的作用被覆盖,没有光线从波导光栅40中耦合出来,此时为暗态,对应灰阶L0;当在像素电极101和公共电极102施加不同的电压时,液晶层30的折射率与光栅层402的折射率具有不同的差值,对应灰阶L1~L255之间的不同亮度。当然也可以是在像素电极101和公共电极102在不加电压的情况下,液晶层30的折射率与光栅层402的折射率相差最大,此时为亮态,对应灰阶L255,当在像素电极101和公共电极102施加不同的电压时,液晶层30的折射率与光栅层402的折射率具有不同的差值,对应灰阶L0~L254之间的不同亮度。即通过像素电极101和公共电极102驱动液晶层30的折射率的变化,调整从波导光栅40耦合出来的出光量,以实现不同灰阶的调整。
在此基础上,通过设置光栅层402中每一光栅单元412中的第一光栅子单元4121、第二光栅子单元4122和第三光栅子单元4123中的光栅周期,以使得每一光栅单元412中的第一光栅子单元4121发出的第一原色光501,第二光栅子单元4122发出的第二原色光502,第三光栅子单元4123发出的第三原色光503均汇聚至人眼,从而使得该显示装置无需设置彩膜层即可实现近眼显示。当然为了有效的保证出射光线色彩的纯度以及饱和度,也可以设置彩膜层,本公开对此不作限定。
此处需要说明的是,对于上述垂直场型显示装置,像素电极101和公共电极102位于液晶层30的两侧,可以如图3所示,像素电极101位于波导光栅40朝向第一衬底基板10的一侧,公共电极102位 于波导光栅40朝向第二衬底基板20的一侧;还可以如图4所示,公共电极102位于液晶层30朝向第一衬底基板10的一侧,像素电极101位于液晶层30朝向第二衬底基板20的一侧;本公开对此不作限定。
另外,对于该垂直场型显示装置中液晶层30中的液晶分子可以为向列相液晶分子,或者蓝相液晶分子。例如,以下对向列相液晶分子和蓝相液晶分子的具体应用做进一步的说明。
对于采用向列相液晶分子的情况下,通过举例对该显示装置的显示原理以及偏光片的设置情况做进一步说明。
例如,以液晶层30的初始折射率等于no为例,当液晶层的折射率和光栅层402的折射率相等,均为no时,光栅层402的作用被掩盖,没有光线从波导光栅40中耦合出来,此时灰阶最小,为L0状态;当液晶层30的折射率为ne和光栅层402的折射率no相差最大时,光栅层402的作用最明显,光线从波导光栅40中耦合出来的效率最高,此时灰阶最大,为L255状态;当液晶层30的折射率处在以上两种情况之间时,为其他灰阶状态。
在该实现显示的方式中,当光栅层402的折射率等于或接近等于液晶层30的折射率no时,波导光栅40耦合出来的光的偏振方向为平行于第一衬底基板10且垂直于光栅层402的栅条长度方向时,才能感受到上述折射率的变化,其他偏振方向的光不会感受到上述折射率的变化,在此情况下,该显示装置无需在出光侧添加偏光片或者要求准直光源50发出的光线为偏振光,即可实现正常的显示。而对于光栅层402的折射率位于液晶层30的折射率no和ne之间时,此时该显示装置需要在出光侧添加偏光片或要求背光源发出的光线为偏振光(在侧入式的准直光源50光源出光侧添加一层偏光片),以消除出光情况不受液晶层30取向偏转所控制的偏振光的干扰,以实现正常的显示,并且该显示模式例如要求液晶分子为正性液晶分子。
另外,对于采用向列相液晶分子的情况下,为了确保液晶分子 在初始状态具有相同的排列状态,并且在施加电场后能够按照预期的方式进行偏转,因此,对于在液晶层30中的液晶分子为向列相液晶分子的情况下,如图4所示,该显示装置还包括位于液晶层30两侧且与液晶层30接触的取向层201,能够使得该向列相液晶分子在取向层201的作用下初始状态相同,确保液晶分子可以在施加电压下按照上述方式进行旋转,并按照预设角度进行偏转,以实现液晶层30折射率的调整。
例如,该取向层201可以位于液晶层30靠近波导层401的一侧;也可以如图4所示,该取向层201位于液晶层30背离波导层401的一侧,本公开对此不做限定。为了避免取向层201位于光栅层402和液晶层30之间时,而对液晶层30的折射率带来影响,进而影响波导光栅中的出光量,本公开优选的,将取向层201设置于背离波导层401的一侧。
例如,上述取向层201为聚酰亚胺(PI)膜,液晶分子的初始状态是平行于显示面板平面的,加电后会沿垂直于显示面板平面的方向偏转。当然也可以采用特殊的向列相液晶材料,通过添加一些材料实现液晶分子的初始取向,而不使用取向层201,本公开对此不作限定。
对于采用蓝相液晶分子的情况下,由于蓝相液晶分子在不施加电场时,液晶分子为各向同性,在各个方向上折射率相同,两种偏振光通过液晶的折射率相同,均为n;而在施加电场时,液晶分子为各向异性,寻常光折射率为n1,非常光折射率为n2,此时n1<n<n2。在此情况下,可以选择各向同性状态为L0状态(光栅层的折射率也为n),各向异性状态为L255状态,此时两种偏振光均可以耦合出来,具有较高的出光效率。当然,也可以选择各向异性状态为L0状态(光栅层的折射率为n1或n2),各向同性状态为L255状态,此时需要入射光为偏振光,或在出光侧添加偏光片,以实现正常的显示。
此外,上述显示装置也可以选择类VA型的显示模式,即初始状 态下液晶分子取向为垂直于显示面板的方向,施加平面电场后,液晶分子取向逐步变化为平行于显示面板。
以下以向列相液晶分子为例,对该VA型显示装置做进一步的解释说明。例如,以液晶层30的初始折射率等于no为例,当液晶层的折射率和光栅层402的折射率相等,均为no时,光栅层402的作用被掩盖,没有光线从波导光栅40中耦合出来,此时灰阶最小,为L0状态;当液晶层30的折射率为ne和光栅层402的折射率no相差最大时,光栅层402的作用最明显,光线从波导光栅40中耦合出来的效率最高,此时灰阶最大,为L255状态;当液晶层30的折射率处在以上两种情况之间时,为其他灰阶状态。
在该实现显示的方式中,当光栅层402的折射率等于或接近等于液晶层30的折射率no时,波导光栅40耦合出来的光的偏振方向为平行于第一衬底基板10且垂直于光栅层402的栅条长度方向时,才能感受到上述折射率的变化,其他偏振方向的光不会感受到上述折射率的变化,在此情况下,该显示装置无需设置偏光片;而对于光栅层402的折射率位于液晶层30的折射率no和ne之间时,此时该显示装置需要在出光侧添加偏光片或要求侧入式准直光源为偏振光,以消除出光情况不受液晶层30取向偏转所控制的偏振光的干扰,以实现正常的显示,并且该显示模式例如要求液晶分子为正性液晶分子。
另外,对于该VA型的显示模式而言,在采用向列相液晶分子时,为了确保液晶分子在初始状态具有相同的排列状态,并且在施加电场后能够按照预期的方式进行偏转,因此,对于在液晶层30中的液晶分子为向列相液晶分子的情况下,该显示装置还包括位于液晶层30两侧且与液晶层30接触的取向层201;当然也可以采用特殊的向列相液晶材料,通过添加一些材料实现液晶分子的初始取向,只要能够使得该向列相液晶分子的初始状态相同即可,确保液晶分子可以在施加电压下按照上述方式进行旋转,并按照预设角度进行偏转, 以实现液晶层30折射率的调整。
对于该VA型显示装置采用蓝相液晶分子时,可以不设置取向层201,具体理由、以及相关显示原理可以参照前述类ECB型显示装置中采用蓝相液晶分子的说明,此处不再赘述。
实施例二
如图5a至如图6b所示,该显示装置包括像素电极101和公共电极102,且像素电极101和公共电极102均位于液晶层30的同一侧,在此情况下,该显示装置为平面场显示装置,其中,图5a和图5b为类ADS型平面场显示装置,包括异层设置的条状电极和面状电极;图6a和图6b为类IPS型平面场显示装置,包括同层且间隔设置的条状电极。该平面场显示装置通过对位于液晶层30的同一侧像素电极101和公共电极102施加电压,驱动液晶层30中的液晶分子在接近平行显示面板的平面内旋转,从而调整液晶层30的折射率与光栅层402的折射率之间的差值,实现不同灰阶的调整。
例如,当像素电极101和公共电极102在不加电压的情况下,液晶层30的折射率与光栅层402的折射率相同,该光栅层402的作用被覆盖,没有光线从波导光栅40中耦合出来,此时为暗态,对应灰阶L0;当在像素电极101和公共电极102施加不同的电压时,液晶层30的折射率与光栅层402的折射率具有不同的差值,对应灰阶L1~L255之间的不同亮度。当然也可以是在像素电极101和公共电极102在不加电压的情况下,液晶层30的折射率与光栅层402的折射率相差最大,此时为亮态,对应灰阶L255,当在像素电极101和公共电极102施加不同的电压时,液晶层30的折射率与光栅层402的折射率具有不同的差值,对应灰阶L0~L254之间的不同亮度。即通过像素电极101和公共电极102驱动液晶层30的折射率的变化,调整从波导光栅40耦合出来的出光量,以实现不同灰阶的调整。
同实施例一中相同,该平面场显示装置中,也可以通过调整波导光栅40中光栅层402中每一光栅单元412中的第一光栅子单元 4121、第二光栅子单元4122和第三光栅子单元4123中的光栅周期,以使得每一光栅单元412中的第一光栅子单元4121发出的第一原色光501,第二光栅子单元4122发出的第二原色光502,第三光栅子单元4123发出的第三原色光503均汇聚至人眼,实现近眼显示。
另外,以下对上述类ADS型平面场显示装置和类IPS型平面场显示装置中像素电极101和公共电极102的具体情况做进一步说明。
对于类ADS型平面场显示装置,像素电极101和公共电极102中一个包括条状电极,一个为面状电极,例如,可以如图5a所示,包括条状电极的像素电极101和面状的公共电极102均位于波导光栅40与第一衬底基板10之间;也可以如图5b所示,包括条状电极的像素电极101和面状公共电极102均位于液晶层30与第二衬底基板20之间;当然,图5a和图5b仅是以像素电极101包括条状电极,公共电极102为面状电极为例进行说明的,也可以是公共电极102包括条状电极,像素电极101为面状电极,只要保证上述条状电极相对于面状电极靠近液晶层30,能够实现驱动液晶层30中的液晶分子发生偏转即可。本公开对此不作限定。
对于IPS型平面场显示装置,像素电极101与公共电极102为同层且间隔设置的条状电极,例如,可以如图6a所示,间隔设置的像素电极101与公共电极102位于波导光栅40与第一衬底基板10之间;也可以如图6b所示,间隔设置的像素电极101与公共电极102均位于液晶层30与第二衬底基板20之间,本公开对此不作限定。
在此基础上,对于上述类ADS型和类IPS型平面场显示装置中液晶层30中的液晶分子可以为向列相液晶分子,或者蓝相液晶分子。以下对向列相液晶分子和蓝相液晶分子在具体应用中的差异做进一步的说明。
以下对于采用向列相液晶分子的情况下,通过举例对该类ADS型和类IPS型的显示装置的显示原理以及偏光片的设置情况做进一步说明。
例如,以液晶层30的初始折射率等于no为例,当液晶层的折射率和光栅层402的折射率相等,均为no时,光栅层402的作用被掩盖,没有光线从波导光栅40中耦合出来,此时灰阶最小,为L0状态;当液晶层30的折射率为ne和光栅层402的折射率no相差最大时,光栅层402的作用最明显,光线从波导光栅40中耦合出来的效率最高,此时灰阶最大,为L255状态;当液晶层30的折射率处在以上两种情况之间时,为其他灰阶状态。
在该实现显示的方式中,由于波导光栅40耦合出来的光线的偏振方向在第一方向和第二方向内能感受到上述折射率的变化,其中,第一方向为偏振方向在平行于第一衬底基板10且垂直于条状电极的长度方向,第二方向为偏振方向在平行于第一衬底基板10且平行于条状电极的长度方向,所以需要在液晶层30的出光侧(例如第二衬底基板20的上表面),或者在侧入式的准直光源50光源出光侧添加一层偏光片,来选择一种偏振光(第一方向偏振光或第二方向偏振光),以实现对灰阶的调整。
另外,对于采用向列相液晶分子的情况下,为了确保液晶分子在初始状态具有相同的排列状态,并且在施加电场后能够按照预期的方式进行偏转,因此,对于在液晶层30中的液晶分子为向列相液晶分子的情况下,该显示装置还包括位于液晶层30两侧且与液晶层30接触的取向层201,能够使得该向列相液晶分子在取向层201的作用下初始状态相同,确保液晶分子可以在施加电压下按照上述方式进行旋转,并按照预设角度进行偏转,以实现液晶层30折射率的调整,且该显示模式下液晶分子为正性液晶分子和负性液晶分子均可。另外,通过控制液晶分子的初始方向和偏光片检偏方向的相对关系,确定显示面板为常白模式(液晶的初始方向和偏光片检偏方向一致)或常黑模式(液晶的初始方向和偏光片检偏方向垂直)。
例如,当上述类ADS型和类IPS型平面场显示装置采用向列相液晶分子时,在液晶层30两侧且与液晶层30接触的取向层201设 置取向层201,例如,可以将该取向层201设置于液晶层30靠近波导层401的一侧,也可以如图5a所示,将取向层201设置于液晶层30背离波导层401的一侧。当然,也可以采用特殊的向列相液晶材料,通过添加一些材料实现液晶分子的初始取向,而不使用取向层201,本公开对此不作限定。
对于该类ADS型和类IPS型的显示模式下,采用蓝相液晶分子时,由于蓝相液晶分子自身的特征,蓝相液晶分子在不施加电场时,液晶分子为各向同性,在各个方向上折射率相同,两种偏振光通过液晶的折射率相同,均为n;而在施加电场时,液晶分子为各向异性,寻常光折射率为n1,非常光折射率为n2,n1<n<n2,在此情况下,可以选择各向同性状态为L0状态(光栅层的折射率也为n),各向异性状态为L255状态,此时两种偏振光均可以耦合出来,具有较高的出光效率,且器件不需要入射光为偏振光,或在出光侧添加偏光片即可实现正常显示。当然,也可以选择各向异性状态为L0状态(光栅层的折射率为n1或n2),各向同性状态为L255状态,此时需要入射光为偏振光,或在出光侧添加偏光片,以实现正常的显示。
当类ADS型和类IPS型平面场显示装置采用蓝相液晶分子时,则不需要设置取向层201,具体理由同实施例一中取向层201的设置,由于实施例一中已进行说明,此处不再赘述。
实施例三
由于光栅层402主要由栅条组成,因此,可以将该光栅层402用作光栅的同时,还作为像素电极101,和/或,公共电极102,此时该光栅层102为光栅和电极的复合结构,并且采用该光栅电极复合结构,由于光栅周期小,使得光栅电极复合结构形成的电场密度更大,从而易于对液晶层30的控制,这样一来,能够在降低液晶盒厚的同时,使得该显示装置的相应速度提升,刷新频率提高。
可选的,以下通过对上述光栅层402用作光栅的同时,还作为像素电极101,和/或,公共电极102做进一步的说明。
例如,如图7所示,光栅层402同时包括像素电极101和公共电极102,例如,光栅层402中部分栅条连接形成像素电极101,部分栅条连接形成公共电极102,形成像素电极101的栅条与形成公共电极102的栅条间隔设置,在此情况下,该显示装置为类IPS型平面场显示装置。
部分栅条连接形成像素电极101,部分栅条连接形成公共电极102,可以如图8a所示,光栅层402中相邻的栅条分属于像素电极101和公共电极102的条形子电极;也可以如图8b所示,在像素电极101的条形子电极和公共电极102的条形子电极之间还可以包括仅用作光栅的栅条(图8b中虚线所示),本公开对此不作限定。
又例如,如图9所示,光栅层402的部分或者全部栅条连接形成像素电极101,公共电极102位于波导光栅40和第一衬底基板10之间。或者,光栅层402的部分或者全部栅条连接形成公共电极102,像素电极101位于波导光栅40和第一衬底基板10之间,附图可以参考图9,此处不再附图赘述。在此情况下,该显示装置为类ADS型平面场显示装置。
另外,上述类ADS型和类IPS型平面场显示装置的灰阶调整、液晶层30中液晶分子向列相液晶分子与蓝相液晶分子的选取、相关取向层201以及偏光片202的设置等,可以参考实施例二中类ADS型和类IPS型平面场显示装置的对应的设置情况,此处不再赘述。
另外,目前,现有的显示装置,尤其是虚拟/增强现实显示装置和透明显示装置,均是采用传统结构的LCD和OLED实现的,必须使用偏光片,由于偏光片会将至少一半的光过滤掉,而不能透过显示面板,因此现有的显示装置均无法做到显示面板的高度透明,从而显影响面板后方光线的透过率以及透射的光谱。综合本公开实施例一、实施例二、实施例三,可以看出,本公开中的显示装置,对于类ECB型、类VA型以及在采用蓝相液晶的显示装置中,可以不使用偏光片,相比于现有技术中的显示装置必须使用偏光片而言, 本公开的显示能够大幅提高光的透过率,从而使得显示面板的透明度提高,同时提高了光的利用率。
本公开实施例还提供一种应用于前述任一种显示装置的显示方法,如图10所示,该显示方法包括:
步骤S101、逐行扫描显示装置中的像素。
步骤S102、当扫描一行像素时,向该行像素的液晶层按照每个像素的灰度值施加电场,以使得像素的液晶层的折射率介于液晶层的最小折射率与液晶层的最大折射率之间。即,通过控制液晶层的折射率的变化,能够调整液晶层的折射率与光栅层的折射率之间的差值大小,进而能够控制波导光栅中的出光量目的,从而实现不同的灰阶显示。
在此基础上,由于光栅层的折射率大于或等于液晶层的最小折射率,且小于或等于液晶层的最大折射率,又光栅层与液晶层接触,这样一来,通过驱动液晶层中的液晶分子发生偏转,来调整液晶层的折射率的大小,在此情况下,当调整液晶层的折射率与光栅层的折射率相等时,光栅层的作用被覆盖,没有光线从波导光栅中输出,此时为暗态;当调整液晶层的折射率与光栅层的折射率之间的差值最大时,光栅层的作用的最明显,光线从波导光栅中输出的效率最高,此时为亮态。即通过控制液晶层的折射率的变化,能够调整液晶层的折射率与光栅层的折射率之间的差值大小,进而能够控制波导光栅中的出光量目的,从而实现不同的灰阶显示。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请基于并且要求于2016年10月21日递交的中国专利申请第201610921400.5号的优先权,在此全文引用上述中国专利申请公开的内容。

Claims (14)

  1. 一种显示装置,包括:相对设置的第一衬底基板和第二衬底基板,以及位于所述第一衬底基板和所述第二衬底基板之间的液晶层,还包括:
    位于所述液晶层与所述第一衬底基板之间的波导光栅,所述波导光栅包括波导层和位于所述波导层朝向所述液晶层一侧表面的光栅层,且所述光栅层与所述液晶层接触;和
    位于所述波导层侧面的准直光源,由所述准直光源发出的光线耦合进所述波导层中并且通过光栅层输出。
  2. 根据权利要求1所述显示装置,其中,所述液晶层的折射率在所述显示装置的驱动信号控制下,在最大折射率和最小折射率之间变化;且所述光栅层的折射率大于或等于所述液晶层的最小折射率,且小于或等于所述液晶层的最大折射率。
  3. 根据权利要求2所述显示装置,其中,所述光栅层的折射率等于所述液晶层的最小折射率。
  4. 根据权利要求2所述显示装置,其中,所述光栅层的折射率等于所述液晶层的最大折射率。
  5. 根据权利要求1至3任一项所述显示装置,其中,所述光栅层包括:阵列排布的光栅单元,所述光栅单元包括第一光栅子单元、第二光栅子单元和第三光栅子单元,所述第一光栅子单元用于输出朝向人眼方向的第一原色光,所述第二光栅子单元用于输出朝向人眼方向的第二原色光,所述第三光栅子单元用于输出朝向人眼方向的第三原色光。
  6. 根据权利要求1所述显示装置,其中,所述光栅层包括多个栅条,部分栅条彼此连接形成像素电极,部分栅条彼此连接形成公共电极,形成所述像素电极的部分栅条与形成所述公共电极的部分栅条交替设置。
  7. 根据权利要求1所述显示装置,其中,所述光栅层包括多个栅条,所述显示装置还包括公共电极,所述光栅层的部分或者全部栅条彼此连接形成像素电极,所述公共电极位于所述波导光栅和所述第一衬底基板之间。
  8. 根据权利要求1所述显示装置,其中,所述光栅层包括多个栅条,所 述显示装置还包括像素电极,所述光栅层的部分或者全部栅条彼此连接形成公共电极,所述像素电极位于所述波导光栅和所述第一衬底基板之间。
  9. 根据权利要求1-7任一项所述显示装置,其中,所述液晶层中的液晶分子为向列相液晶分子或者蓝相液晶分子。
  10. 根据权利要求9所述显示装置,其中,所述液晶层中的液晶分子为向列相液晶分子,所述显示装置还包括偏光片,所述偏光片位于所述液晶层背离所述波导层的一侧。
  11. 根据权利要求9所述显示装置,其中,所述液晶层中的液晶分子为向列相液晶分子,所述显示装置还包括取向层,所述取向层位于所述液晶层的两侧,且与所述液晶层接触。
  12. 根据权利要求1至11任一项所述显示装置,其中,所述显示装置还包括像素电极和公共电极,所述像素电极和所述公共电极位于所述液晶层的两侧。
  13. 根据权利要求1至11任一项所述显示装置,其中,所述显示装置还包括像素电极和公共电极,所述像素电极和所述公共电极均位于所述液晶层的同一侧。
  14. 一种应用于权利要求1-13任一项所述的显示装置的显示方法,包括:
    逐行扫描所述显示装置中的像素;
    当扫描一行像素时,向该行像素的液晶层按照每个像素的灰度值施加电场,以使得所述像素的液晶层的折射率介于所述液晶层的最小折射率与所述液晶层的最大折射率之间。
PCT/CN2017/093879 2016-10-21 2017-07-21 显示装置及其显示方法 WO2018072508A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/742,721 US20190086699A1 (en) 2016-10-21 2017-07-21 Display device and display method thereof
US16/996,222 US11126022B2 (en) 2016-10-21 2020-08-18 Display device and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610921400.5A CN106292051B (zh) 2016-10-21 2016-10-21 一种显示装置及其显示方法
CN201610921400.5 2016-10-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/742,721 A-371-Of-International US20190086699A1 (en) 2016-10-21 2017-07-21 Display device and display method thereof
US16/996,222 Division US11126022B2 (en) 2016-10-21 2020-08-18 Display device and display method thereof

Publications (1)

Publication Number Publication Date
WO2018072508A1 true WO2018072508A1 (zh) 2018-04-26

Family

ID=57719150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093879 WO2018072508A1 (zh) 2016-10-21 2017-07-21 显示装置及其显示方法

Country Status (3)

Country Link
US (2) US20190086699A1 (zh)
CN (1) CN106292051B (zh)
WO (1) WO2018072508A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292051B (zh) * 2016-10-21 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106292052B (zh) * 2016-10-24 2019-04-09 京东方科技集团股份有限公司 一种显示面板和装置
CN106324898B (zh) 2016-10-28 2017-08-25 京东方科技集团股份有限公司 显示面板及显示装置
CN106681047B (zh) * 2017-01-12 2020-08-11 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法
CN106773263B (zh) * 2017-01-13 2019-09-03 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN106647004A (zh) * 2017-01-25 2017-05-10 京东方科技集团股份有限公司 显示器件及含有其的显示设备
CN106647093A (zh) * 2017-03-02 2017-05-10 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其显示方法
CN106940499A (zh) * 2017-05-10 2017-07-11 京东方科技集团股份有限公司 显示面板及其控制方法、显示装置
CN107132699A (zh) * 2017-07-14 2017-09-05 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法
CN109581704B (zh) 2017-09-28 2021-04-06 京东方科技集团股份有限公司 调光器件、3d显示装置及其控制方法
CN108227285B (zh) * 2018-01-25 2022-01-11 京东方科技集团股份有限公司 一种显示装置
CN108319070B (zh) * 2018-03-30 2023-08-11 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN110389469B (zh) 2018-04-20 2021-03-30 京东方科技集团股份有限公司 显示装置及其显示方法
CN108828810B (zh) * 2018-07-02 2021-10-26 京东方科技集团股份有限公司 显示面板及其驱动方法
CN109557695A (zh) * 2019-01-17 2019-04-02 成都晶砂科技有限公司 一种调节显示光源亮度的装置、显示装置及亮度调节方法
CN109856854A (zh) * 2019-04-17 2019-06-07 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN110632786B (zh) * 2019-09-26 2022-08-09 京东方科技集团股份有限公司 显示面板及显示装置
CN111580302B (zh) * 2020-06-16 2023-01-10 京东方科技集团股份有限公司 反射式液晶显示板及显示装置
CN112859412B (zh) * 2021-03-02 2022-06-07 福州京东方光电科技有限公司 显示面板及其制备方法、显示装置
CN114020178B (zh) * 2021-09-08 2023-10-17 上海交通大学 一种基于两种矢量方向点阵光栅结构的光学触控模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287441A (ja) * 1989-04-28 1990-11-27 Matsushita Electric Ind Co Ltd 光偏向素子
CN205318033U (zh) * 2016-01-08 2016-06-15 京东方科技集团股份有限公司 一种双视裸眼3d显示器件及液晶显示装置
CN106292051A (zh) * 2016-10-21 2017-01-04 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106444177A (zh) * 2016-10-28 2017-02-22 京东方科技集团股份有限公司 显示面板及显示装置
CN206074956U (zh) * 2016-10-21 2017-04-05 京东方科技集团股份有限公司 一种显示装置
CN106647004A (zh) * 2017-01-25 2017-05-10 京东方科技集团股份有限公司 显示器件及含有其的显示设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296787A (ja) 1985-06-25 1986-12-27 Sharp Corp 干渉型半導体レーザ装置
WO1990001722A1 (en) * 1988-08-05 1990-02-22 Matsushita Electric Industrial Co., Ltd. Light deflecting element
JPH0315831A (ja) * 1989-06-14 1991-01-24 Matsushita Electric Ind Co Ltd 光偏向素子
KR100301936B1 (ko) * 1998-06-03 2001-09-06 황기연 광도파로를이용한평판디스플레이
CN101329463B (zh) * 2007-06-18 2011-04-20 奇美电子股份有限公司 显示装置和液晶显示面板
CN101419340B (zh) 2008-11-18 2010-07-28 友达光电股份有限公司 可切换式光栅及平面显示器
KR101646674B1 (ko) 2010-10-13 2016-08-08 삼성전자주식회사 백라이트 유닛 및 이를 적용한 디스플레이장치
JP5964500B2 (ja) * 2012-06-01 2016-08-03 レイア、インコーポレイテッドLeia Inc. 変調層を有する指向性バックライト
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
US20160091775A1 (en) * 2013-06-20 2016-03-31 Hewlett-Packard Development Company, L.P. Grating-based light modulation employing a liquid crystal
US9588374B2 (en) 2014-02-19 2017-03-07 Lumentum Operations Llc Reflective LC devices including thin film metal grating
CN105589256A (zh) 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
CN105572984B (zh) 2016-03-23 2017-06-23 京东方科技集团股份有限公司 一种液晶显示模组及液晶显示器
CN106292049B (zh) 2016-09-30 2017-11-24 京东方科技集团股份有限公司 显示面板和显示装置
CN106324898B (zh) 2016-10-28 2017-08-25 京东方科技集团股份有限公司 显示面板及显示装置
CN106681047B (zh) 2017-01-12 2020-08-11 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287441A (ja) * 1989-04-28 1990-11-27 Matsushita Electric Ind Co Ltd 光偏向素子
CN205318033U (zh) * 2016-01-08 2016-06-15 京东方科技集团股份有限公司 一种双视裸眼3d显示器件及液晶显示装置
CN106292051A (zh) * 2016-10-21 2017-01-04 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN206074956U (zh) * 2016-10-21 2017-04-05 京东方科技集团股份有限公司 一种显示装置
CN106444177A (zh) * 2016-10-28 2017-02-22 京东方科技集团股份有限公司 显示面板及显示装置
CN106647004A (zh) * 2017-01-25 2017-05-10 京东方科技集团股份有限公司 显示器件及含有其的显示设备

Also Published As

Publication number Publication date
CN106292051A (zh) 2017-01-04
US11126022B2 (en) 2021-09-21
US20200379285A1 (en) 2020-12-03
CN106292051B (zh) 2017-08-01
US20190086699A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
WO2018072508A1 (zh) 显示装置及其显示方法
US20200183202A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
US10663641B2 (en) Display panel and display device
US11126054B2 (en) Display panel and display device
US10663639B2 (en) Display device
WO2018059083A1 (zh) 显示面板和显示装置
WO2018161650A1 (zh) 显示面板和显示装置
WO2017148024A1 (zh) 液晶显示器以及电子设备
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
WO2013157341A1 (ja) 液晶表示装置
WO2020007181A1 (zh) 显示面板及显示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2017152521A1 (zh) 显示装置
WO2015039467A1 (zh) 一种阵列基板、显示面板及其显示装置
WO2017118224A1 (zh) 视角定向光源装置及显示装置
WO2017161656A1 (zh) 显示眼镜及其驱动方法
WO2016049960A1 (zh) 液晶显示装置
WO2019210785A1 (zh) 液晶显示装置以及显示方法
CN206074956U (zh) 一种显示装置
WO2017148048A1 (zh) 液晶面板、显示装置以及显示方法
CN109683400A (zh) 光学膜层和显示装置
WO2016049959A1 (zh) 液晶显示装置
WO2017118234A1 (zh) 显示装置及控制方法
CN109613640A (zh) 光学膜层和显示装置
KR20110045803A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17861965

Country of ref document: EP

Kind code of ref document: A1