WO2018133373A1 - 显示装置及显示方法 - Google Patents

显示装置及显示方法 Download PDF

Info

Publication number
WO2018133373A1
WO2018133373A1 PCT/CN2017/095410 CN2017095410W WO2018133373A1 WO 2018133373 A1 WO2018133373 A1 WO 2018133373A1 CN 2017095410 W CN2017095410 W CN 2017095410W WO 2018133373 A1 WO2018133373 A1 WO 2018133373A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display device
liquid crystal
light
backlight
Prior art date
Application number
PCT/CN2017/095410
Other languages
English (en)
French (fr)
Inventor
李忠孝
董学
陈小川
赵文卿
王海燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/752,345 priority Critical patent/US20190258110A1/en
Publication of WO2018133373A1 publication Critical patent/WO2018133373A1/zh
Priority to US16/882,932 priority patent/US11137637B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a display device and a display method.
  • liquid crystal displays have been widely used in people's lives.
  • the polarization state of the linearly polarized light is modulated by the liquid crystal, and the vibration direction of the linearly polarized light is changed, thereby realizing the screen display of different states, that is, the gray scale display. Therefore, in the conventional liquid crystal display, a polarizing plate needs to be disposed at the same time on the two substrates of the display panel, and only by the mutual cooperation of the two polarizing plates can the liquid crystal display display a picture of different states.
  • An embodiment of the present invention provides a display device including: a display panel, the display panel includes a first substrate, a second substrate, and a liquid crystal prism disposed between the first substrate and the second substrate; And a backlight configured to emit light obliquely incident on the second substrate; wherein the liquid crystal prism is configured to adjust light emitted by the backlight on the first substrate and the second substrate The angle of deflection between the two is such that the light emitted by the backlight is totally reflected at the light exit surface of the display device or exits at the light exit surface of the display device.
  • the liquid crystal prism is configured to have a first operating state and a second operating state, wherein in the first operating state, all of the light emitted by the backlight passes through the liquid crystal prism and is deflected
  • the incident angle at the light exit surface of the display device is greater than or equal to the total reflection critical angle; and in the second operating state, the incident angle of the entire light emitted by the backlight after the liquid crystal prism is deflected at the light exit surface Less than the critical angle of total reflection.
  • the liquid crystal prism is configured to further have a third operating state, in the third operating state, a portion of the light emitted by the backlight is deflected by the liquid crystal prism after the display device
  • the incident angle at the exit surface is greater than or equal to the critical angle of total reflection, and the incident angle at the exit surface of the other portion after deflection by the liquid crystal prism is less than the critical angle of total reflection.
  • the backlight is disposed to face a surface of the second substrate that faces away from the first substrate.
  • the liquid crystal prism includes a liquid crystal layer and first and second electrodes insulated from each other.
  • the first electrode and the second electrode are respectively located on opposite sides of the liquid crystal layer.
  • the first electrode is a surface electrode and the second electrode comprises a plurality of strip electrodes.
  • a width of each of the strip electrodes parallel to a surface direction of the second substrate is 2.5 ⁇ m, and a strip electrode gap between two adjacent strip electrodes is 3.5 ⁇ m;
  • the thickness of the layer is less than 10 ⁇ m.
  • the light emitted by the backlight is linearly polarized light.
  • the light emitted by the backlight is natural light
  • the display device further includes a polarizing plate disposed between the second substrate and the backlight.
  • the surface of the first substrate facing away from the second substrate is provided with an atomizing film.
  • the display panel further includes a black matrix disposed on a surface of the second substrate facing the liquid crystal prism, wherein the black matrix is configured to limit light emitted by the backlight to the second substrate. Into the light area.
  • a flat layer is further disposed between the second substrate and the liquid crystal prism, the flat layer covers the black matrix, and the black matrix is located between the flat layer and the second substrate.
  • the display panel further includes a black matrix disposed on a surface of the second substrate facing away from the liquid crystal prism.
  • the refractive index of the first substrate in the display device is greater than the refractive index of the external environmental medium in contact with the display device.
  • the incident angle of the light emitted by the backlight from the second substrate ranges from 55 to 60 degrees.
  • An embodiment of the present invention further provides a display method using the display device as described above, the display method comprising: the light emitted by the backlight is obliquely incident on the second substrate, and is controlled by controlling the liquid crystal prism a deflection angle of the light emitted by the backlight between the first substrate and the second substrate, such that the light emitted by the backlight is totally reflected or emitted at the light exit surface of the display device .
  • the liquid crystal prism includes a liquid crystal layer, a first electrode, and a second electrode
  • the controlling the liquid crystal prism includes: controlling a common voltage to be applied to the first electrode, and controlling to the second electrode The magnitude of the applied driving voltage controls the deflection state of the liquid crystal in the liquid crystal layer.
  • a driving voltage V1 is applied to the second electrode such that light emitted by the backlight is entirely emitted at a light emitting surface of the display device; or a driving voltage V2 is applied to the second electrode to enable The light emitted by the backlight is totally totally reflected at the light emitting surface of the display device; or a driving voltage V3 greater than V1 and less than V2 is applied to the second electrode to cause a part of the light emitted by the backlight to be The total reflection occurs at the light exit surface of the display device, and the other portion is emitted at the light exit surface of the display device.
  • the incident angle of the light emitted by the backlight from the second substrate ranges from 55 to 60 degrees.
  • FIG. 1 is a schematic view showing an exemplary structure of a liquid crystal display
  • FIG. 2 is a schematic structural view 1 of a display device according to Embodiment 1 of the present invention.
  • FIG. 3 is a second schematic structural diagram of a display device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view 3 of a display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram 4 of a display device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram 1 showing propagation of linearly polarized light in a display device according to Embodiment 1 of the present invention.
  • FIG. 7 is a second schematic diagram of the propagation of linearly polarized light in a display device according to Embodiment 1 of the present invention.
  • FIG. 8 is a third schematic diagram of the propagation of linearly polarized light in a display device according to Embodiment 1 of the present invention.
  • an embodiment of the present application provides a display device including: a display panel including a first substrate, a second substrate, and the first substrate and the second a liquid crystal prism between the substrates; and a backlight configured to emit light obliquely incident on the second substrate; wherein the liquid crystal prism is configured to adjust light emitted by the backlight at the first The deflection angle when the substrate and the second substrate propagate between the light emitted by the backlight is totally reflected at the light exit surface of the display device or is emitted at the light exit surface of the display device.
  • an exemplary liquid crystal display sequentially includes a first polarizing plate 1, a first substrate 2, a liquid crystal layer 3, a second substrate 4, and a second polarizing plate 5.
  • the first substrate 2 is provided with a common electrode 6 facing the surface of the second substrate 4, and the second substrate 4 is provided with a pixel electrode 7 facing the surface of the first substrate 2.
  • the first substrate 2, the liquid crystal layer 3, the second substrate 4, the common electrode 6, and the pixel electrode 7 constitute a display panel.
  • the second polarizing plate 5 disposed opposite to the second substrate 4 first needs to convert natural light into linearly polarized light; applying a driving voltage on the pixel electrode 7 At the same time, a common voltage is supplied to the common electrode 6, so that an electric field is formed between the pixel electrode 7 and the common electrode 6, and the liquid crystal in the liquid crystal layer 3 is driven to deflect, thereby changing the polarization state of the linearly polarized light transmitted in the liquid crystal layer 3.
  • the linearly polarized light When the vibration direction of the linearly polarized light is parallel to the polarization axis direction of the first polarizing plate 1, the linearly polarized light can be emitted from the first substrate 2 and the first polarizing plate 1, and when the direction of vibration of the linearly polarized light is first When the polarization axis direction of the polarizing plate 1 is perpendicular, the linearly polarized light cannot be emitted from the first substrate 2 and the first polarizing plate 1.
  • the polarizing plates at the two substrates of the display panel are indispensable, and only by the mutual cooperation of the two polarizing plates can the liquid crystal display display pictures in different states.
  • the embodiment provides a display device including a display panel and a backlight 8.
  • the display panel includes a first substrate 2, a second substrate 4, and a liquid crystal prism 9 disposed between the first substrate 2 and the second substrate 4.
  • the backlight 8 is for emitting light obliquely incident on the second substrate 4.
  • the backlight 8 may be arranged to face the surface of the second substrate 4 facing away from the first substrate 2.
  • embodiments of the present invention are not limited thereto, and the backlight 8 may be disposed in other orientations as long as the light emitted therefrom can be obliquely incident on the second substrate 4.
  • the liquid crystal prism 9 is configured to control a deflection angle when the light emitted from the backlight 8 propagates between the first substrate 2 and the second substrate 4, so that the light emitted from the backlight 8 is totally reflected or emitted on the light-emitting surface of the display device.
  • the light emitting surface of the display device is an interface between the first substrate 2 and an external environment medium that is in contact with the display device.
  • the light-emitting surface of the display device is the surface of the first substrate 2 facing away from the second substrate 4.
  • the liquid crystal prism 9 can control the deflection angle of the light emitted by the backlight 8 between the first substrate 2 and the second substrate 4, thereby controlling the incident angle when the light propagates to the light exit surface of the display device. size.
  • all the light rays are not satisfied with the condition of total reflection at the light-emitting surface, all the light is emitted from the light-emitting surface, and at this time, the display device assumes a bright state.
  • all the light rays meet the condition of total reflection at the light-emitting surface, all the light rays are totally emitted at the light-emitting surface and reflected back to the liquid crystal prism. At this time, the display device exhibits a dark state display state.
  • the display device When part of the light satisfies the condition that the total reflection occurs at the light-emitting surface, the part of the light is totally reflected at the light-emitting surface, and the other part of the light is emitted from the light-emitting surface. At this time, the display device exhibits a bright state and a dark state. Displays the grayscale display state between states. It can be seen that, by using the display device provided by the present invention, the principle of deflection of light by the liquid crystal prism is combined with the condition of total reflection occurring at the light exit surface of the display device, and the display device can be rendered different without relying on two polarizing plates. Display status.
  • the incident angle of the light emitted by the backlight 8 to the interface is less than the critical angle at which total reflection occurs, that is, when all the light does not satisfy the condition of total reflection, the light is completely emitted from the interface, and at this time, the display The amount of light transmitted by the panel is maximized, and the display device assumes a bright state.
  • the incident angles of the light emitted by the backlight 8 to the interface are all greater than or equal to the critical angle at which total reflection occurs, that is, all the rays satisfy the condition of total reflection, the light is totally reflected at the interface, and is reflected back to the liquid crystal prism.
  • the light transmission amount of the display panel is zero, and the display device assumes a dark state display state.
  • the incident angle of the partial light is greater than or equal to the critical angle at which total reflection occurs, and this part of the light will be delivered.
  • Full emission occurs at the interface and is reflected back to the liquid crystal prism 9.
  • the incident angle of the other part of the light is smaller than the critical angle at which total reflection occurs, and this part of the light will be emitted from the interface.
  • the display device presents a grayscale display state between the bright state display state and the dark state display state.
  • the liquid crystal prism 9 may be configured to have a first operational state and a second operational state, in which all of the light emitted by the backlight 8 is deflected by the liquid crystal prism 9
  • the incident angle at the light exit surface of the display device is greater than or equal to the total reflection critical angle; and in the second operating state, all the light emitted by the backlight 8 is deflected by the liquid crystal prism 9 to be emitted.
  • the angle of incidence at the face is less than the critical angle of total reflection.
  • the liquid crystal prism 9 may also be configured to have a third operational state in which a portion of the light emitted by the backlight 8 is deflected by the liquid crystal prism 9 after the display
  • the incident angle at the light exit surface of the device is greater than or equal to the total reflection critical angle, and the incident angle of the other portion after being deflected by the liquid crystal prism 9 at the light exit surface is less than the total reflection critical angle.
  • the display device assumes a grayscale display state between the bright state display state and the dark state display state.
  • the principle of deflection of the light by the liquid crystal prism 9 is utilized, and then the condition of total reflection occurs at the interface between the first substrate 2 and the external environment medium, even if the first substrate is not
  • the corresponding polarizing plates are disposed at two places, and the display device can also be presented in different display states.
  • the light emitted by the backlight 8 may be natural light or linearly polarized light of a single polarization direction.
  • the liquid crystal prism 9 in the display panel may include a liquid crystal layer 3 and first and second electrodes 11 and 12 insulated from each other.
  • the first electrode 11 and the second electrode 12 may be disposed on a side of the liquid crystal layer 3 facing the first substrate 2; or, the first electrode 11 and the second electrode 12 may be disposed on the liquid crystal layer 3 opposite to the second substrate. One side of 4; or, the first electrode 11 and the second electrode 12 may be respectively disposed on opposite sides of the liquid crystal layer 3.
  • the first electrode 11 and the second electrode 12 are both disposed on the same side of the liquid crystal layer 3, the first electrode 11 and the second electrode 12 may be disposed in the same layer or in different layers.
  • the first electrode 11 may be, for example, a common electrode
  • the second electrode 12 may be, for example, a pixel electrode.
  • the liquid crystal in the liquid crystal layer 3 is driven to deflect.
  • the deflected liquid crystal causes the light transmitted in the liquid crystal layer 3 to be deflected, thereby changing the incident angle at which the light propagates to the interface between the first substrate 2 and the external environmental medium.
  • the driving voltage applied to the second electrode 12 the deflection state of the liquid crystal is changed, thereby changing the deflection angle at which the light transmitted in the liquid crystal layer 3 is deflected, thereby controlling the incidence of light propagation to the interface.
  • the angle is greater than, equal to, or less than the critical angle at which total reflection occurs.
  • the first electrode 11 is a face electrode and the second electrode 12 includes a plurality of strip electrodes.
  • the width d 1 of each strip electrode parallel to the surface direction of the second substrate 4 is 2.5 ⁇ m, and the strip electrode gap d 2 between adjacent strip electrodes is 3.5 ⁇ m, in the liquid crystal prism 9
  • the thickness d 3 of the liquid crystal layer 3 is less than 10 ⁇ m.
  • the deflection state of all the liquid crystals in the liquid crystal layer 3 can be equivalent to a liquid crystal deflection equivalent interface, and is rationally designed by the width d 1 of each strip electrode, the strip electrode gap d 2 , and the thickness d 3 of the liquid crystal layer 3.
  • the liquid crystal deflection equivalent interface can be optimized to better control the deflection angle of the linearly polarized light.
  • d 1 , d 2 and d 3 are only the respective preferred numerical values, and do not constitute a limitation on their respective actual values. Based on the display principle corresponding to the display device in this embodiment, the display device can be presented in different display states as long as a reasonable value is designed for each.
  • the refractive index of the first substrate 2 of the display device should be greater than the refractive index of the external environmental medium.
  • the refractive index of the first substrate 2 should be greater than the refractive index of the air.
  • the refractive index of the first substrate 2 may be 1.5.
  • the light emitted by the backlight 8 is obliquely incident on the second substrate 4 at an incident angle in the range of 55-60°.
  • the light propagating in the liquid crystal prism 9 is desirably linearly polarized, when the light emitted from the backlight 8 is natural light, it is required between the second substrate 4 and the backlight 8.
  • a polarizing plate 10 for converting natural light into linearly polarized light is provided.
  • the polarizing plate 10 may be replaced by a polarizing layer.
  • the polarizing layer may be disposed on a side of the second substrate 4 facing the backlight 8 or on a side of the second substrate 4 facing away from the backlight 8 .
  • the polarizing layer may be, for example, a wire grid structure.
  • the light emitted by the backlight 8 is linearly polarized light of a single polarization direction, there is no need to provide the polarizing plate 10 between the second substrate 4 and the backlight 8.
  • the linearly polarized light emitted by the backlight 8 can be directly It is incident on the second substrate 4.
  • the surface of the first substrate 2 facing away from the second substrate 4 may also be provided with an atomizing film 13.
  • the atomizing film 13 serves to break up the collimated light emitted from the first substrate 2, thereby increasing the viewing angle of the screen displayed by the display device.
  • the atomizing film 13 may be attached to the surface of the first substrate 2, for example, only the periphery of the atomizing film 13 may be bonded to the surface of the first substrate 2, and the intermediate portion of the atomizing film 13 is first.
  • the intermediate portion of the substrate 2 is separated by an air layer.
  • the refractive index of the atomizing film 13 is not limited.
  • the atomizing film 13 may also fully conform to the surface of the first substrate 2, at which time the refractive index of the atomizing film 13 needs to be as close as possible to the refractive index of the air, so that the first display device
  • the refractive index of the substrate 2 is greater than the refractive index of the atomizing film 13, ensuring that total reflection of light can occur at the surface of the first substrate 2.
  • a color filter layer 14 and a color filter layer for filtering may be disposed between the first substrate 2 and the liquid crystal prism 9. 14 allows different sub-pixels to appear in different colors.
  • the black matrix is used to block and absorb external incident light and prevent color mixture of adjacent pixels, thereby avoiding direct or passing external light.
  • the reflection and scattering are indirectly irradiated onto the TFT device of the second substrate 4, causing deterioration of the off state characteristic of the TFT device.
  • a black matrix 15 may also be disposed at the second substrate 4, where the black matrix 15 is disposed corresponding to the open area of the pixel for limiting the backlight 8
  • the light incident region of the light limits the light exiting region of the light at the interface between the first substrate 2 and the external environmental medium, preventing the emitted light from hitting adjacent sub-pixels, thereby preventing cross-coloring.
  • the black matrix 15 can also absorb the light reflected back into the liquid crystal prism 9 to prevent the light from being reflected again.
  • the black matrix 15 may be disposed at a surface of the second substrate 4 facing the liquid crystal prism 9, or may be disposed at a surface of the second substrate 4 facing away from the liquid crystal prism 9.
  • the black matrix 15 When the black matrix 15 is disposed at the surface of the second substrate 4 facing the liquid crystal prism 9, since the surface of the black matrix 15 is uneven, the second substrate 4 and the liquid crystal are formed in order to achieve better contact with the second electrode 12.
  • a flat layer 16 that is smooth and covers the black matrix 15 may also be provided between the prisms 9. The black matrix 15 may be located between the flat layer 16 and the second substrate 4.
  • the backlight 8 in the display device is a strip backlight
  • the strip backlight 8 can be restricted by the self-luminous region, it is no longer necessary to further set the black matrix 15 at the second substrate 4. .
  • the straight line at the relative position is equivalent to the interface between the first substrate 2 and the external environment medium, and the straight line at the opposite position is equivalent to the back direction of the second substrate 4.
  • two incident linearly polarized lights are taken as an example, wherein ⁇ ' is an incident angle when the first linearly polarized light is incident on the second substrate 4, ⁇ ' The incident angle when the second linearly polarized light is incident on the second substrate 4, and ⁇ ' ⁇ ⁇ '.
  • is an incident angle when the first linearly polarized light is incident on the second substrate 4
  • ⁇ ' The incident angle when the second linearly polarized light is incident on the second substrate 4
  • ⁇ ' ⁇ ⁇ ' When the light is incident on the second substrate 4 from the external environment medium during the actual propagation, the light is refracted at the surface incident by the second substrate 4, and ⁇ is the first linearly polarized light at the surface of the second substrate 4.
  • the angle after the occurrence of the refraction, ⁇ is the angle at which the second linearly polarized light is refracted at the surface of the second substrate 4.
  • liquid crystal molecules in the liquid crystal layer 3 are not deflected. Both the first linearly polarized light and the second linearly polarized light are transmitted in a straight line in the liquid crystal layer 3, and are emitted from the interface between the first substrate 2 and the external environmental medium. At this time, the amount of light transmitted by the display panel is maximized, and the display device assumes a bright state.
  • the first linearly polarized light and the second line The angle at which the polarized light is emitted from the first substrate 2 is the same as the incident angle when incident from the second substrate 4.
  • the third linearly polarized light and the fourth linearly polarized light may be deflected at the liquid crystal deflection equivalent interface. After the deflection, the propagation angle of the third linearly polarized light is increased from ⁇ to ⁇ 1 , and the propagation angle of the fourth linearly polarized light is increased from ⁇ to ⁇ 1 .
  • both the third linearly polarized light and the fourth linearly polarized light may be deflected by more than 5°.
  • the incident angle ⁇ 1 when the deflected third linearly polarized light propagates to the interface between the first substrate 2 and the external environment medium is greater than the critical angle corresponding to the total reflection occurring at the interface.
  • the incident angle ⁇ 1 when the deflected fourth linearly polarized light propagates to the interface is also larger than the critical angle corresponding to the total reflection occurring at the interface.
  • the third linearly polarized light and the fourth linearly polarized light after the deflection are totally reflected at the interface and are reflected back into the liquid crystal layer 3.
  • the light transmission amount of the display panel is zero, and the display device assumes a dark state display state.
  • the fifth linearly polarized light, the sixth linearly polarized light, and the seventh linearly polarized light are deflected at the equivalent interface of the liquid crystal deflection, and the angle of propagation of the fifth linearly polarized light after the deflection From ⁇ to ⁇ 1 , the propagation angle of the sixth linearly polarized light is increased from ⁇ to ⁇ 1 , and the propagation angle of the seventh linearly polarized light is increased from ⁇ to ⁇ 1 .
  • the deflection state of the liquid crystal deflection is smaller than the corresponding liquid crystal deflection state in the dark state display state, it is not possible to ensure that all of the linearly polarized light can be totally reflected.
  • the incident angle ⁇ 1 is smaller than the critical angle corresponding to the total reflection at the interface, and therefore, the fifth line The polarized light does not satisfy the conditions under which total reflection occurs, and is emitted from the interface.
  • the display device presents a grayscale display state between the bright state display state and the dark state display state.
  • the light intensity corresponding to the fifth linearly polarized light is x
  • the light intensity corresponding to the sixth linearly polarized light is y
  • the light intensity corresponding to the seventh linear polarized light is z.
  • the fifth linearly polarized light and the sixth linearly polarized light are emitted from the first substrate 2, and the seventh linearly polarized light is reflected back to the liquid crystal layer 3, and the total light intensity of the linearly polarized light emitted at this time is x+y, that is, enables the display device to achieve different levels of grayscale display.
  • the embodiment of the present application further provides a display method using a display device, and the display method of the display device is applied to the display device as described in the first embodiment.
  • the display method specifically includes: the light emitted by the backlight (for example, at a diverging angle) is obliquely incident on the second substrate, and the liquid crystal prism is controlled to control the light emitted by the backlight to propagate between the first substrate and the second substrate.
  • the deflection angle causes the light emitted by the backlight to be totally reflected or emitted at the light exit surface of the display device.
  • the light emitting surface of the display device is an interface between the first substrate and the external environment medium that is in contact with the display device.
  • the light emitting surface of the display device is a surface of the first substrate facing away from the second substrate.
  • the light emitted by the backlight (for example, at a diverging angle) is obliquely incident on the second substrate, and by controlling the liquid crystal prism, the light is linearly propagated between the first substrate and the second substrate, so that the light is first.
  • the display device assumes a bright state.
  • the light emitted by the backlight (eg, at a diverging angle) is obliquely incident on the second substrate, and the liquid crystal prism is controlled such that the light is propagated between the first substrate and the second substrate at a maximum deflection angle.
  • the deflection is carried out, when the deflected light propagates to the interface, the incident angle is greater than or equal to the critical angle at which the total reflection occurs at the interface, and total reflection occurs at the interface, and is reflected back to the liquid crystal layer.
  • the display is performed. The device assumes a dark state display state.
  • light emitted by the backlight (eg, at a diverging angle) is obliquely incident on the second substrate, and by controlling the liquid crystal prism such that the light propagates between the first substrate and the second substrate, less than a maximum deflection
  • the deflection angle of the angle is deflected.
  • the incident angle of the partial light is greater than or equal to the critical angle at which the total reflection occurs at the interface, and the partial light is totally reflected at the interface.
  • the display device is bright State display and dark state display
  • the gray scale between the displays shows the status.
  • the deflection angle of the light emitted by the backlight between the first substrate and the second substrate can be controlled by the liquid crystal prism, thereby controlling the light to propagate to the first substrate and the outside.
  • the liquid crystal prism 9 includes the liquid crystal layer 3, the first electrode 11 and the second electrode 12, specifically, by controlling the liquid crystal prism 9, the light is linear between the first substrate 2 and the second substrate 4.
  • the propagation may specifically include: no driving voltage is applied to the second electrode 12, and a common voltage is not applied to the first electrode 11, so that the liquid crystal in the liquid crystal layer 3 is maintained in an initial state, and the light is linearly transmitted in the liquid crystal layer 3.
  • the liquid crystal in the liquid crystal layer 3 is not deflected.
  • the linearly polarized light is incident from the second substrate obliquely at a diverging angle, the light is linearly transmitted in the liquid crystal layer 3, and is emitted from the interface between the first substrate 2 and the external environment, so that the display device is in a bright state. .
  • the deflection at the maximum deflection angle may include: applying a maximum driving voltage to the second electrode 12, to the first The electrode 11 applies a common voltage to deflect the liquid crystal, and the light is deflected in the liquid crystal layer at the maximum deflection angle.
  • the maximum drive voltage is applied across the second electrode 12 such that the liquid crystal deflects in a larger deflection state.
  • the linearly polarized light is incident obliquely from the second substrate 4 at a diverging angle
  • the linearly polarized light is deflected in the liquid crystal layer 3 by the action of the deflected liquid crystal, and the linearly polarized light after the deflection is at the interface.
  • the incident angle is greater than or equal to the critical angle at which the total reflection occurs at the interface, and the linearly polarized light is totally reflected at the interface, and is reflected back to the liquid crystal layer 3, so that the display device is in a dark state.
  • the deflection at a deflection angle smaller than the maximum deflection angle may include: applying greater than zero to the second electrode 12 Further, a driving voltage lower than the maximum driving voltage is applied to the first electrode 11 to deflect the liquid crystal, and the light is deflected in the liquid crystal layer 3 at a deflection angle smaller than the maximum deflection angle.
  • a driving voltage greater than zero and less than the maximum driving voltage is applied to the second electrode 12 such that the liquid crystal is deflected.
  • the linearly polarized light is incident from the second substrate 4 toward the surface of the first substrate 2 at a diverging angle, the polarized liquid is subjected to deflection, and the linearly polarized light is deflected in the liquid crystal layer 3.
  • the applied driving voltage does not reach the maximum driving voltage, the deflection angle of the linearly polarized light is smaller than the deflection angle corresponding to the maximum driving voltage.
  • the incident angle propagated to the interface is greater than or equal to the critical angle, and total reflection occurs at the interface, and is reflected back to the liquid crystal layer 3.
  • the incident angle propagated to the interface is smaller than the critical angle, and this part of the linearly polarized light is emitted from the interface.
  • part of the linearly polarized light is emitted from the first substrate 2, and part of the linear polarization The light is reflected back to the liquid crystal layer 3, causing the display device to exhibit a gray scale display state between the bright state display state and the dark state display state.
  • the driving voltage V 3 applied to the electrode 12 needs to satisfy: 0 V ⁇ V 3 ⁇ V 2 , corresponding to the deflection angle ⁇ 3 ⁇ 5 ° of the linearly polarized light.
  • the incident angle of the linearly polarized light incident from the second substrate 4 toward the surface of the first substrate 2 ranges from 55 to 60°.
  • the display device further includes a polarizing plate disposed between the second substrate and the backlight
  • the light emitted by the backlight further includes: converting the light into linearly polarized light before entering the second substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置及其显示方法,其中显示装置包括:显示面板,包括第一基板(2)、第二基板(4)、以及设于第一基板(2)与第二基板(4)之间的液晶棱镜(9);背光源(8),配置为发出倾斜入射至第二基板(4)的光线;其中,液晶棱镜(9)配置为调节背光源(8)发出的光线在第一基板(2)与第二基板(4)之间传播时的偏折角度,使背光源(8)发出的光线在显示装置的出光面处发生全反射或在显示装置的出光面处出射。

Description

显示装置及显示方法
交叉引用
本申请要求于2017年1月18日递交中国专利局的、申请号为201710035757.8的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本发明涉及液晶显示技术领域,尤其涉及一种显示装置及显示方法。
背景技术
目前,液晶显示器已经被广泛的应用在人们的生活中。
现有的液晶显示器是通过液晶对线偏振光的偏振态进行调制,改变线偏振光的振动方向,进而实现不同状态的画面显示,即灰阶显示。所以,在传统的液晶显示器中,需在显示面板的两个基板处同时设置有偏振片,只有依靠两个偏振片的相互配合,才能使液晶显示器显示不同状态的画面。
发明内容
本发明的实施例提供了一种显示装置,包括:显示面板,所述显示面板包括第一基板、第二基板、以及设于所述第一基板与所述第二基板之间的液晶棱镜;以及背光源,所述背光源配置为发出倾斜入射至所述第二基板的光线;其中,所述液晶棱镜配置为调节所述背光源发出的光线在所述第一基板与所述第二基板之间传播时的偏折角度,使所述背光源发出的光线在所述显示装置的出光面处发生全反射或在所述显示装置的出光面处出射。
在一实施例中,所述液晶棱镜配置为具有第一操作状态和第二操作状态,在所述第一操作状态中,所述背光源发出的全部光线经过所述液晶棱镜偏折后在所述显示装置的出光面处的入射角大于等于全反射临界角;而在所述第二操作状态中,所述背光源发出的全部光线经过所述液晶棱镜偏折后在出光面处的入射角小于全反射临界角。
在一实施例中,所述液晶棱镜配置为还具有第三操作状态,在所述第三操作状态中,所述背光源发出的光线的一部分经过所述液晶棱镜偏折后在所述显示装置的出光面处的入射角大于等于全反射临界角,而另一部分经过所述液晶棱镜偏折后在出光面处的入射角小于全反射临界角。
在一实施例中,所述背光源布置成面向与所述第二基板中背向所述第一基板的表面。
在一实施例中,所述液晶棱镜包括液晶层以及相互绝缘的第一电极和第二电极。
在一实施例中,所述第一电极和第二电极分别位于液晶层的相反的两侧上。
在一实施例中,所述第一电极为面电极,所述第二电极包括多个条状电极。
在一实施例中,每个所述条状电极平行于所述第二基板的表面方向的宽度为2.5μm,相邻两个条状电极之间的条状电极空隙为3.5μm;所述液晶层的厚度小于10μm。
在一实施例中,所述背光源发出的光线为线偏振光。
在一实施例中,所述背光源发出的光线为自然光,所述显示装置还包括设于所述第二基板与所述背光源之间的偏振片。
在一实施例中,所述第一基板背向所述第二基板的表面设有雾化膜。
在一实施例中,所述显示面板还包括设于所述第二基板朝向所述液晶棱镜的表面的黑矩阵,所述黑矩阵用于限制所述背光源发出的光射向第二基板的入光区域。
在一实施例中,所述第二基板与所述液晶棱镜之间还设有平坦层,所述平坦层覆盖所述黑矩阵,所述黑矩阵位于所述平坦层和第二基板之间。
在一实施例中,所述显示面板还包括设于所述第二基板背向所述液晶棱镜的表面的黑矩阵。
在一实施例中,所述显示装置中第一基板的折射率大于与所述显示装置接触的外部环境介质的折射率。
在一实施例中,所述背光源发出的光线从所述第二基板入射时的入射角度范围为55-60°。
本发明的实施例还提供一种利用如上所述的显示装置的显示方法,所述显示方法包括:所述背光源发出的光线倾斜入射至所述第二基板,通过控制所述液晶棱镜,控制所述背光源发出的光线在所述第一基板与所述第二基板之间传播时的偏折角度,使所述背光源发出的光线在所述显示装置的出光面处发生全反射或出射。
在一实施例中,所述液晶棱镜包括液晶层、第一电极和第二电极,所述控制所述液晶棱镜包括:控制向所述第一电极施加公共电压,控制向所述第二电极所施加的驱动电压的大小,控制所述液晶层中液晶的偏转状态。
在一实施例中,向所述第二电极施加驱动电压V1以使所述背光源发出的光线在所述显示装置的出光面处全部出射;或向所述第二电极施加驱动电压V2以使所述背光源发出的光线在所述显示装置的出光面处全部发生全反射;或向所述第二电极施加大于V1并小于V2的驱动电压V3以使所述背光源发出的光线的一部分在所述显示装置的出光面处发生全反射,另一部分在所述显示装置的出光面处出射。
在一实施例中,所述背光源发出的光线从所述第二基板入射时的入射角度范围为55-60°。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为液晶显示器的一种示例性结构的示意图;
图2为本发明实施例一所提供的显示装置的结构示意图一;
图3为本发明实施例一所提供的显示装置的结构示意图二;
图4为本发明实施例一所提供的显示装置的结构示意图三;
图5为本发明实施例一所提供的显示装置的结构示意图四;
图6为本发明实施例一所提供的显示装置中线偏振光的传播示意图一;
图7为本发明实施例一所提供的显示装置中线偏振光的传播示意图二;
图8为本发明实施例一所提供的显示装置中线偏振光的传播示意图三。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。
根据一种总体上的构思,本申请的实施例提供一种显示装置,包括:显示面板,所述显示面板包括第一基板、第二基板、以及设于所述第一基板与所述第二基板之间的液晶棱镜;以及背光源,所述背光源配置为发出倾斜入射至所述第二基板的光线;其中,所述液晶棱镜配置为调节所述背光源发出的光线在所述第一基板与所述第二基板之间传播时的偏折角度,使所述背光源发出的光线在所述显示装置的出光面处发生全反射或在所述显示装置的出光面处出射。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或更多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
如图1所示,一种示例性的液晶显示器顺次包括第一偏振片1、第一基板2、液晶层3、第二基板4、以及第二偏振片5。第一基板2朝向第二基板4的表面设有公共电极6、第二基板4朝向第一基板2的表面设有像素电极7。其中,第一基板2、液晶层3、第二基板4、公共电极6、以及像素电极7构成显示面板。
当有自然光从第二基板4背向第一基板2的表面入射时,与第二基板4相对设置的第二偏振片5首先需要将自然光转换为线偏振光;在像素电极7上施加驱动电压,同时向公共电极6提供公共电压,这样,像素电极7和公共电极6之间形成电场,驱动液晶层3中的液晶发生偏转,进而改变在液晶层3中传输的线偏振光的偏振态。当线偏振光的振动方向与第一偏振片1的偏光轴方向平行时,该线偏振光可以从第一基板2和第一偏振片1中射出,而当线偏振光的振动方向与第一偏振片1的偏光轴方向垂直时,该线偏振光无法从第一基板2和第一偏振片1中射出。在这种示例性的液晶显示器中,在显示面板的两个基板处的偏振片都是必不可少的,只有依靠两个偏振片的相互配合,才能使液晶显示器显示不同状态的画面。
如图2所示,本实施例提供了一种显示装置,包括显示面板以及背光源8。其中,显示面板包括第一基板2、第二基板4、以及设于第一基板2与第二基板4之间的液晶棱镜9。背光源8用于发出倾斜入射至第二基板4的光线。作为示例,背光源8可以布置成面向与第二基板4中背向第一基板2的表面。然而,本发明的实施例不限于此,背光源8也可以布置在其它方位,只要其发射的光线能够倾斜入射至第二基板4即可。
液晶棱镜9配置为控制背光源8发出的光线在第一基板2与第二基板4之间传播时的偏折角度,使背光源8发出的光线在显示装置的出光面发生全反射或出射。其中,显示装置的出光面为第一基板2与显示装置接触的外部环境介质的交界面。作为示例,显示装置的出光面为第一基板2背向第二基板4的表面。
基于上述结构,可通过液晶棱镜9控制背光源8发出的光线在第一基板2与第二基板4之间传播时的偏折角度,进而控制光线传播至显示装置的出光面处时入射角的大小。当光线在出光面处全部不满足发生全反射的条件时,光线全部从出光面射出,这时,显示装置呈现亮态显示状态。当光线在出光面处全部满足发生全反射的条件时,光线全部在出光面处发生全发射,反射回液晶棱镜,这时,显示装置呈现暗态显示状态。当光线中部分满足在出光面处满足发生全反射的条件时,这部分光线在出光面处发生全反射,另一部分光线从出光面处出射,这时,显示装置呈现亮态显示状态与暗态显示状态之间的灰阶显示状态。可见,采用本发明所提供的显示装置,利用液晶棱镜对光线的偏折原理,进而结合在显示装置的出光面处发生全反射的条件,无需依靠两个偏振片,同样能够使显示装置呈现不同的显示状态。
具体的,当背光源8发出的光线传播至交界面处的入射角全部小于发生全反射的临界角,即光线全部不满足发生全反射的条件时,光线全部从交界面处射出,此时,显示面板的透光量达到最大,显示装置呈现亮态显示状态。当背光源8发出的光线传播至交界面处的入射角全部大于或等于发生全反射的临界角,即光线全部满足发生全反射的条件时,光线全部在交界面处发生全反射,反射回液晶棱镜9中,此时,显示面板的透光量为零,显示装置呈现暗态显示状态。当背光源8发出的光线传播至交界面处时,仅有部分光线的入射角大于或等于发生全反射的临界角,这部分光线会在交 界面处发生全发射,反射回液晶棱镜9。而另一部分光线的入射角小于发生全反射的临界角,这部分光线会从交界面射出。此时,显示装置呈现介于亮态显示状态与暗态显示状态之间的灰阶显示状态。
在一示例中,所述液晶棱镜9可以配置为具有第一操作状态和第二操作状态,在所述第一操作状态中,所述背光源8发出的全部光线经过所述液晶棱镜9偏折后在所述显示装置的出光面处的入射角大于等于全反射临界角;而在所述第二操作状态中,所述背光源8发出的全部光线经过所述液晶棱镜9偏折后在出光面处的入射角小于全反射临界角。在液晶棱镜9处于上述第一操作状态下时,显示装置呈现亮态显示状态,而在液晶棱镜9处于上述第二操作状态下时,显示装置呈现暗态显示状态。
作为示例,所述液晶棱镜9还可配置为具有第三操作状态,在所述第三操作状态中,所述背光源8发出的光线的一部分经过所述液晶棱镜9偏折后在所述显示装置的出光面处的入射角大于等于全反射临界角,而另一部分经过所述液晶棱镜9偏折后在出光面处的入射角小于全反射临界角。在液晶棱镜9处于上述第三操作状态下时,显示装置呈现介于亮态显示状态与暗态显示状态之间的灰阶显示状态。
可见,采用本实施例所提供的显示装置,利用了液晶棱镜9对光线的偏折原理,进而结合在第一基板2与外部环境介质的交界面处发生全反射的条件,即使不在第一基板2处设置对应的偏振片,同样也可以使显示装置呈现不同的显示状态。
作为示例,背光源8发出的光线可以是自然光,也可以是单一偏振方向的线偏振光。
如图3所示,作为示例,显示面板中的液晶棱镜9可包括液晶层3以及相互绝缘的第一电极11和第二电极12。
作为示例,第一电极11和第二电极12可均设于液晶层3朝向第一基板2的一侧;或者,第一电极11和第二电极12可均设于液晶层3相对第二基板4的一侧;或者,第一电极11和第二电极12可分别设于液晶层3的相反的两侧。
当第一电极11和第二电极12均设于液晶层3的同一侧时,第一电极11和第二电极12可同层设置或者非同层设置。
第一电极11例如可为公共电极,第二电极12例如可为像素电极。
在一示例中,基于液晶棱镜9的具体结构,当在第二电极12上施加驱动电压,且在第一电极11上施加公共电压时,第二电极12和第一电极11之间会产生电场,从而驱动液晶层3中的液晶发生偏转。偏转后的液晶,会使得在液晶层3中传输的光线发生偏折,从而改变光线传播至第一基板2与外部环境介质的交界面处的入射角。这样,就可以通过改变施加在第二电极12上的驱动电压,改变液晶的偏转状态,进而改变在液晶层3中传输的光线发生偏折的偏折角度,从而控制光线传播至交界面处的入射角大于、等于或小于发生全反射的临界角。
在一示例中,第一电极11为面电极,第二电极12包括多个条状电极。
作为示例,每个条状电极平行于第二基板4的表面方向的宽度d1为2.5μm,相邻两个条状电极之间的条状电极空隙d2为3.5μm,液晶棱镜9中的液晶层3的厚度d3小于10μm。
液晶层3中的全部液晶的偏转状态可等效为一个液晶偏转等效界面,通过对每个条状电极的宽度d1、条状电极空隙d2以及液晶层3的厚度d3进行合理设计,可对液晶偏转等效界面进行优化,进而更好地控制线偏振光的偏折角度。
需要说明的是,以上所给出的d1、d2以及d3的具体数值,仅为各自的优选数值,并不构成对其各自实际数值的限定。基于本实施例中显示装置所对应的显示原理,只要为其各自设计合理数值,都能使显示装置呈现不同的显示状态。
需要说明的是,显示装置的第一基板2的折射率应大于外部环境介质的折射率。当第一基板2和第二基板4均为玻璃基板,且显示装置的出光面为第一基板2与空气的交界面时,第一基板2的折射率应大于空气的折射率。例如,当空气的折射率为1.0时,第一基板2的折射率可为1.5。
作为示例,背光源8发出的光线以55-60°范围的入射角度倾斜入射至第二基板4。
如图4所示,作为示例,由于在液晶棱镜9中传播的光线期望为线偏振光,因而,当背光源8发出的光线为自然光时,在第二基板4与背光源8之间还需设有用于将自然光转换为线偏振光的偏振片10。
作为示例,偏振片10也可以被偏光层所替代,偏光层具体可设置在第二基板4朝向背光源8的一侧,也可以设置在第二基板4背向背光源8的一侧,所述偏光层例如可以为线栅结构。
可以理解的是,当背光源8发出的光线为单一偏振方向的线偏振光时,则无需在第二基板4与背光源8之间设置偏振片10,背光源8发出的线偏振光可直接入射至第二基板4。
如图5所示,作为示例,第一基板2背向第二基板4的表面还可设有雾化膜13。雾化膜13用于将从第一基板2射出的准直光线打散,从而增大显示装置所显示画面的可视角度。
在一示例中,雾化膜13可以贴于第一基板2的表面,例如可以只将雾化膜13的周边与第一基板2的表面贴合,而雾化膜13的中间区域与第一基板2的中间区域之间隔有一层空气层,此时,对雾化膜13的折射率不做限制。
在另一示例中,雾化膜13还可全贴合于第一基板2的表面,此时,雾化膜13的折射率需尽可能地接近空气的折射率,以使得显示装置的第一基板2的折射率大于雾化膜13的折射率,保证光线在第一基板2的表面处可发生全反射。
作为示例,第一基板2与液晶棱镜9之间还可设有进行滤光的彩膜层14,彩膜层 14可使不同的子像素呈现出不同的颜色。
通常情况下,传统的显示面板中仅在第一基板2处对应设置有黑矩阵,该处的黑矩阵是为了阻挡和吸收外界的入射光线以及防止相邻像素的混色,避免外界光线直接或者通过反射、散射间接地照射到第二基板4的TFT器件上,引起TFT器件关态特性的劣化。
而在本实施例所提供的显示装置中,作为示例,在第二基板4处也可以设置有黑矩阵15,该处的黑矩阵15对应像素的开口区设置,用于限制背光源8发出的光的入光区域,进而限制了光线在第一基板2与外部环境介质的交界面处的出光区域,防止射出的光线打到相邻的子像素中,进而防止串色。且当背光源8发出的光线在第一基板2与外部环境介质的交界面处发生全反射时,该黑矩阵15还可吸收反射回液晶棱镜9中的光线,防止光线再次进行反射。
作为示例,黑矩阵15可设于第二基板4朝向液晶棱镜9的表面处,也可设于第二基板4背向液晶棱镜9的表面处。
当黑矩阵15设于第二基板4朝向液晶棱镜9的表面处时,由于黑矩阵15的表面是凹凸不平的,因而,为了实现与第二电极12更好的接触,第二基板4与液晶棱镜9之间还可设有平滑的且覆盖黑矩阵15的平坦层16。所述黑矩阵15可以位于所述平坦层16和第二基板4之间。
可以理解的是,当显示装置中的背光源8为条状背光源时,由于条状背光源8可受到自身发光区域的限制,因此也就无需再在第二基板4处对应设置黑矩阵15。
基于如上所述的显示装置的具体结构,为了对亮态显示状态、暗态显示状态、以及介于亮态显示状态与暗态显示状态之间的灰阶显示状态下所对应的线偏振光的传播过程叙述更加清楚,下面将结合图6-图8对其进行详细说明。
需要说明的是,在图6-图8中,相对位置在上的直线等效的是第一基板2与外部环境介质的交界面,相对位置在下的直线等效的是第二基板4背向第一基板2的表面。
当显示装置呈现亮态显示状态时,如图6所示,以两条入射的线偏振光为例,其中,ω′为第一线偏振光由第二基板4入射时的入射角度,σ′为第二线偏振光由第二基板4入射时的入射角度,且ω′<σ′。光线在实际传播的过程中,由外部环境介质射入第二基板4时,会在由第二基板4射入的表面处发生折射,ω为第一线偏振光在第二基板4的表面处发生折射后的角度,σ为第二线偏振光在第二基板4的表面处发生折射后的角度。
当第二电极12上未施加驱动电压时,液晶层3中的液晶分子不发生偏转。第一线偏振光和第二线偏振光均在液晶层3中沿直线传输,并从第一基板2与外部环境介质的交界面射出。此时,显示面板的透光量达到最大,显示装置呈现亮态显示状态。
由于第一基板2和第二基板4之间各层为平行结构,因而第一线偏振光和第二线 偏振光从第一基板2中射出的角度与从第二基板4中入射时的入射角度相同。
显示装置呈现暗态显示状态时,如图7所示,以两条入射的线偏振光为例,其中,θ′为第三线偏振光由第二基板4入射时的入射角度,β′为第四线偏振光由第二基板4入射时的入射角度,且θ′<β′。光线在实际传播的过程中,由外部环境射入第二基板4时,会在由第二基板4射入的表面处发生折射,θ为第三线偏振光在第二基板4的表面处发生折射后的角度,β为第四线偏振光在第二基板4的表面处发生折射后的角度。当在第二电极12上施加最大驱动电压时,液晶分子以最大限度的偏转态进行偏转,其中,液晶偏转等效界面如图7所示。
由于受到偏转的液晶分子的作用,第三线偏振光和第四线偏振光在液晶偏转等效界面处会发生偏折。偏折后,第三线偏振光的传播角度由θ增大到θ1,第四线偏振光的传播角度由β增大到β1
由于在第二电极12上施加的驱动电压足够大,因而能够保证液晶分子发生较大的偏转,进而保证第三线偏振光和第四线偏振光发生较大角度的偏折。例如,第三线偏振光和第四线偏振光均可偏折5°以上。此时,偏折后的第三线偏振光传播到第一基板2与外部环境介质的交界面处时的入射角θ1大于在该交界面处发生全反射所对应的临界角。由于β>θ,因此,偏折后的第四线偏振光传播到交界面处时的入射角β1也大于在该交界面处发生全反射所对应的临界角。这时,偏折后的第三线偏振光和第四线偏振光均在交界面处发生全反射,反射回液晶层3中。此时,显示面板的透光量为零,显示装置呈现暗态显示状态。
显示装置呈现介于亮态显示状态和暗态显示状态之间的灰阶显示状态时,如图8所示,以三条入射的线偏振光为例,其中,γ′为第五线偏振光由第二基板4入射时的入射角度,δ′为第六线偏振光由第二基板4入射时的入射角度,ε′为第七线偏振光由第二基板4入射时的入射角度,且γ′<δ′<ε′。光线在实际传播的过程中,由外部环境射入第二基板4时,会在由第二基板4射入的表面处发生折射,γ为第五线偏振光在第二基板4的表面处发生折射后的角度,δ为第六线偏振光在第二基板4的表面处发生折射后的角度,ε为第七线偏振光在第二基板4的表面处发生折射后的角度。
当在第二电极12上施加的驱动电压大于零且小于最大驱动电压时,液晶分子发生偏转,但发生偏转的偏转状态小于暗态显示状态时所对应的液晶偏转状态,其中,液晶偏转等效界面如图8所示。
由于受到偏转的液晶分子的作用,第五线偏振光、第六线偏振光以及第七线偏振光在液晶偏转等效界面处会发生偏折,偏折后,第五线偏振光的传播角度由γ增大到γ1,第六线偏振光的传播角度由δ增大到δ1,第七线偏振光的传播角度由ε增大到ε1
但由于液晶发生偏转的偏转状态小于暗态显示状态时对应的液晶偏转状态,因而这时并不能保证全部的线偏振光都能够发生全反射。此时,偏折后的第五线偏振光传 播到第一基板2与外部环境交界面处时,入射角γ1小于在该交界面处发生全反射所对应的临界角,因此,第五线偏振光不满足全反射发生的条件,会从交界面处射出。偏折后的第六线偏振光和第七偏振光传播到交界面处时,入射角δ1和ε1均大于在该交界面处发生全反射所对应的临界角,这时,偏折后的第六线偏振光和第七偏振光均在交界面处发生全反射,反射回液晶层3中。此时,显示装置呈现介于亮态显示状态和暗态显示状态之间的灰阶显示状态。
假设第五线偏振光对应的光强度为x,第六线偏振光对应的光强度为y,第七线偏振光对应的光强度为z。当在第二电极12上施加某一驱动电压时,在该驱动电压的作用下,使得第五线偏振光从第一基板2射出,第六线偏振光和第七线偏振光反射回液晶层3,这时射出的线偏振光的总的光强度为x。若将驱动电压增大,使得第五线偏振光和第六线偏振光从第一基板2射出,第七线偏振光反射回液晶层3,这时射出的线偏振光的总的光强度为x+y,即,使显示装置实现不同层次的灰阶显示。
本申请的实施例还提供了一种利用显示装置的显示方法,该显示装置的显示方法应用于如实施例一中所述的显示装置。
所述显示方法具体包括:背光源发出的光线(例如以发散的角度)倾斜入射至第二基板,通过控制液晶棱镜,控制背光源发出的光线在第一基板与第二基板之间传播时的偏折角度,使背光源发出的光线在显示装置的出光面处发生全反射或出射。其中,显示装置的出光面为第一基板与显示装置接触的外部环境介质的交界面。作为示例,显示装置的出光面为第一基板背向第二基板的表面。
在一示例中,背光源发出的光线(例如以发散的角度)倾斜入射至第二基板,通过控制液晶棱镜,使得光线在第一基板与第二基板之间直线传播,可使光线在第一基板与外部环境的交界面处全部不发生全反射,全部从交界面处射出,此时,显示装置呈现亮态显示状态。
在另一示例中,背光源发出的光线(例如以发散的角度)倾斜入射至第二基板,通过控制液晶棱镜,使得光线在第一基板与第二基板之间传播时,以最大偏折角度进行偏折,偏折后的光线传播至交界面处时,入射角大于或等于在该交界面发生全反射时的临界角,在交界面处全部发生全反射,反射回液晶层,此时,显示装置呈现暗态显示状态。
在又一示例中,背光源发出的光线(例如以发散的角度)倾斜入射至第二基板,通过控制液晶棱镜,使得光线在第一基板与第二基板之间传播时,以小于最大偏折角度的偏折角度进行偏折,偏折后的光线传播至交界面处时,部分光线的入射角大于或等于在交界面发生全反射时的临界角,该部分光线在交界面处发生全反射,反射回液晶层;另一部分光线的入射角小于在交界面发生全反射时的临界角,该部分光线在交界面处不发生全反射,从交界面处射出;此时,显示装置呈现介于亮态显示和暗态显 示之间的灰阶显示状态。
采用本实施例所提供的显示装置的显示方法,可通过液晶棱镜控制背光源发出的光线在第一基板与第二基板之间传播时的偏折角度,进而控制光线传播至第一基板与外部环境的交界面处时入射角的大小,并结合在第一基板与外部环境介质的交界面处发生全反射的条件,显示装置无需依靠两个偏振片,同样能够使显示装置呈现不同的显示状态。
请再次参见图3,当液晶棱镜9包括液晶层3、第一电极11和第二电极12时,具体的,通过控制液晶棱镜9,使得光线在第一基板2与第二基板4之间直线传播具体可包括:向第二电极12不施加驱动电压,向第一电极11不施加公共电压,使液晶层3中的液晶保持初始状态,光线在液晶层3中直线传输。
请再次参见图6,不在第二电极12上施加驱动电压时,液晶层3中的液晶不发生偏转。这样,当线偏振光以发散的角度倾斜从第二基板入射时,光线在液晶层3中保持直线传输,并从第一基板2与外部环境的交界面射出,使显示装置处于亮态显示状态。
具体的,通过控制液晶棱镜9,使得光线在第一基板2与第二基板4之间传播时,以最大偏折角度进行偏折可包括:向第二电极12施加最大驱动电压,向第一电极11施加公共电压,使液晶发生偏转,光线以最大偏折角度在液晶层中发生偏折。
请再次参见图7,在第二电极12上施加最大驱动电压,使得液晶以较大的偏转态进行偏转。这样,当线偏振光以发散的角度倾斜从第二基板4入射时,受到偏转的液晶的作用,线偏振光会在液晶层3中发生偏折,偏折后的线偏振光在交界面处的入射角大于或等于在该交界面发生全反射时的临界角,线偏振光全部在交界面处发生全反射,反射回液晶层3,使显示装置处于暗态显示状态。
具体的,通过控制液晶棱镜9,使得光线在第一基板2与第二基板4之间传播时,以小于最大偏折角度的偏折角度进行偏折可包括:向第二电极12施加大于零且小于最大驱动电压的驱动电压,向第一电极11施加公共电压,使液晶发生偏转,光线以小于最大偏折角度的偏折角度在液晶层3中发生偏折。
请再次参见图8,在第二电极12上施加大于零且小于最大驱动电压的驱动电压,使得液晶发生偏转。这样,当线偏振光以发散的角度从第二基板4背向第一基板2的表面入射时,受到偏转的液晶的作用,线偏振光会在液晶层3中发生偏折。但由于所施加的驱动电压并没有达到最大驱动电压,因此,线偏振光的偏折角度小于最大驱动电压所对应的偏折角度。这样一来,入射角度较大的线偏振光在偏折后,传播至交界面处的入射角大于或等于临界角,会在交界面处发生全反射,反射回液晶层3。但另一部分入射角度较小的线偏振光在偏折后,传播至交界面处的入射角小于临界角,这部分线偏振光就会从交界面射出。这样,部分线偏振光射出第一基板2,部分线偏振 光反射回液晶层3,使显示装置呈现介于亮态显示状态和暗态显示状态之间的灰阶显示状态。
在一示例中,若要使显示装置呈现亮态显示状态,在第二电极12上施加的驱动电压V1(例如V1=0V),对应的,线偏振光的偏折角度κ1=0°。
若要使显示装置呈现暗态显示状态,在第二电极12上施加的最大驱动电压V2(例如V2=10V),对应的,线偏振光的最大偏折角度κ2=5°。
若要使显示装置呈现介于亮态显示状态和暗态显示状态之间的灰阶显示状态,为保证部分线偏振光射出第一基板2,部分线偏振光反射回液晶层3,在第二电极12上施加的驱动电压V3需要满足:0V<V3<V2,对应的,线偏振光的偏折角度κ3<5°。
作为示例,线偏振光从第二基板4背向第一基板2的表面入射的入射角度范围为55-60°。
此外,当显示装置还包括设于第二基板与背光源之间的偏振片时,背光源发出的光线在进入第二基板之前还包括:将光线转换为线偏振光。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示装置,包括:
    显示面板,所述显示面板包括第一基板、第二基板、以及设于所述第一基板与所述第二基板之间的液晶棱镜;以及
    背光源,所述背光源配置为发出倾斜入射至所述第二基板的光线;
    其中,所述液晶棱镜配置为调节所述背光源发出的光线在所述第一基板与所述第二基板之间传播时的偏折角度,使所述背光源发出的光线在所述显示装置的出光面处发生全反射或在所述显示装置的出光面处出射。
  2. 根据权利要求1所述的显示装置,其中,所述液晶棱镜配置为具有第一操作状态和第二操作状态,在所述第一操作状态中,所述背光源发出的全部光线经过所述液晶棱镜偏折后在所述显示装置的出光面处的入射角大于等于全反射临界角;而在所述第二操作状态中,所述背光源发出的全部光线经过所述液晶棱镜偏折后在出光面处的入射角小于全反射临界角。
  3. 根据权利要求2所述的显示装置,其中,所述液晶棱镜配置为还具有第三操作状态,在所述第三操作状态中,所述背光源发出的光线的一部分经过所述液晶棱镜偏折后在所述显示装置的出光面处的入射角大于等于全反射临界角,而另一部分经过所述液晶棱镜偏折后在出光面处的入射角小于全反射临界角。
  4. 根据权利要求1至3中任一项所述的显示装置,其中,所述背光源布置成面向与所述第二基板中背向所述第一基板的表面。
  5. 根据权利要求1至4中任一项所述的显示装置,其中,所述液晶棱镜包括液晶层以及相互绝缘的第一电极和第二电极。
  6. 根据权利要求5所述的显示装置,其中,所述第一电极和第二电极分别位于液晶层的相反的两侧上。
  7. 根据权利要求1至6中任一项所述的显示装置,其中,所述第一电极为面电极,所述第二电极包括多个条状电极。
  8. 根据权利要求7所述的显示装置,其中,每个所述条状电极平行于所述第二基板的表面方向的宽度为2.5μm,相邻两个条状电极之间的条状电极空隙为3.5μm;所述液晶层的厚度小于10μm。
  9. 根据权利要求1至8中任一项所述的显示装置,其中,所述背光源发出的光线为线偏振光。
  10. 根据权利要求1至8中任一项所述的显示装置,其中,所述背光源发出的光线为自然光,所述显示装置还包括设于所述第二基板与所述背光源之间的偏振片。
  11. 根据权利要求1至10中任一项所述的显示装置,其中,所述第一基板背向所 述第二基板的表面设有雾化膜。
  12. 根据权利要求1至11中任一项所述的显示装置,其中,所述显示面板还包括设于所述第二基板朝向所述液晶棱镜的表面的黑矩阵,所述黑矩阵用于限制所述背光源发出的光射向第二基板的入光区域。
  13. 根据权利要求12所述的显示装置,其中,所述第二基板与所述液晶棱镜之间还设有平坦层,所述平坦层覆盖所述黑矩阵,所述黑矩阵位于所述平坦层和第二基板之间。
  14. 根据权利要求1至11中任一项所述的显示装置,其中,所述显示面板还包括设于所述第二基板背向所述液晶棱镜的表面的黑矩阵。
  15. 根据权利要求1至14中任一项所述的显示装置,其中,所述显示装置中第一基板的折射率大于与所述显示装置接触的外部环境介质的折射率。
  16. 根据权利要求1至15中任一项所述的显示装置,其中,所述背光源发出的光线从所述第二基板入射时的入射角度范围为55-60°。
  17. 一种利用如权利要求1-11中任一项所述的显示装置的显示方法,所述显示方法包括:
    所述背光源发出的光线倾斜入射至所述第二基板,通过控制所述液晶棱镜,控制所述背光源发出的光线在所述第一基板与所述第二基板之间传播时的偏折角度,使所述背光源发出的光线在所述显示装置的出光面处发生全反射或出射。
  18. 根据权利要求17所述的显示方法,其中,所述液晶棱镜包括液晶层、第一电极和第二电极,所述控制所述液晶棱镜包括:控制向所述第一电极施加公共电压,控制向所述第二电极所施加的驱动电压的大小,控制所述液晶层中液晶的偏转状态。
  19. 根据权利要求18所述的显示方法,其中,
    向所述第二电极施加驱动电压V1以使所述背光源发出的光线在所述显示装置的出光面处全部出射;或
    向所述第二电极施加驱动电压V2以使所述背光源发出的光线在所述显示装置的出光面处全部发生全反射;或
    向所述第二电极施加大于V1并小于V2的驱动电压V3以使所述背光源发出的光线的一部分在所述显示装置的出光面处发生全反射,另一部分在所述显示装置的出光面处出射。
  20. 根据权利要求17-19中任一项所述的显示方法,其中,所述背光源发出的光线从所述第二基板入射时的入射角度范围为55-60°。
PCT/CN2017/095410 2017-01-18 2017-08-01 显示装置及显示方法 WO2018133373A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/752,345 US20190258110A1 (en) 2017-01-18 2017-08-01 Display Device And Display Method
US16/882,932 US11137637B2 (en) 2017-01-18 2020-05-26 Display device with liquid crystal prism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710035757.8A CN106647003B (zh) 2017-01-18 2017-01-18 一种显示装置及显示方法
CN201710035757.8 2017-01-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/752,345 A-371-Of-International US20190258110A1 (en) 2017-01-18 2017-08-01 Display Device And Display Method
US16/882,932 Continuation US11137637B2 (en) 2017-01-18 2020-05-26 Display device with liquid crystal prism

Publications (1)

Publication Number Publication Date
WO2018133373A1 true WO2018133373A1 (zh) 2018-07-26

Family

ID=58841738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095410 WO2018133373A1 (zh) 2017-01-18 2017-08-01 显示装置及显示方法

Country Status (3)

Country Link
US (2) US20190258110A1 (zh)
CN (1) CN106647003B (zh)
WO (1) WO2018133373A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647003B (zh) 2017-01-18 2020-04-21 京东方科技集团股份有限公司 一种显示装置及显示方法
CN108051945B (zh) * 2018-01-02 2021-03-16 京东方科技集团股份有限公司 一种显示组件、液晶显示器和电子设备
CN108398828B (zh) * 2018-03-28 2021-01-26 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
CN109683388B (zh) 2019-03-11 2020-11-10 京东方科技集团股份有限公司 透明液晶显示面板及其驱动方法,以及包括它的透明液晶显示器
CN111830755B (zh) * 2019-04-16 2023-08-15 京东方科技集团股份有限公司 反射式液晶显示面板、显示装置及其控制方法
CN110187548B (zh) * 2019-05-30 2022-03-18 京东方科技集团股份有限公司 显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139684A (ja) * 2006-12-04 2008-06-19 Ricoh Co Ltd 偏光変換素子および偏光変換装置
CN105511180A (zh) * 2016-03-04 2016-04-20 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法
CN105511179A (zh) * 2016-03-03 2016-04-20 京东方科技集团股份有限公司 一种液晶显示器
CN105549266A (zh) * 2016-03-03 2016-05-04 京东方科技集团股份有限公司 一种液晶显示器
CN105629491A (zh) * 2016-04-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置、裸眼3d显示系统和虚拟现实眼镜
CN105652490A (zh) * 2016-03-25 2016-06-08 京东方科技集团股份有限公司 一种显示眼镜及其驱动方法
CN106647003A (zh) * 2017-01-18 2017-05-10 京东方科技集团股份有限公司 一种显示装置及显示方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506978B2 (ja) * 1998-11-27 2004-03-15 シャープ株式会社 反射型液晶表示装置
JP4042725B2 (ja) * 2004-08-17 2008-02-06 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置及び電子機器
JP2010026280A (ja) 2008-07-22 2010-02-04 Hitachi Maxell Ltd 液晶表示装置
CN102395920B (zh) * 2009-04-17 2014-09-03 夏普株式会社 液晶显示装置
KR101607964B1 (ko) * 2009-07-15 2016-04-01 엘지디스플레이 주식회사 투명 디스플레이 장치
DE102011016960A1 (de) 2011-02-02 2012-08-02 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Bohrwerkzeug und Verfahren zur Herstellung von Bohrungen
CN102645799B (zh) * 2011-03-29 2015-01-07 京东方科技集团股份有限公司 一种液晶显示器件、阵列基板和彩膜基板及其制造方法
US8804067B2 (en) 2011-05-02 2014-08-12 Au Optronics Corporation Display device
US8811636B2 (en) * 2011-11-29 2014-08-19 Qualcomm Mems Technologies, Inc. Microspeaker with piezoelectric, metal and dielectric membrane
KR101995729B1 (ko) * 2012-11-29 2019-07-04 삼성디스플레이 주식회사 유기전계 발광장치
EP2905228B1 (en) * 2014-02-06 2018-01-03 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Fuselage Airframe and Tank
CN104698674B (zh) * 2015-03-30 2017-08-29 京东方科技集团股份有限公司 一种显示面板和显示装置
CN104749816B (zh) * 2015-04-14 2017-11-10 京东方科技集团股份有限公司 一种显示基板的制作方法、显示基板和显示装置
CN106292052B (zh) * 2016-10-24 2019-04-09 京东方科技集团股份有限公司 一种显示面板和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139684A (ja) * 2006-12-04 2008-06-19 Ricoh Co Ltd 偏光変換素子および偏光変換装置
CN105511179A (zh) * 2016-03-03 2016-04-20 京东方科技集团股份有限公司 一种液晶显示器
CN105549266A (zh) * 2016-03-03 2016-05-04 京东方科技集团股份有限公司 一种液晶显示器
CN105511180A (zh) * 2016-03-04 2016-04-20 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法
CN105652490A (zh) * 2016-03-25 2016-06-08 京东方科技集团股份有限公司 一种显示眼镜及其驱动方法
CN105629491A (zh) * 2016-04-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置、裸眼3d显示系统和虚拟现实眼镜
CN106647003A (zh) * 2017-01-18 2017-05-10 京东方科技集团股份有限公司 一种显示装置及显示方法

Also Published As

Publication number Publication date
US11137637B2 (en) 2021-10-05
US20200285109A1 (en) 2020-09-10
CN106647003A (zh) 2017-05-10
CN106647003B (zh) 2020-04-21
US20190258110A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2018133373A1 (zh) 显示装置及显示方法
US11592712B2 (en) Display apparatus
JP5304992B2 (ja) 表示装置
CN107918233B (zh) 一种显示装置
US11314110B2 (en) Liquid crystal display and driving method thereof
WO2018133406A1 (zh) 显示装置
WO2019218984A1 (zh) 透明显示面板和透明显示装置
US20180267292A1 (en) Light valve and display device
CN110888270B (zh) 一种显示面板和显示装置
WO2018228263A1 (zh) 一种显示面板及显示装置
JP2007139904A (ja) 表示素子及びこれを備えた表示装置
CN108957830B (zh) 显示装置和显示装置的控制方法、显示设备
US20050206802A1 (en) Display device comprising a light guide
WO2020238768A1 (zh) 显示面板、显示装置及其控制方法
KR20120050181A (ko) 컬러 필터를 채용한 컬러 디스플레이 장치
JP2005227324A (ja) 表示素子および表示装置
US11169421B2 (en) Liquid crystal display and driving method thereof
CN112363334A (zh) 一种显示装置
CN108873457B (zh) 反射式液晶显示面板、显示装置及其驱动方法
WO2018082318A1 (zh) 一种显示面板及显示装置
JP5114853B2 (ja) 表示装置
WO2020250554A1 (ja) 光学装置
KR101256017B1 (ko) 표시패널 어셈블리 및 이를 갖는 표시장치
JPH112809A (ja) 液晶表示装置およびその製造方法
JPS6255624A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892682

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17892682

Country of ref document: EP

Kind code of ref document: A1