WO2017173810A1 - 显示装置、裸眼3d显示系统和虚拟现实眼镜 - Google Patents

显示装置、裸眼3d显示系统和虚拟现实眼镜 Download PDF

Info

Publication number
WO2017173810A1
WO2017173810A1 PCT/CN2016/102993 CN2016102993W WO2017173810A1 WO 2017173810 A1 WO2017173810 A1 WO 2017173810A1 CN 2016102993 W CN2016102993 W CN 2016102993W WO 2017173810 A1 WO2017173810 A1 WO 2017173810A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
liquid crystal
backlight
pixels
Prior art date
Application number
PCT/CN2016/102993
Other languages
English (en)
French (fr)
Inventor
杨明
王倩
陈小川
赵文卿
卢鹏程
许睿
王磊
牛小辰
高健
王海生
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/539,715 priority Critical patent/US10473944B2/en
Publication of WO2017173810A1 publication Critical patent/WO2017173810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • Embodiments of the present invention relate to a display device, a naked eye 3D display system, and virtual display glasses.
  • the direction of propagation of the light emitted from the display device can be precisely controlled to cause more light to be directed to the target position (for example, the human eye), thereby effectively improving the utilization of light of the display device and improving the display effect of the display device.
  • Embodiments of the present invention provide a display device, a naked-eye 3D display system, and virtual reality glasses, which can improve the utilization of light of the display device.
  • Embodiments of the present invention provide a display device including a backlight and a polarizer disposed on a light exiting side of the backlight, the display device further including a plurality of stacked on the light exit side of the polarizer a liquid crystal panel, each of the liquid crystal panels includes a plurality of light adjusting units, wherein the light adjusting units included in the plurality of liquid crystal screens are staggered; each of the light adjusting units is configured to generate light generated by the backlight Refraction to the target position or total reflection.
  • Embodiments of the present invention also provide a naked eye 3D display system including the display device described above.
  • the display device has a plurality of pixels arranged in an array, each pixel including a plurality of sub-pixels, each of the sub-pixels corresponding to one or more of the light adjustment units; the target position including a left eye and a right The eye, the odd-numbered column displays the left-eye image, the even-numbered column displays the right-eye image, and the odd-numbered column adjusts the light, and the light emitted by the backlight is refracted to the left The eye may be totally reflected.
  • the light adjustment unit adjusts the light evenly, the light emitted by the backlight may be refracted to the right eye or totally reflected.
  • Embodiments of the present invention also provide a virtual reality glasses including a left eyeglass lens and a right eyeglass lens, the left eyeglass lens and the right eyeglass lens each including one or more of the display devices.
  • the display device included in the left eyeglass lens displays a left eye image
  • each of the light adjusting units included includes a light that is refracted by the backlight and is directed to the left eye or occurs.
  • the right speculating device includes a display device for displaying a right eye image
  • each of the light adjusting units included includes a light that refracts light emitted by the backlight to be directed to the right eye or occurs completely reflection.
  • 1 is a schematic view of a display device
  • FIG. 2 is a first schematic view of a display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram 1 of adjusting light of a plurality of light adjusting units according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 1 of a light adjusting unit for adjusting light according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram 2 of adjusting light of a light adjusting unit according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram 2 of adjusting light of a plurality of light adjusting units according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram 3 of adjusting light of a plurality of light adjusting units according to an embodiment of the present invention.
  • FIG. 8 is a second schematic view of a display device according to an embodiment of the present invention.
  • Figure 9 is a schematic view showing the arrangement of strip electrodes and plate electrodes in the example of the present invention.
  • 31 light adjustment unit
  • 301 first substrate
  • 302 second substrate
  • 303 liquid crystal molecular layer
  • 304 stripe electrode
  • 305 plate electrode
  • the display device can precisely control the direction of propagation of the light emitted therefrom, and the display device includes a backlight 1', a polarizer 2', a first substrate 3', and a liquid crystal which are sequentially stacked. Molecular layer 4' and second substrate 5'.
  • the first substrate 3' is provided with a plurality of strip electrodes 31' (the strip electrodes have slits), and the second substrate 5' is provided with a plate electrode 51' (the plate electrodes do not have slits), by controlling each An electric field between the strip electrode 31' and the plate electrode 51' to form a plurality of light adjusting units 6'.
  • each light adjusting unit 6' can be adjusted by the light thereof, the function is equivalent to the liquid crystal prism, and the precision can be achieved. Controlling the direction of light propagation can improve the utilization of light in the display device.
  • each of the light adjusting units 6' adjusts the direction of propagation of the light emitted from the backlight 1' so as to be uniformly directed toward the target position,
  • the refraction angles of the light rays emitted from the respective light adjusting units 6' are different, and the refractive indices of the liquid crystal prisms corresponding to the respective light adjusting units 6' need to be different. Therefore, the deflection states of the liquid crystal molecules corresponding to the respective light adjusting units 6' are also different.
  • the display device includes a backlight 1 and a polarizer 2 disposed on a light-emitting side of the backlight 1 .
  • the display device further includes a light-emitting layer disposed on the polarizer 2 .
  • a plurality of liquid crystal panels 3 on the side each of the liquid crystal panels 3 includes a plurality of light adjusting units 31, and the light adjusting units 31 included in the plurality of liquid crystal panels 3 are staggered; each light adjusting unit 31 adjusts the light for causing the backlight 1 to emit
  • the light is refracted to the target position or totally reflected (equivalent to a liquid crystal prism).
  • the above target position may be a human eye or a camera.
  • the distance between each of the light adjusting units 31 and the target position is different. Therefore, if the light emitted from each of the light adjusting units 31 can be directed to the target position, it is required from each light adjusting unit 31.
  • the angle of refraction of the emitted light is different. More specifically, the further the distance between the light adjusting unit 31 and the target position, the larger the angle of refraction of the light emitted from the light adjusting unit 31.
  • the light adjusting unit 31 included in the plurality of liquid crystal panels 3 is staggered” may include various situations.
  • the plurality of light adjusting units 31 included in each liquid crystal panel are not in phase.
  • the light adjustment units 31 included in the different liquid crystal panels 3 are staggered; or, the partial light adjustment units 31 included in each liquid crystal panel 3 are adjacent to each other, and the light adjustment units 31 included in the different liquid crystal panels 3 are staggered; or, each The light adjusting units 31 included in the liquid crystal panels 3 are adjacent to each other, and the light adjusting units 31 included in the different liquid crystal panels 3 are staggered.
  • Each of the plurality of light adjusting units 31 included in each of the liquid crystal panels 3 is not adjacent to each other.
  • the phenomenon that the deflection state of the liquid crystal molecules in the liquid crystal panels 3 is completely eliminated can be completely eliminated.
  • the phenomenon that the propagation direction of the light emitted from the display device is disordered can be completely eliminated, so that more light can be directed to the target position, and the utilization of light of the display device can be more effectively improved. Therefore, in the embodiment of the present invention, it is preferable that each of the plurality of light adjusting units 31 included in each liquid crystal panel 3 is not adjacent, and the light adjusting units 31 included in the different liquid crystal panels 3 are staggered.
  • the shape of the longitudinal section of the equivalent liquid crystal prism may be a triangle, a quadrangle or the like.
  • the shape of the cross section of the liquid crystal prism is a right-angled triangle, the light emitted by the backlight 1 is directed perpendicularly to a right-angled surface of the liquid crystal prism, and the light utilization of the light adjusting unit 31 is the highest.
  • each light adjusting unit 31 In order to facilitate the understanding by those skilled in the art, the working state of each light adjusting unit 31 will be described in detail below in the embodiment of the present invention.
  • each light adjusting unit 31 can have the following three working states.
  • the light adjusting unit 31 does not adjust the direction of propagation of the light.
  • the incident angle ⁇ of the light is smaller than the critical angle of the liquid crystal prism equivalent to the light adjusting unit 31, and the light is in the light adjusting unit 31. Refraction occurs, and the refraction angle ⁇ is incident on the target position.
  • the incident angle ⁇ is greater than or equal to the critical angle of the liquid crystal prism equivalent to the light adjusting unit 31, and the light is in the light adjusting unit 31.
  • the critical angle of the liquid crystal prism equivalent to the light adjusting unit 31 can be determined comprehensively according to factors such as the refractive index of the liquid crystal prism and the wavelength of the light incident on the liquid crystal prism, and is not limited herein.
  • each pixel includes a plurality of sub-pixels (for example, red, green and blue sub-pixels), each sub-pixel corresponds to one light adjusting unit 31, or each The sub-pixels correspond to the plurality of light adjustment units 31.
  • sub-pixels for example, red, green and blue sub-pixels
  • each sub-pixel When each sub-pixel corresponds to the plurality of light adjustment units 31, each sub-pixel can display more gray scales, and the display device has a better display effect.
  • each light adjusting unit 31 has three working states. Therefore, the gray state of each sub-pixel display can be adjusted by adjusting the working state of each light adjusting unit 31 corresponding to each sub-pixel.
  • the display device in the embodiment of the present invention may include only one polarizer 2 disposed on the light-emitting side of the backlight 1 without including other polarizers, so that normal display can be realized, and the display device has a simple structure and low cost.
  • the light directed to the sub-pixels can be directed to the target position, and the sub-pixel is at the highest gray level.
  • the light that is directed to the sub-pixel cannot be directed to the target position, and the sub-pixel is at the lowest gray level; when a corresponding portion of the light adjusting unit 31 is in the off mode, another When a part of the light adjusting unit 31 is in the on mode, a part of the light that is directed toward the sub-pixel can be directed to the target position, and the sub-pixel is in the middle gray level, and the number of the light adjusting unit 31 and the other part of the light adjusting unit 31 can be adjusted. , so that the sub-pixels are in different intermediate gray levels.
  • one sub-pixel corresponds to three light adjusting units 31, and the refractive indexes of the three light adjusting units 31 are respectively n 1 , n 2 , and n 3 , and are irradiated to 3
  • the incident angles of the light rays on the light adjusting unit 31 are ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively .
  • the light rays directed to the three light adjusting units 31 are respectively at the refraction angles ⁇ 1 and ⁇ 2 .
  • ⁇ 3 is directed to the target position.
  • the three light adjusting units 31 are all in an on mode, and the sub-pixel corresponds to the maximum brightness, that is, the highest gray level.
  • ⁇ 1 is equal to or larger than the liquid crystal equivalent to the light adjusting unit 31.
  • ⁇ 2 , ⁇ 3 is smaller than the critical angle of the liquid crystal prism equivalent to the corresponding light adjusting unit 31
  • the light adjusting unit 31 corresponding to ⁇ 1 is in the open mode, and the other two light adjusting units 31 are all closed.
  • the sub-pixel corresponds to the intermediate brightness, that is, the intermediate gray level
  • the two pixels can be in the on mode by one of the three light adjustment units 31, and the one pixel is in the off mode, so that the sub-pixel corresponds to another intermediate brightness, that is, another Middle gray level.
  • the display device in one embodiment of the present invention includes two liquid crystal panels 3, namely a first liquid crystal panel and a second liquid crystal panel.
  • the light adjustment unit included in the first liquid crystal panel is a first light adjustment unit
  • the light adjustment unit included in the second liquid crystal screen is a second light adjustment unit.
  • the first light adjustment unit and the second light adjustment unit are alternately arranged in the row direction and the column direction.
  • the display device has a simple structure and can completely avoid the phenomenon that the orientation of liquid crystal molecules located between them is disordered.
  • the row direction refers to the row direction of the pixels included in the display device (for example, the scanning line extending direction)
  • the column direction refers to the row direction of the pixels included in the display device (for example, the data line extending direction).
  • the row direction and the column direction in the embodiment of the present invention are all the directions described above.
  • each liquid crystal panel 3 includes a first substrate 301, a second substrate 302, and a liquid crystal molecular layer 303 disposed therebetween, and the first substrate 301 faces the liquid crystal molecular layer 303.
  • a plurality of strip electrodes 304 are disposed on one surface, and the strip electrodes 304 extend in a column direction, and one light adjusting unit 31 corresponds to the plurality of strip electrodes 304 in the row direction, and the second substrate 302 faces one side of the liquid crystal molecule layer 303.
  • a plate electrode 305 is provided.
  • Fig. 9 shows a schematic plan view of the strip electrodes 304 and the plate electrodes 305, and the leads or vias connected to the strip electrodes and the plate electrodes are not shown.
  • the adjacent two liquid crystal panels 3 share one substrate, thereby making the display device simple in structure and low in cost.
  • one light adjustment unit 31 may correspond to 2 to 10 strip electrodes 304 in the row direction. It should be noted that the number of strip electrodes 304 corresponding to different light adjusting units 31 may be the same or different, and those skilled in the art may select according to actual needs.
  • the magnitudes of the voltages applied to the strip electrodes 304 may be different, or a plurality of adjacent strip electrodes 304 may be a group, and the voltages applied to the strip electrodes 304 may be the same size, and strips of different groups.
  • the magnitude of the voltage applied to the electrode 304 is different, which is not limited in the embodiment of the present invention, as long as the light adjusting unit 31 can be equivalent to the liquid crystal prism required.
  • a strip electrode 304 may be disposed at all positions of the first substrate 301 of each liquid crystal panel 3, and the strip electrode 304 between the adjacent two light adjusting units 31 may be applied with the same shape as the plate electrode 305.
  • the voltage is such that there is no electric field between the two, so that the liquid crystal molecules located between them do not deflect and do not change the direction of propagation of the light directed thereto. Since the strip electrodes are also disposed between the adjacent two light adjusting units 31, an electric field can be formed between the strip electrodes 304 and the plate electrodes 305 between the adjacent two light adjusting units 31, if necessary.
  • strip electrodes 304 are disposed at positions corresponding to only a plurality of light adjusting units 31 on the first substrate 301 of each liquid crystal panel 3, and strip electrodes are not disposed at positions between adjacent two light adjusting units 31. 304, in turn, causes less light to pass through the light incident at the position, less light loss, and high light utilization. A person skilled in the art can make a selection according to actual needs, which is not limited herein.
  • the display device may further include a light color conversion layer 4 on the light exiting side of the backlight 1, and the light color conversion layer 4 includes a plurality of regions for converting light rays directed thereto into different The light of the color is such that the display device achieves a color display.
  • the light color conversion layer 4 is, for example, a color filter formed using a resin.
  • all the light emitted by the backlight 1 is transmitted through the light color conversion layer 4 and converted into light of at least three colors, and generally converted into light of three colors of red, green, and blue (RGB), of course, The light is converted into yellow (Y), white (W) and the like, which is not limited in the embodiment of the present invention.
  • the light color conversion layer 4 is located on the light incident side of all the liquid crystal panels 3, for example, the light color conversion layer 4 can be in position. Between the backlight 1 and the polarizer 2, or between the polarizer 2 and the liquid crystal panel 3 closest to the polarizer 2, or the light color conversion layer 4 is located on the light exit side of the at least one liquid crystal panel 3, for example, Between any two of the liquid crystal panels 3, or located on the side of the liquid crystal panel 3 farthest from the backlight 1 facing away from the backlight 1.
  • the inventors have found that if the light color conversion layer 4 is disposed on the light exiting side of the at least one liquid crystal panel 3, the light rays that are incident on the at least one light adjusting unit 31 are light having a large wavelength range, thereby causing the light to be in the respective light adjusting units 31.
  • the refractive indices in the equivalent liquid crystal prisms are inconsistent, and the light rays are emitted from the light adjusting unit 31 to have different refraction angles, and the directions of propagation of the emitted light are inconsistent, so that the light that is supposed to be absorbed by a region of the light color conversion layer 4 may be from The other areas of the light-color conversion layer 4 are emitted, which affects the display effect of the display device.
  • the light color conversion layer 4 is located on the light incident side of all the liquid crystal panels 3, such as between the backlight 1 and the polarizer 2, or is located at the polarizer 2 and the distance polarized light. Between the most recent liquid crystal screens 3 of the film 2, at this time, the light emitted by the backlight 1 passes through the light color conversion layer 4, and then reaches the light adjusting unit 31 included in each liquid crystal panel 3, thereby avoiding the occurrence of the above problem and ensuring the display device. The display effect.
  • the backlight 1 in the embodiment of the present invention may be a white light source or a blue light source, and may be an inorganic or organic light emitting diode (LED).
  • the light color conversion layer 4 should also be adjusted accordingly.
  • the light color conversion layer 4 is a color filter, and the color filter includes a red area, a green area, and a blue area to convert the light emitted by the backlight 1 into RGB three. Light of a variety of colors.
  • the light color conversion layer 4 includes a first region, a second region, and a third region, wherein the first region is transparent (for example, a transparent layer is disposed), and the second region is provided with a red light.
  • the quantum dot a quantum dot for emitting green light is disposed in the third region, so that the light emitted by the backlight 1 is converted into light of three colors of RGB.
  • the above quantum dot material can also be replaced with a fluorescent material.
  • the display device in the embodiment of the present invention further includes a driving circuit (for example, an integrated circuit) for applying a voltage to each of the strip electrodes 304 and the plate electrodes 305, and the driving circuit passes through the flexible circuit board and the strip electrodes 304. It is connected to the plate electrode 305.
  • each of the liquid crystal panels 3 also includes a sealant for encapsulating the liquid crystal molecule layer 303 between the first substrate 301 and the second substrate 302.
  • An embodiment of the present invention provides a display device having the above structure, wherein the display device includes at least two liquid crystal panels stacked on the light exiting side of the polarizer, each of the liquid crystal panels includes a plurality of a light adjustment unit, and the light adjustment units included in the plurality of liquid crystal panels are staggered so that only some of the plurality of light adjustment units included in each liquid crystal panel are adjacent to each other, or all the light adjustment units are not adjacent,
  • the utility model can effectively alleviate or even completely eliminate the phenomenon that the deflection state of the liquid crystal molecules in each liquid crystal screen is disordered, thereby effectively alleviating or even completely eliminating the disorder of the propagation direction of the light emitted from the display device, so that more light can be emitted. To the target position, the utilization of light of the display device can be effectively improved.
  • an embodiment of the present invention further provides a naked-eye 3D display system, where the naked-eye 3D display system includes the above-mentioned display device, the display device has a plurality of pixels arranged in an array, and each pixel includes a plurality of sub-pixels, each of which The sub-pixel corresponds to one or more light adjustment units; the target position includes the positions of the left eye and the right eye, for example, the odd column sub-pixel displays the left eye image, the even column sub-pixel displays the right eye image, and the odd column light adjustment unit adjusts the light.
  • the light emitted by the backlight can be refracted to the left eye or totally reflected.
  • the light column adjustment unit adjusts the light
  • the light emitted by the backlight can be refracted to the right eye or totally reflected.
  • the naked eye 3D display can be realized by adjusting the working state of each light adjusting unit.
  • the naked-eye 3D display system includes the display device described above, the naked-eye 3D display system can achieve high light utilization while achieving naked-eye 3D display.
  • an embodiment of the present invention further provides a virtual reality glasses including a left eyeglass lens and a right eyeglass lens, wherein the left eyeglass lens and the right eyeglass lens respectively include one or more display devices;
  • the left eyeglass lens includes a display The device displays a left eye image, and each of the light adjusting units included includes a light refracting light from the backlight to be refracted to the left eye or total reflection occurs;
  • the right eyeglass includes a display device displaying the right eye image, which includes When each light adjusting unit adjusts the light, the light emitted by the backlight can be refracted to be directed to the right eye or totally reflected, so that the virtual reality display can be realized by adjusting the working state of the light adjusting unit included in the two display devices.
  • the virtual reality glasses include the display device described above, the virtual reality glasses can have high utilization of light while realizing virtual reality display.

Abstract

一种显示装置、裸眼3D显示系统和虚拟现实眼镜。该显示装置包括背光源(1)、设置于所述背光源(1)的出光侧的偏光片(2)、层叠设置于所述偏光片(2)的出光侧的多个液晶屏(3)。每个所述液晶屏(3)包括多个光线调节单元(31),多个所述液晶屏(3)包括的所述光线调节单元(31)错开设置;各所述光线调节单元(31)调节光线用于使所述背光源(1)发出的光线发生折射而射向目标位置或者发生全反射。本显示装置可应用于裸眼3D显示或者虚拟现实显示中。

Description

显示装置、裸眼3D显示系统和虚拟现实眼镜 技术领域
本发明的实施例涉及一种显示装置、裸眼3D显示系统和虚拟显示眼镜。
背景技术
可以对从显示装置发出的光线的传播方向进行精确控制,使更多的光线射向目标位置(例如人眼),进而能够有效提高显示装置的光线的利用率,提高显示装置的显示效果。
发明内容
本发明的实施例提供了一种显示装置、裸眼3D显示系统和虚拟现实眼镜,可以提高显示装置的光线的利用率。
本发明的实施例提供了一种显示装置,该显示装置包括背光源和设置于所述背光源的出光侧的偏光片,所述显示装置还包括层叠设置于所述偏光片的出光侧的多个液晶屏,每个所述液晶屏包括多个光线调节单元,多个所述液晶屏包括的所述光线调节单元错开设置;各所述光线调节单元用于使所述背光源发出的光线发生折射而射向目标位置或者发生全反射。
本发明的实施例还提供一种裸眼3D显示系统,该裸眼3D显示系统包括以上所述的显示装置。
例如,所述显示装置具有阵列排布的多个像素,每个像素包括多个亚像素,每个所述亚像素对应一个或多个所述光线调节单元;所述目标位置包括左眼和右眼,奇数列所述亚像素显示左眼图像,偶数列所述亚像素显示右眼图像,奇数列所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向左眼或者发生全反射,偶数列所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向右眼或者发生全反射。
本发明的实施例还提供一种虚拟现实眼镜,该虚拟现实眼镜包括左眼镜片和右眼镜片,所述左眼镜片和所述右眼镜片均包括一个以上所述的显示装置。
例如,所述左眼镜片包括的所述显示装置显示左眼图像,其包括的各所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向左眼或者发生全反射;所述右眼镜片包括的所述显示装置显示右眼图像,其包括的各所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向右眼或者发生全反射。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种显示装置的示意图;
图2为本发明实施例中的显示装置的示意图一;
图3为本发明实施例中的多个光线调节单元调节光线的示意图一;
图4为本发明实施例中的光线调节单元调节光线的示意图一;
图5为本发明实施例中的光线调节单元调节光线的示意图二;
图6为本发明实施例中的多个光线调节单元调节光线的示意图二;
图7为本发明实施例中的多个光线调节单元调节光线的示意图三;
图8为本发明实施例中的显示装置的示意图二;
图9为本发明示例中条状电极和板状电极布置的一个示意图。
附图标记说明:
1—背光源;             2—偏光片;          3—液晶屏;
31—光线调节单元;      301—第一基板;      302—第二基板;
303—液晶分子层;       304—条状电极;      305—板状电极;
4—光色转换层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
示例性地,如图1所示,显示装置能够对其发出的光线的传播方向进行精确控制,该显示装置包括依次层叠设置的背光源1’、偏光片2’、第一基板3’、液晶分子层4’和第二基板5’。第一基板3’上设置有多个条状电极31’(条状电极具有狭缝),第二基板5’上设置有板状电极51’(板状电极不具有狭缝),通过控制各条状电极31’和板状电极51’之间的电场,以形成多个光线调节单元6’,各光线调节单元6’对可以通过其光线进行调节时,功能相当于液晶棱镜,能够达到精确控制光线的传播方向,可提高显示装置的光线的利用率的目的。
本申请的发明人发现,对于具有上述结构的显示装置而言,由于各光线调节单元6’均要对背光源1’发出的光线的传播方向进行调节,以使其均射向目标位置,即从各光线调节单元6’射出的光线的折射角不同,与各光线调节单元6’等同的液晶棱镜的折射率需要不同,因此,各光线调节单元6’对应的液晶分子的偏转状态也均不同,这使得位于相邻两光线调节单元6’之间的液晶分子的偏转状态混乱,并进而使得射向该部分液晶分子的光线的传播方向混乱,无法射向目标位置,导致显示装置的光线的利用率仍然不高。
本发明实施例提供一种显示装置,如图2所示,该显示装置包括背光源1和设置于背光源1的出光侧的偏光片2,该显示装置还包括层叠设置于偏光片2的出光侧的多个液晶屏3,每个液晶屏3包括多个光线调节单元31,并且多个液晶屏3包括的光线调节单元31错开设置;各光线调节单元31调节光线用于使背光源1发出的光线发生折射而射向目标位置或者发生全反射(相当于液晶棱镜)。上述目标位置可以为人眼或者摄像头等。
如图3所示,每个光线调节单元31与目标位置之间的距离均不相同,因此,要使各光线调节单元31射出的光线均能射向目标位置,则要求从各光线调节单元31射出的光线的折射角不同。更具体地,光线调节单元31与目标位置之间的距离越远,从该光线调节单元31射出的光线的折射角越大。
需要说明的是,上述“多个液晶屏3包括的光线调节单元31错开设置”可以包括多种情形,例如,如图2所示,每个液晶屏包括的多个光线调节单元31均不相邻,不同的液晶屏3包括的光线调节单元31错开设置;或者,每个液晶屏3包括的部分光线调节单元31相邻,不同的液晶屏3包括的光线调节单元31错开设置;或者,每个液晶屏3包括的光线调节单元31均相邻,不同的液晶屏3包括的光线调节单元31错开设置。每个液晶屏3包括的多个光线调节单元31均不相邻,不同的液晶屏3包括的光线调节单元31错开设置时,能够完全消除各液晶屏3中的液晶分子的偏转状态混乱的现象,进而能够完全消除从显示装置发出的光线的传播方向混乱的现象,以使得更多的光线均能射向目标位置,能够更有效地提高显示装置的光线的利用率。因此,本发明实施例中优选每个液晶屏3包括的多个光线调节单元31均不相邻,不同的液晶屏3包括的光线调节单元31错开设置。
本发明实施例中的各光线调节单元31调节光线时,等同的液晶棱镜的纵截面的形状可以为三角形、四边形等。例如,当液晶棱镜的截面的形状为直角三角形时,背光源1发出的光线均垂直射向该液晶棱镜的一个直角面,光线调节单元31的光线的利用率最高。
为了便于本领域技术人员理解,下面本发明实施例对各光线调节单元31的工作状态进行详细说明。
在本发明实施例中,各光线调节单元31可以具有如下三种工作状态。
第一种,背光源1发出的光线照射至光线调节单元31时,光线的传播方向不发生改变,即光线调节单元31不调节光线的传播方向。
第二种,如图4所示,背光源1发出的光线照射至光线调节单元31时,光线的入射角α小于该光线调节单元31等同的液晶棱镜的临界角,光线在光线调节单元31中发生折射,以折射角β射向目标位置,此时,光线调节单元31等同的液晶棱镜的折射率n和入射角α以及折射角β之间的关系满足以下公式:n*sinα=sinβ,即光线调节单元31处于开启模式;
第三种,如图5所示,背光源1发出的光线照射至光线调节单元31时,入射角α大于或等于该光线调节单元31等同的液晶棱镜的临界角,光线在光线调节单元31中发生全反射,光线无法射出光线调节单元31,即光线调节单元31处于关闭模式。上述光线调节单元31等同的液晶棱镜的临界角可以根据该液晶棱镜的折射率以及入射到该液晶棱镜的光线的波长等因素综合确定,此处不进行限定。
另外,本发明实施例中的显示装置具有阵列排布的多个像素,每个像素包括多个亚像素(例如红绿蓝亚像素),每个亚像素对应一个光线调节单元31,或者,每个亚像素对应多个光线调节单元31。
当每个亚像素对应多个光线调节单元31时,每个亚像素能够显示的灰阶更多,显示装置的显示效果更好。由以上所述可知,每个光线调节单元31具有三种工作状态,因此,可以通过调节每个亚像素对应的各光线调节单元31的工作状态,进而实现对各亚像素显示的灰阶的调节。另外,本发明实施例中的显示装置可以仅包括设置在背光源1的出光侧的一个偏光片2,而不包括其他偏光片,即可实现正常显示,显示装置的结构简单,成本低。
以对应多个光线调节单元31的亚像素为例,当其对应的全部光线调节单元31均处于开启模式时,射向该亚像素的光线均能射向目标位置,该亚像素处于最高灰阶。当其对应的全部光线调节单元31均处于关闭模式,射向该亚像素的光线均无法射向目标位置,该亚像素处于最低灰阶;当其对应的一部分光线调节单元31处于关闭模式,另一部分光线调节单元31处于开启模式时,射向该亚像素的部分光线能够射向目标位置,该亚像素处于中间灰阶,可以通过调节一部分光线调节单元31和另一部分光线调节单元31的个数,使该亚像素处于不同的中间灰阶。
示例性地,如图3、图6和图7所示,一个亚像素对应3个光线调节单元31,3个光线调节单元31的折射率分别为n1、n2、n3,照射到3个光线调节单元31上的光线的入射角分别为α1、α2、α3
如图3所示,当α1、α2、α3均小于各光线调节单元31等同的液晶棱镜的临界角时,射向3个光线调节单元31的光线分别以折射角β1、β2、β3射向目标位置。此时,3个光线调节单元31均处于开启模式,该亚像素对应最大亮度,即最高灰阶。
如图6所示,当α1、α2、α3均等于或大于3个光线调节单元31各自等同的液晶棱镜的临界角时,射向3个光线调节单元31的光线均发生全反射,无光线射向目标位置。此时,3个光线调节单元31均处于关闭模式,该亚像素对应最小亮度,即最低灰阶。
当α1、α2、α3和3个光线调节单元31各自等同的液晶棱镜的临界角满足其他关系时,例如,如图7所示,α1等于或大于该光线调节单元31等同的液晶棱镜的临界角,α2、α3均小于其对应的光线调节单元31等同的液晶棱镜的临界角时,α1对应的光线调节单元31处于开启模式,其他两个光线调节单元31均处于关闭模式,该亚像素对应中间亮度,即中间灰阶,可以通过使3个光线调节单元31中的两个处于开启模式,一个处于关闭模式,以使该亚像素对应另一中间亮度,即另一中间灰阶。
下面根据本发明实施例的示例,对显示装置包括的液晶屏的数量和具体结构进行详细描述:
优选地,如图2所示,本发明一个实施例中的显示装置包括两个液晶屏3,即第一液晶屏和第二液晶屏。第一液晶屏包括的光线调节单元为第一光线调节单元,第二液晶屏包括的光线调节单元为第二光线调节单元。在行方向和列方向上,第一光线调节单元和第二光线调节单元均交替设置。该显示装置的结构简单,且能够完全避免位于二者之间的液晶分子取向混乱的现象出现。本公开中,行方向指的是显示装置包括的像素的行方向(例如扫描线延伸方向),列方向指的是显示装置包括的像素的行方向(例如数据线延伸方向)。如无特殊说明,本发明实施例中的行方向和列方向均为以上所述的方向。
可选地,如图2所示,每个液晶屏3包括相对设置的第一基板301、第二基板302以及位于二者之间的液晶分子层303,第一基板301朝向液晶分子层303的一面上设置有多个条状电极304,条状电极304的延伸方向为列方向,一个光线调节单元31在行方向上对应多个条状电极304,第二基板302朝向液晶分子层303的一面上设置有板状电极305。图9示出了条状电极304和板状电极305的一种平面示意图,图中未示出与这些条状电极和板状电极连接的引线或过孔。本发明实施例中优选,相邻的两个液晶屏3共用一个基板,进而使得显示装置的结构简单,成本低。
一个光线调节单元31在行方向上对应的条状电极304的个数越多,光线调节单元对光线的调节越精确,但对工艺和驱动方法的要求越高,本领域技术人员可以根据实际需要进行选择。示例性地,一个光线调节单元31在行方向上可以对应2~10个条状电极304。需要说明的是,不同的光线调节单元31对应的条状电极304的个数可以相同也可以不相同,本领域技术人员可以根据实际需要进行选择。另外,各条状电极304上施加的电压的大小可以均不同,或者相邻的多个条状电极304为一组,一组条状电极304上施加的电压的大小相同,不同组的条状电极304上施加的电压的大小不同,本发明实施例对此不进行限定,只要能使光线调节单元31能够等同所需的液晶棱镜即可。
进一步地,每个液晶屏3的第一基板301的所有位置处可以均设置有条状电极304,相邻两光线调节单元31之间的条状电极304上可以施加与板状电极305相同的电压,以使二者之间无电场,则位于二者之间的液晶分子不偏转,不会改变射向其的光线的传播方向。由于相邻两光线调节单元31之间也设置有条状电极,因此,若有需要时,也可以使相邻两光线调节单元31之间的条状电极304与板状电极305之间形成电场,进而使得该位置对应的液晶分子偏转以对射向其的光线的传播方向进行调节,进而使得该液晶屏3对光线的调节更灵活。或者,每个液晶屏3的第一基板301上仅多个光线调节单元31对应的位置处设置有条状电极304,由于相邻两光线调节单元31之间的位置处未设置有条状电极304,进而使得射向该位置处的光线经过的膜层少,光线损失少,光线的利用率高。本领域技术人员可以根据实际需要进行选择,此处不进行限定。
此外,如图8所示,显示装置还可以包括位于背光源1的出光侧的光色转换层4,光色转换层4包括多个区域,不同区域用于将射向其的光线转换为不同颜色的光线,以使得显示装置实现彩色显示。光色转换层4的一个示例为例如采用树脂形成的滤色片。示例性地,背光源1发出的所有光线全部透过光色转换层4后转换为至少三种颜色的光线,一般转换为红色、绿色、蓝色(RGB)三种颜色的光线,当然还可以转换成黄色(Y),白色(W)等颜色的光线,本发明实施例对此不进行限定。
光色转换层4位于所有液晶屏3的入光侧,例如,光色转换层4可以位 于背光源1和偏光片2之间,或者,位于偏光片2和距离偏光片2最近的液晶屏3之间,或者,光色转换层4位于至少一个液晶屏3的出光侧,例如,位于任意两个液晶屏3之间,或者,位于距离背光源1最远的液晶屏3背向背光源1的一侧。发明人发现,若光色转换层4设置于至少一个液晶屏3的出光侧,则射向至少一个光线调节单元31的光线为具有很大波长范围的光线,进而导致光线在各光线调节单元31等同的液晶棱镜中的折射率不一致,光线射出光线调节单元31时具有不同的折射角,射出的光线的传播方向不一致,进而使得本该被光色转换层4的一个区域吸收的光线可能会从光色转换层4的其他区域射出,影响显示装置的显示效果。因此,本发明实施例中优选,如图8所示,光色转换层4位于所有液晶屏3的入光侧,例如背光源1和偏光片2之间,或者,位于偏光片2和距离偏光片2最近的液晶屏3之间,此时,背光源1发出的光线先经过光色转换层4,再到达各液晶屏3包括的光线调节单元31,进而避免上述问题的出现,保证显示装置的显示效果。
可选地,本发明实施例中的背光源1可以为白光光源或者蓝光光源,可以为无机或有机发光二极管(LED)。当背光源1不同时,光色转换层4也应相应进行调整。示例性地,背光源1为白光光源时,光色转换层4为彩色滤光片,彩色滤光片包括红色区域、绿色区域和蓝色区域,以将背光源1发出的光线转换为RGB三种颜色的光线。背光源1为蓝光光源时,光色转换层4包括第一区域、第二区域和第三区域,其中,第一区域透明(例如设置透明层),第二区域内设置有用于发红光的量子点,第三区域内设置有用于发绿光的量子点,以使背光源1发出的光线转换为RGB三种颜色的光线。上述量子点材料也可以替换为荧光材料。
当然,本发明实施例中的显示装置还包括用于向各条状电极304和板状电极305上施加电压的驱动电路(例如集成电路),该驱动电路通过柔性电路板与各条状电极304和板状电极305连接。另外,每个液晶屏3也包括用于将液晶分子层303封装在第一基板301和第二基板302之间的封框胶(sealant)。上述集成电路、柔性电路板以及封框胶的具体结构和设置方式,本领域技术人员可以参照已有技术进行设置,此处不进行赘述。
本发明实施例提供一种具有如上所述结构的显示装置,由于该显示装置包括层叠设置于偏光片的出光侧的至少两个液晶屏,每个液晶屏均包括多个 光线调节单元,且多个液晶屏包括的光线调节单元错开设置,从而使得每个液晶屏包括的多个光线调节单元中只有部分光线调节单元相邻,或者所有光线调节单元都不相邻,因此,能够有效减轻甚至完全消除各液晶屏中的液晶分子的偏转状态混乱的现象,进而能够有效减轻甚至完全消除从显示装置发出的光线的传播方向混乱的现象,以使得更多的光线均能射向目标位置,能够有效提高显示装置的光线的利用率。
此外,本发明实施例还提供一种裸眼3D显示系统,该裸眼3D显示系统包括以上所述的显示装置,显示装置具有阵列排布的多个像素,每个像素包括多个亚像素,每个亚像素对应一个或多个光线调节单元;目标位置包括左眼和右眼所在位置,例如,奇数列亚像素显示左眼图像,偶数列亚像素显示右眼图像,奇数列光线调节单元调节光线时,可使背光源发出的光线发生折射而射向左眼或者发生全反射,偶数列光线调节单元调节光线时,可使背光源发出的光线发生折射而射向右眼或者发生全反射,从而通过调节各光线调节单元的工作状态,即可实现裸眼3D显示。
由于该裸眼3D显示系统包括以上所述的显示装置,因此,该裸眼3D显示系统能够在实现裸眼3D显示的同时具有高的光线的利用率。
此外,本发明实施例还提供一种虚拟现实眼镜,该虚拟现实眼镜包括左眼镜片和右眼镜片,左眼镜片和右眼镜片均包括一个以上所述的显示装置;左眼镜片包括的显示装置显示左眼图像,其包括的各光线调节单元调节光线时,可使背光源发出的光线发生折射而射向左眼或者发生全反射;右眼镜片包括的显示装置显示右眼图像,其包括的各光线调节单元调节光线时,可使背光源发出的光线发生折射而射向右眼或者发生全反射,从而通过调节两个显示装置包括的光线调节单元的工作状态,即可实现虚拟现实显示。
由于该虚拟现实眼镜包括以上所述的显示装置,因此,该虚拟现实眼镜能够在实现虚拟现实显示的同时具有高的光线的利用率。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年4月8日递交的中国专利申请第201610219012.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (17)

  1. 一种显示装置,包括:
    背光源,
    设置于所述背光源的出光侧的偏光片,和
    层叠设置于所述偏光片的出光侧的多个液晶屏,其中,每个所述液晶屏包括多个光线调节单元,多个所述液晶屏包括的所述光线调节单元错开设置;各所述光线调节单元用于使所述背光源发出的光线发生折射而射向目标位置或者发生全反射。
  2. 根据权利要求1所述的显示装置,其中,所述显示装置包括两个所述液晶屏,两个所述液晶屏为第一液晶屏和第二液晶屏,所述第一液晶屏包括的所述光线调节单元为第一光线调节单元,所述第二液晶屏包括的所述光线调节单元为第二光线调节单元,在行方向和列方向上,所述第一光线调节单元和所述第二光线调节单元均交替设置。
  3. 根据权利要求1所述的显示装置,其中,每个所述液晶屏包括相对设置的第一基板、第二基板以及位于二者之间的液晶分子层,其中,所述第一基板朝向所述液晶分子层的一面上设置有多个条状电极,所述条状电极的延伸方向为列方向,一个所述光线调节单元在行方向上对应多个所述条状电极,所述第二基板朝向所述液晶分子层的一面上设置有板状电极。
  4. 根据权利要求3所述的显示装置,其中,每个所述液晶屏的所述第一基板的所有位置处均设置有所述条状电极。
  5. 根据权利要求3所述的显示装置,其中,每个所述液晶屏的所述第一基板上仅多个所述光线调节单元对应的位置处设置有所述条状电极。
  6. 根据权利要求3-5任一项所述的显示装置,其中,相邻的两个所述液晶屏共用一个基板。
  7. 根据权利要求1所述的显示装置,其中,所述显示装置具有阵列排布的多个像素,每个所述像素包括多个亚像素,每个所述亚像素对应一个所述光线调节单元。
  8. 根据权利要求1-6任一所述的显示装置,其中,所述显示装置具有阵列排布的多个像素,每个所述像素包括多个亚像素,每个所述亚像素对应多 个所述光线调节单元。
  9. 根据权利要求1所述的显示装置,还包括位于所述背光源的出光侧的光色转换层,其中,所述光色转换层包括多个区域,不同区域用于将射向其的光线转换为不同颜色的光线。
  10. 根据权利要求9所述的显示装置,其中,所述光色转换层位于所有所述液晶屏的入光侧。
  11. 根据权利要求9或10所述的显示装置,其中,所述背光源为白光光源,所述光色转换层为彩色滤光片。
  12. 根据权利要求11所述的显示装置,其中,彩色滤光片包括红色区域、绿色区域和蓝色区域。
  13. 根据权利要求9或10所述的显示装置,其中,所述背光源为蓝光光源,所述光色转换层包括第一区域、第二区域和第三区域,其中,所述第一区域透明,所述第二区域内设置有用于发红光的量子点,所述第三区域内设置有用于发绿光的量子点。
  14. 一种裸眼3D显示系统,包括如权利要求1~13任一项所述的显示装置。
  15. 根据权利要求14所述的裸眼3D显示系统,其中,所述显示装置具有阵列排布的多个像素,每个所述像素包括多个亚像素,每个所述亚像素对应一个或多个所述光线调节单元;所述目标位置包括左眼和右眼的位置,奇数列所述亚像素显示左眼图像,偶数列所述亚像素显示右眼图像,奇数列所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向左眼或者发生全反射,偶数列所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向右眼或者发生全反射。
  16. 一种虚拟现实眼镜,包括左眼镜片和右眼镜片,其中,所述左眼镜片和所述右眼镜片均包括一个如权利要求1~13任一项所述的显示装置。
  17. 根据权利要求16的虚拟现实眼镜,其中,所述左眼镜片包括的所述显示装置显示左眼图像,其包括的各所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向左眼或者发生全反射;所述右眼镜片包括的所述显示装置显示右眼图像,其包括的各所述光线调节单元调节光线时,可使所述背光源发出的光线发生折射而射向右眼或者发生全反射。
PCT/CN2016/102993 2016-04-08 2016-10-24 显示装置、裸眼3d显示系统和虚拟现实眼镜 WO2017173810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/539,715 US10473944B2 (en) 2016-04-08 2016-10-24 Display device, glasses-free three-dimensional (3D) display system and virtual reality (VR) glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610219012.2A CN105629491B (zh) 2016-04-08 2016-04-08 一种显示装置、裸眼3d显示系统和虚拟现实眼镜
CN201610219012.2 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017173810A1 true WO2017173810A1 (zh) 2017-10-12

Family

ID=56044586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102993 WO2017173810A1 (zh) 2016-04-08 2016-10-24 显示装置、裸眼3d显示系统和虚拟现实眼镜

Country Status (3)

Country Link
US (1) US10473944B2 (zh)
CN (1) CN105629491B (zh)
WO (1) WO2017173810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580280A (zh) * 2020-06-16 2020-08-25 京东方科技集团股份有限公司 透视头戴显示器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629491B (zh) * 2016-04-08 2019-06-07 京东方科技集团股份有限公司 一种显示装置、裸眼3d显示系统和虚拟现实眼镜
US20190033632A1 (en) * 2016-08-11 2019-01-31 Infovision Optoelectronics (Kunshan) Co., Ltd. Viewing angle switchable liquid crystal display device and viewing angle switching method
CN106249492B (zh) * 2016-10-12 2020-02-11 京东方科技集团股份有限公司 显示装置及其工作方法
CN106291959B (zh) 2016-10-31 2018-02-27 京东方科技集团股份有限公司 一种虚拟显示面板及显示装置
CN106526956B (zh) * 2017-01-09 2019-12-10 京东方科技集团股份有限公司 一种显示装置
CN106647003B (zh) * 2017-01-18 2020-04-21 京东方科技集团股份有限公司 一种显示装置及显示方法
JP6862330B2 (ja) * 2017-10-25 2021-04-21 パナソニック液晶ディスプレイ株式会社 液晶表示装置
CN108388339B (zh) * 2018-01-31 2021-09-21 维沃移动通信有限公司 显示方法、装置及移动终端
CN108427225B (zh) * 2018-03-28 2020-06-16 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
CN110780488A (zh) * 2019-11-13 2020-02-11 Tcl华星光电技术有限公司 一种显示面板及显示装置
TWI709848B (zh) * 2020-04-28 2020-11-11 和碩聯合科技股份有限公司 虛擬實境頭戴式顯示裝置
CN111580314B (zh) * 2020-06-16 2023-07-18 京东方科技集团股份有限公司 一种调光模组、调光可控装置、车辆和调光方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749717A (zh) * 2012-07-27 2012-10-24 深圳超多维光电子有限公司 一种裸眼式立体显示装置
CN103149767A (zh) * 2013-03-01 2013-06-12 福州大学 一种液晶透镜及包含该液晶透镜的裸眼立体显示装置
US20130155208A1 (en) * 2011-12-19 2013-06-20 Panasonic Corporation Image display apparatus
CN103176308A (zh) * 2013-04-03 2013-06-26 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
CN103592772A (zh) * 2012-08-16 2014-02-19 乐金显示有限公司 立体图像显示装置
CN104020624A (zh) * 2014-06-11 2014-09-03 重庆卓美华视光电有限公司 裸眼3d立体显示装置
CN105629491A (zh) * 2016-04-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置、裸眼3d显示系统和虚拟现实眼镜

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123984A (ja) * 1996-10-16 1998-05-15 Denso Corp 積層型液晶パネル及びその製造方法
JP2003091006A (ja) * 2001-09-19 2003-03-28 Seiko Epson Corp 液晶装置及びその製造方法、並びに電子機器
JP4633114B2 (ja) * 2005-03-29 2011-02-16 シャープ株式会社 表示装置
KR20070080424A (ko) * 2006-02-07 2007-08-10 삼성전자주식회사 표시패널 어셈블리
KR20080108831A (ko) * 2007-06-11 2008-12-16 삼성전자주식회사 액정 표시 장치 및 그의 제조 방법
US8434909B2 (en) * 2007-10-09 2013-05-07 Flex Lighting Ii, Llc Light emitting display with light mixing within a film
CN101685210B (zh) * 2008-09-22 2011-01-19 纬创资通股份有限公司 可改变偏振化图像的偏光角度的图像处理系统及方法
CN201765418U (zh) * 2010-08-19 2011-03-16 华映视讯(吴江)有限公司 裸眼立体显示装置
US8587751B2 (en) * 2011-02-14 2013-11-19 Samsung Electronics Co., Ltd. Display panel and display apparatus having the same
TW201303461A (zh) * 2011-07-04 2013-01-16 Chunghwa Picture Tubes Ltd 顯示裝置
US10203762B2 (en) * 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
CN104020625B (zh) * 2014-06-25 2017-05-03 重庆卓美华视光电有限公司 3d分光器及立体显示装置
CN104199193A (zh) * 2014-07-31 2014-12-10 京东方科技集团股份有限公司 一种2d和3d显示可切换的显示装置
CN104536220A (zh) * 2015-01-27 2015-04-22 京东方科技集团股份有限公司 一种显示装置及其控制方法、专用眼镜和显示系统
CN104865744A (zh) * 2015-06-24 2015-08-26 京东方科技集团股份有限公司 一种3d显示装置及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130155208A1 (en) * 2011-12-19 2013-06-20 Panasonic Corporation Image display apparatus
CN102749717A (zh) * 2012-07-27 2012-10-24 深圳超多维光电子有限公司 一种裸眼式立体显示装置
CN103592772A (zh) * 2012-08-16 2014-02-19 乐金显示有限公司 立体图像显示装置
CN103149767A (zh) * 2013-03-01 2013-06-12 福州大学 一种液晶透镜及包含该液晶透镜的裸眼立体显示装置
CN103176308A (zh) * 2013-04-03 2013-06-26 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
CN104020624A (zh) * 2014-06-11 2014-09-03 重庆卓美华视光电有限公司 裸眼3d立体显示装置
CN105629491A (zh) * 2016-04-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置、裸眼3d显示系统和虚拟现实眼镜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580280A (zh) * 2020-06-16 2020-08-25 京东方科技集团股份有限公司 透视头戴显示器

Also Published As

Publication number Publication date
CN105629491B (zh) 2019-06-07
US20180088344A1 (en) 2018-03-29
US10473944B2 (en) 2019-11-12
CN105629491A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
US11126022B2 (en) Display device and display method thereof
US10663641B2 (en) Display panel and display device
WO2018076948A1 (zh) 显示面板和显示装置
KR101216768B1 (ko) 입체 화상 표시 장치
US9354449B2 (en) Image display device and liquid crystal lens
US10663639B2 (en) Display device
WO2017148024A1 (zh) 液晶显示器以及电子设备
WO2017161717A1 (zh) 显示模组及显示系统
US10761336B2 (en) Display device
WO2018130009A1 (zh) 液晶显示器及其驱动方法
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2017185813A1 (zh) 一种显示装置和显示终端
JP2010020961A (ja) 面状光源及び液晶表示装置
US9703104B2 (en) Electro-optical device comprising first, second, and third color beams having different incident angles relative to a light gathering element and electronic apparatus
WO2017118224A1 (zh) 视角定向光源装置及显示装置
CN108594517B (zh) 一种液晶显示装置及其控制方法
JP2018013714A (ja) 表示装置
KR20160018994A (ko) 표시 장치
WO2017177671A1 (zh) 显示装置
US10558083B2 (en) Liquid crystal display module and liquid crystal display device
WO2018129998A1 (zh) 液晶显示器及其驱动方法
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
US9804455B2 (en) Display device
US20210200040A1 (en) Liquid crystal display panel, driving method therefor, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15539715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897742

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897742

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 01/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16897742

Country of ref document: EP

Kind code of ref document: A1