WO2017185813A1 - 一种显示装置和显示终端 - Google Patents

一种显示装置和显示终端 Download PDF

Info

Publication number
WO2017185813A1
WO2017185813A1 PCT/CN2017/000043 CN2017000043W WO2017185813A1 WO 2017185813 A1 WO2017185813 A1 WO 2017185813A1 CN 2017000043 W CN2017000043 W CN 2017000043W WO 2017185813 A1 WO2017185813 A1 WO 2017185813A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
liquid crystal
display device
layer
crystal display
Prior art date
Application number
PCT/CN2017/000043
Other languages
English (en)
French (fr)
Inventor
王倩
董学
陈小川
赵文卿
杨明
卢鹏程
高健
牛小辰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/548,042 priority Critical patent/US10261386B2/en
Publication of WO2017185813A1 publication Critical patent/WO2017185813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present application relates to the field of display technologies, and in particular, to a display device and a display terminal.
  • Liquid crystal displays have many advantages such as low power consumption, small size, light weight, ultra-thin screen, etc., and have been widely used in digital products (such as multimedia players, digital cameras or personal digital assistants) and smart in recent years. Instruments and low-power electronics.
  • Organic Light-Emitting Diode (OLED) technology has self-luminous properties. Since it can be used as a light source, the display using OLED technology is thin and light, and the screen has a large viewing angle, which also saves power.
  • OLED Organic Light-Emitting Diode
  • the embodiment of the present application provides a display device and a display terminal, which can provide an anti-spy function, thereby preventing the information on the display screen from being peeped and causing personal privacy leakage.
  • a display device including a light emitting panel and at least one optical modulation unit disposed on a light exiting side of the light emitting panel, in the light emitting panel or in the a grating is disposed between the light emitting panel and the optical modulation unit a layer, wherein the optical modulation unit is configured to modulate incident light to exit at a predetermined angle, and the grating layer is configured to parallelize an exit direction of incident light.
  • a display terminal comprising the display device according to the first aspect of the embodiments of the present application.
  • the optical modulation unit includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate, wherein the first substrate and the first A plurality of sets of electrode structures are disposed on at least one of the two substrates, and each set of the electrode structures is configured to control deflection of liquid crystal molecules in corresponding regions of the liquid crystal layer to form a microprism structure; and adjusting voltages of the electrode structures of each group by adjusting The microprism structure is controlled to modulate the incident light to exit at a predetermined angle.
  • the display device includes a plurality of sub-pixel regions arranged in an array, the microprism structure corresponding to at least one sub-pixel region.
  • the grating layer includes a first material layer, a second material layer, and a diffraction grating structure
  • the second material layer is disposed on a light exiting side of the diffraction grating structure, and is located in the diffraction grating structure Between the first material layer and the first material layer, wherein the first material layer has a higher refractive index than the second material layer.
  • the parameters of the diffraction grating structure are different corresponding to sub-pixel regions of different colors of the display device.
  • the display device further includes a liquid crystal display panel, and the liquid crystal display panel is disposed at:
  • the light emitting panel is located on the other side of the grating layer with respect to the liquid crystal display panel;
  • the optical modulation unit is located on the other side of the grating layer with respect to the liquid crystal display panel.
  • the light emitting panel includes an organic electroluminescence panel
  • the organic electroluminescent panel includes at least a package substrate, a first electrode layer, a second electrode layer, and the first electrode layer and the a light-emitting layer between the second electrode layers, wherein the grating layer is disposed on a light-emitting side of the first electrode layer, and the package substrate is located at another of the grating layers with respect to the first electrode layer side.
  • the package substrate of the organic electroluminescence panel is used as an array substrate of the liquid crystal display panel.
  • the organic electroluminescent panel further includes a first metal wire grid polarizer, wherein the first metal wire grid polarizer is disposed at:
  • an upper polarizer is disposed on a light outgoing side of the liquid crystal display panel, and a slit direction of the first metal wire grid polarizer is parallel to a transmission axis of the upper polarizer.
  • the upper polarizer is a second metal wire grid polarizer.
  • a slit direction of the second metal wire grid polarizer and a slit direction of the first metal wire grid polarizer are perpendicular to each other.
  • a slit direction of the first metal wire grid polarizer is perpendicular to each other in an adjacent sub-pixel region, and/or a slit direction of the second metal wire grid polarizer is adjacent to the sub-pixel.
  • the pixel areas are perpendicular to each other.
  • the liquid crystal display panel may include a Twisted Nematic (TN) liquid crystal display panel, an Optically Compensated Bend (OCB) liquid crystal display panel, and a multi-domain vertical alignment mode (Multi -domain Vertical Alignment, MVA) Liquid crystal display panel, Pattern Vertical Alignment (PVA) liquid crystal display panel, plane switching mode (InPlane Switching, IPS) Liquid crystal display panel or Fringe Field Switching (FFS) liquid crystal display panel.
  • TN Twisted Nematic
  • OBC Optically Compensated Bend
  • MVA Multi -domain Vertical Alignment
  • PVA Pattern Vertical Alignment
  • IPS InPlane Switching, IPS
  • FFS Fringe Field Switching
  • the light emitting panel includes a top emission type or bottom emission type organic electroluminescence panel.
  • the display device and the display terminal provided by the embodiments of the present application can collimate the light emitted from the light-emitting panel by providing a grating layer (such as a diffraction grating microstructure), and then match the optical modulation unit to shape the light, and can control the light.
  • a grating layer such as a diffraction grating microstructure
  • the display device and the display terminal may adopt a structure in which an organic electroluminescence panel is combined with a liquid crystal display panel, wherein the organic electroluminescence panel controls color sustainable illumination (voltage constant), and is composed of liquid crystal
  • the display panel controls the liquid crystal to determine the gray scale, avoids the residual image problem caused by the gray scale change of the organic electroluminescence panel, and can improve the life of the organic electroluminescence panel.
  • the overall thickness of the device can be made thin. Since the metal layer of the metal wire grid polarizer has a certain reflectance, the light extraction efficiency of the organic electroluminescence panel can be improved.
  • WGP wire grid polarizer
  • FIG. 1 is a cross-sectional structural view of a display device according to at least one embodiment of the present application.
  • FIG. 2 is a schematic diagram of the principle of a grating layer according to at least one embodiment of the present application
  • 3(a)-3(b) are schematic diagrams showing the principles of an exemplary equivalent optical device of an optical modulation unit provided in accordance with at least one embodiment of the present application;
  • FIG. 4 is a schematic diagram of a relationship between a sub-pixel region of a display device and an optical modulation unit according to at least one embodiment of the present application;
  • FIG. 5 is a cross-sectional structural view of a display device according to at least one embodiment of the present application.
  • FIG. 6 is a cross-sectional structural view of a display device according to at least one embodiment of the present application.
  • FIG. 7 is a cross-sectional structural view of a display device according to at least one embodiment of the present application.
  • FIG. 8 is a cross-sectional structural view of a display device according to at least one embodiment of the present application.
  • 9(a)-9(d) are schematic illustrations of metal wire grid polarizer patterning implemented in accordance with at least one embodiment of the present application.
  • FIG. 1 is a schematic cross-sectional view of a display device according to at least one embodiment of the present application.
  • the display device provided by the embodiment of the present application may include a light emitting panel 103 and at least one optical modulation unit 101 disposed on a light emitting side of the light emitting panel 103.
  • a grating layer 102 is disposed between the light emitting panel 103 and the optical modulation unit 101.
  • a grating layer 102 may also be disposed in the light emitting panel 103 as will be described later in connection with FIGS. 5-8.
  • the optical modulation unit 101 is configured to modulate incident light to exit at a predetermined angle
  • the grating layer 102 is configured to parallelize an exiting direction of incident light.
  • the grating layer 102 can have a selection and correction effect on the light from the light-emitting panel 103 such that the incident light of the optical modulation unit 101 becomes a substantially parallel light beam.
  • the optical modulation unit 101 can further adjust the direction of the parallel beam so that the light exits at a predetermined specific angle, thereby achieving a peep proof effect.
  • the grating layer 102 may include a first material layer 201, a second material layer 202, and a diffraction grating structure 203, and the second material layer 202 is disposed on the diffraction grating structure 203.
  • the light exiting side is located between the diffraction grating structure 203 and the first material layer 201, wherein the refractive index of the first material layer 201 is higher than the refractive index of the second material layer 202.
  • the diffraction grating structure 203 may include a groove surface 2031 and a grating surface 2032.
  • the beam of wavelength ⁇ is blazed at a specific angle to form an exiting light, where d is the grating period or pitch, and ⁇ is the grating groove angle.
  • is the wavelength of the incident light.
  • parameters (such as d and ⁇ ) of the diffraction grating structure 203 may be different corresponding to sub-pixel regions of different colors (such as R, G, B) of the display device provided by the embodiments of the present application. Therefore, by designing different d values and ⁇ values to be applied to the sub-pixel regions of the respective colors, different light-emitting angles and different light-emitting bands can be obtained.
  • the diffraction grating structure 203 has a selective effect on incident light, which enables the outgoing light of the sub-pixel regions of different colors to become a pair of parallel beams perpendicular to the corresponding groove faces 2031, and thus Overall, the light rays passing through the diffraction grating structure 203 may be parallel to each other.
  • the possible directions are inclined, and therefore, it is also possible to adjust the light emitted vertically upward as needed.
  • the first material layer 201 and the second material layer 202 may be disposed on the diffraction grating structure 203, thereby implementing the grating layer 102 by a diffraction grating microstructure such as that shown in FIG.
  • the first material layer 201 can be attached to the second material layer 202 and the conforming surface can be inclined. As shown in FIG.
  • a grating layer 102 such as the diffraction grating microstructure shown in FIG. 2 is disposed in the light-emitting panel 103 or between the light-emitting panel 103 and the optical modulation unit 101, and the incident light can be emitted.
  • the direction is parallelized to achieve collimation of the outgoing light of the light-emitting panel 103.
  • the optical modulation unit 101 may be configured to perform left and right (horizontal direction) adjustment or up and down (vertical direction) adjustment of the traveling direction of the light emitted from the light-emitting panel 103 subjected to the collimation process, thereby passing Control the direction of the light to achieve anti-spy applications.
  • the optical modulation unit 101 may include a first substrate 301, a second substrate 304, and the first substrate 301 and the second substrate 304. Between the liquid crystal layer 302.
  • a plurality of sets of electrode structures 303 may be disposed on the first substrate 301 and/or the second substrate 304, and each set of the electrode structures 303 is used to control liquid crystal molecules in the corresponding regions of the liquid crystal layer 302 to be deflected.
  • the microprism structure 3051 or 3052 can control the microprism structure 3051 or 3052 to modulate incident light to exit at a predetermined angle by adjusting the voltage of each set of the electrode structures 303.
  • the XOY reference plane defined by the X-axis, the Y-axis, and the origin O is also shown in FIGS. 3(a)-3(b), wherein the cross-section of the display device shown in FIG. 1 and the XOY reference plane are shown. parallel.
  • FIG. 3(a) when the voltage controlling the electrode structure 303 is sequentially increased in the positive direction of the X-axis (for example, by increasing the value of the arithmetic progression), the formed microprism structure 3051 can control the traveling of the outgoing light. The direction is shifted to the left (biased to the low voltage direction) with respect to the incident ray.
  • FIG. 3(a) when the voltage controlling the electrode structure 303 is sequentially increased in the positive direction of the X-axis (for example, by increasing the value of the arithmetic progression), the formed microprism structure 3051 can control the traveling of the outgoing light. The direction is shifted to the left (biased to the low voltage direction) with respect to the incident ray.
  • the formed microprism structure 3052 when the voltage for controlling the electrode structure 303 is sequentially decreased in the positive direction of the X-axis (for example, decreasing according to the value of the arithmetic progression), the formed microprism structure 3052 can control the emission.
  • the direction of travel of the light is shifted to the right relative to the incident ray (biased toward the low voltage direction). Therefore, modulation of the incident direction of the light (for example, in the X-axis direction) can be achieved by the optical modulation unit as shown in FIGS. 3(a) to 3(b).
  • the optical modulation unit 101 may also effect modulation of the incident ray in a vertical direction (eg, in a direction perpendicular to the XOY reference plane).
  • the plurality of sets of electrode structures 303 are disposed on the first substrate 301 and/or the second substrate 304 of the optical modulation unit 101 in a direction perpendicular to the XOY reference plane. Similar to the structure shown in FIGS. 3(a)-3(b), by controlling the voltage level of each set of electrode structures 303, the microprism structure formed in the liquid crystal layer 302 can control the traveling direction of the outgoing light relative to the incident light. An offset occurs upwards or downwards (eg, in a direction perpendicular to the XOY reference plane).
  • the direction of the outgoing light of the display device of the embodiment of the present application can be controlled so that the modulated light can be at a predetermined angle (for example, perpendicular to the optical modulation unit 101).
  • the surface emerges.
  • 3(a)-3(b) are merely illustrative of equivalent optical devices of an optical modulation unit implemented in accordance with a liquid crystal cell structure, and those skilled in the art may, without any creative effort.
  • Other equivalent structures or variations for implementing the optical modulation unit according to embodiments of the present application are envisioned on the basis of the structures shown in Figures 3(a)-3(b).
  • the optical modulation unit 101 of the embodiment of the present application can also be implemented as any other suitable optical device structure having a light modulation function such as a light direction adjustment function.
  • the display device provided according to an embodiment of the present application may include a plurality of sub-pixel regions arranged in an array, and the microprism structure formed by the optical modulation unit 101 may correspond to at least one sub-pixel region.
  • the plurality of sub-pixel regions arranged in an array may include three columns of sub-pixel regions 403 as shown in FIG. 4 (for example, R, G, B sub-pixel regions from right to left, respectively), wherein each column
  • the pixel area may correspond to a microprism structure, and correspondingly, three microprism structures of the optical modulation unit 402 are schematically illustrated in three blocks in FIG.
  • the sub-pixel region 403 in FIG. 4 includes four rows of sub-pixel regions (each row has three sub-pixel regions of R, G, B), wherein each row of sub-pixel regions may correspond to one microprism structure, correspondingly, Four microprism structures of the optical modulation unit 401 are schematically illustrated in four blocks for the vertical modulation of the direction of the light (as indicated by the vertical bidirectional arrows in Figure 4).
  • the display device provided according to an embodiment of the present application may further include a liquid crystal display panel.
  • the liquid crystal display panel may include a TN liquid crystal display panel, an OCB liquid crystal display panel, an MVA liquid crystal display panel, a PVA liquid crystal display panel, an IPS liquid crystal display panel, or an FFS liquid crystal display panel.
  • the liquid crystal display panel may be disposed between the light emitting panel 103 and the optical modulation unit 101, wherein the grating layer 102 is located in the light emitting panel 103 (FIG. 5). - Figure 8).
  • the liquid crystal display panel may be disposed between the grating layer 102 and the optical modulation unit 101, wherein The light emitting panel 103 is located on the other side of the grating layer 102 with respect to the liquid crystal display panel.
  • the liquid crystal display panel may be disposed between the grating layer 102 and the light emitting panel 103, wherein the optical modulation unit 101 is located relative to the liquid crystal display panel. The other side of the grating layer 102.
  • FIG. 5 is a schematic cross-sectional view of a display device according to at least one embodiment of the present application.
  • the display device shown in FIG. 5 includes optical modulation units 1011 and 1012, a liquid crystal display panel, a light emitting panel, and a grating layer 102 disposed in the light emitting panel.
  • the liquid crystal display panel shown in FIG. 5 includes a polarizer (POL) 501, a matrix substrate (such as a color filter substrate without an RGB color resist layer, or a black matrix substrate without color filtering) 502, a liquid crystal layer 503, and an array.
  • the light emitting panel 103 may include an organic electroluminescence panel.
  • the liquid crystal display panel and the organic electroluminescent panel may be laminated by Optical Clear Adhesive (OCA).
  • the organic electroluminescent panel shown in FIG. 5 includes at least a package substrate 1031, a first electrode layer (eg, a cathode layer or an anode layer) 1032, a second electrode layer (eg, an anode layer or a cathode layer) 1034, and a first electrode layer.
  • the second electrode layer 1034 can be implemented on an electrode substrate.
  • the grating layer 102 may be disposed on the light emitting side of the first electrode layer 1032, and the package substrate 1031 is located on the other side of the grating layer 102 with respect to the first electrode layer 1032.
  • the light emitting panel 103 may include a top emission type organic electroluminescence panel or a bottom emission type organic electroluminescence panel.
  • the first electrode layer 1032 as shown in FIG. 5 is a cathode layer, and the second electrode layer 1034 can be realized as an anode substrate; correspondingly,
  • the first electrode layer 1032 is an anode layer, and the second electrode layer 1034 can be implemented as a cathode substrate.
  • the organic electroluminescent panel can continuously emit light (fixed voltage) to control color, and the liquid crystal display panel (for example, using a TFT substrate) can control the liquid crystal layer 503 to determine transmittance (ie, brightness), thereby avoiding
  • the residual electroimage of the organic electroluminescent panel due to the change of the gray scale can improve the life of the organic electroluminescent panel.
  • the grating layer 102 may parallelize the emitted light of the light-emitting panel to correct it to collimated light.
  • one of the optical modulation units 1011 and 1012 can be configured to horizontally modulate the direction of the light and the other to vertically modulate the direction of the light. Thereby, the light is emitted in a predetermined specific direction (for example, substantially perpendicular to the surface of the display device), thereby realizing the anti-spy function of the display device.
  • FIG. 6 is a schematic cross-sectional view of a display device according to at least one embodiment of the present application. Similar to FIG. 5, the display device shown in FIG. 6 includes optical modulation units 1011 and 1012, a liquid crystal display panel, an organic electroluminescence panel, and a grating layer 102 disposed in the organic electroluminescence panel. Unlike the display device shown in FIG. 5, the display device shown in FIG. 6 employs a metal wire grid polarizer (WGP) instead of the conventional lower polarizer 505, and in particular, as the upper surface of the liquid crystal display panel.
  • the polarizer 501 corresponds to a lower polarizer, and the metal wire grid polarizer such as the first metal wire grid polarizer 1035 shown in FIG. 6 is disposed in the organic electroluminescence panel.
  • WGP metal wire grid polarizer
  • the organic electroluminescent panel may further include a first metal wire grid polarizer 1035.
  • the first metal wire grid polarizer 1035 may be disposed on the light emitting side of the package substrate 1031, or between the package substrate 1031 and the grating layer 102 (as shown in FIG. 6 ), or on the grating layer 102 and the first Between an electrode layer 1032.
  • the slit direction of the first metal wire grid polarizer 1035 is parallel to the transmission axis of the upper polarizer 501 provided on the light outgoing side of the liquid crystal display panel.
  • the first metal wire grid polarizer may be disposed by using a nanoimprint technique, for example, in any one of the following ways: preparing the first metal wire grid polarizer at the first electrode of the organic electroluminescent panel On the layer; the first metal wire grid polarizer is first prepared in an organic electroluminescence On the package substrate glass of the light panel, the package of the organic electroluminescence panel is further performed; and the first metal wire grid polarizer is prepared on the package substrate glass of the already-packaged organic electroluminescence panel. Thereby, the lower polarizer of the original liquid crystal display panel can be replaced by the in-cell structure of the metal wire grid polarizer.
  • the metal layer of the metal wire grid polarizer (the material is usually aluminum) has a certain reflectance (typically 30%), the impervious light can be reflected back and reused as compared with the conventional polarizer. Thereby, the light extraction efficiency of the organic electroluminescence panel is improved.
  • the conventional polarizer used in the liquid crystal display panel is not only thicker in thickness, but also has poor reliability, and is liable to cause curling and polarization loss in a high-temperature and high-humidity environment, and the metal material of the metal wire grid polarizer itself has good reliability. Sexual effect.
  • the overall thickness of the device of the display device of the embodiment of the present application may be Thin.
  • FIG. 7 is a schematic cross-sectional view of a display device according to at least one embodiment of the present application. Similar to FIGS. 5 and 6, the display device shown in FIG. 7 includes optical modulation units 1011 and 1012, a liquid crystal display panel, an organic electroluminescence panel, and a grating layer 102 disposed in the organic electroluminescence panel.
  • the package substrate 1031 of the organic electroluminescence panel is used as the array substrate 504 of the liquid crystal display panel.
  • the array substrate 504 (for example, a TFT substrate) as shown in FIG. 5 or FIG. 6 is not disposed in the liquid crystal display panel as shown in FIG. 7, but the package substrate 1031 of the organic electroluminescence panel is prepared as The package substrate having the TFT layer enables the package substrate 1031 of the organic electroluminescence panel to function as a TFT substrate of the liquid crystal display panel.
  • the TFT layer of the liquid crystal display panel can be prepared for the package substrate glass of the organic electroluminescence panel, and then the organic electroluminescence panel can be packaged.
  • the display device provided by the embodiment of the present application can save at least one layer of glass in the structure (for example, saves the TFT substrate glass), thereby simplifying the manufacturing process and saving cost.
  • FIG. 8 is a schematic cross-sectional view of a display device according to at least one embodiment of the present application. Similar to FIG. 5 and FIG. 6, the display device shown in FIG. 8 includes an optical modulation unit 1011. And a 1012, a liquid crystal display panel, an organic electroluminescence panel, and a grating layer 102 disposed in the organic electroluminescent panel.
  • the upper polarizer of the liquid crystal display panel is the second metal wire grid polarizer 801.
  • the slit direction of the second metal wire grid polarizer 801 and the slit direction of the first metal wire grid polarizer 1035 are perpendicular to each other.
  • the double-sided WGP of the liquid crystal display panel can be realized.
  • the structure is such that the overall thickness of the display device is made thinner.
  • the pattern design of the metal wire grid polarizer can be utilized while matching the view image to obtain a 3D display effect.
  • FIGS. 9(a)-9(d) are schematic illustrations of metal wire grid polarizer patterning implemented in accordance with at least one embodiment of the present application.
  • the slit directions of the first metal wire grid polarizer 1035 are perpendicular to each other in the adjacent sub-pixel regions, and/or the slit direction of the second metal wire grid polarizer 801 is in the adjacent sub-pixel region. In the middle of each other.
  • patterning of the first metal wire grid polarizer 1035 and the second metal wire grid polarizer 801 can be achieved in accordance with the schematic diagrams depicted in FIGS. 9(a) and 9(b), respectively.
  • patterning of the first metal wire grid polarizer 1035 and the second metal wire grid polarizer 801 may also be implemented in accordance with the schematic diagrams depicted in FIGS. 9(c) and 9(d), respectively.
  • the 3D display application of the display device of the embodiment of the present application can be realized by patterning the metal wire grid polarizer and matching the corresponding view.
  • FIG. 1 - 9(d) only schematically illustrate an exemplary structure in accordance with embodiments of the present application, which can be envisioned by one of ordinary skill in the art in light of the teachings provided herein.
  • the light-emitting panel and/or the liquid crystal display panel may have more or fewer structural layers and/or device units, and different types and/or modes of components may be used as appropriate to implement the light-emitting panel and / or the liquid crystal display panel.
  • FIG. 1 - 9(d) only schematically illustrate an exemplary structure in accordance with embodiments of the present application, which can be envisioned by one of ordinary skill in the art in light of the teachings provided herein.
  • the light-emitting panel and/or the liquid crystal display panel may have more or fewer structural layers and/or device units, and different types and/or modes of components may be used as appropriate to implement the light-emitting panel and / or the liquid crystal display panel.
  • FIG. 1 - 9(d) only schematically illustrate an exemplary structure in accordance
  • grating layer 102 illustrates the grating layer 102 as being located in a light emitting panel such as an organic electroluminescent panel, it can be understood that the grating layer provided by the embodiment of the present application can also be disposed on the light emitting panel. External, and still can use gold It is a wire grid polarizer to replace the traditional polarizer.
  • the embodiment of the present application by providing a grating layer (such as the diffraction grating microstructure shown in FIG. 2) in the display device, the light emission of the light-emitting panel can be collimated, and the light can be combined with at least one optical modulation unit. The direction of the exit is controlled to achieve anti-spyware applications.
  • the embodiment of the present application in combination with the patterned design of the metal wire grid polarizer, can also provide a multi-functional display device integrating 3D and anti-spy performance.
  • the embodiment of the present application further provides a display terminal including the display device provided according to any of the foregoing exemplary embodiments.
  • the display terminal may include any mobile terminal having a display function, a fixed terminal or a portable terminal, such as but not limited to: a mobile phone, a smart phone, a multimedia device, a desktop computer, a laptop computer, a tablet computer, a personal communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置和显示终端。所述显示装置包括发光面板(103)和设置于所述发光面板(103)的出光侧的至少一个光学调制单元(101),在所述发光面板(103)中或者在所述发光面板(103)与所述光学调制单元(101)之间设置有光栅层(102),其中,所述光学调制单元(101)用于将入射光线调制到以某一预设角度出射,所述光栅层(102)用于将入射光线的出射方向平行化。

Description

一种显示装置和显示终端
本申请要求于2016年4月27日递交的中国专利申请第201620373112.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置和显示终端。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有功耗低、体积小、重量轻、超薄屏等许多优点,近年来被广泛应用于数码产品(例如多媒体播放器、数码相机或个人数字助理)、智能仪器和低功耗电子产品中。与LCD显示技术相比,有机电致发光(Organic Light-Emitting Diode,OLED)技术具有自发光的特性。由于可以当作光源,因此采用OLED技术的显示器很薄很轻,并且屏幕可视角度大,还能够节省电能。随着便携式个人化数字产品的不断出现,用户随时随地都可以对各种便携式设备的显示屏进行操作,因而期望在获得服务的同时能够实现隐私性。
发明内容
本申请的实施例提供了一种显示装置和显示终端,可以提供防窥功能,从而防止显示屏上的资料信息遭到窥视而造成个人隐私外泄。
根据本申请实施例的第一方面提供了一种显示装置,所述显示装置包括发光面板和设置于所述发光面板的出光侧的至少一个光学调制单元,在所述发光面板中或者在所述发光面板与所述光学调制单元之间设置有光栅 层,其中,所述光学调制单元用于将入射光线调制到以某一预设角度出射,所述光栅层用于将入射光线的出射方向平行化。
根据本申请实施例的第二方面提供了一种显示终端,所述显示终端包括根据本申请实施例的第一方面所述的显示装置。
根据本申请的实施例,所述光学调制单元包括第一基板、第二基板以及位于所述第一基板与所述第二基板之间的液晶层,其中,所述第一基板和所述第二基板中的至少一个上设置有多组电极结构,各组所述电极结构用于控制所述液晶层中对应区域的液晶分子发生偏转形成微棱镜结构;通过调整各组所述电极结构的电压,控制所述微棱镜结构将入射光线调制到以某一预设角度出射。
根据本申请的实施例,所述显示装置包括呈阵列排布的多个子像素区域,所述微棱镜结构对应于至少一个子像素区域。
根据本申请的实施例,所述光栅层包括第一材料层、第二材料层和衍射光栅结构,所述第二材料层设置于所述衍射光栅结构的出光侧,并且位于所述衍射光栅结构与所述第一材料层之间,其中,所述第一材料层的折射率高于所述第二材料层的折射率。
根据本申请的实施例,对应于所述显示装置的不同颜色的子像素区域,所述衍射光栅结构的参数不同。
根据本申请的实施例,所述显示装置进一步包括液晶显示面板,所述液晶显示面板设置于:
所述发光面板与所述光学调制单元之间,其中,所述光栅层位于所述发光面板中;或者,
所述光栅层与所述光学调制单元之间,其中,所述发光面板相对于所述液晶显示面板位于所述光栅层的另一侧;或者,
所述光栅层与所述发光面板之间,其中,所述光学调制单元相对于所述液晶显示面板位于所述光栅层的另一侧。
根据本申请的实施例,所述发光面板包括有机电致发光面板,并且所述有机电致发光面板至少包括封装基板、第一电极层、第二电极层以及位于所述第一电极层与所述第二电极层之间的发光层,其中,所述光栅层设置于所述第一电极层的出光侧,并且所述封装基板相对于所述第一电极层位于所述光栅层的另一侧。
根据本申请的实施例,所述有机电致发光面板的所述封装基板被用作所述液晶显示面板的阵列基板。
根据本申请的实施例,所述有机电致发光面板进一步包括第一金属线栅偏光片,其中,所述第一金属线栅偏光片设置于:
所述封装基板的出光侧;或者,
所述封装基板与所述光栅层之间;或者,
所述光栅层与所述第一电极层之间。
根据本申请的实施例,在所述液晶显示面板的出光侧设置有上偏光片,并且所述第一金属线栅偏光片的狭缝方向与所述上偏光片的透过轴平行。
根据本申请的实施例,所述上偏光片为第二金属线栅偏光片。
根据本申请的实施例,所述第二金属线栅偏光片的狭缝方向与所述第一金属线栅偏光片的狭缝方向互相垂直。
根据本申请的实施例,所述第一金属线栅偏光片的狭缝方向在相邻子像素区域中互相垂直,和/或所述第二金属线栅偏光片的狭缝方向在相邻子像素区域中互相垂直。
根据本申请的实施例,所述液晶显示面板可以包括扭曲向列模式(Twisted Nematic,TN)液晶显示面板、光学补偿弯曲模式(Optically Compensated Bend,OCB)液晶显示面板、多畴垂直配向模式(Multi-domain Vertical Alignment,MVA)液晶显示面板、图案垂直配向模式(Patterned Vertical Alignment,PVA)液晶显示面板、平面转换模式(InPlane Switching, IPS)液晶显示面板或者边缘场转换模式(Fringe Field Switching,FFS)液晶显示面板。
根据本申请的实施例,所述发光面板包括顶发射型或者底发射型有机电致发光面板。
本申请的实施例所提供的显示装置和显示终端通过设置光栅层(诸如衍射光栅微结构),可以将发光面板的出射光准直化,再配合光学调制单元对光线的整形效果,可以控制光线的方向,实现防窥应用。
根据本申请的实施例,所述显示装置和显示终端可以采用有机电致发光面板与液晶显示面板相结合的结构,其中有机电致发光面板控制颜色可持续发光(电压不变),并由液晶显示面板(例如通过TFT基板)控制液晶确定灰阶,避免了有机电致发光面板由于灰阶变化带来的残像问题,同时可提高有机电致发光面板的寿命。
此外,根据本申请的实施例,通过采用金属线栅偏光片(Wire Grid Polarizer,WGP)替代常规液晶显示面板中的传统偏光片,可以使器件整体厚度薄型化。由于金属线栅偏光片的金属层具有一定的反射率,可以提高有机电致发光面板的光取出效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对示例性实施例的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是示例性和说明性,而不意味着对本申请进行任何限制。对于本领域普通技术人员来讲,还可以根据这些附图获得其它附图。当结合附图阅读时,通过参照以下对说明性实施例的详细描述,将更好地理解本申请实施例的各个方面及其进一步的目的和优点,在附图中:
图1为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图;
图2为依照本申请的至少一个实施例提供的一种光栅层的原理示意图;
图3(a)-3(b)为依照本申请的至少一个实施例提供的光学调制单元的示例性等效光学器件的原理示意图;
图4为依照本申请的至少一个实施例提供的显示装置的子像素区域与光学调制单元的关系示意图;
图5为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图;
图6为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图;
图7为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图;
图8为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图;以及
图9(a)-9(d)为依照本申请的至少一个实施例实现的金属线栅偏光片图案化的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将参照附图来详细描述本申请的实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得所有其它实施例都属于本申请保护的范围之内。
贯穿本说明书全文,谈及特征、优点或类似的措辞并非意味着可以利用本申请而实现的所有特征与优点应当在或者是在本申请的任何单个的实 施例中。相反,要理解涉及特征与优点的措辞意味着结合实施例所描述的具体特征、优点或特性包括在本申请的至少一个实施例中。因而,贯穿本说明书全文,对特征和优点的讨论以及类似的措辞可以指同一实施例,但却不一定指同一实施例。此外,所描述的本申请的特征、优点以及特性可以用任何合适的方式合并在一个或多个实施例中。相关领域的技术人员将会认识到,可以在没有特定实施例的一个或多个具体特征或优点的情况下实践本申请。在其它的示例中,可以在某些实施例中实现附加的特征和优点,其不一定出现于本申请的所有实施例之中。
图1为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图。本申请实施例所提供的显示装置可以包括发光面板103和设置于所述发光面板103的出光侧的至少一个光学调制单元101。如图1所述,在所述发光面板103与所述光学调制单元之间101设置有光栅层102。可选地,如稍后结合图5-图8所描述的,也可以在发光面板103中设置有光栅层102。根据本申请的实施例,所述光学调制单元101用于将入射光线调制到以某一预设角度出射,所述光栅层102用于将入射光线的出射方向平行化。
举例来说,所述光栅层102可以对来自所述发光面板103的光线具有选择和修正作用,使得所述光学调制单元101的入射光成为基本平行的光束。所述光学调制单元101可以进一步调整该平行光束的方向,使得光线以预设的特定角度出射,从而达到防窥效果。
图2为依照本申请的至少一个实施例提供的一种光栅层的原理示意图。如图2所示,根据本申请实施例的光栅层102可以包括第一材料层201、第二材料层202和衍射光栅结构203,所述第二材料层202设置于所述衍射光栅结构203的出光侧,并且位于所述衍射光栅结构203与所述第一材料层201之间,其中,所述第一材料层201的折射率高于所述第二材料层202的折射率。
根据本申请的实施例,衍射光栅结构203可以包括槽面2031和光栅面 2032。当入射光与槽面2031垂直并且满足2d*sinγ=λ时,波长为λ的光束会被以特定的角度闪耀加强形成出射光,其中d为光栅周期或宽度(pitch),γ为光栅槽角,λ为入射光的波长。举例来说,对应于本申请实施例所提供的显示装置的不同颜色(诸如R、G、B)的子像素区域,所述衍射光栅结构203的参数(诸如d和γ)可以不同。因而,通过设计不同的d值和γ值来应用于相应颜色的子像素区域,能够获得不同的出光角度和不同的出光波段。
换句话说,根据本申请实施例的衍射光栅结构203对入射光具有选择作用,其能够使得不同颜色的子像素区域的出射光分别成为一组与相应的槽面2031垂直的平行光束,进而从整体上看,经过衍射光栅结构203后的光线可以彼此平行。另一方面,经过衍射光栅结构203后的光线虽然彼此平行了,但是可能方向是倾斜的,因此还可以根据需要调整为竖直向上发射的光。
根据本申请的实施例,可以在衍射光栅结构203上设置第一材料层201和第二材料层202,由此通过一种诸如图2所示的衍射光栅微结构来实现光栅层102。举例来说,可以将第一材料层201与第二材料层202相贴合,并且贴合面倾斜。如图2所示,因为第一材料层201的折射率n1大于第二材料层202的折射率n2,那么根据折射定律i*sin n2=r*sin n1,出射角r小于入射角i,从而使得出射光线向中心汇拢,产生竖直向上的准直光。
因而,根据本申请的实施例,在发光面板103中或者在发光面板103与光学调制单元101之间设置诸如图2所示的衍射光栅微结构这样的光栅层102,可以通过将入射光线的出射方向平行化来实现发光面板103的出射光的准直化。进一步地,可以将根据本申请实施例的光学调制单元101配置为对经过准直化处理的发光面板103的出射光的行进方向进行左右(水平方向)调节或者上下(垂直方向)调节,从而通过控制光线的方向来实现防窥应用。
图3(a)-3(b)为依照本申请的至少一个实施例提供的光学调制单元的示 例性等效光学器件的原理示意图。如图3(a)-3(b)所示,根据本申请实施例的光学调制单元101可以包括第一基板301、第二基板304以及位于所述第一基板301与所述第二基板304之间的液晶层302。举例来说,可以在第一基板301和/或第二基板304上设置有多组电极结构303,各组所述电极结构303用于控制所述液晶层302中对应区域的液晶分子发生偏转形成微棱镜结构3051或3052,通过调整各组所述电极结构303的电压,可以控制所述微棱镜结构3051或3052将入射光线调制到以某一预设角度出射。
为了便于说明,图3(a)-3(b)中还示出了由X轴、Y轴和原点O限定的XOY参考平面,其中,图1所示的显示装置的剖面与该XOY参考平面平行。如图3(a)所示,当控制所述电极结构303的电压沿X轴的正向依次上升(例如按照等差数列值递增)时,所形成的微棱镜结构3051可以控制出射光线的行进方向相对于入射光线而言向左偏移(偏向低电压方向)。类似地,如图3(b)所示,当控制所述电极结构303的电压沿X轴的正向依次下降(例如按照等差数列值递减)时,所形成的微棱镜结构3052可以控制出射光线的行进方向相对于入射光线而言向右偏移(偏向低电压方向)。因此,通过如图3(a)-3(b)所示的光学调制单元,可以对入射光线实现水平方向(例如沿X轴方向)的调制。
可选地或者附加地,光学调制单元101还可以对入射光线实现垂直方向(例如沿垂直于XOY参考平面的方向)的调制。在这种情况下,多组电极结构303沿着垂直于XOY参考平面的方向被设置于光学调制单元101的第一基板301和/或第二基板304上。与图3(a)-3(b)中所示的结构类似,通过控制各组电极结构303的电压高低,在液晶层302中形成的微棱镜结构可以控制出射光线的行进方向相对于入射光线而言向上或向下(例如在垂直于XOY参考平面的方向上)发生偏移。
由此可见,通过应用至少一个光学调制单元101,可以对本申请实施例的显示装置的出射光线的方向进行控制,以便使得经调制的光线能够以某一预设角度(例如垂直于光学调制单元101的表面)出射。应当理解, 图3(a)-3(b)仅仅是示例性地示出了按照液晶盒结构方式实现的光学调制单元的等效光学器件,本领域普通技术人员在不付出创造性劳动的前提下,可以在图3(a)-3(b)所示结构的基础上设想出用于实现根据本申请实施例的光学调制单元的其它等效结构或变型。例如,还可以将本申请实施例的光学调制单元101实现为具有光调制功能(诸如光线方向调节功能)的任何其它合适的光学器件结构。
图4为依照本申请的至少一个实施例提供的显示装置的子像素区域与光学调制单元的关系示意图。根据本申请的实施例所提供的显示装置可以包括呈阵列排布的多个子像素区域,通过光学调制单元101所形成的微棱镜结构可对应于至少一个子像素区域。举例来说,呈阵列排布的所述多个子像素区域可以包括如图4所示的三列子像素区域403(例如,从右至左分别为R、G、B子像素区域),其中每列子像素区域可以对应于一个微棱镜结构,相应地,图4中用三个方框示意性地示出了光学调制单元402的三个微棱镜结构,用于对光线方向实现水平调制(如图4中的水平双向箭头所示)。类似地,图4中的子像素区域403包括四行子像素区域(每行具有R、G、B三个子像素区域),其中每行子像素区域可以对应于一个微棱镜结构,相应地,图4中用四个方框示意性地示出了光学调制单元401的四个微棱镜结构,用于对光线方向实现垂直调制(如图4中的垂直双向箭头所示)。
根据本申请实施例所提供的显示装置可以进一步包括液晶显示面板。所述液晶显示面板可以包括TN液晶显示面板、OCB液晶显示面板、MVA液晶显示面板、PVA液晶显示面板、IPS液晶显示面板或者FFS液晶显示面板。
在本申请的一实施例中,所述液晶显示面板可设置于所述发光面板103与所述光学调制单元101之间,其中,所述光栅层102位于所述发光面板103中(如图5-图8所示)。在本申请的另一实施例中,所述液晶显示面板可设置于所述光栅层102与所述光学调制单元101之间,其中,所 述发光面板103相对于所述液晶显示面板位于所述光栅层102的另一侧。在本申请的又一实施例中,所述液晶显示面板可设置于所述光栅层102与所述发光面板103之间,其中,所述光学调制单元101相对于所述液晶显示面板位于所述光栅层102的另一侧。
图5为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图。如图5所示的显示装置包括光学调制单元1011和1012、液晶显示面板、发光面板以及设置于所述发光面板中的光栅层102。如图5所示的液晶显示面板包括上偏光片(Polarizer,POL)501、矩阵基板(诸如无RGB色阻层的彩膜基板,或者无彩色滤波的黑色矩阵基板)502、液晶层503、阵列基板(诸如TFT基板)504和下偏光片505。
目前OLED日趋发展成熟,但考虑到其使用寿命和信赖性(例如残像)问题以及LCD在这些方面的优势,可以通过将二者结合来产生一种新的显示技术。根据本申请实施例的发光面板103可以包括有机电致发光面板。所述液晶显示面板和所述有机电致发光面板可以由光学胶(Optical Clear Adhesive,OCA)贴合而成。
如图5所示的有机电致发光面板至少包括封装基板1031、第一电极层(例如阴极层或阳极层)1032、第二电极层(例如阳极层或阴极层)1034以及位于第一电极层1032与第二电极层1034之间的发光层1033。举例来说,可在电极基板上实现所述第二电极层1034。在本申请的一实施例中,可以将光栅层102设置于第一电极层1032的出光侧,并且封装基板1031相对于第一电极层1032位于光栅层102的另一侧。
根据本申请实施例的发光面板103可以包括顶发射型有机电致发光面板或者底发射型有机电致发光面板。可以理解的是,在采用顶发射型有机电致发光面板的情况下,如图5所示的第一电极层1032为阴极层,而第二电极层1034可实现为阳极基板;相应地,在采用底发射型有机电致发光面板的情况下,第一电极层1032为阳极层,而第二电极层1034可实现为阴极基板。
在图5所示的显示装置中,有机电致发光面板可持续发光(固定电压)控制颜色,液晶显示面板(例如利用TFT基板)可控制液晶层503确定透过率(即亮度),从而避免了有机电致发光面板由于灰阶变化带来的残像问题,同时可提高有机电致发光面板的寿命。
根据本申请的实施例,如结合图2所描述的,光栅层102可以对发光面板的出射光线进行平行化处理,将其修正为准直光。进一步地,如结合图3(a)-3(b)所描述的,可以将光学调制单元1011和1012中的一个配置为对光线方向进行水平调制,将另一个配置为对光线方向进行垂直调制,从而使得光线在预设的特定方向上(例如基本垂直于显示装置的表面)出射,由此实现显示装置的防窥功能。
图6为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图。类似于图5,如图6所示的显示装置包括光学调制单元1011和1012、液晶显示面板、有机电致发光面板以及设置于所述有机电致发光面板中的光栅层102。与图5中所示的显示装置不同,在图6中示出的显示装置采用了金属线栅偏光片(WGP)来代替常规的下偏光片505,并且特别地,作为与液晶显示面板的上偏光片501相对应的下偏光片,所述金属线栅偏光片(诸如图6所示的第一金属线栅偏光片1035)被设置在有机电致发光面板中。
就此而言,根据本申请实施例的有机电致发光面板可以进一步包括第一金属线栅偏光片1035。举例来说,第一金属线栅偏光片1035可以设置于封装基板1031的出光侧,或者设置于封装基板1031与光栅层102之间(如图6所示),或者设置于光栅层102与第一电极层1032之间。第一金属线栅偏光片1035的狭缝方向与所述液晶显示面板的出光侧所设置的上偏光片501的透过轴平行。
根据本申请的实施例,可以采用纳米压印技术,例如按照以下任何一种方式来设置第一金属线栅偏光片:将第一金属线栅偏光片制备在有机电致发光面板的第一电极层上;将第一金属线栅偏光片先制备在有机电致发 光面板的封装基板玻璃上,再进行有机电致发光面板的封装;以及将第一金属线栅偏光片制备在已经封装的有机电致发光面板的封装基板玻璃上。由此,可以通过金属线栅偏光片的盒内(In-cell)结构来替代原有液晶显示面板的下偏光片。
由于金属线栅偏光片的金属层(材料通常为铝)具有一定的反射率(一般反射率为30%),与传统的偏光片相比,可以将不能透过的光反射回去进行再次利用,从而提高有机电致发光面板的光取出效率。此外,液晶显示面板采用的传统偏光片不仅厚度较厚,并且信赖性较差,在高温高湿环境中易产生卷曲及偏光性失效,而金属线栅偏光片本身的金属材料具有较好的信赖性效果。再者,考虑到金属线栅偏光片的金属层厚度通常在纳米量级(例如150nm),而传统偏光片厚度在微米量级(例如120um),本申请实施例的显示装置的器件整体厚度可以薄型化。
图7为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图。类似于图5和图6,如图7所示的显示装置包括光学调制单元1011和1012、液晶显示面板、有机电致发光面板以及设置于所述有机电致发光面板中的光栅层102。特别地,在该示例性实施例中,所述有机电致发光面板的封装基板1031被用作所述液晶显示面板的阵列基板504。
就此而言,如图7所示的液晶显示面板中并未设置如图5或图6中所示的阵列基板504(例如TFT基板),而是将有机电致发光面板的封装基板1031制备为具有TFT层的封装基板,从而使得有机电致发光面板的封装基板1031能够作为液晶显示面板的TFT基板。举例来说,可以针对有机电致发光面板的封装基板玻璃先制备完成液晶显示面板的TFT层,再进行有机电致发光面板的封装。本申请实施例所提供的这种显示装置可以在结构上节省至少一层玻璃(例如节省了TFT基板玻璃),从而简化制作工艺,节约成本。
图8为依照本申请的至少一个实施例提供的一种显示装置的剖面结构示意图。类似于图5和图6,如图8所示的显示装置包括光学调制单元1011 和1012、液晶显示面板、有机电致发光面板以及设置于所述有机电致发光面板中的光栅层102。特别地,在该示例性实施例中,所述液晶显示面板的上偏光片为第二金属线栅偏光片801。第二金属线栅偏光片801的狭缝方向与第一金属线栅偏光片1035的狭缝方向互相垂直。
对应于有机电致发光面板中的第一金属线栅偏光片1035,通过采用第二金属线栅偏光片801来进一步替代液晶显示面板中传统的上偏光片,可以实现液晶显示面板的双面WGP结构,从而使得显示装置的整体厚度更加薄型化。另外,通过使用彼此对应的第一和第二金属线栅偏光片,可以利用金属线栅偏光片的图案化设计,同时配合视图图像,以获得3D的显示效果。
图9(a)-9(d)为依照本申请的至少一个实施例实现的金属线栅偏光片图案化的示意图。根据该示例性实施例,第一金属线栅偏光片1035的狭缝方向在相邻子像素区域中互相垂直,和/或第二金属线栅偏光片801的狭缝方向在相邻子像素区域中互相垂直。举例来说,可以分别按照图9(a)和图9(b)所描绘的示意图来实现第一金属线栅偏光片1035和第二金属线栅偏光片801的图案化。可选地,还可以分别按照图9(c)和图9(d)所描绘的示意图来实现第一金属线栅偏光片1035和第二金属线栅偏光片801的图案化。通过对金属线栅偏光片进行图案化设计,再配合相应的视图,可以实现本申请实施例的显示装置的3D显示应用。
应当理解,图1-图9(d)仅示意性地示出了根据本申请实施例的示例性结构,在实际制作和应用时,根据本说明书所提供的教导,本领域普通技术人员可以设想本申请实施例的显示装置的各种等效结构或变型。例如,所述发光面板和/或所述液晶显示面板可以具有更多或更少的结构层和/或器件单元,以及可以视情况采用不同类型和/或模式的组件来实现所述发光面板和/或所述液晶显示面板。此外,尽管图5-图8将光栅层102示为位于诸如有机电致发光面板这样的发光面板中,然而可以理解的是,本申请实施例所提供的光栅层也可被设置在发光面板的外部,并且仍然可以采用金 属线栅偏光片来替代传统的偏光片。
根据本申请的实施例,通过在显示装置中设置光栅层(诸如图2所示的衍射光栅微结构),可以将发光面板的出光准直化,再配合采用至少一个光学调制单元,可以对光线的出射方向进行控制,实现防窥应用。此外,结合金属线栅偏光片的图案化设计,本申请的实施例还可以提供一种集成了3D与防窥性能的多功能显示装置。
本申请实施例还提供了一种显示终端,其包括根据前述任意示例性实施例所提供的显示装置。所述显示终端可以包括任何具有显示功能的移动终端、固定终端或便携式终端,例如包括但不限于:移动电话、智能手机、多媒体设备、桌上型计算机、膝上型计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理、音频播放器、视频播放器、数字照相机、数字摄像机、定位设备、电视接收机、无线电广播接收机、电子书设备、游戏设备、可穿戴设备和/或医疗设备等。
受益于在前述描述和关联附图中所呈现的教导的本申请所属领域的普通技术人员将想到在此阐述的本申请的很多修改和其它实施例。因此,应当理解,本申请将不限于所公开的具体实施例,并且旨在将所述修改和其它实施例包括在所附权利要求的范围之内。

Claims (15)

  1. 一种显示装置,其包括:
    发光面板和设置于所述发光面板的出光侧的至少一个光学调制单元,在所述发光面板中或者在所述发光面板与所述光学调制单元之间设置有光栅层,其中,所述光学调制单元用于将入射光线调制到以某一预设角度出射,所述光栅层用于将入射光线的出射方向平行化。
  2. 根据权利要求1所述的显示装置,其中,所述光学调制单元包括第一基板、第二基板以及位于所述第一基板与所述第二基板之间的液晶层,其中,所述第一基板和所述第二基板中的至少一个上设置有多组电极结构,各组所述电极结构用于控制所述液晶层中对应区域的液晶分子发生偏转形成微棱镜结构;通过调整各组所述电极结构的电压,控制所述微棱镜结构将入射光线调制到以某一预设角度出射。
  3. 根据权利要求2所述的显示装置,其中,所述显示装置包括呈阵列排布的多个子像素区域,所述微棱镜结构对应于至少一个子像素区域。
  4. 根据权利要求1-3中任何一项所述的显示装置,其中,所述光栅层包括第一材料层、第二材料层和衍射光栅结构,所述第二材料层设置于所述衍射光栅结构的出光侧,并且位于所述衍射光栅结构与所述第一材料层之间,其中,所述第一材料层的折射率高于所述第二材料层的折射率。
  5. 根据权利要求4所述的显示装置,其中,对应于所述显示装置的不同颜色的子像素区域,所述衍射光栅结构的参数不同。
  6. 根据权利要求1-3和5中任何一项所述的显示装置,其中,所述显示装置进一步包括液晶显示面板,所述液晶显示面板设置于:
    所述发光面板与所述光学调制单元之间,其中,所述光栅层位于所述发光面板中;或者,
    所述光栅层与所述光学调制单元之间,其中,所述发光面板相对于所述液晶显示面板位于所述光栅层的另一侧;或者,
    所述光栅层与所述发光面板之间,其中,所述光学调制单元相对于所 述液晶显示面板位于所述光栅层的另一侧。
  7. 根据权利要求6中所述的显示装置,其中,所述发光面板包括有机电致发光面板,并且所述有机电致发光面板至少包括封装基板、第一电极层、第二电极层以及位于所述第一电极层与所述第二电极层之间的发光层,其中,所述光栅层设置于所述第一电极层的出光侧,并且所述封装基板相对于所述第一电极层位于所述光栅层的另一侧。
  8. 根据权利要求7所述的显示装置,其中,所述有机电致发光面板的所述封装基板被用作所述液晶显示面板的阵列基板。
  9. 根据权利要求7或8所述的显示装置,其中,所述有机电致发光面板进一步包括第一金属线栅偏光片,其中,所述第一金属线栅偏光片设置于:
    所述封装基板的出光侧;或者,
    所述封装基板与所述光栅层之间;或者,
    所述光栅层与所述第一电极层之间。
  10. 根据权利要求9所述的显示装置,其中,在所述液晶显示面板的出光侧设置有上偏光片,并且所述第一金属线栅偏光片的狭缝方向与所述上偏光片的透过轴平行。
  11. 根据权利要求10所述的显示装置,其中,所述上偏光片为第二金属线栅偏光片。
  12. 根据权利要求11所述的显示装置,其中,所述第二金属线栅偏光片的狭缝方向与所述第一金属线栅偏光片的狭缝方向互相垂直。
  13. 根据权利要求6所述的显示装置,其中,所述液晶显示面板包括扭曲向列模式液晶显示面板、光学补偿弯曲模式液晶显示面板、多畴垂直配向模式液晶显示面板、图案垂直配向模式液晶显示面板、平面转换模式液晶显示面板或者边缘场转换模式液晶显示面板。
  14. 根据权利要求1-3中任何一项所述的显示装置,其中,所述发光面板包括顶发射型或者底发射型有机电致发光面板。
  15. 一种显示终端,其包括根据权利要求1-14中任何一项所述的显示 装置。
PCT/CN2017/000043 2016-04-27 2017-01-03 一种显示装置和显示终端 WO2017185813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,042 US10261386B2 (en) 2016-04-27 2017-01-03 Display device and display terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620373112.6 2016-04-27
CN201620373112.6U CN205542789U (zh) 2016-04-27 2016-04-27 一种显示装置和显示终端

Publications (1)

Publication Number Publication Date
WO2017185813A1 true WO2017185813A1 (zh) 2017-11-02

Family

ID=56795052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000043 WO2017185813A1 (zh) 2016-04-27 2017-01-03 一种显示装置和显示终端

Country Status (3)

Country Link
US (1) US10261386B2 (zh)
CN (1) CN205542789U (zh)
WO (1) WO2017185813A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205542789U (zh) 2016-04-27 2016-08-31 北京京东方光电科技有限公司 一种显示装置和显示终端
CN106778174A (zh) * 2016-12-19 2017-05-31 北京奇虎科技有限公司 一种显示控制方法、装置及移动终端
CN106773263B (zh) * 2017-01-13 2019-09-03 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN109143442A (zh) * 2018-09-14 2019-01-04 京东方科技集团股份有限公司 一种偏光片、显示模组及显示装置
CN109343662A (zh) * 2018-11-02 2019-02-15 深圳阜时科技有限公司 电子设备
CN114335382A (zh) * 2018-12-07 2022-04-12 京东方科技集团股份有限公司 显示模组及其制备方法
CN109917581A (zh) * 2019-03-05 2019-06-21 天马微电子股份有限公司 一种液晶显示面板及显示装置
CN110610664B (zh) * 2019-09-25 2021-11-30 云谷(固安)科技有限公司 具有偏光功能的盖板、柔性显示面板和可卷绕的显示装置
CN111564119B (zh) * 2020-05-12 2023-03-28 Oppo广东移动通信有限公司 显示屏组件及其制造方法,以及电子设备
CN116075177A (zh) * 2022-11-23 2023-05-05 厦门天马显示科技有限公司 一种显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001849A1 (en) * 2006-06-28 2008-01-03 Lg. Philips Lcd Co., Ltd. Dual-view display device and method of driving the same
CN102109101A (zh) * 2009-12-29 2011-06-29 财团法人工业技术研究院 面型光源模块以及光学膜片
US20130016312A1 (en) * 2011-07-13 2013-01-17 Kyungpook National University Industry-Academic Cooperation Liquid crystal display device
CN104090443A (zh) * 2014-06-18 2014-10-08 京东方科技集团股份有限公司 显示面板及显示装置
CN104570469A (zh) * 2015-02-16 2015-04-29 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN205281069U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置
CN205542789U (zh) * 2016-04-27 2016-08-31 北京京东方光电科技有限公司 一种显示装置和显示终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325204A (ja) * 1996-05-31 1997-12-16 Sony Corp 光学フィルタ、それを使用した画像表示装置および液晶表示素子
KR20070103526A (ko) * 2006-04-19 2007-10-24 삼성전자주식회사 액정 표시 모듈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001849A1 (en) * 2006-06-28 2008-01-03 Lg. Philips Lcd Co., Ltd. Dual-view display device and method of driving the same
CN102109101A (zh) * 2009-12-29 2011-06-29 财团法人工业技术研究院 面型光源模块以及光学膜片
US20130016312A1 (en) * 2011-07-13 2013-01-17 Kyungpook National University Industry-Academic Cooperation Liquid crystal display device
CN104090443A (zh) * 2014-06-18 2014-10-08 京东方科技集团股份有限公司 显示面板及显示装置
CN104570469A (zh) * 2015-02-16 2015-04-29 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN205281069U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置
CN205542789U (zh) * 2016-04-27 2016-08-31 北京京东方光电科技有限公司 一种显示装置和显示终端

Also Published As

Publication number Publication date
CN205542789U (zh) 2016-08-31
US10261386B2 (en) 2019-04-16
US20180129113A1 (en) 2018-05-10
US20180348591A9 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017185813A1 (zh) 一种显示装置和显示终端
US11126022B2 (en) Display device and display method thereof
US10663641B2 (en) Display panel and display device
US11126054B2 (en) Display panel and display device
US10663639B2 (en) Display device
WO2018157612A1 (zh) 一种液晶显示面板、液晶显示装置及其显示方法
TWI536050B (zh) 光學膜片及具有此光學膜片之顯示裝置
US11314110B2 (en) Liquid crystal display and driving method thereof
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
US11914235B2 (en) Viewing angle adjustment film structure, manufacturing method thereof, and display device
JP2016070949A (ja) 表示装置
JPWO2011036736A1 (ja) 立体画像表示装置
CN110286525B (zh) 显示基板、显示面板和显示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2014196125A1 (ja) 画像表示装置及び液晶レンズ
WO2017177671A1 (zh) 显示装置
WO2017177654A1 (zh) 一种显示装置
US10551559B2 (en) Optical assembly and liquid crystal display device with the optical assembly
US10678088B2 (en) Display apparatus comprising a lens assembly having first and second lens layers located between a polarization converting unit and a third lens layer and displaying method
US11169421B2 (en) Liquid crystal display and driving method thereof
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
CN206096710U (zh) 一种显示装置
JP2006251352A (ja) 表示装置およびレンズアレイシート
US10162384B2 (en) Display device
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15548042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788476

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788476

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 14/03/2019)