WO2017161656A1 - 显示眼镜及其驱动方法 - Google Patents

显示眼镜及其驱动方法 Download PDF

Info

Publication number
WO2017161656A1
WO2017161656A1 PCT/CN2016/082443 CN2016082443W WO2017161656A1 WO 2017161656 A1 WO2017161656 A1 WO 2017161656A1 CN 2016082443 W CN2016082443 W CN 2016082443W WO 2017161656 A1 WO2017161656 A1 WO 2017161656A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light
liquid crystal
backlight
microprism
Prior art date
Application number
PCT/CN2016/082443
Other languages
English (en)
French (fr)
Inventor
杨明
王倩
陈小川
赵文卿
高健
卢鹏程
牛小辰
许睿
王磊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/540,107 priority Critical patent/US10197886B2/en
Publication of WO2017161656A1 publication Critical patent/WO2017161656A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2242Multiple viewing windows
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/02Computing or processing means, e.g. digital signal processor [DSP]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display glasses and a driving method thereof.
  • the conventional liquid crystal display panel generally includes an array substrate and a color filter substrate disposed opposite to each other, a liquid crystal layer between the array substrate and the color filter substrate, a common electrode and a pixel electrode, and polarizers respectively disposed on the array substrate and the color filter substrate. .
  • the display principle of the existing liquid crystal display panel is: converting natural light into linearly polarized light by a polarizer on the array substrate, applying an electric voltage to the pixel electrode and the common electrode to form an electric field on both sides of the liquid crystal layer; and liquid crystal molecules in the liquid crystal layer act on the electric field Rotation occurs to change the polarization state of the linearly polarized light; the polarizer on the color filter substrate is then deflected, and the polarization state can be controlled by controlling the magnitude of the electric field; the difference in polarization state means the light emitted from the liquid crystal display panel The transmittance is different, so that the gray scale display of the image is achieved.
  • the wearable display human eye has a feature that the viewing distance of the display lens is relatively close and the viewing angle is large, when the display lens is produced by using the conventional liquid crystal display panel as the spectacle lens, the display effect is not satisfactory.
  • embodiments of the present invention provide a display glasses and a driving method thereof for implementing a wearable display device.
  • an embodiment of the present invention provides a display glasses, including: a glasses frame, two display devices disposed as the lens on the eyeglass frame; each of the display devices includes: a backlight, and the backlight is located at the backlight a lower substrate on the side, an upper substrate disposed opposite to the lower substrate, a liquid crystal layer between the upper substrate and the lower substrate, and a plurality of sets of electrode structures between the upper substrate and the lower substrate, And a control unit; wherein
  • each set of the electrode structure is configured to control liquid crystal molecules in a corresponding region of the liquid crystal layer to deflect to form a microprism structure; the control unit is configured to adjust voltages of each group of the electrode structures to control formation
  • the microprism structure totally reflects or refracts light of the backlight.
  • the above display glasses provided in the embodiments of the present invention The plurality of microprism structures constitute one sub-pixel; the plurality of sub-pixels are arranged in an array.
  • the emitted light of the microprism structure that refracts light of the backlight is relative to The exit angle of the display surface of the display device decreases as the viewing distance increases.
  • the microprism structure is a triangular prism structure or a polygonal prism structure.
  • the triangular prism structure is a right-angled triangular prism structure.
  • each of the electrode structures includes: a first transparent electrode and a second transparent electrode respectively located on two sides of the liquid crystal layer; wherein
  • the first transparent electrode is a planar electrode
  • the second transparent electrode includes a plurality of sub-electrodes disposed in parallel and in a linear direction along the extending direction.
  • the sub-electrodes are composed of at least one linear electrode or a plurality of dot electrodes.
  • each of the display devices further includes: a light color conversion layer;
  • the light color conversion layer is located on a side of the liquid crystal layer facing away from the lower substrate, and is configured to convert light transmitted through the liquid crystal layer and corresponding to each of the microprism structures into monochromatic light; or
  • the light color conversion layer is located on a side of the liquid crystal layer facing away from the upper substrate, and is configured to convert light emitted by the backlight and corresponding to each microprism structure into monochromatic light;
  • the light of the backlight is converted into light of at least three colors after passing through the light color conversion layer.
  • the light color conversion layer is a light splitting film or a color filter film.
  • a polarizer disposed between the lower substrate and the backlight is further included.
  • the embodiment of the invention further provides a driving method for the above display glasses, comprising:
  • the foregoing method provided by the embodiment of the present invention further includes:
  • two display devices that control the lens respectively display different screens.
  • Embodiments of the present invention provide a display glasses and a driving method thereof.
  • the display glasses include: an eyeglass frame, two display devices disposed as a lens on the eyeglass frame; each display device includes: a backlight, a lower substrate on the light exit side of the backlight, and an upper substrate disposed opposite the lower substrate, a liquid crystal layer between the upper substrate and the lower substrate, a plurality of sets of electrode structures between the upper substrate and the lower substrate, and a control unit; wherein, in display, each set of electrode structures is used to control liquid crystal molecules in corresponding regions in the liquid crystal layer Deflection occurs to form a microprism structure; the control unit is configured to adjust the voltage of each set of electrode structures to control the formed microprism structure to totally reflect or refract light of the backlight, thereby realizing adjustment of the display gray scale.
  • the above-mentioned display glasses provided by the embodiments of the present invention control the propagation path of the light emitted by the lens through the formed microprism structure, thereby controlling the display angle of the lens, and can adapt to the characteristics of the wearable display device with a large viewing angle and a relatively close viewing distance. .
  • FIG. 1 is a schematic structural diagram of display glasses according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a display device as a lens in display glasses according to an embodiment of the present invention
  • 3a and 3b are respectively a working principle diagram of a microprism structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the operation of a display device according to an embodiment of the present invention.
  • 5a to 5d are schematic structural views of a second transparent electrode in the display glasses according to the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a display device as a lens in display glasses according to another embodiment of the present invention.
  • a display lens according to an embodiment of the present invention includes: a spectacle frame 100 , two display devices 200 disposed on the spectacle frame 100 as lenses; each display device 200 is included in FIG. 2 , a backlight 01, a lower substrate 02 on the light-emitting side of the backlight 01, an upper substrate 03 disposed opposite the lower substrate 02, and a liquid crystal layer 04 between the upper substrate 03 and the lower substrate 02, located on the upper substrate 03 and the lower substrate 02 a plurality of sets of electrode structures 06, and a control unit (not shown); wherein
  • each set of electrode structures 06 is used to control the liquid crystal molecules in the corresponding regions of the liquid crystal layer 04 to be deflected to form a microprism structure 07; the control unit is used to adjust the voltage of each set of electrode structures 06 to control the formed microprism structure 07
  • the light of the backlight 01 is totally reflected or refracted.
  • the data line interface 300 for implementing data reading and charging, corresponding internal leads, storage devices, and batteries may be further included. Parts are not described here.
  • the two display devices 200 as lenses in the above display glasses provided by the embodiments of the present invention are independent of each other.
  • the pictures or videos played by the two lenses are 3D video sources with slight differences, the 3D display can be easily realized. Virtual reality and other functions.
  • two display devices 200 as lenses may have only one polarized light disposed between the lower substrate 02 and the backlight 01 compared to the conventional liquid crystal display panel.
  • the sheet 05 is for converting the light emitted from the backlight 01 into polarized light without providing a polarizer on the upper substrate 03.
  • the microprism structure 07 formed in the above display glasses provided by the embodiments of the present invention may also be a triangular prism structure and/or a quadrilateral prism structure.
  • the triangular prism structure may be specifically a right-angle prism structure, which is not limited herein.
  • Each of the microprism structures 07 has two operating states.
  • the first mode is an on mode.
  • the incident angle ⁇ 1 of the light emitted by the backlight 01 to the microprism structure 07 is smaller than the critical angle of the microprism structure, and the light enters the human eye, and the microprism structure 07 is bright. state.
  • the second mode is the off mode. As shown in FIG. 3a
  • the incident angle ⁇ 2 of the light emitted by the backlight 01 to the microprism structure 07 is greater than the critical angle of the microprism structure 07, and the light is totally reflected inside the microprism structure 07, The refracted light enters the human eye, and the microprism structure 07 is in a dark state.
  • the plurality of microprism structures 07 constitute one sub-pixel; and the plurality of sub-pixels are arranged in an array.
  • the adjustment of the gray scale of each sub-pixel can be realized by adjusting the operating state of each microprism structure 07 included in each sub-pixel. Specifically, when all the microprism structures 07 included in one sub-pixel are in the on mode, the sub-pixels enter the human eye with the most light, and are at the highest gray level; all the microprism structures 07 included in one sub-pixel are closed. In the mode, the sub-pixel enters the human eye with the least amount of light, and is at the lowest gray level.
  • each sub-pixel should include a plurality of microprism structures 07, and the slope angles of the respective microprism structures 07 may be different, for example, as shown in FIG. 4, every three microprism structures 07 constitutes a sub-pixel, and the incident light is irradiated onto the three microprism structures 07, and the incident angles of the rays are ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are smaller than the critical angle of each microprism structure 07, the refracted rays whose refraction angles are ⁇ 1, ⁇ 2, and ⁇ 3 respectively enter the human eye, and at this time, the human eye sees the maximum brightness corresponding to the sub-pixel.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are equal to or larger than the critical angle of each microprism structure 07, total reflection occurs, and no refracted light enters the human eye. At this time, the human eye sees the minimum brightness corresponding to the sub-pixel.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are other angles, for example, ⁇ 1 is equal to or larger than the critical angle of the microprism structure 07, and ⁇ 2 and ⁇ 3 are smaller than the critical angle of the microprism structure 07, the state of the three microprisms observed by the human eye is Dark, bright, and bright. It can be found that the more the number of microprism structures 07 included in each sub-pixel, the more light and dark states are observed by the human eye, and the gray scale is more abundant.
  • the emission angle of the microprism structure 07 that refracts the light of the backlight 01 with respect to the display surface of the display device 200 decreases as the viewing distance increases.
  • the exit angle of each microprism structure 07 can be realized by adjusting the voltage applied to the electrode structure, specifically The thicker the equivalent optical path thickness in the cell thickness direction of the display device 200, the smaller the voltage difference applied to the electrode structure 06 corresponding to the liquid crystal molecules forming the microprism structure 07.
  • each of the electrode structures 06 in the display glasses provided by the embodiment of the present invention includes: a first transparent electrode 061 and a second transparent electrode 062 respectively located on two sides of the liquid crystal layer;
  • the first transparent electrode 061 is a planar electrode;
  • the second transparent electrode 062 includes a plurality of sub-electrodes 0621 arranged in parallel and in a linear direction along the extending direction.
  • the first transparent electrode 061 may be located on the side of the upper substrate 03 facing the liquid crystal layer 04, and correspondingly, the second transparent electrode 062 is located on the side of the lower substrate 02 facing the liquid crystal layer 04;
  • the second transparent electrode 062 is located on the side of the upper substrate 03 facing the liquid crystal layer 04.
  • the first transparent electrode 061 is located on the side of the upper substrate 03 facing the liquid crystal layer 04, which is not limited herein.
  • the sub-electrode 0621 may be composed of at least one linear electrode.
  • the sub-electrode 0621 may also be composed of a plurality of dot electrodes.
  • the dot shape may be a point having a regular shape, such as a dot, a square dot, or the like, and may of course be an irregularly shaped dot, which is not limited herein.
  • each display device 200 in the above display glasses provided by the embodiment of the present invention further includes a light color conversion layer 08 as shown in FIGS. 6a and 6b; wherein the light color conversion layer 08 can The liquid crystal layer 04 is located away from the lower substrate 02 side for converting light transmitted through the liquid crystal layer 04 and corresponding to each microprism structure into monochromatic light.
  • the light color conversion layer 08 can be embedded between the upper substrate 03 and the lower substrate 02, specifically on the inner side of the upper substrate 03.
  • the light color conversion layer 08 can also be disposed on the substrate as shown in FIG. 6b.
  • the upper substrate 03 faces away from the liquid crystal layer 04 side, which is not limited herein.
  • the light color conversion layer 08 may be located on the side of the liquid crystal layer 04 facing away from the upper substrate 03 for converting light emitted from the backlight 01 and corresponding to each microprism structure 07 into monochromatic light.
  • the light color conversion layer 08 may be embedded between the upper substrate 03 and the lower substrate 02, specifically on the inner side of the lower substrate 02, or the light color conversion layer 08 may be disposed on the substrate as shown in FIG. 6d.
  • the backlight 01 and the lower substrate 02 are not limited herein.
  • the light color conversion layer 08 After all the light emitted by the backlight 01 passes through the light color conversion layer 08, it is converted into light of at least three colors, and is generally converted into light of three colors of RGB, and of course, can also be converted into light of colors such as Y and W. This is not limited.
  • the light color conversion layer 08 is a light splitting film or a color filter film, and includes at least one color filter; each filter may correspond to, for example, a microprism. Structure is not limited herein.
  • an embodiment of the present invention further provides a driving method for the above display glasses, including:
  • each set of electrode structures is controlled according to the gray scale value to be displayed of each sub-pixel in the image signal to be displayed, so as to control the formed microprism structure to totally reflect or refract the light of the backlight to display the corresponding gray scale value.
  • the driving method provided by the embodiment of the present invention may further implement three-dimensional display. Specifically, the method further includes: controlling, in the three-dimensional display mode, two display devices as lenses to respectively display different screens.
  • Embodiments of the present invention provide the above display glasses and a driving method.
  • the display glasses include: an eyeglass frame, two display devices disposed as a lens on the eyeglass frame; each display device includes: a backlight, a lower substrate on the light exit side of the backlight, and an upper substrate disposed opposite the lower substrate, a liquid crystal layer between the upper substrate and the lower substrate, a plurality of sets of electrode structures between the upper substrate and the lower substrate, and a control unit; wherein, in display, each set of electrode structures is used to control liquid crystal molecules in corresponding regions in the liquid crystal layer Deflection occurs to form a microprism structure; the control unit is configured to adjust the voltage of each set of electrode structures to control the formed microprism structure to totally reflect or refract light of the backlight, thereby realizing adjustment of the display gray scale.
  • the above-mentioned display glasses provided by the embodiments of the present invention control the propagation path of the light emitted by the lens through the formed microprism structure, thereby controlling the display angle of the lens, and can adapt to the characteristics of the wearable display device with a large viewing angle and a relatively close viewing distance. .

Abstract

一种显示眼镜及其驱动方法,包括设置在眼镜框架(100)上作为镜片的两个显示装置(200);显示装置(200)包括背光源(01)、位于背光源(01)出光侧的下基板(02),与下基板(02)相对设置的上基板(03),位于上基板(03)与下基板(02)之间的液晶层(04),位于上基板(03)与下基板(02)之间的多组电极结构(06)和控制单元。在显示时,各组电极结构(06)用于控制液晶层(04)中对应区域的液晶分子发生偏转形成微棱镜结构(07);控制单元用于调整各组电极结构(06)的电压,以控制微棱镜结构(07)对背光源(01)的光进行全反射或折射,从而实现对显示灰阶的调节。

Description

显示眼镜及其驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示眼镜及其驱动方法。
背景技术
现有的液晶显示面板一般包括相对设置的阵列基板和彩膜基板,位于阵列基板和彩膜基板之间的液晶层、公共电极和像素电极,以及分别位于阵列基板和彩膜基板上的偏光片。
现有液晶显示面板的显示原理为:通过阵列基板上的偏光片将自然光转换为线偏光,对像素电极和公共电极施加电压在液晶层的两侧形成电场;液晶层中的液晶分子在电场作用下发生旋转,从而改变线偏光的偏振状态;彩膜基板上的偏光片再对其进行检偏,而通过控制电场的大小可以控制偏振状态;偏振状态不同意味着从液晶显示面板中射出的光的透过率不同,从而实现图像的灰阶显示。
由于可穿戴显示人眼对于显示镜片的观看距离较近且观看视角较大等特点,在采用现有的液晶显示面板作为眼镜镜片制作显示眼镜时,其显示效果并不理想。
发明内容
有鉴于此,本发明实施例提供了一种显示眼镜及其驱动方法,用以实现可穿戴式显示装置。
因此,本发明实施例提供了一种显示眼镜,包括:眼镜框架,设置在所述眼镜框架上作为镜片的两个显示装置;每个所述显示装置包括:背光源、位于所述背光源出光侧的下基板,与所述下基板相对设置的上基板,位于所述上基板与所述下基板之间的液晶层,位于所述上基板与所述下基板之间的多组电极结构,以及控制单元;其中,
在显示时,各组所述电极结构用于控制所述液晶层中对应区域的液晶分子发生偏转形成微棱镜结构;所述控制单元用于调整各组所述电极结构的电压,以控制形成的所述微棱镜结构对所述背光源的光进行全反射或折射。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜 中,多个所述微棱镜结构组成一个子像素;多个子像素呈阵列排布。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,在每个所述显示装置中,对所述背光源的光进行折射的所述微棱镜结构的出射光线相对于所述显示装置显示面的出射角度,随着观看距离的增大而减小。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,所述微棱镜结构在沿所述显示装置的盒厚方向的等效光程厚度越厚,施加在形成所述微棱镜结构的液晶分子对应的所述电极结构上的电压差越小。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,所述微棱镜结构为三角形棱镜结构或多边形棱镜结构。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,所述三角形棱镜结构为直角三角形棱镜结构。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,各所述电极结构包括:分别位于所述液晶层两侧的第一透明电极和第二透明电极;其中,
所述第一透明电极为面状电极;
所述第二透明电极包括多个平行设置且沿延伸方向为直线方向的子电极。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,所述子电极由至少一条直线状电极或多个点状电极组成。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,每个所述显示装置还包括:光色转换层;其中,
所述光色转换层位于所述液晶层背离所述下基板一侧,用于将透过所述液晶层的、且与各所述微棱镜结构对应区域的光转换为单色光;或,所述光色转换层位于所述液晶层背离所述上基板一侧,用于将所述背光源发出的、且与各所述微棱镜结构对应区域的光转换为单色光;
所述背光源的光透过所述光色转换层后转换为至少三种颜色的光。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,所述光色转换层为分光膜或彩色滤光膜。
在一种可能的实现方式中,在本发明实施例提供的上述显示眼镜中,还包括位于下基板与背光源之间的偏光片。
本发明实施例还提供了一种上述显示眼镜的驱动方法,包括:
接收待显示图像信号;
根据所述待显示图像信号中每个子像素的待显示灰阶值,控制各组电极结构的电压,以控制形成的微棱镜结构对背光源的光进行全反射或折射而显示对应灰阶值。
在一种可能的实现方式中,本发明实施例提供的上述方法,还包括:
在三维显示模式下,控制作为镜片的两个显示装置分别显示不同的画面。
本发明实施例提供了一种显示眼镜及其驱动方法。所述显示眼镜包括:眼镜框架,设置在眼镜框架上作为镜片的两个显示装置;每个显示装置包括:背光源、位于背光源出光侧的下基板,与下基板相对设置的上基板,位于上基板与下基板之间的液晶层,位于上基板与下基板之间的多组电极结构,以及控制单元;其中,在显示时,各组电极结构用于控制液晶层中对应区域的液晶分子发生偏转形成微棱镜结构;控制单元用于调整各组电极结构的电压,以控制形成的微棱镜结构对背光源的光进行全反射或折射,从而实现对显示灰阶的调节。本发明实施例提供的上述显示眼镜中通过形成的微棱镜结构来控制镜片出射光线的传播路径,从而控制镜片的显示角度,可以适应观看视角较大且观看距离较近的可穿戴显示装置的特点。
附图说明
图1为本发明实施例提供的一种显示眼镜的结构示意图;
图2为本发明实施例提供的显示眼镜中作为镜片的显示装置的结构示意图;
图3a和图3b分别为本发明实施例提供的微棱镜结构的工作原理图;
图4为本发明实施例提供的显示装置的工作原理图;
图5a至图5d分别本发明实施例提供的显示眼镜中的第二透明电极的结构示意图;以及
图6a至图6d分别为本发明其他实施例提供的显示眼镜中作为镜片的显示装置的结构示意图。
具体实施方式
下面结合附图,对本发明实施例提供的显示眼镜及其驱动方法的具体实施方式进行详细地说明。
附图中各部件的形状和大小不反映显示眼镜的真实比例,目的只是示意说明本发明内容。
本发明实施例提供的一种显示眼镜,如图1所示,包括:眼镜框架100,设置在眼镜框架100上作为镜片的两个显示装置200;每个显示装置200如图2所示,包括:背光源01、位于背光源01出光侧的下基板02,与下基板02相对设置的上基板03,位于上基板03与下基板02之间的液晶层04,位于上基板03与下基板02之间的多组电极结构06,以及控制单元(图中未示出);其中,
在显示时,各组电极结构06用于控制液晶层04中对应区域的液晶分子发生偏转形成微棱镜结构07;控制单元用于调整各组电极结构06的电压,以控制形成的微棱镜结构07对背光源01的光进行全反射或折射。
在具体实施时,在本发明实施例提供的上述显示眼镜中,如图1所示,还可以包括:用于实现数据读取及充电的数据线接口300,相应的内部引线、存储器件以及电池等部件,在此不作赘述。
并且,本发明实施例提供的上述显示眼镜中的作为镜片的两个显示装置200相互独立,当两个镜片所播放图片或视频为存在细微差别的3D视频源时,可以容易地实现3D显示、虚拟现实等功能。
值得注意的是,在本发明实施例提供的上述显示眼镜中,相较于常规的液晶显示面板,两个作为镜片的显示装置200可以仅具有一个设置在下基板02与背光源01之间的偏光片05,用于将背光源01发出的光转换为偏振光,无需在上基板03之上设置偏光片。
在具体实施时,本发明实施例提供的上述显示眼镜中形成的微棱镜结构07还可以为三角形棱镜结构和/或四边形棱镜结构。并且,该三角形棱镜结构可以具体为直角棱镜结构,在此不做限定。
具体地,在本发明实施例提供的上述显示眼镜中,在显示时形成 的各微棱镜结构07具有两种工作状态。第一种为开启模式,如图3a所示,背光源01所发射光线到微棱镜结构07的入射角α1小于该微棱镜结构的临界角,光线进入人眼,此时微棱镜结构07为亮态。第二种为关闭模式,如图3b所示,背光源01所发射光线到微棱镜结构07的入射角α2大于该微棱镜结构07的临界角,光线在微棱镜结构07内部发生全反射,无折射光线进入人眼,此时微棱镜结构07为暗态。
基于此,在具体实施时,在本发明实施例提供的上述显示眼镜中,多个所述微棱镜结构07组成一个子像素;多个子像素呈阵列排布。通过调节每个子像素包含的各微棱镜结构07的工作状态可以实现对各子像素显示灰阶的调节。具体地,在一个子像素包含的全部微棱镜结构07均处于开启模式时,该子像素进入人眼的光线最多,则处于最高灰阶;在一个子像素包含的全部微棱镜结构07均处于关闭模式时,该子像素进入人眼的光线最少,则处于最低灰阶。
因此,为了获得更多的灰阶,每个子像素应包含多个微棱镜结构07,且各微棱镜结构07的斜坡角度可以各不相同,例如,如图4所示,每三个微棱镜结构07构成一个子像素,入射光照射到三个微棱镜结构07上,光线的入射角分别为α1、α2、α3。当α1、α2、α3小于各个微棱镜结构07的临界角时,折射角分别为β1、β2、β3的折射光线全部进入人眼,此时,人眼观看到对应该子像素的最大亮度。当α1、α2、α3等于或大于各个微棱镜结构07的临界角时,发生全反射,无折射光线进入人眼,此时,人眼观看到对应该子像素的最小亮度。当α1、α2、α3为其他角度时,例如,α1等于或大于微棱镜结构07的临界角,α2、α3小于微棱镜结构07的临界角时,人眼观看到的三个微棱镜结构状态为暗、亮、亮。可以发现,当每个子像素包含的微棱镜结构07数目越多,人眼观看到的亮暗状态越多,灰阶更加丰富。
并且,在本发明实施例提供的上述显示眼镜中,为了使人眼可以看到不同位置的子像素,可以对不同位置的微棱镜结构07设置不同的光线出射角。并且,在每个显示装置200中,对背光源01的光进行折射的微棱镜结构07的出射光线相对于显示装置200显示面的出射角度,随着观看距离的增大而减小。
在具体实施时,本发明实施例提供的上述显示眼镜中,各微棱镜结构07的出射角度可以通过对电极结构加载的电压的调节实现,具体 地,在沿显示装置200的盒厚方向的等效光程厚度越厚,施加在形成微棱镜结构07的液晶分子对应的电极结构06上的电压差越小。
在具体实施时,本发明实施例提供的上述显示眼镜中的各电极结构06,如图2所示,包括:分别位于液晶层两侧的第一透明电极061和第二透明电极062;其中,第一透明电极061为面状电极;第二透明电极062包括多个平行设置且沿延伸方向为直线方向的子电极0621。在具体实施时,如图2所示,第一透明电极061可以位于上基板03面向液晶层04一侧,对应地,第二透明电极062位于下基板02面向液晶层04一侧;可替换地,第二透明电极062位于上基板03面向液晶层04一侧,对应地,第一透明电极061位于上基板03面向液晶层04一侧,在此不作限定。
进一步地,在本发明实施例提供的上述显示眼镜中,如图5a和图5b所示,子电极0621可以由至少一条直线状电极组成。
或者,较佳地,在具体实施时,在本发明实施例提供的上述显示眼镜中,如图5c和图5d所示,子电极0621也可以由多个点状电极组成。在具体实施时点状可以是具有规则形状的点,例如圆点、方点等,当然也可以为不规则形状的点,在此不作限定。
进一步地,为了实现彩色显示,在本发明实施例提供的上述显示眼镜中的各显示装置200,如图6a和图6b所示,还包括光色转换层08;其中,光色转换层08可以位于液晶层04背离下基板02一侧,用于将透过液晶层04的、且与各微棱镜结构对应区域的光转换为单色光。具体地,如图6a所示,光色转换层08可以内嵌于上基板03与下基板02之间,具体位于上基板03内侧,当然如图6b所示光色转换层08也可以设置于上基板03背向液晶层04一侧,在此不作限定。或者,光色转换层08还可以位于液晶层04背离上基板03一侧,用于将背光源01发出的、且与各微棱镜结构07对应区域的光转换为单色光。具体地,如图6c所示,光色转换层08可以内嵌于上基板03与下基板02之间,具体位于下基板02内侧,或者如图6d所示光色转换层08也可以设置于背光源01和下基板02之间,在此不作限定。
在背光源01发出的所有光全部透过光色转换层08后转换为至少三种颜色的光,一般转换为RGB三种颜色的光,当然还可以转换成Y、W等颜色的光,在此不做限定。
进一步地,在本发明实施例提供的上述液晶显示器中,光色转换层08为分光膜或彩色滤光膜,包括至少一种颜色的滤光片;每个滤光片可以对应例如一个微棱镜结构,在此不作限定。
基于同一发明构思,本发明实施例还提供了一种上述显示眼镜的驱动方法,包括:
接收待显示图像信号;
根据待显示图像信号中每个子像素的待显示灰阶值,控制各组电极结构的电压,以控制形成的微棱镜结构对背光源的光进行全反射或折射而显示对应灰阶值。
在具体实施时,本发明实施例提供的上述驱动方法还可以实现三维显示,具体地,该方法还包括:在三维显示模式下,控制作为镜片的两个显示装置分别显示不同的画面。
本发明实施例提供了上述显示眼镜及驱动方法。所述显示眼镜包括:眼镜框架,设置在眼镜框架上作为镜片的两个显示装置;每个显示装置包括:背光源、位于背光源出光侧的下基板,与下基板相对设置的上基板,位于上基板与下基板之间的液晶层,位于上基板与下基板之间的多组电极结构,以及控制单元;其中,在显示时,各组电极结构用于控制液晶层中对应区域的液晶分子发生偏转形成微棱镜结构;控制单元用于调整各组电极结构的电压,以控制形成的微棱镜结构对背光源的光进行全反射或折射,从而实现对显示灰阶的调节。本发明实施例提供的上述显示眼镜中通过形成的微棱镜结构来控制镜片出射光线的传播路径,从而控制镜片的显示角度,可以适应观看视角较大且观看距离较近的可穿戴显示装置的特点。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示眼镜,其特征在于,包括:眼镜框架,设置在所述眼镜框架上作为镜片的两个显示装置;每个所述显示装置包括:背光源、位于所述背光源出光侧的下基板,与所述下基板相对设置的上基板,位于所述上基板与所述下基板之间的液晶层,位于所述上基板与所述下基板之间的多组电极结构,以及控制单元;其中,
    在显示时,各组所述电极结构用于控制所述液晶层中对应区域的液晶分子发生偏转形成微棱镜结构;所述控制单元用于调整各组所述电极结构的电压,以控制形成的所述微棱镜结构对所述背光源的光进行全反射或折射。
  2. 如权利要求1所述的显示眼镜,其特征在于,多个所述微棱镜结构组成一个子像素;多个子像素呈阵列排布。
  3. 如权利要求1所述的显示眼镜,其特征在于,在每个所述显示装置中,对所述背光源的光进行折射的所述微棱镜结构的出射光线相对于所述显示装置显示面的出射角度,随着观看距离的增大而减小。
  4. 如权利要求1所述的显示眼镜,其特征在于,所述微棱镜结构在沿所述显示装置的盒厚方向的等效光程厚度越厚,施加在形成所述微棱镜结构的液晶分子对应的所述电极结构上的电压差越小。
  5. 如权利要求1所述的显示眼镜,其特征在于,所述微棱镜结构为三角形棱镜结构或多边形棱镜结构。
  6. 如权利要求5所述的显示眼镜,其特征在于,所述三角形棱镜结构为直角三角形棱镜结构。
  7. 如权利要求1所述的显示眼镜,其特征在于,各所述电极结构包括:分别位于所述液晶层两侧的第一透明电极和第二透明电极;其中,
    所述第一透明电极为面状电极;
    所述第二透明电极包括多个平行设置且沿延伸方向为直线方向的子电极。
  8. 如权利要求7所述的显示眼镜,其特征在于,所述子电极由至少一条直线状电极或多个点状电极组成。
  9. 如权利要求1-8任一项所述的显示眼镜,其特征在于,每个所 述显示装置还包括:光色转换层;其中,
    所述光色转换层位于所述液晶层背离所述下基板一侧,用于将透过所述液晶层的、且与各所述微棱镜结构对应区域的光转换为单色光;
    所述背光源的光透过所述光色转换层后转换为至少三种颜色的光。
  10. 如权利要求9所述的显示眼镜,其特征在于,所述光色转换层为分光膜或彩色滤光膜。
  11. 如权利要求1-8任一项所述的显示眼镜,其特征在于,每个所述显示装置还包括:光色转换层;其中,
    所述光色转换层位于所述液晶层背离所述上基板一侧,用于将所述背光源发出的、且与各所述微棱镜结构对应区域的光转换为单色光;
    所述背光源的光透过所述光色转换层后转换为至少三种颜色的光。
  12. 如权利要求11所述的显示眼镜,其特征在于,所述光色转换层为分光膜或彩色滤光膜。
  13. 如权利要求1-8任一项所述的显示眼镜,其特征在于,还包括位于下基板与背光源之间的偏光片。
  14. 一种如权利要求1-13任一项所述的显示眼镜的驱动方法,其特征在于,包括:
    接收待显示图像信号;
    根据所述待显示图像信号中每个子像素的待显示灰阶值,控制各组电极结构的电压,以控制形成的微棱镜结构对背光源的光进行全反射或折射而显示对应灰阶值。
  15. 如权利要求14所述的方法,其特征在于,还包括:
    在三维显示模式下,控制作为镜片的两个显示装置分别显示不同的画面。
PCT/CN2016/082443 2016-03-25 2016-05-18 显示眼镜及其驱动方法 WO2017161656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/540,107 US10197886B2 (en) 2016-03-25 2016-05-18 Display spectacles having microprism structures and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610179809.4 2016-03-25
CN201610179809.4A CN105652490B (zh) 2016-03-25 2016-03-25 一种显示眼镜及其驱动方法

Publications (1)

Publication Number Publication Date
WO2017161656A1 true WO2017161656A1 (zh) 2017-09-28

Family

ID=56495668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082443 WO2017161656A1 (zh) 2016-03-25 2016-05-18 显示眼镜及其驱动方法

Country Status (3)

Country Link
US (1) US10197886B2 (zh)
CN (1) CN105652490B (zh)
WO (1) WO2017161656A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257321B (zh) * 2016-06-28 2021-11-30 京东方科技集团股份有限公司 3d抬头显示系统和方法
CN106405950B (zh) * 2016-10-28 2019-11-12 京东方科技集团股份有限公司 显示面板及其制作方法和显示设备
CN106647003B (zh) * 2017-01-18 2020-04-21 京东方科技集团股份有限公司 一种显示装置及显示方法
CN107749152A (zh) * 2017-09-29 2018-03-02 芜湖威灵数码科技有限公司 一种背包式智能vr眼镜的工作方法
CN108154803B (zh) * 2018-01-05 2020-11-03 京东方科技集团股份有限公司 一种显示装置及显示设备
CN108427225B (zh) * 2018-03-28 2020-06-16 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
CN108919584B (zh) * 2018-06-15 2021-01-01 海信视像科技股份有限公司 一种显示装置
CN110873971B (zh) * 2019-11-29 2021-08-31 维沃移动通信有限公司 可穿戴设备及其滤光方法
CN115047558A (zh) * 2022-07-15 2022-09-13 深圳小豆视觉科技有限公司 光学复合膜及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176308A (zh) * 2013-04-03 2013-06-26 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
US20130222234A1 (en) * 2012-02-23 2013-08-29 Panasonic Corporation Image display apparatus
CN103558724A (zh) * 2013-11-15 2014-02-05 京东方科技集团股份有限公司 一种液晶棱镜及其制作方法、显示装置
CN103576399A (zh) * 2013-09-26 2014-02-12 西安空间无线电技术研究所 一种液晶光学相控阵天线实现方法
CN104102062A (zh) * 2013-04-08 2014-10-15 乐金显示有限公司 全息3d显示器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440197A (en) 1993-10-05 1995-08-08 Tir Technologies, Inc. Backlighting apparatus for uniformly illuminating a display panel
EP0722576B1 (en) * 1993-10-05 2001-08-01 Tir Technologies, Inc. Light source for backlighting
US20110122051A1 (en) * 2008-08-13 2011-05-26 Postech Academy Industry Foundation Head-mounted display
US9223137B2 (en) 2010-10-08 2015-12-29 Seiko Epson Corporation Virtual image display apparatus
KR101857819B1 (ko) * 2012-03-20 2018-05-14 엘지디스플레이 주식회사 액정 프리즘
WO2014196125A1 (ja) * 2013-06-05 2014-12-11 パナソニックIpマネジメント株式会社 画像表示装置及び液晶レンズ
CN103383491B (zh) * 2013-07-03 2015-08-26 成都理想境界科技有限公司 一种视透率可调的头戴显示装置
EP2887123A1 (en) * 2013-12-18 2015-06-24 Thomson Licensing Optical see-through glass type display device and corresponding optical element
US20150234187A1 (en) * 2014-02-18 2015-08-20 Aliphcom Adaptive optics
US10375379B2 (en) * 2015-09-17 2019-08-06 Innolux Corporation 3D display device
EP3163379B1 (en) * 2015-10-28 2019-10-16 Samsung Electronics Co., Ltd. See-through holographic display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222234A1 (en) * 2012-02-23 2013-08-29 Panasonic Corporation Image display apparatus
CN103176308A (zh) * 2013-04-03 2013-06-26 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
CN104102062A (zh) * 2013-04-08 2014-10-15 乐金显示有限公司 全息3d显示器
CN103576399A (zh) * 2013-09-26 2014-02-12 西安空间无线电技术研究所 一种液晶光学相控阵天线实现方法
CN103558724A (zh) * 2013-11-15 2014-02-05 京东方科技集团股份有限公司 一种液晶棱镜及其制作方法、显示装置

Also Published As

Publication number Publication date
CN105652490B (zh) 2020-03-24
CN105652490A (zh) 2016-06-08
US20180046059A1 (en) 2018-02-15
US10197886B2 (en) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2017161656A1 (zh) 显示眼镜及其驱动方法
CN110959132B (zh) 眼镜型显示器及可变焦距眼镜型显示器
WO2017148024A1 (zh) 液晶显示器以及电子设备
US10684408B2 (en) Display device and image display method
KR101241770B1 (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
WO2018072508A1 (zh) 显示装置及其显示方法
KR101201848B1 (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
US20220308343A1 (en) Near-to-eye display device and augmented reality apparatus
US8582043B2 (en) 2D/3D switchable LC lens unit for use in a display device
EP3671318B1 (en) Near-eye display device
WO2017148010A1 (zh) 液晶显示器以及电子设备
US11740535B2 (en) Display apparatus and controlling method thereof
RU2544254C2 (ru) Устройство отображения со многими ракурсами просмотра
WO2014196125A1 (ja) 画像表示装置及び液晶レンズ
WO2021196790A1 (zh) 透明显示面板、显示装置及眼镜
WO2017177671A1 (zh) 显示装置
CN112596311A (zh) 一种显示面板及显示装置
WO2017148048A1 (zh) 液晶面板、显示装置以及显示方法
TWI630444B (zh) 顯示裝置及顯示方法
US11169421B2 (en) Liquid crystal display and driving method thereof
KR20130106719A (ko) 액정 프리즘
US20130107177A1 (en) Self-focusing liquid crystal cell and corresponding lcd
TWI687746B (zh) 近眼擴增實境裝置
JP5508538B2 (ja) マルチビュー表示装置
US20140132862A1 (en) Liquid crystal lens unit and stereoscopic display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15540107

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895008

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895008

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/02/2019)