WO2017177671A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2017177671A1
WO2017177671A1 PCT/CN2016/105358 CN2016105358W WO2017177671A1 WO 2017177671 A1 WO2017177671 A1 WO 2017177671A1 CN 2016105358 W CN2016105358 W CN 2016105358W WO 2017177671 A1 WO2017177671 A1 WO 2017177671A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
electrode
sub
groove
Prior art date
Application number
PCT/CN2016/105358
Other languages
English (en)
French (fr)
Inventor
王倩
陈小川
赵文卿
许睿
王磊
杨明
卢鹏程
高健
牛小辰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/537,568 priority Critical patent/US10606144B2/en
Publication of WO2017177671A1 publication Critical patent/WO2017177671A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Definitions

  • Embodiments of the present disclosure relate to a display device.
  • the displays in the related art are mostly flat displays. As shown in FIG. 1, assuming that the viewer views the program directly in front of the flat display, the distance between the viewer and the center of the screen (L1) and the distance between the viewer and the two sides of the screen (L2) are not equal, which makes When the viewer is watching, the brightness of the image presented on both sides of the screen is incident on the human eye in an oblique direction (ie, not perpendicular to the display screen). Usually in this case, the viewer can receive the peak brightness emitted from the center of the screen.
  • the curved display has a screen that is curved by physical bending.
  • the distance between the viewer and the center of the screen (L1) is equal to the distance between the two sides of the screen (L1), at this time, regardless of the center of the screen or both sides of the screen.
  • the peak brightness emitted by the viewer is directly opposite to the viewer, so that the viewer can enjoy the viewing effect of the equidistance.
  • curved displays require physical bending of the screen, which requires high flexural properties of the material and is difficult to implement in the process.
  • An embodiment of the present disclosure provides a display device including: a flat display panel; and a liquid crystal lens, the liquid crystal lens is located in a light emitting direction of the display panel, and the liquid crystal lens is used to direct the light emitted by the display panel The direction of the center plane converges, the center plane being perpendicular to the display panel and passing through the vertical centerline of the display panel.
  • the liquid crystal lens includes: a first electrode and a second electrode disposed opposite to each other, wherein the first electrode includes a plurality of strip-shaped first sub-electrodes arranged in parallel, each of the first sub-electrodes An electrode extends along a vertical center line direction of the display panel; and a liquid crystal layer disposed between the first electrode and the second electrode.
  • the plurality of first sub-electrodes include an intermediate first sub-electrode at an intermediate position, and a width of the first sub-electrode on a same side of the intermediate first sub-electrode is away from the middle The direction of a sub-electrode gradually decreases.
  • the first electrode further includes: at least one second sub-electrode extending along a vertical center line direction of the display panel; wherein each of the first sub-electrodes is configured to be applied a voltage of a first polarity; the second electrode is configured to apply a voltage of a second polarity, the first polarity being opposite to the second polarity.
  • the at least one second sub-electrode includes a plurality of the second sub-electrodes, and a vertical projection of at least one of the first sub-electrodes on a plane of the flat display panel is located in the plurality of Any two of the second sub-electrodes are between vertical projections on the face of the planar display panel.
  • the width of the second sub-electrode is less than the width of the first sub-electrode adjacent thereto.
  • the second electrode is a face electrode.
  • the liquid crystal lens includes: a first electrode and a second electrode disposed opposite to each other, wherein the first electrode includes a plurality of first sub-electrodes arranged in an array; and a liquid crystal layer, the liquid crystal layer Provided between the first electrode and the second electrode.
  • the display panel includes: a first substrate and a second substrate disposed opposite and in parallel, wherein the second substrate is closer to the liquid crystal lens relative to the first substrate;
  • the light correcting portion is carried by the first substrate or the second substrate, and the light correcting portion is configured to correct incident light to be emitted light perpendicular to a surface of the display panel.
  • the display panel is a passive display panel
  • the display device further includes: a backlight module;
  • the backlight module includes: a light source, and a light correcting portion located in a light emitting direction of the light source, the light correcting portion For correcting incident light to be emitted light perpendicular to the panel surface of the display panel.
  • the backlight module further includes: a light guide plate, the light source is located at a side of the light guide plate, and the light correcting portion is located in a light emitting direction of the light guide plate, and the light guide plate is facing
  • the light correcting portion has a light collecting groove on a surface thereof; a part of the light emitted by the light source is totally reflected in the light guiding plate, and another portion is emitted from the light collecting groove and enters the light correcting portion.
  • the light correcting portion includes: a diffraction grating having a grating surface and a groove surface, the groove surface including a plurality of sub-groove surfaces, and each of the sub-groove surfaces is inclined with respect to the flat display panel Provided, wherein the grating surface is a light incident surface, the groove surface is a light exit surface; and a first dielectric layer, the first dielectric layer is located on a groove surface of the diffraction grating, and is emitted from the diffraction grating The light is refracted through the light exit surface of the first dielectric layer to become an outgoing light perpendicular to the surface of the display panel.
  • the light correcting portion further includes: a second dielectric layer, the second dielectric layer is located on a light exit surface of the first dielectric layer, and a light exit surface of the second dielectric layer is parallel to The display panel panel.
  • the light ray correction portion includes: a diffraction grating having a grating surface and a groove surface, the groove surface including a plurality of sub-groove surfaces, and the sub-groove surface is parallel to the display panel surface Wherein the grating surface is a light incident surface, and the groove surface is a light exit surface.
  • the diffraction grating includes a plurality of grooved portions arranged in a plurality of cycles, and the grooved portion in each cycle includes a plurality of grooved groups arranged, and each of the grooved groups includes a grooved portion
  • the number of the grooves is the same, and the shape of the groove portions in the same groove group is the same, and the shape of the groove portions in the different groove groups is different.
  • FIG. 1 is a schematic diagram of a viewing plane display in the related art
  • FIG. 2 is a schematic structural view of a curved display in the related art
  • FIG. 3 is a schematic view showing a curved display in the related art
  • 4A is an optical path diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 4B is a schematic diagram of the display device shown in FIG. 4 according to an embodiment of the present disclosure.
  • FIG. 5A is a schematic perspective structural view of a liquid crystal lens according to an embodiment of the present disclosure.
  • FIG. 5B is a side view of a liquid crystal lens according to an embodiment of the present disclosure.
  • 5C is a side view of a liquid crystal lens according to an embodiment of the present disclosure.
  • 5D is a side view of a liquid crystal lens according to an embodiment of the present disclosure.
  • Figure 5E is a partial enlarged view of a portion D in Figure 5D;
  • 5F is a side view of a liquid crystal lens according to an embodiment of the present disclosure.
  • Figure 5G is a partial enlarged view of the portion E in Figure 5D;
  • 5H is a schematic perspective structural view of a liquid crystal lens according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an optical path of a liquid crystal lens equivalent convex lens according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a position of a light correcting portion in a display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a diffraction grating according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a light correction unit according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a light correction unit according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a light correction unit according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a light correction unit according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a light correction unit according to an embodiment of the present disclosure.
  • 16 is a schematic diagram of a diffraction grating provided by an embodiment of the present disclosure.
  • Figure 17 is a schematic view of a diffraction grating provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of an active display device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural view of a backlight module in the display device shown in FIG. 19.
  • a flat display panel (also referred to as a display screen) is matched with the liquid crystal lens.
  • the liquid crystal lens can deflect the light emitted from the display panel to the viewing direction of the viewer, thereby substantially achieving equidistance. The sense of embracing surrounds the effect.
  • Display device provided by embodiment of the present disclosure, package
  • the display panel and the liquid crystal lens which can converge the light emitted by the display panel in the direction of the center surface can realize the curved surface display effect by adding a liquid crystal lens without bending the display panel. Since the display panel is flat, physical bending is not required, so that the problem that the curved display has high requirements on the material bending property and the difficulty in the process realization can be overcome.
  • an embodiment of the present disclosure provides a display device 1 including a planar display panel 11 and a liquid crystal lens 12.
  • the reason why the display panel 11 is planar is to distinguish it from the curved display screen, which indicates that the two surfaces of the display panel 11 (ie, the display surface 11a and the back surface 11b opposite to the display panel) are both planar. And usually the two are almost parallel.
  • the light outgoing direction of the display panel 11 is perpendicular to the display panel surface.
  • the board surface of the display panel 11 refers to, for example, the light-emitting surface of the display panel 11 facing the liquid crystal lens 12. That is, the light emitted from the display panel 11 is mainly emitted from the display surface 11a in a direction perpendicular to the panel surface of the display panel (direction A in the drawing).
  • the reason why "main" is emphasized is that there is often an error between the facts and the theory.
  • the light rays emitted from the display panel 11 are all perpendicular to the display panel surface, and it is required to have only a predetermined wavelength of light.
  • the display panel of the related art emits light from different angles, and thus its viewing angle (visual angle) is usually not zero.
  • the vertical light ray indicates that the display panel in this embodiment has a smaller viewing angle than the light emitted by the display panel in the related art, and generally the smaller the viewing angle, the better, if all the light is perpendicular to the display panel.
  • the angle of view is 0 degrees.
  • the light emitted by the ideal display panel can only be extended when the human eye is in the S area (in the direction perpendicular to the display panel in the plane of the display surface of the display panel).
  • the formed three-dimensional space is inside, it can be injected into the human eye, and the viewer can see the picture presented by the display panel; if it is outside the S area, the picture cannot be seen.
  • it is generally expected to have a large viewing angle.
  • it is desirable that the viewing angle of the display panel is as small as possible, and if the viewing angle is 0 degrees, it is optimal.
  • the display panel 11 can be an active display panel, and the display panel can be self-illuminating; It is a passive display panel, which usually provides backlighting for the backrest optical module. How to make the display panel emit vertical light will be described in detail in the following embodiments for different types of display panels.
  • the light emitted by the display panel 11 is not vertical light, however, if the display panel 11 can emit vertical light, the effect of the vertical light after convergence is better.
  • the liquid crystal lens 12 is located in the light outgoing direction of the display panel 11.
  • the liquid crystal lens 12 can be closely attached to the display surface of the display panel 11, and the two are separated and drawn in order to show the transmission of clear light.
  • the liquid crystal lens 12 is for condensing light emitted from the display panel 11 in the direction of the center plane 20, which is a virtual plane perpendicular to the display panel 11 and passing through the vertical center line 11c of the display panel.
  • the center plane 20 is shown by a plane perpendicular to the display panel 11 as indicated by a broken line and passing through the vertical center line 11c of the display panel.
  • the horizontal center line 11d refers to a center line which is approximately parallel to the line connecting the eyes of the viewer when the display panel is placed in a normally viewed manner; thus, the vertical center line 11c is clear.
  • the display device composed of the liquid crystal lens 12 and the display panel 11 can be used as a novel display panel, which can be used for a flat display panel that exhibits a curved surface display effect.
  • the light emitted by the display panel 11 converges in the direction of the center surface 20 only to deflect the light emitted from both sides of the center surface toward the center surface 20.
  • a light L1 emitted from the display panel 11 is parallel to the horizontal plane on which the display panel is placed, and then the light L1 passes through the liquid crystal lens 12 to obtain the light L2, which is also parallel to the horizontal plane, and the height of the L1 from the horizontal plane. It is equal to the height of the horizontal plane from L2.
  • the converging position can be used as the optimal viewing position.
  • this embodiment does not require that all of the emitted light converge on the center plane 20, and only the light is required to be deflected toward the center plane before passing through the liquid crystal lens 12 before passing through the liquid crystal lens 12.
  • the liquid crystal lens 12 functions, for example, to change the transmission direction of the vertical light, and thus there are many devices that can perform this function.
  • the size of the liquid crystal lens 12 is substantially the same as the size of the display panel.
  • the curved display of the related art has a curved screen, resulting in its thickness. D will be thicker than the flat panel display.
  • the liquid crystal lens is used to realize the deflection of the light, and the liquid crystal lens 12 can be formed into a planar shape and the thickness is relatively thin, which is advantageous for reducing the thickness of the entire display device in this embodiment.
  • the degree of adjustment of the light can be changed. For example, the voltage applied to the electrodes in the liquid crystal lens can be adjusted as needed, that is, the electric field in the liquid crystal lens can be adjusted, so that the convex lens equivalent to the liquid crystal lens is variable. In this way, in practical applications, a corresponding voltage can be applied to the liquid crystal lens according to the position of the viewer, so that the viewing effect is optimal.
  • the liquid crystal lens 12 includes a first electrode 121 and a second electrode 122 disposed opposite to each other, and a liquid crystal layer 123 disposed between the first electrode 121 and the second electrode 122.
  • the first electrode 121 includes a plurality of strip-shaped first sub-electrodes 121a arranged in parallel, each of the first sub-electrodes 121a extending in a direction of the vertical line 11c of the display panel.
  • the width of each of the first sub-electrodes 121a is constant.
  • the positions of the first electrode and the second electrode may be interchanged.
  • the opposite arrangement of the first electrode 121 and the second electrode 122 means that the two electrodes have opposite portions to form an electric field between the electrodes.
  • the second electrode 122 may be similar to the first electrode 121, and is composed of a plurality of strip-shaped sub-electrodes, and the sub-electrodes are in one-to-one correspondence with the first sub-electrodes.
  • the second electrode 122 is a surface electrode.
  • the electric field formed by the first electrode 121 and the second electrode 122 gradually increases from the middle to the two sides; so that the incident light from the middle incident light to the edge passes through the liquid crystal lens, as shown in FIG. 4B.
  • the angle of the deflection gradually increases.
  • a liquid crystal lens requires a closed space due to the inclusion of a liquid crystal layer. As shown in Fig. 5C, this closed space can be obtained by pairing two substrate substrates 124, 125. Of course, it is also possible to form a closed space (not shown in the drawings) from a base substrate and a display panel.
  • Embodiments of the present disclosure do not limit the type of liquid crystal lens.
  • the incident angle is ⁇ 1 and the refraction angle is ⁇ 2 .
  • the following formula can be obtained:
  • liquid crystal parameter ⁇ n of the liquid crystal can be determined by actually selecting the corresponding liquid crystal, and the cell thickness d of the liquid crystal lens can be calculated according to the above formula.
  • the above calculation method is by way of example only, and the embodiment of the present disclosure is not limited to this algorithm to obtain relevant parameters of the liquid crystal lens to manufacture a liquid crystal lens that meets the requirements of these parameters.
  • the width of the first sub-electrode 121a becomes gradually smaller.
  • the electrode width of the first sub-electrode 121a may be gradually decreased from the middle to the two sides; that is, the closer to the intermediate position, the larger the width of the first sub-electrode 121a, the farther away from the intermediate position of the first sub-electrode 121a The smaller the width, the different electrode widths in the respective first sub-electrodes 121a from the middle to the one side.
  • the electrode width of the first sub-electrode is gradually decreased from the middle to the both sides; for this implementation, adjacent first sub-electrodes 121a are allowed from the middle to the side. Two or more of the first sub-electrodes 121a have the same electrode width.
  • the electrode width of the first sub-electrode located at the intermediate position is m1 toward the left side. In the direction, one first sub-electrode having a width m2, two first sub-electrodes having a width m3, two first sub-electrodes having a width m4, and three first sub-electrodes having a width m5 are arranged in this order.
  • the liquid crystal lens is required to be equivalent to a convex lens (dashed line in FIG. 5D), the curvature of the middle portion is relatively flat, and the curvature of the both sides is large. At this time, it is necessary to perform finer adjustment of the liquid crystals on both sides, and thus it is required that the distribution density (the number of units per unit area) of the first sub-electrodes on both sides is larger than the distribution density in the intermediate portion.
  • the equivalent convex lens formed by the liquid crystal lens in the present embodiment is symmetrical.
  • the left and right sides of the equivalent convex lens formed by the liquid crystal lens are the same.
  • the voltage between the first electrode 121 and the second electrode 122 is gradually increased from the middle to the both sides, for example.
  • the voltage value of the second electrode 122 of FIG. 5D is 0V
  • the voltage values of the first sub-electrodes from the left side to the middle of FIG. 5D may be 9V, 8V, 7V, 6V, 5V, 4V, 3V, 2V, 1V, can be the same from the right side to the middle of Figure 5D.
  • the voltage value of the second electrode 122 of FIG. 5D is 0V
  • the voltage values of the first sub-electrodes from the left side to the middle of FIG. 5D may be 8V, 8V, 7V, 6V, 6V, 4V, 3V. 2V, 1V, can be the same from the right side to the middle of Figure 5D.
  • Fig. 5E is an enlarged view of a portion D of Fig. 5D showing the direction of the electric field formed when the voltage values applied by the adjacent two first sub-electrodes are different.
  • the first electrode 121 further includes: at least one second sub-electrode 121b extending along a vertical center line direction of the display panel.
  • the width of each of the first sub-electrodes 121a is constant.
  • Each of the second sub-electrodes 121b is adjacent to only the first sub-electrode 121a. That is, there is no case where two second sub-electrodes 121b are adjacent.
  • the direction of the electric field that the first sub-electrode 121a and the second electrode 122 can form is opposite to the direction of the electric field that the second sub-electrode 121b and the second electrode 122 can form.
  • the width of the second sub-electrode 121b is smaller than the width of the first sub-electrode 121a adjacent thereto. This is to prevent this reverse electric field from being placed too far into the forward electric field that would otherwise be needed.
  • an embodiment of the present disclosure may further provide a structure of a liquid crystal lens, a liquid crystal lens package.
  • the first electrode 121 and the second electrode 122 are disposed opposite to each other, wherein the first electrode 121 includes a plurality of first sub-electrodes 121c arranged in an array.
  • the array includes, for example, at least a plurality of first sub-electrode rows and a plurality of first sub-electrode columns.
  • the liquid crystal lens further includes a liquid crystal layer 123 disposed between the first electrode 121 and the second electrode 122.
  • the action of a row of the first sub-electrodes 121c arranged in the vertical center line direction of the display panel can be equivalent to one of the first sub-electrodes 121a in FIG. 5A. Therefore, the voltage magnitude of the first sub-electrode 121c of each column can refer to the voltage level of one first sub-electrode 121a, which will not be described here.
  • the first sub-electrode 121c is arranged in a dot matrix arrangement, so that the display device can be rotated by 90 degrees, that is, the original vertical center line becomes a horizontal center line, and when the original horizontal line becomes a vertical center line, the first electrode can also be passed.
  • the second electrode is energized such that the vertical light converges along the new center plane.
  • the display device provided by the embodiment of the present disclosure includes a display panel and a liquid crystal lens that can converge the light emitted by the display panel toward the center surface, thereby substantially realizing the surface of the display panel 11 by adding a liquid crystal lens without bending. The effect displayed. Further, if the light emitted by the display panel is vertical light, the surface display is better. Since the display panel is flat, physical bending is not required, so that the problem that the curved display of the related art has high requirements on the bendability of the material and is difficult in the process realization can be overcome.
  • the embodiment of the present disclosure provides a display device.
  • the structure of the display panel is described below.
  • the display panel can emit vertical light.
  • the display panel 11 is of various types. However, referring to FIG. 7 for any display panel, the first substrate 111 and the second substrate 112 are disposed opposite to each other in parallel. A pixel structure (the portion between 112 and 111 in the drawing) that can realize display is usually disposed between the two substrates. In order to simplify the description, the pixel structure is not drawn in detail in this embodiment.
  • the material of the substrate may be transparent glass or the like.
  • the second substrate 112 is defined closer to the liquid crystal lens 12 with respect to the first substrate 111, that is, the substrate near the liquid crystal lens 12 is referred to as a second substrate 112,
  • the substrate remote from the liquid crystal lens 12 is referred to as a first substrate 111.
  • the display panel 11 further includes: light correction In the portion 113, the light correcting portion 113 is carried by the first substrate 111 or the second substrate 112. It should be noted that the light correcting portion 113 is carried by the first substrate 111, and the light correcting portion 113 is formed on the first substrate 111, and may be located inside the first substrate 111 (the first position in the drawing) It may also be located outside the first substrate 111 (the second position in the drawing). Similarly, if the light correcting portion 113 is carried by the second substrate 112, it may be located inside the second substrate 112 (the fourth position in the drawing) or outside the second substrate 112 (the first in the figure) Three positions).
  • FIG. 7 is exemplified by the first position where the light correction unit 113 is disposed on the display panel, and the other positions are only the positions at which the light correction unit 113 located at the first position can be moved.
  • the light correcting portion 113 is in close contact with the surface of the substrate, but in fact, another layer may be provided between the light correcting portion 113 and the substrate.
  • an upper polarizer may be disposed between the second substrate 112 and the light correcting portion 113.
  • the light correcting portion 113 may be disposed on the upper polarizer and the second. Between the substrates 112.
  • the light correcting portion 113 is for correcting incident light to be emitted light perpendicular to the panel surface of the display panel.
  • the incident light refers to the light incident on the light correcting portion 113
  • the emitted light refers to the light emitted from the light correcting portion 113. If the light correcting portion 113 is located at the first position of FIG. 7, the direction of transmission of the light emitted by the light correcting portion 113 can be referred to the upward arrow in the drawing. In this way, the display panel 11 can emit vertical light.
  • the influence of the pixel structure on the light transmission direction is relatively small, it can be ignored in this embodiment.
  • passive display panel As is well known, such a display panel cannot emit light by itself, and can rely on the light emitted by the backlight module to realize display, so it can be called a passive display panel.
  • the passive display panel is described in detail by taking a liquid crystal display panel as an example.
  • the display panel 11 includes a first substrate 111 and a second substrate 112, and a liquid crystal layer 114 between the first substrate 111 and the second substrate 112. Since the liquid crystal display panel cannot emit light by itself, it is necessary to provide backlighting by the backlight module. For example, the light emitted by the backlight module is not vertical light. Therefore, the display panel 11 in this embodiment needs to correct the backlight emitted by the backlight module into vertical light.
  • the display panel 11 further includes: a wire grid polarizer (WGP) 115 disposed on the first substrate 111.
  • WGP wire grid polarizer
  • the metal wire grid polarizing plate 115 may be disposed outside the first substrate 111 or may be disposed inside the first substrate 111.
  • the metal wire grid polarizing plate 115 can be made using a nanoimprint technique.
  • the display panel 11 further includes a wire grid polarizer (WGP) 115 disposed inside the first substrate 111.
  • the metal wire grid polarizing plate 115 can replace the original lower polarizer.
  • the upper polarizer 116 can be disposed outside the second substrate 112.
  • the metal wire grid polarizing plate may be between the first substrate 111 and the liquid crystal layer 114.
  • it may be disposed on the inner side surface (also referred to as the upper surface) of the first substrate 111 to be in contact with the inner surface of the first substrate 111.
  • the display panel 11 is an ordinary liquid crystal display panel, that is, an array substrate and a color filter substrate.
  • the first substrate 111 may serve as a substrate of the array substrate, and the second substrate 112 may serve as a substrate of the color filter substrate; of course, the first substrate 111 may serve as a substrate of the color filter substrate, and the second substrate 112 may serve as a substrate.
  • the first substrate 111 is provided with a pixel electrode arranged in an array, a signal line for applying a voltage to the pixel electrode, a switching unit, etc., and further may include a common electrode. Etc. (These elements or layer structures are not shown in the drawings, refer to the related art); the second substrate 112 is provided with a color film layer, a black matrix, etc. (these layers are not shown in the drawings, and reference may be made to the relevant technology).
  • the display panel 11 in this embodiment further includes a light correcting portion 113.
  • the light correcting portion 113 is disposed between the first substrate 111 and the second substrate 112, that is, the light correcting portion 113 is in an in cell structure.
  • the light correcting portion 113 is formed inside the first substrate.
  • the light correcting portion 113 may be disposed on the TFT structure inside the first substrate 111, that is, the TFT structure is first formed on the first substrate 111, and the light correcting portion 113 is formed; and the first substrate 111 may be disposed on the first substrate 111.
  • a light correction portion 113 is formed between the TFT structure and the first substrate 111, and a TFT structure is formed on the light correction portion 113.
  • the light correcting portion 113 may be formed inside the second substrate 112. at this time, The light correcting portion 113 can be formed on the color film, that is, the color film is first formed on the second substrate 112, and the light correcting portion (not shown) is formed on the color film; and the second substrate 112 can also be disposed on the second substrate 112. A light correction portion 113 is formed between the color film 117 and the second substrate 112, and a color film 117 is formed on the light correction portion 113.
  • the size of the light correcting portion 113 may be the same as the size of the display panel, at least the same as the size of the display area in the display panel (ie, the area where light is emitted for display).
  • the light correcting portion 113 may include a diffraction microstructure.
  • the diffractive microstructure may be a diffraction grating 40 as shown in FIG.
  • the diffraction grating 40 is made of a transparent material and is a transmissive diffraction grating having a grating surface 40a and a groove surface 40b, and may be, for example, a blazed grating.
  • the groove surface 40b is zigzag, and the angle between the zigzag groove surface 40b and the grating surface 40a is called a blaze angle, and is denoted as ⁇ .
  • the blaze angle is an acute angle.
  • the diffraction grating 40 includes a plurality of grooved portions, and the width corresponding to each groove portion is referred to as a groove period, denoted as d; d and ⁇ of each groove portion may be the same or different .
  • the adjacent surface (which borrows the meaning of the adjacent side) of the blaze angle ⁇ in the two faces constituting one groove portion is referred to as a sub-groove surface.
  • the light incident to the diffraction grating 40 can be converted into parallel light of a predetermined wavelength and emitted at a predetermined angle.
  • Other incident light rays are not reinforced, that is, the energy is weak, and this portion of the light is not considered in this embodiment.
  • the diffraction grating 40 has a selective effect on incident light, and a parallel beam output perpendicular to the sub-groove surface can be selected.
  • the diffraction grating 40 can select a plurality of sets of parallel beams, each set of parallel beams being perpendicular to the sub-groove surface, that is, when each sub-segment When the groove faces are parallel, the light emitted from the diffraction grating 40 is parallel light perpendicular to the entire groove surface 40b.
  • the light emission band is different.
  • the following light correcting section 113 is provided in the present embodiment.
  • the light correcting portion 113 provided in this embodiment can refer to FIG. 11 and includes a diffraction grating 40 and a first dielectric layer 41.
  • the diffraction grating 40 has a grating surface 40a and a groove surface 40b.
  • the groove surface 40b includes a plurality of sub-groove surfaces, and each sub-groove surface is inclined (so-called oblique arrangement, that is, not parallel to the display panel surface, nor perpendicular to the display panel surface) .
  • the grating surface 40a is a light incident surface
  • the groove surface 40b is a light exit surface.
  • the grating surface 40a is parallel to the display panel surface, and then the sub-groove surface is necessarily inclined; and in combination with the working principle of the diffraction grating, the light emitted from the groove surface 40b may be vertical.
  • the light emitted from the groove surface 40b is not perpendicular to the surface of the display panel, so that it is necessary to perform another correction through the first dielectric layer 41.
  • the respective sub-groove surfaces of the groove surface 40b are disposed in parallel.
  • the first dielectric layer 41 is located on the groove surface 40b of the diffraction grating, and the light emitted from the diffraction grating 40 is refracted by the light exit surface 41b of the first dielectric layer to become an outgoing light perpendicular to the surface of the display panel.
  • the light emitted from the diffraction grating 40 is parallel rays perpendicular to the groove surface 40b, which simplifies the design of the light exit surface 41b of the first dielectric layer.
  • the light exit surface 41b of the first dielectric layer may be a slope, for example, the slope is flat.
  • the thickness of the left end of the first dielectric layer 41 is still relatively large. Therefore, in the present embodiment, for example, as shown in FIG. 12, the light exit surface 41b of the first dielectric layer includes a plurality of parallel refractive sub-surfaces 41b_1, each of which is a flat slope as shown.
  • the light exit surface 41b further includes a connector face 41b_2 that connects the refractive sub-surfaces 41b_1.
  • the refractive sub-surface 41b_1 is used for refracting the light emitted from the diffraction grating 40 into the light of the vertical display panel surface; in addition to the connection function of the connection sub-surface 41b_2, in order to avoid interference with light, for example, the connection sub-surface can be 41b_2 is perpendicular to the sub-groove surface of the diffraction grating 40.
  • the medium W Light is refracted at the interface of the first dielectric layer 41 and other transparent media (referred to as the medium W).
  • the transmission direction of the incident light l1 is known, and the transmission direction of the refracted light 12 is required to satisfy the requirements of the vertical display panel surface, and thus is also known.
  • the refractive index n1 of the first dielectric layer 41 is known.
  • the refractive index n2 of the medium W can also be known; for example, if the light correcting portion 113 includes only the diffraction grating 40 and the first dielectric layer 41, and the first dielectric layer 41 Directly contacting the liquid crystal layer, n2 is the refractive index of the liquid crystal layer; for example, if the light correcting portion 113 only contains The diffraction grating 40 and the first dielectric layer 41 are in two parts, and the light correcting portion 113 is located outside the polarizer on the display panel, and then n2 is the refractive index of the air.
  • the sub-groove surface of the groove surface 40b is opposite to the oblique direction of the light exit surface 41b of the first dielectric layer.
  • the sub-groove surface is an oblique direction of the left low right height
  • the light exit surface 41b of the first dielectric layer is an oblique direction of the left high right and the low right, which is advantageous for thinning of the light correcting portion 113.
  • the light correcting portion 113 further includes a second dielectric layer 42 located on the light exit surface of the first dielectric layer 41, and the second dielectric layer 42
  • the light exit surface is parallel to the display panel surface. Since the light refracted from the light exit surface of the first dielectric layer 41 is already perpendicular to the display panel surface, the light is not refracted when passing through the exit surface of the second dielectric layer 42, so that the light emitted by the light correction 113 is vertical. On the display panel surface.
  • the embodiment further provides another light correcting portion 113, which includes a diffraction grating 40 having a grating surface 40a and a groove surface 40b.
  • the groove surface 40b includes a plurality of sub-groove surfaces, and the sub-groove The groove surface 40b is parallel to the display panel surface, wherein the grating surface 40a is a light incident surface, and the groove surface 40b is a light exit surface.
  • the outgoing light from the diffraction grating 40 can be of a specific wavelength and perpendicular to the surface of the display panel.
  • the light correcting portion 113 includes only the diffraction grating 40, the grating surface 40a of the diffraction grating 40 is inclined in this case, and the diffraction grating 40 at this time is not easily provided in the display panel. Therefore, for example, the light correcting portion 113 further includes a first dielectric layer 51 on which the diffraction grating 40 is located, and the grating surface 40a of the diffraction grating is bonded to the first dielectric layer 51. Thus, the first dielectric layer 51 functions to support the diffraction grating.
  • the light correcting portion 113 may further include: a second dielectric layer 52, the second dielectric layer being located on the groove surface 40b of the diffraction grating And the light exit surface of the second dielectric layer 52 is parallel to the display panel surface.
  • the added second dielectric layer 52 does not change the direction of transmission of the original vertical light.
  • Each of the gate 40 and the first dielectric layer 51 may include a plurality, and each of the dielectric layers 51 and the diffraction grating 40 located thereon are periodically arranged in a direction parallel to the panel surface of the display panel. Thereby, the thickness of the smaller light correcting portion 113 can be obtained.
  • the above mainly describes the transmission direction of the light.
  • a diffraction grating compatible with the color characteristics can be designed.
  • the diffraction grating 40 includes periodically grooved portions, and the groove portion in each period U includes: a groove group sequentially arranged, and each groove group includes a groove portion
  • the number of the groove portions in the same groove group is the same, and the shape of the groove portion in the different groove groups is different.
  • the groove portion in each period U includes three groove groups Q1, Q2, and Q3 arranged in order, each groove group includes one groove portion, and different grooves
  • the shape of the grooved portion in the group is different.
  • the shape of the groove portion is determined by d and ⁇ of the groove portion.
  • ⁇ of all groove portions is the same, that is, all the groove faces are parallel.
  • the groove width of the groove portion in the groove group Q1 is d1
  • the groove width of the groove portion in the groove group Q2 is d2
  • the groove groove of the groove portion in the groove group Q3 The width is d3, and d1, d2, and d3 are all different.
  • the three sub-groove surfaces can be blazed to enhance the wavelength of the emitted light.
  • the groove width can be adjusted such that the three sub-groove faces can respectively emit a band of three primary color lights (for example, red, green, and blue bands).
  • the light correcting portion 113 including such a diffraction grating 40 may be disposed in the light emitting direction of the color film, and may be disposed between the color film 117 and the second substrate 112, for example, with reference to FIG.
  • the groove portion in each period U includes two groove groups Q1 and Q2 arranged in order, and the groove group Q1 includes two groove portions of the same shape, and the groove group Q2
  • the two groove portions having the same shape are included, and the groove portions in the groove group Q1 are different from the groove portions in the groove group Q2.
  • the groove width of the groove portion in the groove group Q1 is d1
  • the groove width of the groove portion in the groove group Q2 is d2
  • d1 and d2 are different.
  • the two sub-groove surfaces can be blazed to enhance the wavelength of the exit.
  • the groove width can be adjusted such that the two sub-groove faces can respectively emit a band of two color lights (for example, a band of blue light and yellow light).
  • the light correcting portion 113 including such a diffraction grating 40 can be disposed at a position before the light passes through the color film, and can be disposed on the first substrate 111 with reference to FIG.
  • the white light emitted by a common backlight module is a mixed light of blue light and yellow light, and the diffraction grating 40 can be used to separately input blue light and yellow light.
  • the lines are shining out so that the display characteristics of the display panel are not excessively affected.
  • the first substrate 111 can also serve as a substrate of a COA (Color-filter on Array) substrate, and the second substrate 112 serves as a substrate of the package substrate;
  • the substrate 111 serves as a substrate of the package substrate, and the second substrate 112 serves as a substrate of the COA substrate.
  • the light correcting portion 113 can be added.
  • the structure and shape of the light correcting portion 113 can be referred to the description of the conventional liquid crystal display panel in the first implementation manner, and details are not described herein.
  • the self-luminous display panel is exemplified by an OLED (Organic Light-Emitting Diode) display panel.
  • OLED Organic Light-Emitting Diode
  • the display panel 11 (OLED display panel) includes: a first substrate 111 and a second substrate 112, and a plurality of OLED devices between the first substrate 111 and the second substrate 112, each The OLED device is the smallest display unit (which may be referred to as a pixel or sub-pixel) in the display panel.
  • a light correcting portion 113 may be added to the OLED display panel. Since the OLED device in the OLED display panel is a light-emitting component, the light correcting portion 113 should be disposed on the light-emitting side of the OLED device so that the light emitted from the OLED device can be corrected to the vertical light by the light correcting portion 113.
  • the light correcting portion 113 is disposed between the OLED device and the second substrate 112, that is, in the incell mode, so that the light correcting portion can be protected. Further, for example, the light correcting portion 113 is located on the inner side surface (the lower surface in the drawing) of the second substrate 112, and is in contact with the inner side surface of the second substrate 112.
  • the passive display panel itself cannot emit light, and it is necessary to rely on the light emitted by the backlight module to realize the display.
  • a light correction unit is added to the existing passive display panel to correct the light incident on the passive display panel to the vertical light, and is emitted by the passive display panel.
  • a new idea is provided for how to make the passive display panel emit vertical light. That is, without changing the structure of the original passive display panel, a light correction portion is added to the original backlight module, so that the backlight module can emit vertical light, and the influence of the passive display panel on the light transmission direction is ignored. Allows vertical light to exit from the passive display panel.
  • the embodiment provides a display device including a display panel 11, a liquid crystal lens 12, and a backlight module 13.
  • the display panel 11 is a passive display panel.
  • it may be a liquid crystal display panel.
  • the display panel may be a display panel in the related art, and may of course be the display panel mentioned in the second embodiment, so that the display panel can function as a secondary correction.
  • liquid crystal lens 12 For the liquid crystal lens 12, reference may be made to the description in the first embodiment, and no further details are provided herein.
  • the backlight module 13 includes a light source and a light correcting portion located in a light emitting direction of the light source, and the light correcting portion is configured to correct the incident light to the outgoing light perpendicular to the panel surface of the display panel.
  • the ray correcting section refer to the description in the second embodiment, and no further details are provided herein.
  • the backlight module 13 can be a direct type, and the direct type backlight module includes a light source, a diffusion plate, and an optical film group located in a light emitting direction of the diffusion plate.
  • the light correcting portion may be disposed between the diffusing plate and the optical film group, or may be disposed in the light emitting direction of the optical film group.
  • the backlight module 13 can also be a side-in type.
  • the side-lit backlight module further includes a light guide plate 131.
  • the light source 132 is located at a side of the light guide plate 131, and the light correcting portion 113 is located at the light guide plate. 131 in the direction of light.
  • the light source 132 may be a monochromatic light source, for example, may be a blue chip, and the blue light may enter the light guide plate 131.
  • all of the groove portions of the diffraction grating in the light correcting portion 113 have the same shape for emitting the blue light band, and it is of course preferable to allow the blue light to be emitted perpendicularly to the groove surface of the diffraction grating.
  • the light guide plate 131 has a light extraction groove on the surface facing the light correcting portion 113.
  • the light emitted by the light source 132 satisfies the total reflection condition
  • the light emitted by the light source 132 can be totally reflected in the light guide plate 131.
  • light having a specific incident angle ⁇ among the total reflection rays can be emitted from the light extraction groove and enter the light correction portion 113.
  • the specific incident angle ⁇ is set according to actual needs. For example, the angle can be calculated according to optical theory to ensure that light can be incident perpendicularly to the surface of the diffraction grating sub-groove. This makes it possible to make a selection before the light enters the light correcting portion 113, and it is possible to further ensure the verticality when the light is emitted from the light correcting portion 113.
  • the edge-lit backlight module may further include: an optical film group (not shown) located in the light-emitting direction of the light guide plate 131, and the like.
  • the light correcting portion 113 may be disposed between the light guide plate and the optical film group, or may be disposed in the light emitting direction of the optical film group.
  • the structure in which the light guide plate 131 and the light correcting portion 113 are combined may be provided inside the display panel.
  • the light source needs to be disposed on the side surface of the light guide plate 131.
  • the display device provided by the embodiment of the present disclosure adds a light correcting portion to the backlight module, so that the backlight module can emit vertical light, and the vertical light passes through the display panel and is still vertical light, thereby implementing a curved surface through the liquid crystal lens. The effect displayed.
  • the display device may be any product having a display function, such as a television, a notebook computer, a digital photo frame, a mobile phone, a tablet computer, a navigator, or the like, or may be a component having a display function. Such as a display, etc.

Abstract

一种显示装置(1),包括:平面的显示面板(11);以及液晶透镜(12),所述液晶透镜(12)位于所述显示面板(11)的出光方向上,所述液晶透镜(12)用于将所述显示面板(11)发出的光线向中心面(20)会聚,所述中心面(20)为垂直于所述显示面板(11)、且通过所述显示面板(11)的竖中线(11c)。这样,在不进行物理弯折的情况下,基本达到曲面显示效果。

Description

显示装置 技术领域
本公开实施例涉及一种显示装置。
背景技术
相关技术中的显示器多为平面显示器。如图1所示,假设观看者在平面显示器的正前方观看节目,那么观看者与屏幕中心的距离(L1)、观看者与屏幕两侧的距离(L2)二者并不相等,这就使得观看者在观看时,屏幕两侧呈现的图像亮度沿着倾斜方向(即不垂直于显示器屏幕)射入人眼。通常在这种情况下,观看者可以接收到屏幕中心发出的峰值亮度,然而,无法接收到屏幕两侧发出的峰值亮度,仅接收到屏幕两侧发出相对较弱的亮度,从而造成观看者看屏幕中心和屏幕两侧会产生远近不一致的观看效果。往往对于大尺寸的平面显示器而言,这一问题会更加明显。
为了解决上述问题,曲面显示器应运而生。如图2所示,曲面显示器具有通过物理弯折得到呈曲面的屏幕。如图3所示,当观看者在最佳观看位置时,观看者与屏幕中心的距离(L1)、观看着与屏幕两侧的距离(L1)相等,此时,无论屏幕中心还是屏幕两侧,其发出的峰值亮度都正对观看者,使得观看者能够享受到等距离感的环抱观看效果。
然而,曲面显示器需要对屏幕进行物理弯折,这就对材料可弯曲特性要求高、且在工艺实现上的难度较大。
发明内容
本公开实施例提供一种显示装置,包括:平面的显示面板;以及液晶透镜,所述液晶透镜位于所述显示面板的出光方向上,所述液晶透镜用于将所述显示面板发出的光线向中心面的方向会聚,所述中心面垂直于所述显示面板、且通过所述显示面板的竖中线。
在一个示例中,所述液晶透镜包括:相对设置的第一电极和第二电极,其中,所述第一电极包括多个平行排列的条状第一子电极,每个所述第一子 电极沿所述显示面板的竖中线方向延伸;以及液晶层,所述液晶层设置于所述第一电极与所述第二电极之间。
在一个示例中,所述多个第一子电极包括位于中间位置的中间第一子电极,在所述中间第一子电极的同一侧的所述第一子电极的宽度在远离所述中间第一子电极的方向上逐渐减小。
在一个示例中,所述第一电极还包括:至少一个第二子电极,所述第二子电极沿所述显示面板的竖中线方向延伸;其中,每个所述第一子电极配置为施加第一极性的电压;所述第二电极配置为施加第二极性的电压,所述第一极性相反于所述第二极性。
在一个示例中,所述至少一个第二子电极包括多个所述第二子电极,且至少一个所述第一子电极在所述平面显示面板的板面上的垂直投影位于多个所述第二子电极中的任意两个在所处平面显示面板的所述板面上的垂直投影之间。
在一个示例中,所述第二子电极的宽度小于与其相邻的所述第一子电极的宽度。
在一个示例中,所述第二电极为面电极。
在一个示例中,所述液晶透镜包括:相对设置的第一电极和第二电极,其中,所述第一电极包括呈阵列排布的多个第一子电极;以及液晶层,所述液晶层设置于所述第一电极与所述第二电极之间。
在一个示例中,所述显示面板包括:相对且平行设置的第一衬底和第二衬底,其中,所述第二衬底相对于所述第一衬底更靠近所述液晶透镜;以及光线校正部,所述光线校正部由所述第一衬底或所述第二衬底承载,所述光线校正部配置为将入射光校正为垂直于所述显示面板板面的出射光。
在一个示例中,所述显示面板为被动式显示面板,所述显示装置还包括:背光模组;所述背光模组包括:光源,以及位于光源出光方向上的光线校正部,所述光线校正部用于将入射光校正为垂直于所述显示面板板面的出射光。
在一个示例中,所述背光模组还包括:导光板,所述光源位于所述导光板的侧面,且所述光线校正部位于所述导光板的出光方向上,所述导光板在面对所述光线校正部的表面上具有取光槽;所述光源发出的光线一部分在所述导光板内全反射,另一部分从所述取光槽射出,并进入所述光线校正部中。
在一个示例中,所述光线校正部包括:衍射光栅,所述衍射光栅具有光栅面和槽面,所述槽面包含多个子槽面,且各个所述子槽面相对于所述平面显示面板倾斜设置,其中所述光栅面为光入射面,所述槽面为光出射面;以及第一介质层,所述第一介质层位于所述衍射光栅的槽面上,从所述衍射光栅出射的光线经所述第一介质层的光出射面折射,成为垂直于所述显示面板板面的出射光。
在一个示例中,所述光线校正部还包括:第二介质层,所述第二介质层位于所述第一介质层的光出射面上,且所述第二介质层的光出射面平行于所述显示面板板面。
在一个示例中,所述光线校正部包括:衍射光栅,所述衍射光栅具有光栅面和槽面,所述槽面包含多个子槽面,且所述子槽面平行于所述显示面板板面,其中所述光栅面为光入射面,所述槽面为光出射面。
在一个示例中,所述衍射光栅包括多个刻槽部,成多个周期排列,每个周期内的刻槽部包括排列成多个刻槽组,各个所述刻槽组包含的刻槽部的个数相同,且同一刻槽组内刻槽部的形状相同,不同刻槽组内刻槽部的形状不同。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中观看平面显示器的示意图;
图2为相关技术中曲面显示器的结构示意图;
图3为相关技术中观看曲面显示器的示意图;
图4A为本公开实施例提供的显示装置的光路图;
图4B为本公开实施例提供的观看图4所示显示装置的示意图;
图5A为本公开实施例提供的液晶透镜的立体结构示意图;
图5B为本公开实施例提供的液晶透镜的侧视图;
图5C为本公开实施例提供的液晶透镜的侧视图;
图5D为本公开实施例提供的液晶透镜的侧视图;
图5E为图5D中的D部局部放大图;
图5F为本公开实施例提供的液晶透镜的侧视图;
图5G为图5D中的E部局部放大图;
图5H为本公开实施例提供的液晶透镜的立体结构示意图;
图6为本公开实施例提供的液晶透镜等效凸透镜的光路示意图;
图7为本公开实施例提供的显示装置中光线校正部的位置示意图;
图8为本公开实施例提供的一种液晶显示装置示意图;
图9为本公开实施例提供的另一种液晶显示装置示意图;
图10为本公开实施例提供的衍射光栅示意图;
图11为本公开实施例提供的光线校正部的示意图;
图12为本公开实施例提供的光线校正部的示意图;
图13为本公开实施例提供的光线校正部的示意图;
图14为本公开实施例提供的光线校正部的示意图;
图15为本公开实施例提供的光线校正部的示意图;
图16为本公开实施例提供的衍射光栅的示意图;
图17为本公开实施例提供的衍射光栅的示意图;
图18为本公开实施例提供的主动式显示装置的示意图;
图19为本公开实施例提供的另一种显示装置示意图;
图20为图19所示的显示装置中背光模组的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中,通过平面的显示面板(也可称为显示屏)与液晶透镜相配合,例如,液晶透镜可将显示面板出射的光线向观看者的观看方位偏折,从而基本实现等距离感的环抱观看效果。本公开实施例提供的显示装置,包 含显示面板,以及可将显示面板发出的光线向中心面的方向会聚的液晶透镜,从而可以在显示面板无需弯折的情况下,通过增设液晶透镜实现曲面显示的效果。由于显示面板是平面的,无需做物理弯折,因此可以克服相关技术中曲面显示器对材料可弯曲特性要求高、且在工艺实现上难度较大的问题。
实施例一
如图4A和图4B所示,本公开实施例提供了一种显示装置1,包括:平面的显示面板11和液晶透镜12。
之所以说显示面板11的形态为平面,是为了区别于曲面显示屏,表明本实施例中显示面板11的两个表面(即显示面11a、以及与显示面板相对的背面11b)均为平面,且通常情况下二者几乎平行。
例如,在本实施例中,显示面板11的出光方向垂直于显示面板板面。这里,显示面板11的板面例如是指显示面板11的面对液晶透镜12的出光表面。也就是说,由显示面板11出射的光线中主要沿垂直于显示面板板面的方向(图中的A方向),从显示面11a射出。之所以强调“主要”,是由于事实与理论之间往往存有误差,在本实施例中,例如,从显示面板11出射的光线全部都垂直于显示面板板面,这里要求只要预定波段的光线(例如红光、绿光、蓝光)能够大部分垂直于显示面板板面出射就可以了。在本实施例中,将这种光线称为竖直光线。通常相关技术中的显示面板从不同的角度发射的光线,因此其视角(可视角度)通常不为零。这里的竖直光线表示相对于相关技术中的显示面板发射的光线而言,本实施例中的显示面板具有较小的视角,且一般而言视角越小越好,若所有光线垂直于显示面板板面出射,则视角为0度。
更形象些描述,假设观看者在该显示面板的前方,理想的显示面板所出射的光线可仅当人眼位于S区域(以显示面板的显示表面的平面范围在垂直于显示面板的方向上延伸所形成的三维空间)内时,方能射入人眼,此时观看者可以看到显示面板呈现的画面;若在S区域以外的区域,则无法看到画面。相比于相关技术中的显示面板通常期待具有较大的视角,在实施例中希望显示面板的视角越小越好,若视角为0度则最优。
该显示面板11可以是主动式显示面板,这种显示面板可自发光;也可以 是被动式显示面板,这种显示面板通常靠背光模组提供背光。在后面的实施例中会针对不同类型的显示面板,详细描述如何使显示面板发出竖直光线。
需要说明的是,本实施例中若显示面板11发出的光线不是竖直光线也可以;然而,若显示面板11可发出竖直光线,则竖直光线经会聚后的效果会更好些。
另外,如图4A、图4B所示,液晶透镜12位于显示面板11的出光方向上。示例的,液晶透镜12可以紧贴在显示面板11的显示面上,图示中为了表示清楚光线的传输才将两者分离绘制。液晶透镜12用于将由显示面板11出射的光线向中心面20的方向会聚,中心面20为垂直于显示面板11、且通过显示面板的竖中线11c的虚拟平面。参见图4,中心面20由虚线所示的垂直于显示面板11、且通过显示面板的竖中线11c的平面示出。与竖中线11c垂直的是显示面板的横中线11d,以便将显示面板的两条中线区分开。在本实施例中,横中线11d是指显示面板在处于正常被观看的方式摆放时,与观看者双眼连线近似平行的中线;从而,竖中线11c便是清楚的。
由液晶透镜12和显示面板11构成的显示装置,可以作为一种新型显示面板,即可用于呈现曲面显示效果的平面显示面板。
需要说明的是,本领域技术人员应该理解:由显示面板11出射的光线向中心面20的方向会聚,只是为了让中心面两侧出射的光线向中心面20的方向偏折。例如,并不希望改变光线的高度。例如:从显示面板11出射的一条光线L1,平行于放置显示面板的水平面,那么这条光线L1穿过液晶透镜12得到光线L2,该光线L2同样仍平行于该水平面,且L1距离水平面的高度与L2距离水平面的高度相等。
例如,若将出射的所有光线都会聚到中心面20上的同一位置,此时该会聚的位置可以作为最佳观看位置。例如,本实施例并不要求全部出射光线会聚到中心面20上,只要求光线在经过液晶透镜12后,相较于经过液晶透镜12之前,其传输方向朝向中心面的方向偏折即可。
由上述分析可知,液晶透镜12的作用例如是改变竖直光线的传输方向,那么可以起到此作用的器件比较多。一般而言,液晶透镜12的尺寸与显示面板的尺寸大致相同。
从图2中可以看出因相关技术中曲面显示器具有曲面屏幕,导致其厚度 D会相对平面显示器的厚度较大。而本申请采用了液晶透镜来实现光线偏折的作用,而液晶透镜12可以做成平面形态,且厚度比较薄,这样有利于降低本实施例中显示装置整体的厚度。另外,对于液晶透镜而言,还具有对光线的调节程度可变化的特点。例如,液晶透镜中对电极施加的电压可根据需要进行调节,也即液晶透镜中的电场可以调节,于是液晶透镜所等效成的凸透镜是可变的。这样,在实际应用中就可以根据观看者所在位置,给液晶透镜施加相应的电压,以使得观看效果最佳。
参考图5A-图5C,液晶透镜12包括:相对设置的第一电极121和第二电极122,以及设置于在第一电极121和第二电极122之间的液晶层123。其中第一电极121包括平行排列的多个条状第一子电极121a,每个第一子电极121a沿着显示面板竖中线11c的方向延伸。例如,每个第一子电极121a的宽度恒定。第一电极和第二电极的位置可以互换。
所谓第一电极121和第二电极122相对设置,是指两电极有正相对的部分,以便在两电极之间形成电场。可选的,第二电极122可以类似于第一电极121,由多个条状子电极组成,且这些子电极与第一子电极一一对应。为了降低对盒过程中,均由条状子电极组成的第一电极121和第二电极122因可能错位而减弱电场强度的问题,在本实施例中,例如,第二电极122为面电极。
通常而言,第一电极121和第二电极122形成的电场,从中间到两边逐渐增强;以使得从中间的入射光线到边缘的入射光线,在经过液晶透镜后,如图4B所示,光线偏折的角度(从液晶透镜出射的光线相对于入射到液晶透镜的光线偏转的角度,其大小等同于下文中的倾斜角)逐渐增大。在图4B中,对于最边缘的光线而言,光线偏折的角度为β;在图6中,对于最边缘的光线而言,倾斜角为α,β=α。
本领域技术人员应该理解,液晶透镜中因包含液晶层,因而需要一个封闭空间,如图5C所示,这一封闭空间可以有两个衬底基板124、125对盒得到。当然,也可以是由一个衬底基板与显示面板形成封闭空间(未在附图中示出)。
本公开的实施例不限制液晶透镜的类型。
首先,参考图6,可以先确定液晶透镜等效成的凸透镜的相关参数。以 55英寸显示面板为例,屏幕长边的宽度p=1.2m,并假设观看者位于显示装置正前方的中央位置,且观看距离为d=4m。
基于此,可以计算屏幕最边缘位置像素发出的光线到达位于中央位置的观看者(人眼)的倾斜角α,α是液晶透镜需要将入射光线偏转的最大角度,从而求得tanα=p/2d=0.15。
以屏幕最边缘位置的入射光线做计算,入射角记为θ1,折射角记为θ2,可得以下计算式:
Figure PCTCN2016105358-appb-000001
其中,n1为液晶透镜等效成凸透镜的介质折射率,例如n1=1.5;n2是空气的折射率,通常n2=1.0;r为液晶透镜等效成凸透镜的曲率半径。
从而可以计算得到r=2.14m。
进一步,可以计算液晶透镜等效成凸透镜的焦距,当然也可以说是液晶透镜的焦距,记为f。采用焦距计算公式f=(r*n1)/(n2-n1),得到f=4280mm。
随后,可以根据体现焦距和液晶透镜延迟量的对应关系的计算公式:f=(n2*p2)/(8Δn*d),计算得到Δn*d=64.9mm。
进而,可以通过实际需要选择相应的液晶,能够确定出这种液晶的液晶参数Δn,还可以根据上述公式计算得到液晶透镜的盒厚d。
上述计算方法仅作为举例,本公开实施例并不限于此算法,以得到液晶透镜的相关参数从而制造符合这些参数要求的液晶透镜。
关于液晶透镜12中第一电极121,进一步的,例如,参考图5D从位于中间的第一子电极121a到位于两侧的第一子电极121a,第一子电极121a宽度逐渐变小。可选的,可以是从中间到两侧第一子电极121a的电极宽度依次变小;即越靠近中间位置的第一子电极121a其宽度越大,越远离中间位置的第一子电极121a其宽度越小,从中间到一侧的各个第一子电极121a中的电极宽度均不相同。又可选的,参考图5D,第一子电极的电极宽度从中间到两侧呈梯度递减;对于这种实现方式而言,从中间到一侧的各个第一子电极121a中允许出现相邻的两个或两个以上的第一子电极121a其电极宽度相同。例如可参考图示,位于中间位置的第一子电极的电极宽度为m1,朝向左侧 的方向,依次排布有1个宽度为m2的第一子电极、2个宽度为m3的第一子电极、2个宽度为m4的第一子电极、以及3个宽度为m5的第一子电极,其中,m1>m2>m3>m4>m5。
之所以采用上述电极排布,是由于某些情况下,液晶透镜所需等效成的凸透镜(图5D中的虚线),其中间区域的弧度比较平缓,两侧区域的弧度较大。此时需要对两侧区域的液晶进行更加精细化的调节,因而需要第一子电极在两侧的分布密度(单位面积内的个数)要大于在中间区域的分布密度。
进一步的,例如,本实施例中液晶透镜形成的等效凸透镜是对称的,参考图5B-5D,液晶透镜形成的等效凸透镜的左侧和右侧相同。
对于图5B-5D所示的液晶透镜而言,第一电极121和第二电极122之间的电压,例如是从中间到两侧逐渐增大的。示例的,图5D的第二电极122的电压值为0V,从图5D的左侧到中间9个第一子电极的电压值可以依次为9V、8V、7V、6V、5V、4V、3V、2V、1V,从图5D的右侧到中间可以是一样的。又示例的,图5D的第二电极122的电压值为0V,从图5D的左侧到中间9个第一子电极的电压值可以依次为8V、8V、7V、6V、6V、4V、3V、2V、1V,从图5D的右侧到中间可以是一样的。
图5E为图5D中D部的放大图,其表明了当相邻的两个第一子电极施加的电压值不同时所形成的电场方向。
例如,为了避免水平电场的出现,在本公开实施例中,参考图5F,第一电极121还包括:至少一个第二子电极121b,第二子电极121b沿显示面板的竖中线方向延伸。例如,每个第一子电极121a的宽度恒定。每一所述第二子电极121b仅与第一子电极121a相邻。也就是不会有两个第二子电极121b相邻的情况出现。
参考图5G,第一子电极121a和第二电极122可形成的电场方向与第二子电极121b和第二电极122可形成的电场方向相反。通过增设这种反向调节电场的第二子电极,可以降低横向电场所带来的干扰。
更进一步的,第二子电极121b的宽度小于与其相邻的第一子电极121a的宽度。这样是为了让这种反向电场不置于过大的影响到原本需要的正向电场。
参考图5H,本公开实施例还可提供了一种液晶透镜的结构,液晶透镜包 括:相对设置的第一电极121和第二电极122,其中,第一电极121包括呈阵列排布的多个第一子电极121c。该阵列例如至少包括多个第一子电极行和多个第一子电极列。液晶透镜还包括:液晶层123,该液晶层123设置于第一电极121与第二电极122之间。
这样,沿显示面板竖中线方向排列的一列第一子电极121c共同所起的作用,可以相当于图5A中的一个第一子电极121a。因此,每一列第一子电极121c的电压大小可以参考一个第一子电极121a的电压大小,在这里不在赘述。
将第一子电极121c设置为点阵式排列,可以使得显示装置可以旋转90度时,即原来的竖中线变为横中线,原来的横中线变为竖中线时,也可以通过给第一电极和第二电极加电,使得竖直光线沿新的中心面会聚。
本公开实施例提供的显示装置,包含显示面板,以及可将显示面板发出的光线向中心面的方向会聚的液晶透镜,从而在显示面板11无需弯折的情况下,通过增设液晶透镜基本实现曲面显示的效果。进一步的,若显示面板发出的光线为竖直光线,则曲面显示的效果更佳。由于显示面板为平面,无需做物理弯折,因此可以克服相关技术中曲面显示器对材料可弯曲特性要求高、且在工艺实现上难度较大的问题。
实施例二
本公开实施例提供了一种显示装置,下面描述了显示面板的结构,该显示面板可以出射竖直光线;对于液晶透镜的结构,可以参考实施例一,在本实施例中不再赘述。
正如实施例一所述,显示面板11的类型有多种。但无论对于哪种显示面板都可参考图7,包括:相对且平行设置的第一衬底111和第二衬底112。两个衬底之间通常设置有可实现显示的像素结构(图示中是112和111之间的那部分)。为了简化描述,在本实施例中没有详细绘出像素结构。衬底的材质可以是透明玻璃等。为了清楚描述方案,在本实施例中限定第二衬底112相对于第一衬底111更靠近液晶透镜12,也就是说,将靠近液晶透镜12的衬底称为第二衬底112,将远离液晶透镜12的衬底称为第一衬底111。
为了使显示面板能够出射竖直光线,上述显示面板11还包括:光线校正 部113,该光线校正部113由第一衬底111或第二衬底112承载。需要说明的是,该光线校正部113由第一衬底111承载,表示光线校正部113制作在第一衬底111上,可以位于第一衬底111的内侧(图示中的第一位置),也可以位于第一衬底111的外侧(图示中的第二位置)。同样的,若该光线校正部113由第二衬底112承载,则可以位于第二衬底112的内侧(图示中的第四位置)或第二衬底112的外侧(图示中的第三位置)。
其中,图7以光线校正部113设置在显示面板的第一位置为例,其他位置仅表示位于第一位置处的光线校正部113可以挪到的位置。另外,图示中光线校正部113紧贴在衬底表面,但事实上,光线校正部113与衬底之间还可以设置有其他层。例如:若光线校正部113设置在第三位置,则第二衬底112和光线校正部113之间还可以设置有上偏光片,当然,光线校正部113也可以设置在上偏光片与第二衬底112之间。
上述光线校正部113用于将入射光校正为垂直于所述显示面板板面的出射光。这里的入射光是指入射到光线校正部113的光线,出射光是指从光线校正部113出射的光线。若光线校正部113位于图7的第一位置,则光线校正部113出射的光线的传输方向可以参考图中向上的箭头所示。这样,使得显示面板11可以出射竖直光线。当然,由于像素结构对光线传输方向的影响比较小,故在本实施例中可以忽略。
下面将分别针对不同类型的显示面板分别介绍。
被动式显示面板
首先介绍被动式显示面板。正如大家所熟知的,这种显示面板自身无法发光,可以依靠背光模组发出的光来实现显示,故可称为被动式显示面板。
在本实施例中被动式显示面板,以液晶显示面板为例进行详述。
如图8、图9所示,显示面板11包括:第一衬底111和第二衬底112,以及第一衬底111和第二衬底112之间的液晶层114。因液晶显示面板无法自己发光,因而需要由背光模组提供背光。例如,背光模组发出的光线并非竖直光线,因而本实施例中的显示面板11需要将背光模组发出的背光校正为竖直光线。
更进一步的,显示面板11还包括:设置在第一衬底111上的金属线栅偏振片(WGP,wire grid polarizer)115。这里的在第一衬底111上,表示由第 一衬底111承载的含义,具体的,金属线栅偏振片115可以设置在第一衬底111的外侧、也可以设置在第一衬底111的内侧。金属线栅偏振片115可以采用纳米压印技术制成。
大部分液晶显示面板需要在第一衬底的外侧设置下偏光片,在第二衬底的外侧设置上偏光片,这样就会要求在衬底的两侧都要设置相应的层或元件结构,这在工艺制程中需要翻转衬底,导致工序复杂。在本实施例中,例如,如图8、图9所示,显示面板11还包括:设置在第一衬底111内侧的金属线栅偏振片(WGP,wire grid polarizer)115。该金属线栅偏振片115可以替代原来的下偏光片,此时,上偏光片116可以设置在第二衬底112外侧。
需要说明是,金属线栅偏振片可以在第一衬底111与液晶层114之间即可。例如,可以设置在第一衬底111的内侧表面(也可称上表面)上,与第一衬底111内侧表面接触。
第一种可能实现的方式
该显示面板11为普通的液晶显示面板,即包含阵列基板和彩膜基板。第一衬底111可以作为阵列基板的衬底,第二衬底112作为彩膜基板的衬底;当然还可以是,第一衬底111作为彩膜基板的衬底,第二衬底112作为阵列基板的衬底。本实施例中以前一种情况为例,此时,第一衬底111上设置有阵列排布的像素电极、以及给像素电极施加电压的信号线、开关单元等,进一步的还可能包含公共电极等(这些元件或层结构在图示中未示出,可参考相关技术);第二衬底112上设置有彩色膜层和黑矩阵等(这些层在图示中未示出,可参考相关技术)。
为了校正光线,本实施例中的显示面板11还包含光线校正部113。例如,光线校正部113设置于第一衬底111和所述第二衬底112之间,即光线校正部113为盒内(in cell)结构。
如图8所示,光线校正部113制作在第一衬底的内侧。例如,光线校正部113可以设置在第一衬底111内侧的TFT结构之上,即在第一衬底111上先制作TFT结构,再制作光线校正部113;还可以设置在第一衬底111与TFT结构之间,即在第一衬底111上先制作光线校正部113,再在光线校正部113上制作TFT结构。
如图9所示,光线校正部113也可以制作在第二衬底112的内侧。此时, 光线校正部113可以制作在彩膜上,即在第二衬底112上先制作彩膜,再在彩膜上制作光线校正部(图中未示出);还可以设置在第二衬底112与彩膜117之间,即在第二衬底112上先制作光线校正部113,再在光线校正部113上制作彩膜117。
在本公开实施例中,光线校正部113的尺寸可与显示面板的尺寸相同,至少与显示面板中显示区域(即有光线射出以供显示的区域)的尺寸相同。
下面对光线校正部113的结构进行详述。在本实施例中光线校正部113可以包含衍射微结构。该衍射微结构可以是如图10所示的衍射光栅40。
衍射光栅40是透明材质制成且为透射式衍射光栅,具有光栅面40a和槽面40b,例如可以是一种闪耀光栅。其中槽面40b为锯齿形,锯齿形槽面40b与光栅面40a的夹角称为闪耀角,记为γ。一般而言闪耀角为锐角。由图示中看出,衍射光栅40包括多个刻槽部,每个刻槽部所对应的宽度称为刻槽周期,记为d;各个刻槽部的d和γ可以相同、也可以不同。为了方便描述,在槽面40b上,将构成一个刻槽部的两个面中闪耀角γ的邻面(借用了邻边的含义)称为子槽面。
衍射光栅40的校正光线原理是:基于光的衍射来提取出入射光,若向衍射光栅40入射的光线,其入射方向以及波长满足一定的条件,则该波长的光束会被以特定的角度闪耀加强出射。示例的,若入射到槽面40b的光与槽面40b垂直,且满足2d*sinγ=λ,则波长λ的光束会被以特定的角度(垂直于槽面40b的子槽面)闪耀加强出射。从而,通过设置每个刻槽部的γ和d,就可以将入射到衍射光栅40的光线转换为预定波长且以预定角度出射的平行光。其他入射光线非加强出射,也即能量较弱,在本实施例中不考虑这部分光线。
基于此,通过设计不同的d和γ,可以获取不同的出光角度和不同的出光波段。具体到本实施例中,衍射光栅40对入射光有选择作用,可以选择出与子槽面垂直的平行光束出射。
例如,若各个刻槽部的γ相同,此时各个子槽面平行,那么衍射光栅40可以选择出多组平行光束,每一组平行光束均与子槽面垂直,也就是说,当各个子槽面平行,则从衍射光栅40的出射光为垂直于整个槽面40b的平行光。此时,对于可以设置不同刻槽部的d,使得出光波段不同。
借助上述原理,本实施例中提供了以下光线校正部113。
本实施例提供的光线校正部113,可以参考图11,包括:衍射光栅40和第一介质层41。
衍射光栅40具有光栅面40a和槽面40b,槽面40b包含多个子槽面,且各个子槽面倾斜设置(所谓倾斜设置即不平行于显示面板板面、也不垂直于显示面板板面)。其中光栅面40a为光入射面,槽面40b为光出射面。为了方便设置,本实施例中可选的,光栅面40a平行于显示面板板面,那么子槽面就必然是倾斜的;又结合上述衍射光栅的工作原理,从槽面40b出射的光线可垂直于各个子槽面,那么从槽面40b出射的光线不会垂直于显示面板板面,因而还需通过第一介质层41再进行一次校正。
需要说明的是,为了使得由槽面40b出射的光线为平行光线,因此,例如,槽面40b的各个子槽面平行设置。
第一介质层41位于衍射光栅的槽面40b上,从衍射光栅40出射光线经第一介质层的光出射面41b折射,成为垂直于显示面板板面的出射光。按照上述优选方案,从衍射光栅40出射光线为垂直于槽面40b的平行光线,这样可以简化第一介质层的光出射面41b的设计。
需要说明的是,如图11所示,第一介质层的光出射面41b可以为一个斜面,例如该斜面为平坦的。然而这样第一介质层41的左端的厚度仍会相对较大。因此,本实施例中例如,如图12所示,第一介质层的光出射面41b包括多个平行的折射子面41b_1,如图所示每个折射子面为一平坦斜面。光出射面41b还包括将这些折射子面41b_1相连接的连接子面41b_2。其中,折射子面41b_1用于将从衍射光栅40出射的光线折射为垂直显示面板板面的光线;连接子面41b_2除了起到连接作用外,为了避免对光线的干扰,例如可以将连接子面41b_2垂直于衍射光栅40的子槽面。
光线在第一介质层41与其他透明介质(记为介质W)的界面上发生了折射。对于该界面而言,入射光l1的传输方向是已知的,折射光l2的传输方向要满足垂直显示面板板面的要求,因而也是已知的。其次,第一介质层41的透明材质选定后,第一介质层41的折射率n1是已知的。另外,若设计好光线校正部113的位置,则介质W的折射率n2也可得知;例如若光线校正部113仅包含衍射光栅40和第一介质层41两部分,且第一介质层41直接与液晶层接触,则n2就是液晶层的折射率;又例如若光线校正部113仅包含 衍射光栅40和第一介质层41两部分,且光线校正部113位于显示面板上偏光片的外侧,则n2就是空气的折射率。基于上述已知的参数,结合公知的折射定律,就可以设计出满足要求的界面(即第一介质层的光出射面41b),例如可以得到第一介质层的光出射面41b的倾斜方向及倾斜角度。
例如,如图11所示,在本实施例中槽面40b的子槽面与第一介质层的光出射面41b的倾斜方向相反。例如,子槽面是左低右高的倾斜方向,而第一介质层的光出射面41b是左高右低的倾斜方向,这样有利于光线校正部113的轻薄化。根据光路图以及折射定律n1*sini=n2*sinr,这种情况下由于i大于r,故需要n1<n2,也就是说,介质W的折射率要大于第一介质层41的折射率。
更进一步例如,如图11和图12所示,光线校正部113还包括:第二介质层42,第二介质层42位于第一介质层41的光出射面上,且第二介质层42的光出射面平行于显示面板板面。由于从第一介质层41的光出射面折射出的光线已经垂直于显示面板板面,因而,在经过第二介质层42的出射面时光线不发生折射,从而使得光线校正113的出射光垂直于显示面板板面。
参考图13所示,本实施例还提供了另一种光线校正部113,其包括:衍射光栅40,衍射光栅40具有光栅面40a和槽面40b,槽面40b包含多个子槽面,且子槽面40b平行于显示面板板面,其中光栅面40a为光入射面,槽面40b为光出射面。基于衍射光栅的原理,从衍射光栅40的出射光可以为特定波长、且垂直于显示面板板面。
若光线校正部113仅包含该衍射光栅40,由于此时衍射光栅40的光栅面40a呈倾斜态,此时的衍射光栅40不易稳固的设置在显示面板中。因此,例如,光线校正部113还包括:第一介质层51,衍射光栅40位于第一介质层51上,且所述衍射光栅的光栅面40a与第一介质层51贴合。这样,第一介质层51起到支撑衍射光栅的作用。
可选的,若要进一步保护衍射光栅40的槽面40b,则可以参考图14所示,光线校正部113还可以包括:第二介质层52,第二介质层位于衍射光栅的槽面40b上,且第二介质层52的光出射面平行于显示面板板面。这样,增设的第二介质层52不会改变原本竖直光线的传输方向。
进一步的,考虑到光线校正部113整体的厚度,可以参考图15,衍射光 栅40和第一介质层51均可以包含多个,每个介质层51以及位于其上的衍射光栅40沿着平行于显示面板板面的方向上,呈周期性排布。从而,可以获得较小的光线校正部113的厚度。
上述主要描述了光线的传输方向,下面考虑到衍射光栅对于特定波长光束会产生闪耀加强出射的作用,本实施例中考虑彩色显示面板的色彩特征,可以设计与色彩特征相适应的衍射光栅。
例如,参考图16、图17,衍射光栅40包括周期性排列的刻槽部,每个周期U内的刻槽部包括:依序排列的刻槽组,各个刻槽组包含的刻槽部的个数相同,且同一刻槽组内刻槽部的形状相同,不同刻槽组内刻槽部的形状不同。
示例的,如图16所示,每个周期U内的刻槽部包括依序排列的3个刻槽组Q1、Q2、Q3,每个刻槽组包括1个刻槽部,且不同刻槽组内的刻槽部的形状不同。刻槽部的形状由刻槽部的d和γ决定,在本实施例例如,所有刻槽部的γ相同,即所有子槽面平行。具体到该示例中,刻槽组Q1中的刻槽部的刻槽宽度为d1、刻槽组Q2中的刻槽部的刻槽宽度为d2、刻槽组Q3中的刻槽部的刻槽宽度为d3,d1、d2、d3三者均不相同。由衍射光栅的工作原理得知,这3个子槽面可闪耀加强出射的波长不同。示例的,可以通过调整刻槽宽度,使得这3个子槽面分别可闪耀出射三原色光的波段(例如红、绿、蓝的波段)。包含这种衍射光栅40的光线校正部113,可以设置在彩膜的出光方向上,例如可以参考图9设置在彩膜117与第二衬底112之间。
又示例的,如图17所示,每个周期U内的刻槽部包括依序排列的2个刻槽组Q1、Q2,刻槽组Q1包括2个形状相同刻槽部,刻槽组Q2包括2个形状相同刻槽部,其中,刻槽组Q1中的刻槽部与刻槽组Q2中的刻槽部形状不同。具体到该示例中,刻槽组Q1中的刻槽部的刻槽宽度为d1、刻槽组Q2中的刻槽部的刻槽宽度为d2,且d1和d2不同。由衍射光栅的工作原理得知,这2个子槽面可闪耀加强出射的波长不同。示例的,可以通过调整刻槽宽度,使得这2个子槽面分别可闪耀出射两种颜色光的波段(例如蓝光和黄光的波段)。包含这种衍射光栅40的光线校正部113,可以设置光线在经过彩膜之前的位置上,可以参考图8设置在第一衬底111上。常见的背光模组所发出的白光是蓝光和黄光的混光,利用这种衍射光栅40可以对蓝光和黄光分别进 行闪耀出射,从而不会过多影响显示面板的显示特性。
第二种可能实现的方式
另外,第一衬底111还可以作为COA(Color-filter on Array,彩膜设置在阵列基板上)基板的衬底,第二衬底112作为封装基板的衬底;当然还可以是,第一衬底111作为封装基板的衬底,第二衬底112作为COA基板的衬底。
在这种液晶显示面板中,同样可以增设光线校正部113,且该光线校正部113的结构和形状,可以参考第一种实现方式中对于普通液晶显示面板的描述,在此不再赘述。
自发光显示面板
在本实施例中自发光显示面板,以OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板为例进行详述。
如图18所示,显示面板11(OLED显示面板)包括:第一衬底111和第二衬底112,以及第一衬底111和第二衬底112之间的多个OLED器件,每个OLED器件作为显示面板中最小的显示单元(可以称为像素或亚像素)。
对于这种OLED显示面板而言,若要其发出竖直光线,可以在OLED显示面板中增设光线校正部113。由于OLED显示面板中的OLED器件为发光组件,因而,光线校正部113应设置在OLED器件的出光一侧,以便OLED器件发出的光线可以经过光线校正部113校正为竖直光线。例如,光线校正部113设置于OLED器件与第二衬底112之间,即采用incell方式,这样可以保护光线校正部。进一步例如,光线校正部113位于第二衬底112的内侧表面(图中的下表面)上,与第二衬底112的内侧表面接触。
其中,关于光线校正部113的结构和形状仍可参考第一种实现方式中对于普通液晶显示面板的描述,在此不再赘述。
实施例三
正如实施例二中提到的,被动式显示面板自身无法发光,需要依靠背光模组发出的光来实现显示。在实施例二中,在现有的被动式显示面板中增设光线校正部,以便将射入到被动式显示面板的光线校正为竖直光线,由被动式显示面板出射。
在本实施例中,针对如何使得被动式显示面板出射竖直光线提供了一种新的思路。即,不改变原有的被动式显示面板的结构,而在原有背光模组中增设光线校正部,以使得背光模组可以发出竖直光线,此时忽略被动式显示面板对光线传输方向的影响,从而使得竖直光线从被动式显示面板出射。
可以参考图19,本实施例提供了一显示装置,包括:显示面板11、液晶透镜12以及背光模组13。
其中,显示面板11为被动式显示面板,示例的,可以是液晶显示面板。该显示面板可以是相关技术中的显示面板,当然也可以是本实施例二中提到的显示面板,以便该显示面板可以起到二次校正的作用。
液晶透镜12可以参考实施例一中的描述,在此不加赘述。
背光模组13包括:光源,以及位于光源出光方向上的光线校正部,光线校正部用于将入射光校正为垂直于所述显示面板板面的出射光。该光线校正部可以参考实施例二中的描述,在此不加赘述。
背光模组13可以是直下式的,直下式背光模组包括光源、扩散板、以及位于扩散板出光方向上的光学膜片组。在本实施例中,光线校正部可以设置在扩散板与光学膜片组之间,也可以设置在光学膜片组的出光方向上。
例如,如图20所示,背光模组13还可以是侧入式的,侧入式背光模组还包括:导光板131,光源132位于导光板131的侧面,且光线校正部113位于导光板131的出光方向上。
示例的,光源132可以是单色光源,例如可以是蓝色芯片,此时蓝光可以进入导光板131。这种情况下,光线校正部113中衍射光栅的所有刻槽部形状相同,用于出射蓝光波段,当然优选的让蓝光垂直于衍射光栅的槽面出射。
进一步的,导光板131在面对光线校正部113的表面上具有取光槽。当光源132发出的光线满足全反射条件时,光源132发出的光线可在导光板131内全反射。并且,进行全反射的光线中具有特定入射角α的光线可从取光槽射出,并进入光线校正部113中。所谓特定入射角α是根据实际需要而设定的,例如该角度可以根据光学理论,保证光线可垂直入射到衍射光栅子槽面所计算得到的。这样可以在光线在进入光线校正部113之前进行一次选择,可以更进一步保证光线从光线校正部113出射时的竖直度。
当然,侧入式背光模组还可以包括:位于导光板131出光方向上的光学膜片组(图中未示出)等。在本实施例中,光线校正部113可以设置在导光板与光学膜片组之间,也可以设置在光学膜片组的出光方向上。
另外,这种导光板131和光线校正部113结合的结构也可以设置与显示面板内部,此时需要将光源设置在导光板131的侧面。
本公开实施例提供的显示装置,通过在背光模组中增设光线校正部,以使得背光模组可发出竖直光线,竖直光线经过显示面板仍为竖直光线,进而通过液晶透镜来实现曲面显示的效果。
需要说明的是,本公开各个实施例中提供的显示装置可以是电视机、笔记本电脑、数码相框、手机、平板电脑、导航仪等任何具有显示功能的产品,也可以是具有显示功能的部件,例如显示器等。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2016年4月11日递交的中国专利申请第201610222092.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种显示装置,包括:
    平面的显示面板;以及
    液晶透镜,所述液晶透镜位于所述显示面板的出光方向上,所述液晶透镜用于将所述显示面板发出的光线向中心面的方向会聚,所述中心面垂直于所述显示面板、且通过所述显示面板的竖中线。
  2. 根据权利要求1所述的显示装置,其中,所述液晶透镜包括:
    相对设置的第一电极和第二电极,其中,所述第一电极包括多个平行排列的条状第一子电极,每个所述第一子电极沿所述显示面板的竖中线方向延伸;以及
    液晶层,所述液晶层设置于所述第一电极与所述第二电极之间。
  3. 根据权利要求2所述的显示装置,其中,所述多个第一子电极包括位于中间位置的中间第一子电极,在所述中间第一子电极的同一侧的所述第一子电极的宽度在远离所述中间第一子电极的方向上逐渐减小。
  4. 根据权利要求2或3所述的显示装置,其中,所述第一电极还包括:至少一个第二子电极,所述第二子电极沿所述显示面板的竖中线方向延伸;
    其中,每个所述第一子电极配置为施加第一极性的电压;所述第二电极配置为施加第二极性的电压,所述第一极性相反于所述第二极性。
  5. 根据权利要求4所述的显示装置,其中,所述至少一个第二子电极包括多个所述第二子电极,且至少一个所述第一子电极在所述平面显示面板的板面上的垂直投影位于多个所述第二子电极中的任意两个在所处平面显示面板的所述板面上的垂直投影之间。
  6. 根据权利要求4或5所述的显示装置,其中,所述第二子电极的宽度小于与其相邻的所述第一子电极的宽度。
  7. 根据权利要求2至6中任一项所述的显示装置,其中,所述第二电极为面电极。
  8. 根据权利要求1所述的显示装置,其中,所述液晶透镜包括:相对设置的第一电极和第二电极,其中,所述第一电极包括呈阵列排布的多个第一子电极;
    液晶层,所述液晶层设置于所述第一电极与所述第二电极之间。
  9. 根据权利要求1所述的显示装置,其中,所述显示面板包括:
    相对且平行设置的第一衬底和第二衬底,其中,所述第二衬底相对于所述第一衬底更靠近所述液晶透镜;
    光线校正部,所述光线校正部由所述第一衬底或所述第二衬底承载,所述光线校正部配置为将入射光校正为垂直于所述显示面板板面的出射光。
  10. 根据权利要求1所述的显示装置,其中,所述显示面板为被动式显示面板,所述显示装置还包括:背光模组;
    所述背光模组包括:光源,以及位于光源出光方向上的光线校正部,所述光线校正部用于将入射光校正为垂直于所述显示面板板面的出射光。
  11. 根据权利要求10所述的显示装置,其中,所述背光模组还包括:导光板,所述光源位于所述导光板的侧面,且所述光线校正部位于所述导光板的出光方向上,所述导光板在面对所述光线校正部的表面上具有取光槽;
    所述光源发出的光线一部分在所述导光板内全反射,另一部分从所述取光槽射出,并进入所述光线校正部中。
  12. 根据权利要求9至11任一项所述的显示装置,其中,所述光线校正部包括:
    衍射光栅,所述衍射光栅具有光栅面和槽面,所述槽面包含多个子槽面,且各个所述子槽面相对于所述平面显示面板倾斜设置,其中所述光栅面为光入射面,所述槽面为光出射面;
    第一介质层,所述第一介质层位于所述衍射光栅的槽面上,从所述衍射光栅出射的光线经所述第一介质层的光出射面折射,成为垂直于所述显示面板板面的出射光。
  13. 根据权利要求12所述的显示装置,其中,所述光线校正部还包括:第二介质层,所述第二介质层位于所述第一介质层的光出射面上,且所述第二介质层的光出射面平行于所述显示面板板面。
  14. 根据权利要求8至10任一项所述的显示装置,其中,所述光线校正部包括:
    衍射光栅,所述衍射光栅具有光栅面和槽面,所述槽面包含多个子槽面,且所述子槽面平行于所述显示面板板面,其中所述光栅面为光入射面,所述 槽面为光出射面。
  15. 根据权利要求11至14所述的显示装置,其中,所述衍射光栅包括多个刻槽部,成多个周期排列,每个周期内的刻槽部包括排列成多个刻槽组,各个所述刻槽组包含的刻槽部的个数相同,且同一刻槽组内刻槽部的形状相同,不同刻槽组内刻槽部的形状不同。
PCT/CN2016/105358 2006-04-11 2016-11-10 显示装置 WO2017177671A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/537,568 US10606144B2 (en) 2006-04-11 2016-11-10 Display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610222092.7 2016-04-11
CN201610222092.7A CN105700269B (zh) 2016-04-11 2016-04-11 一种显示装置

Publications (1)

Publication Number Publication Date
WO2017177671A1 true WO2017177671A1 (zh) 2017-10-19

Family

ID=56219739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105358 WO2017177671A1 (zh) 2006-04-11 2016-11-10 显示装置

Country Status (3)

Country Link
US (1) US10606144B2 (zh)
CN (1) CN105700269B (zh)
WO (1) WO2017177671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11327336B2 (en) 2017-03-17 2022-05-10 Boe Technology Group Co., Ltd. Panel with virtual curved display surface and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700269B (zh) 2016-04-11 2019-05-03 京东方科技集团股份有限公司 一种显示装置
CN105652511B (zh) 2016-04-11 2019-06-07 京东方科技集团股份有限公司 一种显示装置
CN106054289B (zh) * 2016-05-27 2019-01-25 京东方科技集团股份有限公司 一种显示面板、显示装置
CN108153031A (zh) * 2017-12-07 2018-06-12 深圳市华星光电技术有限公司 一种显示面板及显示器
TWI660221B (zh) * 2018-04-11 2019-05-21 和碩聯合科技股份有限公司 曲面顯示裝置及其製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293688A (zh) * 2013-05-10 2013-09-11 昆山龙腾光电有限公司 二维/三维切换的显示器及其显示方法
CN103562618A (zh) * 2011-05-31 2014-02-05 三菱电机株式会社 背光装置及液晶显示装置
CN103733118A (zh) * 2011-08-11 2014-04-16 富士通株式会社 立体图像显示装置
CN104464523A (zh) * 2015-01-06 2015-03-25 京东方科技集团股份有限公司 曲面显示装置
JP2015102808A (ja) * 2013-11-27 2015-06-04 株式会社ジャパンディスプレイ 表示装置
CN105629622A (zh) * 2016-04-07 2016-06-01 京东方科技集团股份有限公司 一种显示模组及其控制方法、显示装置
CN105652511A (zh) * 2016-04-11 2016-06-08 京东方科技集团股份有限公司 一种显示装置
CN105700269A (zh) * 2016-04-11 2016-06-22 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8681423B1 (en) * 2013-01-29 2014-03-25 Hewlett-Packard Development Company, L.P. Light modulation employing fluid movement
EP2938919B1 (en) * 2013-07-30 2018-10-24 LEIA Inc. Multibeam diffraction grating-based backlighting
KR20150081106A (ko) * 2014-01-03 2015-07-13 삼성디스플레이 주식회사 표시 장치
CN105044987B (zh) * 2015-08-31 2019-05-03 京东方科技集团股份有限公司 一种曲面显示面板、制作方法及显示装置
KR102629389B1 (ko) * 2016-03-25 2024-01-25 삼성디스플레이 주식회사 액정 렌즈 및 이를 포함하는 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562618A (zh) * 2011-05-31 2014-02-05 三菱电机株式会社 背光装置及液晶显示装置
CN103733118A (zh) * 2011-08-11 2014-04-16 富士通株式会社 立体图像显示装置
CN103293688A (zh) * 2013-05-10 2013-09-11 昆山龙腾光电有限公司 二维/三维切换的显示器及其显示方法
JP2015102808A (ja) * 2013-11-27 2015-06-04 株式会社ジャパンディスプレイ 表示装置
CN104464523A (zh) * 2015-01-06 2015-03-25 京东方科技集团股份有限公司 曲面显示装置
CN105629622A (zh) * 2016-04-07 2016-06-01 京东方科技集团股份有限公司 一种显示模组及其控制方法、显示装置
CN105652511A (zh) * 2016-04-11 2016-06-08 京东方科技集团股份有限公司 一种显示装置
CN105700269A (zh) * 2016-04-11 2016-06-22 京东方科技集团股份有限公司 一种显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11327336B2 (en) 2017-03-17 2022-05-10 Boe Technology Group Co., Ltd. Panel with virtual curved display surface and display device

Also Published As

Publication number Publication date
CN105700269A (zh) 2016-06-22
US20180196329A1 (en) 2018-07-12
US10606144B2 (en) 2020-03-31
CN105700269B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2017177671A1 (zh) 显示装置
JP5197852B2 (ja) 立体画像表示装置
WO2017177654A1 (zh) 一种显示装置
US8780188B2 (en) Autostereoscopic display device
CN101681048B (zh) 液晶显示装置
US20110164318A1 (en) Display device and lenticular sheet of the display device
WO2017185813A1 (zh) 一种显示装置和显示终端
US20140253843A1 (en) Display apparatus
US20190033507A1 (en) Display device
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
US10649131B2 (en) Display device and head-mounted display
CN109493746A (zh) 显示面板及显示装置
US20160054573A1 (en) Image display apparatus
US10613394B2 (en) Display device
WO2017161656A1 (zh) 显示眼镜及其驱动方法
US20200192096A1 (en) Angle Compensating Lens and Display
US10996521B2 (en) Display device having design of adjustable light intensity direction
US10382745B2 (en) Stereoscopic image display device and driving method thereof
US10678088B2 (en) Display apparatus comprising a lens assembly having first and second lens layers located between a polarization converting unit and a third lens layer and displaying method
US11073692B2 (en) Display apparatus and head mount display
JP5938647B2 (ja) 画像表示装置
JP2009251195A (ja) 液晶表示装置
EP3299883B1 (en) Display device including lens panel
JP2009216990A (ja) 液晶表示装置
KR20190027430A (ko) 상이한 경사각을 갖는 미세구조체를 포함하는 도광판 및 백라이트유닛

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898484

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898484

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16898484

Country of ref document: EP

Kind code of ref document: A1