WO2017118224A1 - 视角定向光源装置及显示装置 - Google Patents

视角定向光源装置及显示装置 Download PDF

Info

Publication number
WO2017118224A1
WO2017118224A1 PCT/CN2016/106243 CN2016106243W WO2017118224A1 WO 2017118224 A1 WO2017118224 A1 WO 2017118224A1 CN 2016106243 W CN2016106243 W CN 2016106243W WO 2017118224 A1 WO2017118224 A1 WO 2017118224A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal lens
electrode
light source
Prior art date
Application number
PCT/CN2016/106243
Other languages
English (en)
French (fr)
Inventor
王晨如
董学
孙海威
董瑞君
禹璐
陈丽莉
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/541,978 priority Critical patent/US10120260B2/en
Publication of WO2017118224A1 publication Critical patent/WO2017118224A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/24Function characteristic beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths

Definitions

  • Embodiments of the present invention relate to a viewing angle directional light source device and a display device.
  • Stereoscopic display that is, 3D display technology, mainly obtains two images of the same object at different angles according to human vision, and projects the two images into the left and right eyes of the person, thereby making the person left and right.
  • the image in the eye has a certain parallax, and the brain synthesizes the left eye image and the right eye image with parallax, and the depth perception is generated, that is, the display effect of the stereoscopic image is formed.
  • 3D display technology is mainly divided into two types: glasses type and naked eye type.
  • Glasses-type 3D display technology requires the use of special glasses, which is not conducive to the use of portable devices. Pay more attention to the naked-eye 3D display technology in mobile electronic products.
  • the naked-eye 3D display technology is mainly divided into a cylindrical lens grating type and a slit grating type.
  • Embodiments of the present invention provide a viewing angle directional light source device and a display device with adjustable light source angles.
  • At least one embodiment of the present invention provides a viewing angle directional light source device, including:
  • the light emitting array disposed on the base substrate, the light emitting array comprising a plurality of light emitting units
  • At least one liquid crystal lens array disposed on the light-emitting array, the liquid crystal lens array including a plurality of liquid crystal lens units corresponding to the light-emitting units;
  • Each of the liquid crystal lens units includes oppositely disposed first electrodes formed on the first substrate and second electrodes formed on the second substrate, and disposed at the first electrodes and the second electrodes a liquid crystal layer, the first electrode and the second electrode are configured to be respectively applied with a voltage, and each of the liquid crystal lens units is configured to adjust between the first electrode and the second electrode The voltage difference is used to adjust the light outgoing direction of the light emitted by the light emitting unit after passing through the liquid crystal lens unit.
  • a viewing angle directional light source device on the light emitting array A plurality of liquid crystal lens arrays are provided.
  • the first electrode and the second electrode of a liquid crystal lens unit of each liquid crystal lens array are configured to form a voltage difference such that it is perpendicular to the In the direction of the base substrate, the refractive index of the liquid crystal layer of the liquid crystal lens unit of the plurality of liquid crystal lens arrays changes in a gradient.
  • the refractive index of the liquid crystal layer of the liquid crystal lens unit near the light exiting side is smaller than the refractive index of the liquid crystal layer of the liquid crystal lens unit far from the light exiting side.
  • a plurality of the light emitting units include an electroluminescent chip that can emit light of different wavelengths.
  • the electroluminescent chip capable of emitting light of different wavelengths includes: a red light emitting chip, a green light emitting chip, and a blue light emitting chip.
  • a plurality of the light emitting units are white light emitting chips.
  • the base substrate is made of a glass or copper substrate, and a graphene, gallium nitride or silicon material disposed on the substrate.
  • At least one embodiment of the present invention provides a display device including any of the viewing angle directional light source devices according to the embodiments of the present invention.
  • the display device further includes a display module disposed on a light emitting surface side of the viewing angle directional light source device.
  • the display module includes a pixel array, and the pixel array includes a pixel unit that is in one-to-one correspondence with the light emitting unit.
  • a plurality of the light emitting units in the viewing angle directional light source device include an electroluminescent chip that can emit light of different wavelengths, and the display module includes an array of oppositely disposed. Substrate and counter substrate.
  • a plurality of the light-emitting units in the viewing-viewing light source device are white light-emitting chips
  • the display module includes an array substrate and a color filter substrate disposed opposite to each other.
  • FIG. 1 is a schematic diagram of a viewing angle directional light source device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a 3D display performed by a display device according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of an optical path of a sub-pixel in a case where a viewing angle directional light source device includes a plurality of liquid crystal lens arrays according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of optical paths of two sub-pixels of different viewing angles in the case where the viewing angle directional light source device includes a plurality of liquid crystal lens arrays according to an embodiment of the present invention.
  • the inventors have found that at least the following problems exist in the prior art: the viewing angles of the light emitted by the backlight for performing 3D display and the backlight for 2D display are not adjustable, and in an embodiment of the present invention, a A directional light source device with adjustable viewing angle for switching display of 2D and 3D.
  • the present embodiment provides a viewing angle directional light source device 10 including a substrate substrate 1, a light emitting array 02 disposed on the substrate substrate 1, and at least one liquid crystal lens array 03 disposed on the light emitting array.
  • the light emitting array 02 includes a plurality of light emitting units 2.
  • the liquid crystal lens array 03 includes a plurality of liquid crystal lens units 3 that correspond one-to-one with the light-emitting unit 2.
  • Each of the liquid crystal lens units 3 includes: a first electrode 33 formed on the first substrate 31 and a second electrode 34 formed on the second substrate 32, and a first electrode 33 and a second electrode disposed opposite to each other The liquid crystal layer 35 between 34.
  • each of the liquid crystal lens units 3 includes a first substrate 31 and a second substrate 32 which are disposed opposite to each other, and a first electrode 33 is disposed on a side of the first substrate 31 facing the second substrate 32, and a second substrate 32 is disposed on the first substrate
  • the second electrode 34 is disposed on one side of the 31, and the first electrode 33 and the second electrode 34 are also disposed opposite to each other, and a liquid crystal layer 35 is disposed between the first electrode 33 and the second electrode 34.
  • the light-emitting direction of the light emitted from the light-emitting unit 2 after passing through the liquid crystal lens unit 3 is adjusted by adjusting the magnitude of the voltage applied to the first electrode 33 and the second electrode 34.
  • the first electrode and the second electrode are configured to respectively apply voltages
  • each liquid crystal lens unit is configured to adjust a value of a voltage applied to the first electrode and the second electrode (adjusting the first electrode and the second electrode)
  • the voltage difference between them is used to adjust the light outgoing direction of the light emitted by the light emitting unit after passing through the liquid crystal lens unit.
  • the refractive index of the liquid crystal layer 35 located at the first electrode 33 and the second electrode 34 is adjusted by adjusting the voltage difference between the first electrode 33 and the second electrode 34, thereby adjusting the light emitted by the light emitting unit to pass through the liquid crystal lens.
  • the viewing angle directional light source device 10 has an adjustable light source angle.
  • the refractive index of the liquid crystal layer 35 may vary depending on the value of the voltage difference between the first electrode 33 and the second electrode 34.
  • the liquid crystal layer 35 may be a cholesteric liquid crystal, a nematic liquid crystal or a smectic liquid crystal. If a plurality of liquid crystal lens arrays 03 are provided in a stacked manner, different liquid crystal lens arrays 03 may be the same liquid crystal, or a plurality of liquid crystals having different refractive indices may be used, which is not limited in this embodiment.
  • the first electrode 33 and the second electrode 34 may each be a bulk electrode, or one of them may be a planar electrode and the other may be a bulk electrode.
  • the liquid crystal lens array can adjust the light output direction of the light-emitting unit through the liquid crystal lens unit by adjusting the voltage difference between the first electrode and the second electrode.
  • the viewing angle directional light source device 10 of the present embodiment is applied to the display device.
  • the light emitting unit 2 on the base substrate 1 can be set corresponding to the corresponding pixel unit 4 in the display module 20.
  • the magnitudes of the voltages on the first electrode 33 and the second electrode 34 on the respective liquid crystal lens units 3 are adjusted (the voltage difference between the first electrode 33 and the second electrode 34 is adjusted), and the first electrode 33 and the first electrode are controlled.
  • the liquid crystal deflection angle between the two electrodes 34 is controlled to control the light outgoing direction of the light emitting unit 2 below the liquid crystal lens unit 3 after passing through the liquid crystal lens unit 3.
  • the liquid crystal deflection direction of each liquid crystal lens unit 3 can be adjusted, and the light exiting direction of the light emitting unit 2 can be controlled so that the light emitted by the light emitting unit 2 passes through the corresponding pixel unit 4.
  • the left eye image and the right eye image are formed, and finally the human eye is formed to form a 3D display image.
  • voltage may not be applied to the first electrode 33 and the second electrode 34 of the liquid crystal lens unit 3, so that light emitted from the light emitting unit 2 is completely transmitted through the liquid crystal lens unit 3 to realize 2D display of the display device.
  • the viewing angle directional light source device 10 in this embodiment can be applied to the conversion of 2D and 3D display of the display device, and accurately realize switching of multiple viewing angles.
  • the plurality of light emitting units 2 in the present embodiment include an electroluminescent chip that can emit light of different wavelengths. That is, the plurality of light emitting units 2 include a plurality of organic electroluminescent chips that emit light of different colors, for example, including a red light emitting chip, a green light emitting chip, a blue light emitting chip, and of course, organic electroluminescence of other colors. Chips, for example, wine red light emitting chips, yellow light emitting chips, and the like.
  • the viewing angle directional light source device of the light-emitting unit 2 is disposed corresponding to the pixel unit 4 of the corresponding color in the display module 20, and the color film in the display module 20 can be omitted at this time, thereby reducing the cost and facilitating the cost.
  • Mass production of display devices It should be noted that the size of the light emitting unit 2 is Micron level.
  • the plurality of light emitting units 2 are white light emitting chips.
  • the display device of the viewing angle directional light source device 10 using such a white light emitting chip requires a color film to be disposed in the display module 20 to realize full color display.
  • the base substrate 1 is composed of a substrate made of glass or copper, and a graphene, gallium nitride or silicon material provided on the substrate.
  • the material of the corresponding substrate substrate 1 can also be selected as needed, which is not limited in this embodiment.
  • the materials used for the first electrode 33 and the second electrode 34 of the liquid crystal lens unit 3 are all transparent conductive materials such as ITO (Indium Tin Oxide).
  • the present embodiment provides a display device including the viewing angle directional light source device 10 of Embodiment 1, and thus the display device of the present embodiment can implement switching display of 2D and 3D.
  • the display module 20 is disposed on the light emitting surface side of the viewing angle directional light source device 10, the display module 20 includes a pixel array, the pixel array includes a plurality of pixel units 4, and the pixel unit 4 and the light emitting unit 2 A correspondence.
  • the display module 20 can be a liquid crystal display module.
  • polarizers lower polarizers 203 and upper polarizers 204 are disposed on the light incident surface and the light exit surface side of the display module 20. This structure is the same as in the prior art and will not be described in detail herein.
  • the plurality of light emitting units 2 in the viewing angle directional light source device 10 include an electroluminescent chip that can emit light of different wavelengths, that is, a plurality of illuminating lights.
  • the unit 2 includes a plurality of organic electroluminescent chips capable of emitting light of different colors, for example, including a red light emitting chip, a green light emitting chip, a blue light emitting chip, and of course, an organic electroluminescent chip of other colors, for example, wine red. Light emitting chip, yellow light emitting chip, and the like.
  • the viewing angle illuminating device of the illuminating unit 2 is disposed corresponding to the pixel unit 4 of the corresponding color in the display module 20, and the color film in the display module 20 can be omitted at this time, thereby reducing the cost and facilitating the cost.
  • the display module 20 disposed on the light-emitting surface side of the viewing-angle light source device 10 at this time includes an array substrate 201, a counter substrate 202, and a liquid crystal layer 205 disposed between the array substrate 201 and the counter substrate 202.
  • the plurality of light emitting units 2 in the viewing angle directional light source device 10 are white light emitting chips, and are disposed at the light emitting surface of the viewing angle directional light source device 10 at this time.
  • the display module 20 on the side includes an array substrate, a counter substrate 202, and a liquid crystal layer 205 disposed between the array substrate 201 and the counter substrate 202.
  • the counter substrate 202 may be a color filter substrate.
  • a schematic diagram of the display device performing 3D display is shown in Fig. 4, and the left and right eyes respectively correspond to the sub-pixels corresponding to 2' and 1' in the figure.
  • the light-emitting direction of the light emitted from the light-emitting unit 2 after passing through the liquid crystal lens unit 3 is adjusted by adjusting the difference between the voltages applied to the first electrode 33 and the second electrode 34, thereby realizing 3D display.
  • one liquid crystal lens unit may correspond to one sub-pixel, but is not limited thereto.
  • the light source lens unit 10 includes a liquid crystal lens array as an example, but it may also include a plurality of liquid crystal lens arrays, and a plurality of liquid crystal lens arrays may be sequentially stacked.
  • the deflection effect of one liquid crystal layer on light may be limited.
  • the stacked plurality of liquid crystal lens arrays are provided with high controllability and can improve the deflection effect on light.
  • the viewing angle directional light source device 10 is shown to include a first liquid crystal lens array 031, a second liquid crystal lens array 032, and a third liquid crystal lens array 033, and is described as an example.
  • the refractive index of the liquid crystal layer of the liquid crystal lens unit of the plurality of liquid crystal lens arrays can be changed in a gradient .
  • the refractive index of the liquid crystal layer between the first electrode and the second electrode can be controlled by adjusting the difference between the voltages on the first electrode and the second electrode of each liquid crystal lens unit, and the overall refractive index gradient changes.
  • the non-uniformity distribution is such that the light exiting direction of the light-emitting unit below the liquid crystal lens unit passes through the liquid crystal lens unit.
  • the liquid crystal layer of the liquid crystal lens unit 3 of the first liquid crystal lens array 031 has a refractive index n1
  • the liquid crystal lens unit 3 of the second liquid crystal lens array 032 has a refractive index of n2
  • the third liquid crystal lens array The liquid crystal layer of the liquid crystal lens unit 3 of 033 has a refractive index of n3.
  • n1 is greater than n2 and greater than n3.
  • the refractive index of the liquid crystal layer of the liquid crystal lens unit near the light-emitting side is smaller than the refractive index of the liquid crystal layer of the liquid crystal lens unit far from the light-emitting side.
  • the stacked two adjacent liquid crystal lens arrays may share one substrate, whereby the thickness of the viewing angle directional light source device 10 can be reduced.
  • n liquid crystal lens arrays may employ n+1 substrates.
  • the refractive index of the liquid crystal layer refers to the refractive index of ordinary light (O light), but is not limited thereto.
  • the refractive index of the liquid crystal layer between the first electrode and the second electrode can be controlled, thereby affecting the light.
  • the angle of refraction eventually reaches the angle of the desired direction of the light.
  • the liquid crystal lens array can orient most of the light in this range of directions. Light rays beyond this range of directions, because of the large angle of incidence, will propagate in the liquid crystal lens and will not be transmitted. Thereby, the orientation of the light illuminating the light source device 10 through the viewing angle is achieved.
  • FIG. 6 is a schematic diagram showing optical paths of two sub-pixels respectively corresponding to the left and right eyes at different viewing angles.
  • the optical path of other sub-pixels can be referred to FIG.
  • the electroluminescent chip includes, for example, a light emitting diode
  • the display device includes, for example, a liquid crystal display device or a light emitting diode display device.
  • the light-emitting unit shown in FIG. 1 is a light-emitting diode display panel
  • the structure shown in FIG. 1 can be a light-emitting diode display device.
  • the viewing angle directional light source device provided by the embodiment of the present invention is applied to the display device.
  • the light emitting unit on the substrate substrate can be disposed corresponding to the corresponding pixel unit in the display module, and then the first electrode of each liquid crystal lens unit is adjusted.
  • a magnitude of a voltage on the second electrode controlling a liquid crystal deflection angle between the first electrode and the second electrode, thereby controlling a light exiting direction of the light emitting unit below the liquid crystal lens unit after passing through the liquid crystal lens unit.
  • the liquid crystal deflection direction of each liquid crystal lens unit can be adjusted, and the light emitting direction of the light emitting unit can be controlled, so that the light emitted by the light emitting unit passes through the corresponding pixel unit to form a left eye.
  • the image and the right eye image eventually reach the human eye to form a 3D display.
  • voltage may not be applied to the first electrode and the second electrode of the liquid crystal lens unit, so that the light-emitting unit is completely transmitted through the liquid crystal lens unit to realize 2D display of the display device.
  • the viewing angle directional light source device provided by the embodiment of the invention can be applied to 3D display of a display device and conversion of 2D and 3D display, and accurately realize switching of multiple viewing angles.

Abstract

一种视角定向光源装置及显示装置。该视角定向光源装置包括衬底基板(1)、发光阵列(02)以及液晶透镜阵列(03)。发光阵列(02)设置在衬底基板(1)上,包括多个发光单元(2)。至少一个液晶透镜阵列(03)设置在发光阵列(02)上。液晶透镜阵列(03)包括多个与发光单元(2)一一对应的液晶透镜单元(3)。每个液晶透镜单元(3)均包括相对设置的,形成在第一基底(31)上的第一电极(33)和形成在第二基底(32)上的第二电极(34),以及设置在第一电极(33)和第二电极(34)之间的液晶层(35)。通过调节第一电极(33)和第二电极(34)之间的电压差以调整发光单元(2)所发出的光透过液晶透镜单元(3)后的出光方向。应用该视角定向光源装置的显示装置光源角度可调,并可实现2D和3D的切换显示。

Description

视角定向光源装置及显示装置 技术领域
本发明的实施例涉及一种视角定向光源装置及显示装置。
背景技术
立体显示,即3D显示技术,主要是根据人类的视觉,获得同一物体在不同角度上的两幅图像,并将这两幅图像分别投射至人的左眼和右眼中,从而使人左、右眼中图像具有一定的视差,大脑对具有视差的左眼图像和右眼图像进行合成,就会产生深度知觉,即形成立体图像的显示效果。
3D显示技术主要分为眼镜式和裸眼式两大类。眼镜式3D显示技术需要佩戴专用的眼镜,因此不利于便携式设备使用。在可移动的电子产品中更注重裸眼式3D显示技术。而裸眼3D显示技术主要是分为柱状透镜光栅式和狭缝光栅式。
发明内容
本发明的实施例提供一种光源出光角度可调的视角定向光源装置及显示装置。
本发明至少一实施例提供一种视角定向光源装置,包括:
衬底基板;
设置在所述衬底基板上的发光阵列,所述发光阵列包括多个发光单元;
设置在所述发光阵列上的至少一个液晶透镜阵列,所述液晶透镜阵列包括多个与所述发光单元一一对应的液晶透镜单元;其中,
每个所述液晶透镜单元均包括相对设置的,形成在第一基底上的第一电极和形成在第二基底上的第二电极,以及设置在所述第一电极和所述第二电极之间的液晶层,所述第一电极和所述第二电极被配置来被分别施加电压,每个所述液晶透镜单元被配置来通过调节所述第一电极和所述第二电极之间的电压差来调整所述发光单元所发出的光透过所述液晶透镜单元后的出光方向。
例如,本发明一实施例提供的视角定向光源装置中,在所述发光阵列上 设置多个液晶透镜阵列。
例如,本发明一实施例提供的视角定向光源装置中,每个液晶透镜阵列的液晶透镜单元的所述第一电极和所述第二电极被配置来形成电压差,以使得在垂直于所述衬底基板的方向上,多个液晶透镜阵列的液晶透镜单元的液晶层的折射率呈梯度变化。
例如,本发明一实施例提供的视角定向光源装置中,靠近出光侧的液晶透镜单元的液晶层的折射率小于远离出光侧的液晶透镜单元的液晶层的折射率。
例如,本发明一实施例提供的视角定向光源装置中,多个所述发光单元包括可发射不同波长的光的电致发光芯片。
例如,本发明一实施例提供的视角定向光源装置中,所述可发射不同波长的光的电致发光芯片包括:红光发光芯片、绿光发光芯片和蓝光发光芯片。
例如,本发明一实施例提供的视角定向光源装置中,多个所述发光单元为白光发光芯片。
例如,本发明一实施例提供的视角定向光源装置中,所述衬底基板由玻璃或者铜材质的基底,以及设置在所述基底上的石墨烯、氮化镓或硅材料构成。
本发明至少一实施例提供一种显示装置,包括本发明实施例所述的任一视角定向光源装置。
例如,本发明一实施例提供的显示装置还包括设置在所述视角定向光源装置出光面侧的显示模组。
例如,本发明一实施例提供的显示装置中,所述显示模组包括像素阵列,所述像素阵列包括与所述发光单元一一对应的像素单元。
例如,本发明一实施例提供的显示装置中,所述视角定向光源装置中的多个所述发光单元包括可发射不同波长的光的电致发光芯片,所述显示模组包括相对设置的阵列基板和对盒基板。
例如,本发明一实施例提供的显示装置中,所述视角定向光源装置中的多个所述发光单元为白光发光芯片,所述显示模组包括相对设置的阵列基板和彩膜基板。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明一实施例提供的一种视角定向光源装置的示意图;
图2为本发明一实施例提供的一种显示装置的示意图;
图3为本发明一实施例提供的另一种显示装置的示意图;
图4为本发明一实施例提供的显示装置进行3D显示的示意图;
图5为本发明一实施例提供的视角定向光源装置包括多个液晶透镜阵列的情况下一个子像素的光路示意图;
图6为本发明一实施例提供的视角定向光源装置包括多个液晶透镜阵列的情况下不同视角的两个子像素的光路示意图。
附图标记:
10、视角定向光源装置;20、显示模组;1、衬底基板;2、发光单元;3、液晶透镜单元;31、第一基底;32、第二基底;33、第一电极;34、第二电极;35、液晶层;4、像素单元;201、显示模组的阵列基板;202、显示模组的对盒基板;203、下偏光片;204、上偏光片;031、第一液晶透镜阵列;032、第二液晶透镜阵列;033、第三液晶透镜阵列;02、发光阵列;03、液晶透镜阵列;205、阵列基板和对盒基板之间的液晶层。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二” 以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
发明人发现通常技术中至少存在如下问题:用于进行3D显示的背光源与用于2D显示的背光源所发出的光的视角均是不可调的,在本发明的实施例中,提供一种视角可调的定向光源装置,以用于实现2D和3D的切换显示。
实施例1
如图1所示,本实施例提供一种视角定向光源装置10,包括衬底基板1、设置在衬底基板1上的发光阵列02和设置在发光阵列上的至少一个液晶透镜阵列03。发光阵列02包括多个发光单元2。液晶透镜阵列03包括多个与发光单元2一一对应的液晶透镜单元3。每个液晶透镜单元3均包括:相对设置的,形成在第一基底31上的第一电极33和形成在第二基底32上的第二电极34,以及设置在第一电极33和第二电极34之间的液晶层35。即,每个液晶透镜单元3均包括相对设置的第一基底31和第二基底32,在第一基底31面向第二基底32的一面设置第一电极33,在第二基底32面向第一基底31的一面设置第二电极34,第一电极33和第二电极34亦相对设置,在第一电极33和第二电极34之间设置液晶层35。通过调节第一电极33和第二电极34上所施加的电压的大小,以调整发光单元2所发出的光透过液晶透镜单元3后的出光方向。即,第一电极和第二电极被配置来分别施加电压,每个液晶透镜单元被配置来通过调节第一电极和第二电极上所施加的电压的数值(调节第一电极和第二电极之间的电压差)来调整发光单元所发出的光透过液晶透镜单元后的出光方向。例如,通过调节第一电极33和第二电极34之间的电压差来调节位于第一电极33和第二电极34的液晶层35的折射率,进而调整发光单元所发出的光透过液晶透镜单元后的出光方向。该视角定向光源装置10光源出光角度可调。
例如,在液晶透镜阵列中,液晶层35的折射率可随第一电极33和第二电极34之间的电压差的数值变化而变化。
例如,在液晶透镜阵列中,液晶层35可采用胆甾相液晶、向列向液晶或近晶向液晶。若设置多个液晶透镜阵列03层叠设置,不同的液晶透镜阵列03可采用相同的液晶,也可以采用折射率不同的多种液晶,本实施例对此不作限定。
例如,在液晶透镜阵列中,第一电极33和第二电极34可均为块状电极,或者其中一个为面状电极,另一个为块状电极。只要能在液晶透镜阵列通过调节第一电极和第二电极之间的电压差能调整发光单元所发出的光透过液晶透镜单元后的出光方向即可。
例如,如图2所示,将本实施例中的视角定向光源装置10应用至显示装置中,此时衬底基板1上的发光单元2可以与显示模组20中相应的像素单元4对应设置,之后调整与各个液晶透镜单元3上的第一电极33和第二电极34上的电压的大小(调节第一电极33和第二电极34之间的电压差),控制第一电极33和第二电极34之间的液晶偏转角度,从而控制处于液晶透镜单元3下方发光单元2的经过液晶透镜单元3之后的出光方向。也就是说,当显示装置进行3D显示时,可以调节各个液晶透镜单元3的液晶偏转方向,控制发光单元2的出光方向,以使发光单元2所发射出的光透过相应的像素单元4后,形成左眼图像和右眼图像,最终到达人眼形成3D显示画面。当显示装置进行2D显示时,可以不给液晶透镜单元3的第一电极33和第二电极34施加电压,使得发光单元2发出的光完全透过液晶透镜单元3,以实现显示装置的2D显示。本实施例中的视角定向光源装置10可应用于显示装置的2D和3D显示的转换中,精准的实现多视角的切换。
例如,本实施例中的多个发光单元2包括可发射不同波长的光的电致发光芯片。也就是说,多个发光单元2包括多个发射不同颜色光的有机电致发光芯片,例如包括红光发光芯片、绿光发光芯片、蓝光发光芯片,当然还可以包括其他颜色的有机电致发光芯片,例如,酒红光发光芯片、黄光发光芯片等。采用这种发光单元2的视角定向光源装置,将其与显示模组20中的相应颜色的像素单元4对应设置,此时可以省略显示模组20中的彩膜,从而可以降低成本,有利于显示装置的量产。需要说明的是,发光单元2的尺寸是 微米级别的。
例如,一个示例中,多个发光单元2为白光发光芯片。应用这种白光发光芯片的视角定向光源装置10的显示装置,此时需要在显示模组20中设置彩膜,从而实现全彩色显示。
例如,一个示例中,衬底基板1由玻璃或者铜材质的基底,以及设置在基底上的石墨烯、氮化镓或硅材料构成。当然,也可以根据需要选用相应的衬底基板1材料,本实施例对此不作限定。
例如,在本实施例中,液晶透镜单元3的第一电极33和第二电极34所采用的材料均为ITO(氧化铟锡)等透明导电材料。
实施例2
如图2所示,本实施例提供一种显示装置,其包括实施例1中视角定向光源装置10,因此本实施例的显示装置可以实现2D和3D的切换显示。
例如,本实施例的显示装置中的视角定向光源装置10出光面侧设置有显示模组20,显示模组20包括像素阵列,像素阵列包括多个像素单元4,像素单元4与发光单元2一一对应。
需要说明的是,显示模组20可为液晶显示模组,如图3所示,在显示模组20的入光面和出光面侧设置有偏光片(下偏光片203和上偏光片204),该结构与通常技术中相同,在此不再详细描述。
作为本实施例的显示装置一种具体结构,如图3所示,视角定向光源装置10中的多个发光单元2包括可发射不同波长的光的电致发光芯片,也就是说,多个发光单元2包括多个可发射不同颜色光的有机电致发光芯片,例如包括红光发光芯片、绿光发光芯片、蓝光发光芯片,当然还可以包括其他颜色的有机电致发光芯片,例如,酒红光发光芯片、黄光发光芯片等。采用这种发光单元2的视角定向光装置,将其与显示模组20中的相应颜色的像素单元4对应设置,此时可以省略显示模组20中的彩膜,从而可以降低成本,有利于显示装置的量产。此时设置在视角定向光源装置10的出光面侧的显示模组20包括相对设置的阵列基板201、对盒基板202以及设置在阵列基板201和对盒基板202之间的液晶层205。
作为本实施例的显示装置另一个示例的结构,视角定向光源装置10中的多个发光单元2为白光发光芯片,此时设置在视角定向光源装置10的出光面 侧的显示模组20包括相对设置的阵列基板、对盒基板202以及设置在阵列基板201和对盒基板202之间的液晶层205,对盒基板202可为彩膜基板。
图4中示出了显示装置进行3D显示的示意图,左眼和右眼分别对应图中的2’和1’对应的子像素。通过调节第一电极33和第二电极34上所施加的电压的差值来调整发光单元2所发出的光透过液晶透镜单元3后的出光方向,实现3D显示。例如,一个液晶透镜单元可对应一个子像素,但不限于此。
图1-图3中,以视角定向光源装置10包括一个液晶透镜阵列为例进行说明,但其也可以包括多个液晶透镜阵列,多个液晶透镜阵列可依次层叠。设置一个液晶透镜阵列的情况下,一个液晶层对光线的偏折效果可能有限。设置层叠的多个液晶透镜阵列,可控性强,并可提高对光线的偏折效果。
如图5所示,给出了视角定向光源装置10包括第一液晶透镜阵列031、第二液晶透镜阵列032和第三液晶透镜阵列033,并以其为例进行说明。例如,对于一个子像素,通过调整各液晶透镜阵列的第一电极33和第二电极34之间的电压差,可使得多个液晶透镜阵列的液晶透镜单元的液晶层的折射率可呈梯度变化。从而,可通过调整与各个液晶透镜单元的第一电极和第二电极上的电压的差值,控制第一电极和第二电极之间的液晶层的折射率,整体呈现光学折射率梯度变化的非均匀性分布,从而控制处于液晶透镜单元下方发光单元的光经过液晶透镜单元之后的出光方向。例如,加电条件下,第一液晶透镜阵列031的液晶透镜单元3的液晶层折射率为n1,第二液晶透镜阵列032的液晶透镜单元3的液晶层折射率为n2,第三液晶透镜阵列033的液晶透镜单元3的液晶层折射率为n3。例如,n1大于n2大于n3。例如,靠近出光侧的液晶透镜单元的液晶层的折射率小于远离出光侧的液晶透镜单元的液晶层的折射率。例如,层叠的相邻两个液晶透镜阵列可共用一个基底,从而,可以减少视角定向光源装置10的厚度。例如,n个液晶透镜阵列可采用n+1个基底。例如,液晶层折射率指的是寻常光(O光)的折射率,但不限于此。
例如,在计算出光线需要偏转多少角度的前提下,通过设置第一电极和第二电极之间的电压差,可控制第一电极和第二电极之间液晶层的折射率,进而影响了光线的折射角度,最终达到所需要光线方向角度的出射。因为发光芯片光线的分布遵循高斯分布,意味着在某一个方向上光线条数最多,那 么液晶透镜阵列就能把在这一方向范围上的大部分光线进行定向。而超出这一方向范围的光线,因为入射角度较大,在液晶透镜中传播的过程就会发生全发射现象,无法透射出去。从而实现通过视角定向光源装置10的光线的定向。
图6中示出了不同视角的分别对应左右眼的两个子像素的光路示意图。其他子像素的光路可参照图6。
例如,本公开的实施例中,电致发光芯片例如包括发光二极管,显示装置例如包括液晶显示装置或者发光二极管显示装置。例如,当图1所示的发光单元为发光二极管显示面板的情况下,图1所示的结构即可成为发光二极管显示装置。
本发明的实施例具有如下有益效果:
将本发明实施例提供的视角定向光源装置应用至显示装置中,此时衬底基板上的发光单元可以与显示模组中相应的像素单元对应设置,之后调整与各个液晶透镜单元的第一电极和第二电极上的电压的大小,控制第一电极和第二电极之间的液晶偏转角度,从而控制处于液晶透镜单元下方发光单元的经过液晶透镜单元之后的出光方向。也就是说,当显示装置进行3D显示时,可以调节各个液晶透镜单元的液晶偏转方向,控制发光单元的出光方向,以使发光单元所发射出的光透过相应的像素单元后,形成左眼图像和右眼图像,最终到达人眼形成3D显示画面。当显示装置进行2D显示时,可以不给液晶透镜单元的第一电极和第二电极的施加电压,使得发光单元的完全透过液晶透镜单元,以实现显示装置的2D显示。本发明实施例提供的视角定向光源装置可应用于显示装置的3D显示、以及2D和3D显示的转换中,精准的实现多视角的切换。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本专利申请要求于2016年1月8日递交的中国专利申请第201610012359.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (13)

  1. 一种视角定向光源装置,包括:
    衬底基板;
    设置在所述衬底基板上的发光阵列,所述发光阵列包括多个发光单元;
    设置在所述发光阵列上的至少一个液晶透镜阵列,所述液晶透镜阵列包括多个与所述发光单元一一对应的液晶透镜单元;其中,
    每个所述液晶透镜单元均包括相对设置的,形成在第一基底上的第一电极和形成在第二基底上的第二电极,以及设置在所述第一电极和所述第二电极之间的液晶层,所述第一电极和所述第二电极被配置来被分别施加电压,每个所述液晶透镜单元被配置来通过调节所述第一电极和所述第二电极之间的电压差来调整所述发光单元所发出的光透过所述液晶透镜单元后的出光方向。
  2. 根据权利要求1所述的视角定向光源装置,其中,在所述发光阵列上设置多个液晶透镜阵列。
  3. 根据权利要求2所述的视角定向光源装置,其中,每个液晶透镜阵列的液晶透镜单元的所述第一电极和所述第二电极被配置来形成电压差,以使得在垂直于所述衬底基板的方向上,多个液晶透镜阵列的液晶透镜单元的液晶层的折射率呈梯度变化。
  4. 根据权利要求3所述的视角定向光源装置,其中,靠近出光侧的液晶透镜单元的液晶层的折射率小于远离出光侧的液晶透镜单元的液晶层的折射率。
  5. 根据权利要求1-4任一项所述的视角定向光源装置,其中,多个所述发光单元包括可发射不同波长的光的电致发光芯片。
  6. 根据权利要求5所述的视角定向光源装置,其中,所述可发射不同波长的光的电致发光芯片包括:红光发光芯片、绿光发光芯片和蓝光发光芯片。
  7. 根据权利要求1-4任一项所述的视角定向光源装置,其中,多个所述发光单元为白光发光芯片。
  8. 根据权利要求1-4任一项所述的视角定向光源装置,其中,所述衬底基板由玻璃或者铜材质的基底,以及设置在所述基底上的石墨烯、氮化镓或 硅材料构成。
  9. 一种显示装置,包括权利要求1-8中任一项所述的视角定向光源装置。
  10. 根据权利要求9所述的显示装置,还包括设置在所述视角定向光源装置出光面侧的显示模组。
  11. 根据权利要求10所述的显示装置,其中,所述显示模组包括像素阵列,所述像素阵列包括与所述发光单元一一对应的像素单元。
  12. 根据权利要求10所述的显示装置,其中,所述视角定向光源装置中的多个所述发光单元包括可发射不同波长的光的电致发光芯片,所述显示模组包括相对设置的阵列基板和对盒基板。
  13. 根据权利要求10所述的显示装置,其中,所述视角定向光源装置中的多个所述发光单元为白光发光芯片,所述显示模组包括相对设置的阵列基板和彩膜基板。
PCT/CN2016/106243 2016-01-08 2016-11-17 视角定向光源装置及显示装置 WO2017118224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,978 US10120260B2 (en) 2016-01-08 2016-11-17 Viewing angle controlling light source device and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012359.X 2016-01-08
CN201610012359.XA CN106959567A (zh) 2016-01-08 2016-01-08 视角定向光源装置及显示装置

Publications (1)

Publication Number Publication Date
WO2017118224A1 true WO2017118224A1 (zh) 2017-07-13

Family

ID=59273225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106243 WO2017118224A1 (zh) 2016-01-08 2016-11-17 视角定向光源装置及显示装置

Country Status (3)

Country Link
US (1) US10120260B2 (zh)
CN (1) CN106959567A (zh)
WO (1) WO2017118224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600040A (zh) * 2019-11-06 2022-06-07 哈曼贝克自动系统股份有限公司 具有可调视角的显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428716A (zh) * 2018-02-12 2018-08-21 谢学军 增强现实显示系统
TWI662320B (zh) * 2018-06-08 2019-06-11 友達光電股份有限公司 具有可調整光強度方向之設計的顯示裝置
CN110047900B (zh) * 2019-04-26 2021-07-23 武汉华星光电半导体显示技术有限公司 显示面板和电子设备
US11076136B2 (en) * 2019-05-15 2021-07-27 Innolux Corporation Display device and method for controlling display device
WO2022143330A1 (zh) * 2020-12-31 2022-07-07 欧普照明股份有限公司 一种可调光灯具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424808A (zh) * 2007-11-02 2009-05-06 乐金显示有限公司 使用电驱动液晶透镜的立体显示设备
CN102141714A (zh) * 2011-03-31 2011-08-03 昆山龙腾光电有限公司 显示装置
US20140347615A1 (en) * 2013-05-27 2014-11-27 Japan Display Inc. Display device
CN104777696A (zh) * 2015-05-08 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
CN205301770U (zh) * 2016-01-08 2016-06-08 京东方科技集团股份有限公司 视角定向光源装置及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115901A (ko) * 2012-04-13 2013-10-22 삼성디스플레이 주식회사 듀얼 모드 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424808A (zh) * 2007-11-02 2009-05-06 乐金显示有限公司 使用电驱动液晶透镜的立体显示设备
CN102141714A (zh) * 2011-03-31 2011-08-03 昆山龙腾光电有限公司 显示装置
US20140347615A1 (en) * 2013-05-27 2014-11-27 Japan Display Inc. Display device
CN104777696A (zh) * 2015-05-08 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
CN205301770U (zh) * 2016-01-08 2016-06-08 京东方科技集团股份有限公司 视角定向光源装置及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600040A (zh) * 2019-11-06 2022-06-07 哈曼贝克自动系统股份有限公司 具有可调视角的显示装置

Also Published As

Publication number Publication date
US20170371225A1 (en) 2017-12-28
US10120260B2 (en) 2018-11-06
CN106959567A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
US11582440B2 (en) Display apparatus, head-mounted display apparatus, image display method, and image display system
US11126022B2 (en) Display device and display method thereof
WO2017118224A1 (zh) 视角定向光源装置及显示装置
US9977251B2 (en) Display device and a driving method for the display device
WO2018076948A1 (zh) 显示面板和显示装置
KR102291495B1 (ko) 액정 표시 장치
WO2017148024A1 (zh) 液晶显示器以及电子设备
US10627664B2 (en) Display panel, display device and display method
US10473944B2 (en) Display device, glasses-free three-dimensional (3D) display system and virtual reality (VR) glasses
US8582043B2 (en) 2D/3D switchable LC lens unit for use in a display device
US20200064532A1 (en) Display panel and display device
US10274791B2 (en) Liquid crystal display apparatus
KR20150116974A (ko) 영상 표시 장치
WO2017117907A1 (zh) 一种3d显示装置
JP2007226231A (ja) 立体画像変換パネル及びそれを有する立体画像表示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2017152521A1 (zh) 显示装置
CN104020624A (zh) 裸眼3d立体显示装置
KR20150142891A (ko) 입체영상 표시장치
WO2017161656A1 (zh) 显示眼镜及其驱动方法
KR20130067339A (ko) 시야각 조절 액정표시장치
KR20130117295A (ko) 액정 렌즈 패널 및 이를 구비하는 표시 장치
US20150241711A1 (en) 3d display apparatus
TWI630444B (zh) 顯示裝置及顯示方法
WO2020181877A1 (zh) 调光面板及其控制方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15541978

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883351

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883351

Country of ref document: EP

Kind code of ref document: A1