WO2017148048A1 - 液晶面板、显示装置以及显示方法 - Google Patents

液晶面板、显示装置以及显示方法 Download PDF

Info

Publication number
WO2017148048A1
WO2017148048A1 PCT/CN2016/086390 CN2016086390W WO2017148048A1 WO 2017148048 A1 WO2017148048 A1 WO 2017148048A1 CN 2016086390 W CN2016086390 W CN 2016086390W WO 2017148048 A1 WO2017148048 A1 WO 2017148048A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sub
pixel
crystal panel
equivalent
Prior art date
Application number
PCT/CN2016/086390
Other languages
English (en)
French (fr)
Inventor
高健
董学
陈小川
王倩
赵文卿
王海生
卢鹏程
杨明
牛小辰
王磊
许睿
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/522,277 priority Critical patent/US10001668B2/en
Publication of WO2017148048A1 publication Critical patent/WO2017148048A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Definitions

  • Embodiments of the present invention generally relate to the field of display, and in particular, to a liquid crystal panel, a display device, and a display method.
  • the liquid crystal display has widely replaced the traditional CRT display device due to its advantages of zero radiation, low power consumption, small heat dissipation, small size, accurate image restoration, and sharp character display.
  • the liquid crystal panel is a key component of the liquid crystal display, which can largely determine the brightness, contrast, color, and viewing angle of the liquid crystal display.
  • the conventional liquid crystal panel includes a liquid crystal layer and upper and lower polarizers whose light passing directions are perpendicular to each other.
  • the display principle is as follows: the lower polarizer converts the natural light into linear polarized light, and the liquid crystal molecules in the liquid crystal layer are driven by the voltage to deflect the deflection state, the linear polarization is converted into the elliptically polarized light, and the upper polarizer is used to detect the elliptically polarized light, thereby realizing the gray. Order display.
  • the disadvantage of the conventional liquid crystal panel is that each pass of a polarizer has a loss of light efficiency of more than 50%, and the optical transmittance is low.
  • Embodiments of the present invention provide a liquid crystal panel, a display device, and a display method, which can reduce the number of polarizers, increase the transmittance of the display device, and improve the light efficiency of the display device.
  • a liquid crystal panel having a plurality of sub-pixels includes: an upper substrate; a lower substrate; a liquid crystal layer interposed between the upper and lower substrates; and the lower substrate is disposed away from the liquid crystal layer a polarizer on one side; a common electrode disposed on the upper substrate; and a plurality of pixel electrodes disposed on the lower substrate in regions corresponding to each of the sub-pixels that can be independently driven.
  • the pixel electrode is a strip electrode.
  • the pixel electrode is made of a transparent conductive material.
  • the sub-pixels include red, green, and blue sub-pixels.
  • a first alignment film is disposed on the upper substrate, and the first alignment film is disposed on the common electrode.
  • a second alignment film is further disposed on the lower substrate, and the second alignment film is disposed on the pixel electrode.
  • the plurality of pixel electrodes disposed in a region corresponding to each sub-pixel are symmetrically distributed in a center.
  • the liquid crystal molecules in the liquid crystal layer in the region corresponding to each sub-pixel are configured to constitute an equivalent lens when a voltage is applied to the plurality of pixel electrodes disposed in a region corresponding to the sub-pixel.
  • the equivalent lens comprises a convex lens, a concave lens or a prism.
  • the liquid crystal molecules in the liquid crystal layer in the region corresponding to each sub-pixel are configured to constitute an equivalent convex lens or a concave lens when displaying a black image, and constitute a gray scale display other than a black image. Effect prism.
  • the long-axis direction of the liquid crystal molecules in the liquid crystal layer in the initial state is parallel to the direction of the transmission axis of the polarizer.
  • a display device comprising: the liquid crystal panel described in any of the above embodiments.
  • the display device can also include a backlight configured to emit a collimated beam of light toward the polarizer.
  • a display method for the above display device comprising: applying a sequentially increasing pixel voltage or sequentially decreasing on each pixel electrode in a region where the same sub-pixel is located when displaying a black image
  • the voltage is such that the optical path in the sub-pixel region is equivalent to the prism, and the inclination of the equivalent prism causes the incident angle of the incident light reaching the prism to be greater than the total reflection critical angle; the gray scale in addition to the blackout screen
  • the optical path in the sub-pixel region is equivalent to the convex lens or the concave lens by changing the voltage applied to each pixel electrode in the region where each sub-pixel is located, and the focal length of the equivalent lens and the sub-pixel
  • the gray scale of the picture to be displayed corresponds to control the divergence angle of the outgoing beam, thereby controlling the brightness of the sub-pixel.
  • a common electrode is disposed on the upper substrate, and a plurality of pixel electrodes capable of being independently driven are disposed on the lower substrate in each sub-pixel corresponding region.
  • the voltage on each pixel electrode can make the liquid crystal molecules in the corresponding region of the sub-pixel equivalent to a lens (equivalent in optical path), and by changing the focal length of the equivalent lens, the divergence degree of the outgoing beam can be controlled, and further The control of the brightness of the sub-pixels is achieved, and the brightness of the sub-pixels corresponds to the display gray level. It can be seen that, by using the liquid crystal panel, the display device, and the display method of the present invention, it is not necessary to provide a polarizer or other analyzer structure on the upper substrate side to cooperate with the polarizer disposed on the lower substrate as in the prior art, thereby reducing The number of polarizers increases the transmittance of the display device and improves the light efficiency of the display device.
  • FIG. 1 is a schematic structural diagram of a liquid crystal panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a sub-pixel corresponding electrode structure and a liquid crystal initial state of a liquid crystal panel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a sub-pixel equivalent to a concave lens in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a sub-pixel equivalent to a convex lens in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the distribution of optical paths in a sub-pixel according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a sub-pixel equivalent prism formed in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a sub-pixel equivalent to a plurality of prisms in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the operation of a display panel according to an embodiment of the present invention.
  • the embodiment of the present invention provides a liquid crystal panel, as shown in FIG. 1 and FIG. 2, comprising: an upper substrate 10, a lower substrate 20, a liquid crystal layer 30 interposed between the upper and lower substrates, and disposed outside the lower substrate 20.
  • a polarizer 40 ie, a side of the lower substrate 20 facing away from the liquid crystal layer 30
  • a common electrode 12 disposed on the upper substrate 10
  • a plurality of independently driveable pixel electrodes disposed in the sub-substrate corresponding region 201 on the lower substrate 20. twenty one.
  • the liquid crystal panel shown in FIG. 1 can be displayed by attaching the backlight 50.
  • the emitted light from the backlight 50 is a collimated light beam as shown in FIG. 1.
  • the direction of the transmission axis of the polarizer 40 is opposite to the liquid crystal molecules 31.
  • the long axis direction in the initial state is parallel.
  • the different deflection states of the liquid crystal molecules 31 in the liquid crystal layer correspond to different refractive indices.
  • the refractive index of the liquid crystal layer to the light propagating therein is n e ; if the long-axis direction of the liquid crystal molecules is perpendicular to the polarization direction of the outgoing light, the refractive index of the liquid crystal layer of the light propagating therein is n o, where n e> n o; is between parallel and perpendicular, orientation of the liquid crystal layer in opposite relation with the long axis direction of liquid crystal molecules in the direction of polarization of the emitted light
  • the light in which it propagates has a plurality of refractive indices between n e and n o .
  • the upper substrate 10, the lower substrate 20, and the liquid crystal layer 30 constitute a liquid crystal cell, and an initial state of an optional electrode structure and an optional liquid crystal molecule is as shown in FIG.
  • a common electrode 12 is disposed on the upper substrate 10, and a plurality of independently driven pixel electrodes 21 are disposed on the lower substrate 20 in a sub-pixel corresponding region 201.
  • five sub-pixel corresponding regions 201 are provided with five independently driveable pixel electrodes U1 to U5. If a large voltage is applied to the electrode U3, the electrodes U2 and U4 apply a small voltage, and the electrodes U1 and U5 are applied more.
  • the state of the liquid crystal molecules shown in Fig. 1 can be formed with a small voltage or no voltage applied.
  • the liquid crystal molecular state is such that the optical path of light passing through different positions of one sub-pixel of the liquid crystal cell is equal to the optical path of light passing through a common concave lens of a certain focal length.
  • the liquid crystal structure of the liquid crystal cell is equivalent to one at this time.
  • One sub-pixel corresponds to an equivalent liquid crystal lens, and the focal length controllability of the liquid crystal lens is utilized, thereby changing the divergence angle of the outgoing beam and controlling the brightness (gray scale).
  • the smaller the divergence angle is the higher the beam energy density is, the larger the gray scale is; the larger the divergence angle is, the lower the beam energy density is, and the smaller the gray scale is.
  • FIG. 3 and FIG. 4 show the light-emitting state after the collimated light beams respectively pass through the concave lens or the convex lens, and the relationship between the light-emission divergence angle ⁇ and the focal length f′ of the lens is:
  • p is the optical diameter of the concave or convex lens.
  • F' in the figure is the focus of the concave lens or the convex lens.
  • the equation of the equal optical path has a formula: Wherein n 1 is the refractive index of the liquid crystal corresponding to the edge of the lens, n 2 is the refractive index of the liquid crystal corresponding to the center of the lens, and d is the thickness of the portion of the liquid crystal cell corresponding to the equivalent lens.
  • the left part of the equal sign represents the optical path of the light beam propagating from the center position of the liquid crystal lens to the focus position, and the right part of the equal sign represents the optical path of the light beam propagating from the both ends of the liquid crystal lens to the focus position.
  • FIG. 6 is a principle of displaying a black screen on the display panel of the present invention, and applying a large to the electrodes U1 to U5
  • the small voltage makes the liquid crystal lens equivalent to the prism shown in Fig. 6, and makes the incident angle of the light larger than the total reflection critical angle, and the final beam all produces reflection, no beam transmission, and the sub-pixel display corresponding to the equivalent prism at this time Black screen.
  • the refractive index of the liquid crystal layer in the embodiment has a large variation range, that is, the difference between n e and n o is relatively large, and the number of gray scales can be increased, and the color level looks fine; Easy to achieve full black display.
  • the maximum optical path difference between the left and right edges achievable by the equivalent prism is (n e -n o
  • the liquid crystal molecules in one sub-pixel region 201 can be equivalent to a plurality of small prisms, as shown in FIG. 7 .
  • the liquid crystal molecules in one sub-pixel region 201 can also be equivalent to a plurality of small lenses.
  • the shape of the pixel electrode and how to arrange a plurality of pixel electrodes in the corresponding sub-pixel corresponding region are not limited, but it is required to be independently driven and capable of loading different voltages.
  • the pixel electrode is a strip electrode.
  • the initial state of the electrode structure and liquid crystal molecules shown in FIG. 2 is only an alternative, and the present invention is not limited thereto.
  • the long-axis direction of the liquid crystal molecules is parallel to the direction of the transmission axis of the polarizer; for example, the direction of the transmission axis of the polarizer 40 is perpendicular to the plane of the paper
  • the long-axis direction of the liquid crystal molecules determined in the initial state by the alignment film (11, 22 as shown in FIG. 2) is a direction parallel to the transmission axis of the polarizer 40.
  • the above direction is not limited in the embodiment, and the long-axis direction of the liquid crystal molecules in the initial state may be any direction as long as it is parallel to the transmission axis of the polarizer.
  • the above pixel electrode is made of a transparent conductive material.
  • the above sub-pixels are generally red, green, and blue sub-pixels. Of course, it is not excluded that other color schemes other than red, green, and blue are present.
  • the above sub-pixel is any one of red, green and blue sub-pixels, and the display panel package a plurality of pixels, each of which includes three sub-pixels of red, green and blue, and each of the sub-pixel corresponding regions is provided with a plurality of independently driven pixel electrodes, and the loading on each pixel electrode in the sub-pixel corresponding region is controlled.
  • the voltage magnitude can adjust the focal length of the equivalent lens corresponding to the liquid crystal molecules in the sub-pixel, thereby controlling the divergence degree of the sub-pixel outgoing beam, and realizing different gray scale image display. Thereby, a black screen or other grayscale picture is displayed without detecting the light beam emitted from the sub-pixel.
  • a first alignment film 11 is further disposed on the upper substrate 10, and the first alignment film 11 is disposed on the common electrode 12, such as a side of the common electrode 12 facing the liquid crystal layer; and the second substrate 20 is provided with a second alignment film. 22, the second alignment film 22 is disposed on the pixel electrode 21 to fill the gap between the pixel electrodes 21.
  • the first alignment film 11 and the second alignment film 22 provide uniform initial deflection states for liquid crystal molecules (e.g., long-axis directions of liquid crystal molecules in an initial state).
  • the display panel of the embodiment does not need to be provided with a polarizer or other detecting structure on the upper substrate side to cooperate with the polarizer disposed on the lower substrate, thereby saving a layer of polarizer and increasing the transmission of the display device.
  • the rate, in the end, can achieve a high-efficiency display, which saves a layer of polarizer compared to the conventional LCD display, increasing the transmittance of the display device, thereby improving the light efficiency.
  • An embodiment of the present invention further provides a display device comprising the liquid crystal panel described in any of the above embodiments.
  • the display device has high light efficiency, energy saving and power saving due to the removal of a layer of polarizer.
  • the display device may be any product or component having a display function, such as an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • An embodiment of the present invention further provides a display method for the above display device, including: when displaying a black screen, applying sequentially increasing pixel voltages or sequentially decreasing pixel voltages on respective pixel electrodes in a region where the same sub-pixel is located, so that The optical path in the region where the sub-pixel is located is equivalent to the prism, and the inclination of the equivalent prism makes the incident angle of the incident light larger than the total reflection critical angle; when the gray-scale picture other than the black picture is displayed, by changing the a pixel voltage on each pixel electrode in a region where the sub-pixel is located, such that an optical path in the region where the sub-pixel is located is equivalent to a convex lens or a concave lens, and a focal length of the equivalent lens and a gray of a picture to be displayed by the sub-pixel
  • the order corresponds to control the divergence angle of the outgoing beam, thereby controlling the sub-pixel brightness.
  • a polarizer or other analyzer structure is disposed on the side to cooperate with the polarizer disposed on the lower substrate, thereby saving a layer of polarizer, increasing the transmittance of the display device, and finally realizing a high-efficiency display, which is traditional Compared with the LCD display, a layer of polarizer is saved, which increases the transmittance of the display device, thereby improving the light efficiency.
  • the words “first” and “second” are used to classify similar items.
  • the words “first” and “second” do not limit the invention in terms of quantity, but only For a exemplification of a preferred mode, it is obvious to those skilled in the art that the present invention is within the scope of the present invention.

Abstract

一种液晶面板、显示装置以及显示方法,涉及显示领域,可以减少偏光片数量,增加显示器件的透过率,提高显示器件光效。所述液晶面板包括:上基板(10)、下基板(20),夹设于上、下基板之间的液晶层(30)、设于所述下基板(20)背离液晶层一侧的偏光片(40)、设置在所述上基板(10)的公共电极(12)、以及在所述下基板(20)上在与每个亚像素对应的区域(201)内设置的能够被独立地驱动的多个像素电极(21)。

Description

液晶面板、显示装置以及显示方法 技术领域
本发明的实施例一般地涉及显示领域,尤其涉及一种液晶面板、显示装置以及显示方法。
背景技术
液晶显示器由于零辐射、低功耗、散热小、体积小、图像还原精确、字符显示锐利等优点,已广泛替代了传统CRT显示装置。液晶面板是液晶显示器的关键部件,可以在很大程度上决定液晶显示器的亮度、对比度、色彩、可视角度,传统的液晶面板包括液晶层以及通光方向彼此垂直的上、下偏光片,其显示原理为:下偏光片将自然光转换为线偏光,液晶层中的液晶分子通过电压驱动偏转状态不同,将线偏振转换为椭圆偏振光,上偏光片对椭圆偏振光进行检偏,从而实现灰阶显示。传统的液晶面板的不足之处在于,每通过一层偏光片都会有50%以上的光效损失,光学透过率较低。
发明内容
本发明的实施例提供一种液晶面板、显示装置以及显示方法,可以减少偏光片数量,增加显示器件的透过率,提高显示器件光效。
根据本发明的一个方面,提供了一种液晶面板,具有多个亚像素并包括:上基板;下基板;夹设于上、下基板之间的液晶层;设于所述下基板背离液晶层一侧的偏光片;设置在所述上基板的公共电极;和在所述下基板上在与每个亚像素对应的区域内设置的能够被独立地驱动的多个像素电极。
在一个实施例中,所述像素电极为条状电极。
在一个实施例中,所述像素电极由透明导电材料制成。
在一个实施例中,所述亚像素包括红、绿、蓝亚像素。
在一个实施例中,所述上基板上设置有第一配向膜,所述第一配向膜设置于所述公共电极之上。
在一个实施例中,所述下基板上还设置有第二配向膜,所述第二配向膜设置于所述像素电极之上。
在一个实施例中,每个亚像素对应的区域内设置的所述多个像素电极成中心对称分布。
在一个实施例中,每个亚像素对应的区域内的液晶层中的液晶分子被配置成在该亚像素对应的区域内设置的所述多个像素电极被施加电压时构成等效透镜。
在一个实施例中,所述等效透镜包括凸透镜、凹透镜或棱镜。
在一个实施例中,每个亚像素对应的区域内的液晶层中的液晶分子被配置成在显示黑画面时构成等效凸透镜或凹透镜,而在进行黑画面之外的灰阶显示时构成等效棱镜。
在一个实施例中,液晶层中的液晶分子在初始状态中的长轴方向与偏光片的透光轴方向平行。
根据本发明的另一个方面,提供了一种显示装置,包括:上述任一实施例中所述的液晶面板。该显示装置还可以包括被配置成向偏光片出射准直光束的背光源。
根据本发明的又一个方面,提供了一种用于上述显示装置的显示方法,包括:显示黑画面时,在同一亚像素所在区域内的各像素电极上施加依次递增的像素电压或依次递减的电压,使所述亚像素区域内的光程与棱镜等效,并且等效棱镜的倾斜度使到达该棱镜的入射光线的入射角大于全反射临界角;在显示除黑画面之外的灰阶画面时,通过改变每个亚像素所在区域内的各像素电极上施加的电压,使所述亚像素区域内的光程与凸透镜或凹透镜等效,并且等效透镜的焦距大小与所述亚像素要显示的画面的灰阶对应,从而控制出射光束的发散角,进而控制该亚像素的亮度。
根据本发明的实施例提供的液晶面板、显示装置以及显示方法,在上基板上设置有公共电极,在下基板上在每个亚像素对应区域内设置能够被独立地驱动的多个像素电极,上、下基板之间存在液晶层,当在每个亚像素的各像素电极上施加不同的电压,各像素电极上方对应的液晶分子的偏转程度不同,对应光程也存在不同,通过调整亚像素的各像素电极上的电压,可使亚像素对应区域内的液晶分子等效于一透镜(光程上等效),通过改变等效透镜的焦距,可实现对出射光束的发散程度的控制,进而实现对亚像素的亮度的控制,而亚像素的亮度与显示灰阶对应。可见,采用本发明的液晶面板、显示装置以及显示方法,不需要像现有技术那样需要在上基板侧设置偏光片或其它检偏结构来与下基板上设置的偏光片进行配合,因而可以减少偏光片数量,增加显示器件的透过率,提高显示器件光效。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的液晶面板的结构示意图;
图2为示出本发明实施例提供的液晶面板的一个亚像素对应的电极结构和液晶初始状态的示意图;
图3为本发明实施例中亚像素等效成凹透镜的示意图;
图4为本发明实施例中亚像素等效成凸透镜的示意图;
图5为本发明实施例中一个亚像素中光程的分布示意图;
图6为本发明实施例中亚像素等效成棱镜的示意图;
图7为本发明实施例中一个亚像素等效成多个棱镜的示意图;以及
图8为本发明实施例提供的显示面板的工作示意图。
附图标记
10-上基板,11-第一配向膜,12-公共电极,13-上玻璃基板,
20-下基板,21-像素电极,22-第二配向膜,23-下玻璃基板,
201-亚像素对应区域,30-液晶层,40-偏光片,50-背光源。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供一种液晶面板,如图1和图2所示,包括:上基板10、下基板20,夹设于上、下基板之间的液晶层30,以及设于下基板20外侧(即下基板20背离液晶层30的一侧)的偏光片40;上基板10上设置有公共电极12;在下基板20上在一个亚像素对应区域201内设置有多个可独立驱动的像素电极21。
本实施例图1所示的液晶面板附上背光源50即可进行显示,来自背光源50的出射光为图1所示的准直光束,偏光片40的透光轴方向与液晶分子31在初始状态时的长轴方向平行,例如,如图1中所示,经过偏光片40后出射的偏振光经过液晶层30时,液晶层中的液晶分子31的不同的偏转状态对应不同的折射率,若液晶分子的长轴方向与出射光的偏振方向平行,此时液晶层对在其中传播的光的折射率为ne;若液晶分子的长轴方向与出射光的偏振方向垂直,此时液晶层对在其中传播的光的折射率为no,其中ne>no;在液晶分子的长轴方向与出射光的偏振方向的相对定向关系介于平行与垂直之间时,液晶层对在其中传播中的光具有介于ne和no之间的多种折射率。
上基板10、下基板20和液晶层30组成液晶盒,一种可选的电极结构和一种可选的液晶分子的初始状态如图2所示。上基板10上设置有公共电极12,在下基板20上在一个亚像素对应区域201内设置有多个可独立驱动的像素电极21, 例如一个亚像素对应区域201内设置有5个可独立驱动的像素电极U1~U5,如果通过对电极U3施加一个较大的电压,电极U2和U4施加较小的电压,电极U1和U5施加更小的电压或者不施加电压,可形成图1所示的液晶分子状态。该种液晶分子状态可使光线通过液晶盒的一个亚像素的不同位置的光程与光线通过一定焦距的普通凹透镜时的光程相等,根据光学知识,此时液晶盒的液晶结构等效于一个凹透镜阵列。一个亚像素对应一个等效液晶透镜,利用液晶透镜的焦距可控性,从而改变出射光束发散角,控制亮度(灰阶)。其中,发散角越小,光束能量密度越高,灰阶越大;发散角越大,光束能量密度越低,灰阶越小。
示例性地,图3和图4示出了准直光束分别通过凹透镜或凸透镜后的出光状态,其出光发散角α与透镜的焦距f′的关系为:
Figure PCTCN2016086390-appb-000001
其中,p为凹透镜或凸透镜的光学直径。由此可知,等效透镜的焦距直接影响着出光发散角的大小,因此改变焦距可改变出射光束发散角,从而控制灰阶。图中的F′为凹透镜或凸透镜的焦点。
下面给出等效透镜焦距与液晶盒的关系。如图5所示,以等效透镜为凸透镜为例,由等光程原理有公式:
Figure PCTCN2016086390-appb-000002
其中,n1为对应透镜边缘的液晶折射率,n2为对应透镜中心的液晶折射率,d为液晶盒中的液晶层与该等效透镜对应的部分的厚度。在该公式中,等号左边部分代表光束从液晶透镜的中心位置传播到焦点位置的光程,等号右边部分代表光束从液晶透镜两端位置传播到焦点位置的光程。因为[(n1-n2)*d]2≈0,所以上式可简化为:
Figure PCTCN2016086390-appb-000003
其中no≤n2<n1≤ne。对于凹透镜,其公式结论与凸透镜完全相同,在此不再赘述。
图6是本发明显示面板显示黑画面的原理,对电极U1到U5施加一个由大到 小的电压,使液晶透镜等效于图6所示的棱镜,并且使光的入射角大于全反射临界角,最终光束全部产生反射,无光束透射,此时的等效棱镜对应的亚像素显示黑画面。
基于上述显示原理,优选的是,本实施例中的液晶层的折射率的变化范围大,即ne和no差值相对较大,可实现灰阶数目多,颜色层次看起来细致;也容易实现全黑显示。参照图2所示像素电极结构,如果一个亚像素区域201内的液晶分子在显示黑画面时等效成一个小棱镜,等效棱镜可实现的左右边缘最大光程差为(ne-no)d,ne和no差值越大,等效棱镜的斜面越倾斜,同样入射条件下入射角越大,越容易满足全反射条件(容易实现全黑显示)。如果ne和no的差值不足够大,无法达到全反射条件,这时可以将一个亚像素区域201内的液晶分子等效成多个小棱镜,如图7所示。相类似地,实现灰阶显示时,一个亚像素区域201内的液晶分子也可以等效成多个小透镜。
本实施例对像素电极的形状,同一亚像素对应区域内多个像素电极如何具体排列并不做限定,但要求可以独立驱动,能够加载不同的电压。可选地,上述像素电极为条状电极。出于显示效果方面的考虑,一般要求一个亚像素内的多个像素电极呈中心对称分布。
还需要说明的是,图2所示电极结构和液晶分子的初始状态仅为一种可选方案,本发明并不限于此。在这里示出的液晶分子的初始状态中,液晶分子的长轴方向与偏光片的透光轴方向平行;例如还可以是:偏光片40的透光轴方向是与纸面垂直的方向,由配向膜(如图2中所示的11、22)确定的液晶分子在初始状态中的长轴方向为与偏光片40透光轴平行的方向。这里也不限定本实施例所举的以上方向,液晶分子在初始状态中的长轴方向可以为任意方向,只要与偏光片的透光轴平行即可。
上述像素电极为透明导电材料制成。上述亚像素一般为红、绿、蓝亚像素,当然也不排除采用其它配色方案的情况下,存在除红、绿、蓝之外的其它亚像素。如图8所示,上述的亚像素为红、绿、蓝亚像素中的任一种,显示面板包 括多个像素,每一像素包括红、绿、蓝三种亚像素,每一种亚像素对应区域内设置多个可独立驱动的像素电极,通过控制亚像素对应区域内各像素电极上的加载电压大小,可以调节该亚像素内的液晶分子对应的等效透镜的焦距,进而控制该亚像素出射光束的发散程度,实现不同的灰阶画面显示。由此,在无需对从亚像素出射的光束进行检偏而显示黑画面或其它灰阶画面。
上基板10上还设置有第一配向膜11,所述第一配向膜11设置于公共电极12之上,如位于公共电极12面向液晶层的一侧;下基板20上设置有第二配向膜22,第二配向膜22设置于像素电极21之上,填平像素电极21间的间隙。第一配向膜11和第二配向膜22为液晶分子提供统一的预设偏转状态(如,液晶分子在初始状态中的长轴方向)。
本实施例的显示面板在显示时并不需要在上基板侧设置偏光片或其它检偏结构来与下基板上设置的偏光片进行配合,因而可以节省一层偏光片,增加显示器件的透过率,最终能实现一种高光效的显示,它与传统的LCD显示相比,节省了一层偏光片,增加了显示器件的透过率,从而提高了光效。
本发明的实施例还提供一种显示装置,包括上述任一实施例中所述的液晶面板。所述显示装置由于去掉了一层偏光片,光效高、节能省电。所述显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明的实施例还提供用于上述显示装置的显示方法,包括:显示黑画面时,在同一亚像素所在区域内的各像素电极上施加依次递增的像素电压或依次递减的像素电压,使得所述亚像素所在区域内的光程与棱镜等效,并且等效棱镜的倾斜度使入射光线的入射角大于全反射临界角;在显示除黑画面之外的灰阶画面时时,通过改变所述亚像素所在区域内的各像素电极上的像素电压,使得所述亚像素所在区域内的光程与凸透镜或凹透镜等效,并且等效透镜的焦距大小与所述亚像素要显示的画面的灰阶对应,从而控制出射光束的发散角,进而控制亚像素亮度。因而,根据本发明的实施例,在显示时并不需要在上基板 侧设置偏光片或其它检偏结构来与下基板上设置的偏光片进行配合,因而可以节省一层偏光片,增加显示器件的透过率,最终能实现一种高光效的显示,它与传统的LCD显示相比,节省了一层偏光片,增加了显示器件的透过率,从而提高了光效。
为了便于清楚说明,在本发明中采用了“第一”、“第二”等字样对相似项进行类别区分,该“第一”、“第二”字样并不在数量上对本发明进行限制,只是对一种优选的方式的举例说明,本领域技术人员根据本发明公开的内容,想到的显而易见的相似变形或相关扩展均属于本发明的保护范围内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (15)

  1. 一种液晶面板,具有多个亚像素并包括:
    上基板;
    下基板;
    夹设于上、下基板之间的液晶层;
    设于所述下基板背离液晶层一侧的偏光片;
    设置在所述上基板的公共电极;和
    在所述下基板上在与每个亚像素对应的区域内设置的能够被独立地驱动的多个像素电极。
  2. 根据权利要求1所述的液晶面板,其中,所述像素电极为条状电极。
  3. 根据权利要求1所述的液晶面板,其中,所述像素电极由透明导电材料制成。
  4. 根据权利要求1所述的液晶面板,其中,所述亚像素包括红、绿、蓝亚像素。
  5. 根据权利要求1所述的液晶面板,其中,所述上基板上还设置有第一配向膜,所述第一配向膜设置于所述公共电极之上。
  6. 根据权利要求1所述的液晶面板,其中,所述下基板上还设置有第二配向膜,所述第二配向膜设置于所述像素电极之上。
  7. 根据权利要求1-6中任一项所述的液晶面板,其中,每个亚像素对应的区域内设置的所述多个像素电极成中心对称分布。
  8. 根据权利要求1-7中任一项所述的液晶面板,其中,每个亚像素对应的区域内的液晶层中的液晶分子被配置成在该亚像素对应的区域内设置的所述多个像素电极被施加电压时构成等效透镜。
  9. 根据权利要求8所述的液晶面板,其中,所述等效透镜包括凸透镜、凹透镜或棱镜。
  10. 根据权利要求8或9所述的液晶面板,其中,每个亚像素对应的区域内的液晶层中的液晶分子被配置成在显示黑画面时构成等效凸透镜或凹透镜,而在进行黑画面之外的灰阶显示时构成等效棱镜。
  11. 根据权利要求1-10中任一项所述的液晶面板,其中,液晶层中的液晶分子在初始状态中的长轴方向与偏光片的透光轴方向平行。
  12. 一种显示装置,包括:权利要求1-11中任一项所述的液晶面板。
  13. 根据权利要求12所述的显示装置,还包括被配置成向偏光片出射准直光束的背光源。
  14. 一种用于权利要求12所述显示装置的显示方法,包括:
    在显示黑画面时,在同一亚像素所在区域内的各像素电极上施加依次递增的像素电压或依次递减的电压,使所述亚像素区域内的光程与棱镜等效,并且等效棱镜的倾斜度使到达该棱镜的入射光线的入射角大于全反射临界角;
    在显示除黑画面之外的灰阶画面时,通过改变每个亚像素所在区域内的各像素电极上的施加的电压,使所述亚像素区域内的光程与凸透镜或凹透镜等效,并且等效透镜的焦距大小与所述亚像素要显示的画面的灰阶对应,从而控制出射光束的发散角,进而控制该亚像素的亮度。
  15. 根据权利要求14的显示方法,其中在无需对从亚像素出射的光束进行检偏的情况下显示所述画面。
PCT/CN2016/086390 2016-03-04 2016-06-20 液晶面板、显示装置以及显示方法 WO2017148048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/522,277 US10001668B2 (en) 2016-03-04 2016-06-20 Liquid crystal panel, display apparatus and display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610125155.7 2016-03-04
CN201610125155.7A CN105511180B (zh) 2016-03-04 2016-03-04 液晶面板、显示装置以及显示方法

Publications (1)

Publication Number Publication Date
WO2017148048A1 true WO2017148048A1 (zh) 2017-09-08

Family

ID=55719267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086390 WO2017148048A1 (zh) 2016-03-04 2016-06-20 液晶面板、显示装置以及显示方法

Country Status (3)

Country Link
US (1) US10001668B2 (zh)
CN (1) CN105511180B (zh)
WO (1) WO2017148048A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511180B (zh) 2016-03-04 2019-10-01 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法
CN105572984B (zh) * 2016-03-23 2017-06-23 京东方科技集团股份有限公司 一种液晶显示模组及液晶显示器
CN106773314A (zh) * 2017-01-12 2017-05-31 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106647003B (zh) * 2017-01-18 2020-04-21 京东方科技集团股份有限公司 一种显示装置及显示方法
CN113406804B (zh) * 2021-07-15 2022-10-18 业成科技(成都)有限公司 头戴式显示器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356322B1 (en) * 1996-09-30 2002-03-12 Fuji Photo Film Co., Ltd. Liquid crystal display system with improved contrast and less dependence on visual angle
KR20080002242A (ko) * 2006-06-30 2008-01-04 엘지.필립스 엘시디 주식회사 액정표시장치
CN101968595A (zh) * 2010-10-13 2011-02-09 深圳市华星光电技术有限公司 2d/3d切换的液晶透镜组件及显示装置
CN102043302A (zh) * 2009-10-22 2011-05-04 三星电子株式会社 有源透镜、包括有源透镜的立体图像显示装置及其操作方法
CN102162964A (zh) * 2010-02-15 2011-08-24 索尼公司 液晶透镜和显示装置
CN102944962A (zh) * 2012-11-15 2013-02-27 深圳市华星光电技术有限公司 液晶透镜组件以及立体影像显示器
CN203909438U (zh) * 2014-03-20 2014-10-29 京东方科技集团股份有限公司 一种显示面板和显示装置
CN105511180A (zh) * 2016-03-04 2016-04-20 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941053B1 (ko) * 2008-01-17 2010-02-05 한양대학교 산학협력단 디스플레이 장치
JP6196421B2 (ja) * 2011-06-30 2017-09-13 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 液晶レンズおよびそれを含む表示装置
CN104483798B (zh) * 2011-07-25 2017-05-31 京东方科技集团股份有限公司 应用液晶透镜结构的液晶显示器
JP2014081419A (ja) * 2012-10-15 2014-05-08 Japan Display Inc 液晶表示装置
CN203480184U (zh) * 2013-09-13 2014-03-12 京东方科技集团股份有限公司 一种电驱动液晶透镜、显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356322B1 (en) * 1996-09-30 2002-03-12 Fuji Photo Film Co., Ltd. Liquid crystal display system with improved contrast and less dependence on visual angle
KR20080002242A (ko) * 2006-06-30 2008-01-04 엘지.필립스 엘시디 주식회사 액정표시장치
CN102043302A (zh) * 2009-10-22 2011-05-04 三星电子株式会社 有源透镜、包括有源透镜的立体图像显示装置及其操作方法
CN102162964A (zh) * 2010-02-15 2011-08-24 索尼公司 液晶透镜和显示装置
CN101968595A (zh) * 2010-10-13 2011-02-09 深圳市华星光电技术有限公司 2d/3d切换的液晶透镜组件及显示装置
CN102944962A (zh) * 2012-11-15 2013-02-27 深圳市华星光电技术有限公司 液晶透镜组件以及立体影像显示器
CN203909438U (zh) * 2014-03-20 2014-10-29 京东方科技集团股份有限公司 一种显示面板和显示装置
CN105511180A (zh) * 2016-03-04 2016-04-20 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法

Also Published As

Publication number Publication date
US10001668B2 (en) 2018-06-19
US20180107058A1 (en) 2018-04-19
CN105511180B (zh) 2019-10-01
CN105511180A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
US10663641B2 (en) Display panel and display device
WO2017148024A1 (zh) 液晶显示器以及电子设备
US10663639B2 (en) Display device
WO2018076948A1 (zh) 显示面板和显示装置
WO2018072508A1 (zh) 显示装置及其显示方法
WO2017148048A1 (zh) 液晶面板、显示装置以及显示方法
US11314110B2 (en) Liquid crystal display and driving method thereof
US11262612B2 (en) Transparent display panel and transparent display device
CN208689323U (zh) 一种液晶显示模组及显示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2017161656A1 (zh) 显示眼镜及其驱动方法
JPWO2008155878A1 (ja) 液晶表示装置
WO2020238768A1 (zh) 显示面板、显示装置及其控制方法
WO2016049960A1 (zh) 液晶显示装置
WO2018133373A1 (zh) 显示装置及显示方法
US20180107059A1 (en) Liquid crystal display module and liquid crystal display
JP2016514853A (ja) 液晶表示パネル及び液晶ディスプレイ
US11169421B2 (en) Liquid crystal display and driving method thereof
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
JPH11202784A (ja) 反射型表示装置
US10416491B2 (en) Panel structure, its manufacturing method, and projection system
KR101728353B1 (ko) 액정표시소자
WO2017197595A1 (zh) 一种显示装置
TWI363208B (en) Large view angle liquid crystal display
TWI754318B (zh) 顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15522277

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892236

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892236

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16892236

Country of ref document: EP

Kind code of ref document: A1