JP5114853B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP5114853B2
JP5114853B2 JP2006063609A JP2006063609A JP5114853B2 JP 5114853 B2 JP5114853 B2 JP 5114853B2 JP 2006063609 A JP2006063609 A JP 2006063609A JP 2006063609 A JP2006063609 A JP 2006063609A JP 5114853 B2 JP5114853 B2 JP 5114853B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal material
control element
viewing angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006063609A
Other languages
English (en)
Other versions
JP2007240903A (ja
Inventor
洋 岩崎
里恵 坪
健太郎 奥山
晴美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006063609A priority Critical patent/JP5114853B2/ja
Publication of JP2007240903A publication Critical patent/JP2007240903A/ja
Application granted granted Critical
Publication of JP5114853B2 publication Critical patent/JP5114853B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、例えば液晶表示素子から出射する光線方向を制御することが可能な光制御素子および表示装置に関する。
液晶ディスプレイ(LCD:Liquid Crystal Display)は携帯電話、個人情報端末(PDA:Personal Digital Assistants)、ノート型パーソナルコンピュータなどの小中型ディスプレイをはじめとして、現在では32インチ以上の大型フラットパネルディスプレイにも用いられている。
液晶ディスプレイは、一対の透明基板の間に液晶材料を封入した液晶表示素子を備えている。液晶の駆動方式としては、従来、液晶の配向方向が上下基板間で90°捻れたTN(Twisted Nematic)方式が主流であったが、斜めから見た場合の視認性が悪く視野角が狭いという課題があった。
この課題を解決する方法として、近年、IPS(In Plane Switching-mode)、PVA(Patterned Vertical Alignment)、MVA(Multi-domain Vertical Alignment)などの方式が開発され、斜めから見た場合の視認性、色ずれ、コントラストが大幅に向上した。また、最近では、携帯電話やPDAなどで静止画や動画を楽しむ用途も増加し、個人だけでなく大勢で一つのモニターを見る機会も増加している。このような背景から、上記の視野角拡大技術が携帯電話をはじめとするモバイル用ディスプレイにも適用され始めている。
一方、視野角が広すぎると電車の中などで画面の表示情報を周囲の人から認識されてしまうという課題も生じている。そこで、液晶表示画面に貼り付けることで視野角を制限するフィルムが知られている。このフィルムは、黒いストライプ状パターンを有するルーバーフィルムからなり、出射光線方向を制御し斜めからの画面の覗き込みを防止する。ところが、当該フィルムは光線の出射方向を固定してしまうため、状況に応じた視野角の広狭の切換えを行うことができない。
そこで、視野角を任意に切り換えることができる技術が例えば下記特許文献1〜4に記載されている。特許文献1には、バックライトの輝度と出射光の散乱度合を制御して視野角の調整を可能とした液晶表示装置が開示されている。特許文献2には、高分子分散型液晶セルとゲスト−ホスト型液晶セルとの間に表示用TN液晶セルを配置することで、反射型と透過型の切換えと視野角の切換えを可能とする技術が開示されている。また、特許文献3には、表示用液晶セルの前面に光学補償層を配置し、この光学補償層の位相差量を電気的に制御することで、視野角の切換えを行うようにした液晶ディスプレイが開示されている。
一方、特許文献4には、図13に示すように、一対の透明基材103,104の間に、第1,第2の領域101,102をそれぞれ作製し、第2の領域102の透過度が第1の領域101の透過度よりも小さくなるように当該第2の領域102の透過度を切換え可能に構成した視野角制御素子100の構成が開示されている。この視野角制御素子100は液晶表示パネルの前面側(観察者側)に配置され、光源105から照射されて液晶表示パネルを透過した光Lを角度θ1で出射させる狭視野角モード(図13A)と、光Lを角度θ2で出射させる広視野角モード(図13B)の2つの状態を選択的にとるように構成されている。
ここで、第2の領域102は、二色性色素を含有したゲスト−ホスト型液晶あるいは高分子分散型液晶からなる。そして、一対の透明基材103,104間に電場が存在しない状態では、第2の領域102の透過度は第1の領域101の透過度よりも小さく、第2の領域102に入射した光Lを吸収又は散乱して出射角を制限する狭視野角モードをとる。一方、一対の透明基材103,104間に所定の電場を形成すると、第2の領域102の液晶材料が垂直方向に配向されて高い透過度を示すようになり、これにより第1の領域101に入射した光のみならず、第2の領域102に入射した光Lをも透過させる広視野角モードをとる。
第1,第2の領域101,102は、表示パネルの各画素に対向するエリアに形成されている。具体的には、図14Aに示すようにRGB(赤、緑、青)の各画素領域に対応して第1の領域101がひとつずつ配置されたり、図14Bに示すように画素ごとに第1の領域101が複数配置されるようにして、第1,第2の領域101,102の形成ピッチが規定されている。そして、第1の領域101の形成幅は、第2の領域102の形成幅と同等または第2の領域102の形成幅よりも小さく形成されている。
特開平9−105907号公報 特開平10−197844号公報 特開2005−309020号公報 特開2005−221756号公報
しかしながら、特許文献1に記載の構成では、広視野角モードの場合(出射光の散乱度合が大きい場合)にバックライトの輝度を高くする必要があるため、低消費電力化という点では不利である。また、特許文献2の構成では、液晶セルが3枚必要であるので低コスト化が難しく厚さも大きくなる。更に、特許文献3の構成では、基板に配向処理が必要であるので安価に製造することが難しく、ガラス基板を使用する必要があるので軽量化、薄型化および耐衝撃性向上を狙ったフィルム基板の使用が難しいという問題がある。
一方、特許文献4の構成においては、1画素の対向したエリアに透過度の異なる第1,第2の領域101,102を形成しているので、透過度の高い第1の領域101の形成幅が透過度の低い第2の領域102の形成幅以下で形成されることになり、狭視野角モード時の光量が制限されて輝度の低下を招くという問題がある。
また、1画素の対向したエリアに透過度の異なる第1,第2の領域101,102を形成しているので、透過度の低い領域で散乱された光が表示画素や隣接セルに漏れることで表示が滲み、鮮明さが低下したり、色ずれが生じることがある。更に、1画素単位で形成した第1,第2の領域101,102のパターンを表示パターン上に設置する際のアライメントがプロセス上非常に煩雑であるとともに、アライメント精度で画質が左右されることにもなる。
本発明は上述の問題に鑑みてなされ、輝度の低下を抑えて光線方向を制御できる軽量、薄型、低コストの光制御素子および表示装置を提供することを課題とする。
以上の課題を解決するに当たり、本発明の光制御素子は、透光性の支持基材と、支持基材の一表面に形成された複数の凹部と、複数の凹部の各々に充填された液晶材料と、液晶材料を挟むように支持基材上に配置された透明電極層とを備え、支持基材と液晶材料との間の屈折率差を電気的に切り換えることで、支持基材を透過する光の出射角を制御する。
本発明の光制御素子は、液晶材料の屈折率異方性を利用し、支持基材と液晶材料との間の屈折率差を電気的に制御して支持基材を透過する光線の出射角を制御するようにしている。好適には、液晶材料は、短軸方向の屈折率(常光屈折率no)が支持基材の屈折率と同等であり、長軸方向の屈折率(異常光屈折率ne)が支持基材の屈折率と異なる液晶分子を含む構成とされる。
このような構成により、液晶材料が正の誘電異方性を有する場合、液晶材料に対して支持基材の厚さ方向に電場を印加することで分子長軸が電場方向に配列されることになる。これにより、光出射面から見たときに液晶材料が支持基材と同等の屈折率を有することから、支持基材と液晶材料との界面における光線の偏向作用をほとんど受けることなく光出射面から光が出射される。
一方、液晶材料に電場が印加されない場合、液晶分子は光出射面に平行に配向される。このため、光出射面から見たときに液晶材料が支持基材と異なる屈折率を有することから、支持基材と液晶材料との界面において光線が屈折率差に応じた一定の偏向作用を受けることで、凹部の配列方向に関して光線の出射方向が制限されることになる。
従って、本発明の光制御素子を液晶表示素子等の画像表示素子の前面に配置したときには、液晶材料に対する電場印加の有無で表示光の出射方向が制御可能となる。また、液晶材料は電場の有無に関係なく透光性を有するので、高分子分散型液晶やこれに二色性黒色色素を添加した複合材料に比べて光の透過率の低下を抑えることができ、視野角制限時における正面輝度の向上を図ることが可能となる。
本発明の光制御素子においては、支持基材の一表面に形成された複数の凹部に上述した液晶材料が充填される。凹部には、支持基材の面内に等間隔または不等間隔に配列されたストライプ状あるいは格子状の溝、あるいは孔が含まれる。孔は丸孔でもよいし、角孔や長孔でもよい。凹部の形成間隔や形成幅は特に制限されず、所望の光線制御特性が得られるように適宜設定することができる。従って、液晶材料あるいは支持基材の領域幅を画素領域に対応して形成する必要はないので、画像表示素子に対する光制御素子のアライメント精度は不要であり、かつ表示の滲み等による画質の劣化を回避することができる。
また、支持基材上の凹部の側壁面は、支持基材表面に対して垂直に形成されていてもよいし底部に向かって斜めに形成されていてもよい。また、凹部の対向する側壁面が互いに異なる傾斜角で形成されていてもよい。さらに、凹部の側壁面が可視光に対して散乱性のある凹凸構造を有していると、入射光の散乱度合を高めて視野角制限効果の向上を図ることができる。
更に、凹部の壁面に、当該壁面に対して液晶分子を垂直に配向させるための垂直配向処理を施すことにより、液晶分子の長軸方向が支持基板の面内に平行な配向状態と垂直な配向状態とが無電場で保持される双安定構造を発現させることができるので、消費電力の低減を図ることが可能となる。
本発明の光制御素子において、液晶材料を挟むように配置される透明電極層は、支持基材の一方の面および他方の面に各々対向して配置したり、個々の凹部の互いに対向する側壁面に各々対向して配置する等して構成される。透明電極層は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、ZnOなどの透明な導電性酸化物のほか、導電性高分子材料等で構成することができる。
画像表示素子としては、液晶表示素子のほか、有機EL(エレクトロルミネッセンス)ディスプレイ、プラズマディスプレイ、フィールドエミッションディスプレイ、電気泳動ディスプレイ等の各種表示素子を用いることができる。
以上述べたように、本発明によれば、表示素子の光線方向を制御し視野角を切り換える光制御素子を安価かつ軽量・薄型化できるとともに、輝度の低下による画質の劣化を抑えることができる。
以下、本発明の実施形態について図面を参照して説明する。
(第1の実施形態)
図1は本発明の第1の実施形態による光制御素子10の要部の断面構造を概略的に示す分解斜視図である。本実施形態の光制御素子10は、透光性の支持基材11と、支持基材11の表面11aに形成された複数の凹部12と、凹部12に充填された液晶材料13と、液晶材料13を挟むように支持基材11の表裏面に各々対向配置された一対の透明電極層14a,14bとを備えている。
支持基材11は、可視光に対して透明であれば材料は特に制限されず、例えばガラス、PMMA(ポリメチルメタクリレート)、PC(ポリカーボネート)などのプラスチック板、シートあるいはフィルムで構成することができる。また、UV(紫外線)硬化型樹脂等で支持基材11を形成することも可能である。
凹部12は、支持基材11の表面11aにY軸方向に延びてストライプ状に配列された複数の溝で構成されている。凹部12は、支持基材11の表面11aにおいてX軸方向に等間隔で配列されているが、不等間隔で配列されていてもよい。凹部12の断面形状は、凹部12の側壁面が支持基材11の表面11aに対して垂直な矩形状で構成されている。凹部12の形成方法は特に制限されず、プレス加工、切削加工、エッチング加工、レーザー加工等の方法が挙げられる。
なおこの例に限らず、凹部12の断面形状は、図2に示す光制御素子10’のように、凹部12の側壁面が支持基材11の表面11aに対して斜めに形成された台形状で構成されていてもよい。凹部12の形成幅、形成深さ、形成ピッチ等は、要求される視野角特性に応じて適宜設定することができる。
液晶材料13を構成する液晶分子としては、公知のネマチック液晶、コレステリック液晶、スメクティック液晶、ディスコティック液晶などを用いることができる。また、本実施形態において、液晶材料13は、電場方向と平行に長軸方向が配向される誘電異方性が正の液晶材料が用いられており、無電場状態では液晶材料13の液晶分子はその長軸方向がXY面内(特にY軸方向)に平行に配向される。なお、液晶材料13は、電場方向と垂直に長軸方向が配向される誘電異方性が負の液晶材料で構成することも可能である。
本実施形態では、液晶分子の短軸方向の屈折率(常光屈折率:no)が支持基材11の屈折率と同等であり、長軸方向の屈折率(異常光屈折率:ne)が支持基材11の屈折率と異なる液晶材料が用いられている。具体的な組合せ例としては、支持基材11をPMMA(屈折率1.50)とし、液晶材料をno=1.5057、ne=1.7065のネマチック液晶材料とする。また、支持基材11をCOP(シクロオレフィンポリマー、屈折率1.525)とし、液晶材料をno=1.525、ne=1.812のネマチック液晶材料とする。
透明電極層14a,14bは、ITO、IZO、ZnOなどの透明な導電性酸化物で構成されるが、これ以外にも、例えば導電性高分子材料を用いることができる。一方の透明電極層14aは、ガラスやプラスチックシート等の透明基板に支持されて支持基材11の表面に貼り付けられ、凹部12内の液晶材料12を封止する機能をも有している。他方の透明電極層14bは、同様な透明基材に支持された状態で支持基材11の裏面側に貼合されてもよいし、支持基材11の裏面側に直接、スパッタ等により成膜されてもよい。
次に、図1に示した光制御素子10の一作用について説明する。図3は光制御素子10をY軸方向から見たときの要部断面図である。なお、図3においては透明電極層14a,14bの図示を省略している。また、符号16は、光制御素子10の裏面側に対向配置された液晶表示素子(液晶パネル)等の画像表示素子あるいはバックライトユニット(面発光光源)である。
光制御素子10は、支持基材11の表面に形成された複数の凹部12の内部に液晶材料13が充填された構成を有している。従って、凹部12の支持基材11表面に対して垂直な側壁および支持基材11表面に対して平行な底壁が、支持基材11と液晶材料13の境界面を構成している。液晶材料13は無電場状態で分子長軸がXY面内(Y軸方向)に配向されているため、光制御素子10の光出射面は、X軸方向に屈折率が交互に異なっている。
このような構成の光制御素子10は、当該光制御素子10を透過する光線の出射角制御機能を有している。以下の例では、光制御素子10が液晶表示素子の前面に配置される場合について説明する。
図3に示すように、光制御素子10を垂直方向から見る観察者Aは、光制御素子10を垂直方向に透過する光L1によって光制御素子10を見通すことができる。これに対して、光制御素子10に斜めに入射する光L2は光制御素子10を通過するまでに支持基材11と液晶材料12間の界面においてこれらの屈折率差に応じた偏向作用と凹部12内での反射の繰り返しによる平行移動を受ける。このため、光制御素子10を凹部12の配列方向(X軸方向)に関して斜め方向から見る観察者Bは、光制御素子10を鮮明に見通すことができない。これにより、視野角がZ軸ないしYZ平面に近い方向に限られることになる。
本実施形態の光制御素子10は、支持基材11と液晶材料13の屈折率差を利用して視野角制限機能を得るようにしているが、これら支持基材11および液晶材料13は何れも透明性を有しているので輝度の低下はほとんど発生しない。
例えば図4に、Y軸方向に延びる光透過領域2と光吸収領域3とがX軸方向に交互に配列形成された構成の視野角制御素子1を示す。この視野角制御素子1は、垂直方向の光L1は透過するが、一定角度以上傾斜した斜め方向の光L2を光吸収領域3において吸収することで、視野角制限機能を得ている。しかし、光吸収領域3を含むため、輝度が低下し画面が暗くなるという欠点がある。これに対し、本実施形態の光制御素子10は光吸収領域を含まないため、輝度の低下はほとんど発生しない。
従って、図4に示した視野角制御素子1と本実施形態の光制御素子10の違いは明確であり、前者を「吸収型ルーバー」と称するならば、後者を「位相型ルーバー」と称することで互いに区別することができる。
位相型ルーバーにおいては、基材と凹部内の物質との屈折率の差が大きいほど界面での反射も屈折も顕著になるから、凹部内の物質としてなるべく基材と屈折率との差が大きいものを選ぶことが望ましい。例えば、基材に用いるPMMAの屈折率は1.5であるが、これと屈折率差の大きい物質として、屈折率がほぼ1である窒素、空気などの気体が挙げられる。凹部の中に満たされた液体(これの屈折率は基材に近いものを用いる)を上記のような気体で置き換えれば、凹部と基材の屈折率差にはほぼ0から0.5までの顕著な変化が得られる。このような流体の移動操作は、例えば光制御素子の外部に設けられたポンプによって溝状に形成された凹部に給気、または排気することによって達成される。
図5は、光制御素子10の視野角制御機能を模式的に示すY軸方向から見た要部断面図であり、Aは狭視野角モードを示し、Bは広視野角モードを示している。なお、図5A,Bにおいては透明電極層14a,14bの図示は省略している。
支持基材11上の凹部12に充填された液晶材料13に電場が印加されていない場合、液晶材料13の液晶分子の長軸はXY面内(Y軸方向)にほぼ平行に配向している。この場合、XY面内において支持基材11と液晶材料13との間で屈折率が異なるため、光制御素子10は上述したような作用で図5Aに示す狭視野角モードをとる。
この狭視野角モードにおいては、支持基材11と液晶材料13間の界面を斜め方向に透過する光L3は屈折率に応じた一定の偏向作用を受けて出射角が制限される。また、液晶材料13を透過する光L4もまた出射されるが、この光L4は元の光路から平行移動して出射されるために、隣接画素間での表示の重なりや抜け等を生じさせて視認を困難化させることができる。
このように、狭視野角モードにおいては、支持基材11と液晶材料13間の界面において入射光線の散乱効果を発現させることができるので、例えば斜め方向からの表示画面の覗き込み防止効果を得ることができる。また、支持基材11と液晶材料13との界面での反射や液晶材料13の内部での全反射作用により、入射光線が正面方向に配向される割合が高められる結果、正面輝度が高まり、視野角制限時における表示画質の向上を図ることが可能となる。
一方、液晶材料13に対して支持基材11の厚さ方向に所定の電場が印加された場合、液晶材料13の液晶分子の長軸はZ方向に配向される。この場合、XY面内において支持基材11と液晶材料13との間において屈折率が同等となるため、凹所12の壁面(支持基材11と液晶材料13の界面)は見かけ上存在しなくなる。従って、図5Bに示すように光制御素子10を斜め方向に透過する光L5は、支持基材11と液晶材料13との界面において偏向作用を殆ど受けることなく透過し入射方向と略同方向に出射する。これにより、光制御素子10は広視野角モードをとり、正面方向だけでなく斜め方向からも画像の視認が可能となる。
以上のように、液晶材料13に対する外部電場の印加・無印加によって光制御素子10の視野角モードを切り換えることができる。液晶材料13に対する外部電場の印加は、液晶材料13を挟むように対向配置された一対の透明電極層14a,14bによって行うことができる。
図6は透明電極膜14a,14bの構成例を示す光制御素子の断面模式図である。
図6Aは、図1に示した光制御素子10の構成に対応している。支持基材11の表裏面には一対の透明電極層14a,14bがそれぞれ配置されている。一方の透明電極層14aは、支持基材11の表面に配置された透明基板17の内面側に支持されている。他方の透明電極層14bは、支持基材11の裏面に直接形成されている。透明電極層14a,14bはいずれもベタ膜で構成され、支持基材11の全領域にわたって対向配置されることで液晶材料13に対する電場印加を行う。
一方、図6Bは、上述した透明電極層14aと同一構成の透明電極層18aに対して、その対向電極層18bが各凹部12の底部にそれぞれ形成されている。また、図6Cは、凹部12の対向する側壁面に電極層19a,19bをそれぞれ対向配置させた構成例を示している。図6Cの構成例においては、電極間距離を短くできるので消費電力の低減を図れるとともに、凹部12の高アスペクト比化にも対応可能となる。
なお、図6Cの例では、電場方向が凹部12の配列方向となるため、液晶分子の長軸方向が電場方向に平行に配向する誘電異方性が正の液晶材料においては、電場印加時に狭視野角モードをとり、電場無印加時に広視野角モードをとることになる。また、液晶分子の長軸方向が電場方向に垂直に配向する誘電異方性が負の液晶材料においては、電場印加時に広視野角モードをとり、電場無印加時に狭視野角モードをとることになる。
図7は、支持基材11に形成される凹部12の構成の変形例を示している。
例えば、凹部12は、X軸方向に互いに対向する一対の側壁面が対称に形成される場合に限られず、図7に示すように側壁面12a,12bを形成角度が異なる非対称な形状としてもよい。この場合、光の出射制限角度を左右方向で異ならせることができるようになる。
また、図7に示す凹部12は、その対向する側壁面に可視光に対して散乱性のある微細な凹凸構造20を有している。凹凸構造20は支持基材11と液晶材料の界面に入射する光をより効率良く散乱させ、視野角制限機能を高める機能を有しており、例えば可視光波長(例えば500nm)の1/3倍から10倍の周期あるいは高さで形成されている。
凹凸構造20の形成方法としては、側壁面12a,12bを溝方向(Y方向)にラビング処理する等の方法があり、溝方向に平行な条痕を例えば100nm以下の周期で形成することができる。なお、凹所12の側壁面に微細な凹凸構造20を設けることによって、液晶材料13の壁面近傍における配向制御も可能となる。
図8は、凹所12の壁面に、当該壁面に対して液晶分子を垂直に配向させるための垂直配向処理を施した例を示しており、Aは狭視野角モード、Bは広視野角モードをそれぞれ示している。垂直配向処理の例としては、長鎖アルキルシランを凹部12の壁面(側壁面および底壁面)に吸着させる方法等がある。
この構成により、凹部12の壁面に対して液晶分子が垂直に整列しようとする配向規制が働き、図8A,Bに示す2通りの配向様態をとる。図8Aは液晶材料13の液晶分子の大部分がXY面内に平行に配向することで当該光制御素子は狭視野角モードをとり、図8Bは液晶材料13の液晶分子が概ねZ軸方向に配向されることで当該光制御素子は広視野角モードをとる。これらの配向様態は、外部電場が存在しなくとも安定した配向状態を保持することから、双安定構造とも称され、低消費電力化を実現できる点で好適である。
(第2の実施形態)
続いて、本発明の第2の実施形態について図9〜図11を参照して説明する。図9は本実施形態による表示装置21の概略図、図10は表示装置21の分解斜視図、図11は表示装置21に組み込まれる光制御素子10の各視野角制御モードを説明する要部平面図である。
本実施形態の表示装置21は、バックライトユニット22と、液晶表示素子(液晶表示パネル)23と、光制御素子10とを備えている。本例において、図中X軸方向は画面左右方向、Y軸方向は画面上下方向、X軸方向は画面正面方向をそれぞれ示している。
バックライトユニット22は、液晶表示素子23の背面側(図中下面側)に配置された面発光光源として構成されている。バックライトユニット22は、直下型のバックライトユニットでもよいし、導光板を備えたエッジライト型のバックライトユニットでもよい。光源には、蛍光管等の線状光源のほか、発光ダイオード(LED)等の点状光源が用いられる。なお、バックライトユニット1は、上記光源のほか、拡散板あるいは拡散シート等の光拡散性シートや、プリズムシートあるいはレンズシート等の集光性を備えた輝度向上フィルム等を適宜組み合わせて構成することができる。
液晶表示素子23は、本発明に係る画像表示素子として構成されている。液晶表示素子23は、一対の透明基材24a,24bと、これらの透明基材24a,24bの間に挟まれた液晶層25と、透明基材24a,24bの外面側にそれぞれ配置された偏光板26a,26bとを備えている。本実施形態において、液晶層25の駆動方式として、表示光の出射角範囲が比較的広い広視野角特性のIPS方式やMVA方式等が採用されている。なお、透明基材24a,24bの内面には、図示せずとも、透明電極膜、配向膜、カラーフィルター等が設けられている。
光制御素子10は、液晶表示素子23の前面側(図中上面側)に配置されている。光制御素子10は、上述の第1の実施形態で説明したような構成を有しており、図10に示すように、透光性の支持基材11と、この支持基材11の表面に形成された複数の凹部12の内部に充填された液晶材料13と、支持基材11の上面を覆う透明基板17と、液晶材料13を挟むように支持基材11の厚さ方向(Z軸方向)に対向配置された一対の透明電極層(図示略)とを備えている。また、これら一対の透明電極層間に所定電圧を印加し又は印加電圧を解除する電圧制御手段が図示せずとも設けられている。
液晶層13を構成する液晶分子は、その短軸方向の屈折率が支持基材11の屈折率と同等であり、長軸方向の屈折率が支持基材11の屈折率よりも大きい。従って、電圧OFF時は、図11Aに示すように液晶材料13の液晶分子がXY面に平行に配向されることによって、XY面から見たときに支持基材11と液晶材料13の屈折率は互いに異なる。一方、電圧ON時は、図11Bに示すように液晶材料13の液晶分子がZ軸方向に配向されることによって、XY面から見たときに支持基材11と液晶材料13の屈折率は同等となる。
以上のような構成の表示装置21においては、光制御素子10の液晶層13に対する電圧のON/OFFによって、液晶表示素子23の視野角を制御することができる。具体的に、電圧OFF時においては、液晶表示素子23から出射する画像光が光制御素子10を透過する際、支持基材11と液晶材料13間の界面における屈折率差に応じた入射光の反射、偏向を含む散乱作用を受ける。これにより、凹部12の配列方向(X軸方向)に関して視野角が制限されるため狭視野角モードが実現される。
なお、凹部12をX軸方向だけでなくY軸方向にも形成することにより、X軸およびY軸方向に関して視野角制限機能を得ることができる。
一方、電圧ON時においては、支持基材11と液晶材料13間の界面における屈折率差が殆ど存在しなくなるため、入射光はほぼそのままの光路で光制御素子10を出射する。これにより、表示光が広い視野角範囲で出射されるため広視野角モードが実現される。特に、IPS、VA方式等の広視野角の液晶表示素子であれば、ほぼその液晶表示素子と同等の視野角特性を得ることができる。
以上のように構成される本実施形態の表示装置21においては、広視野角モードと狭視野角モードとが電気的に切り換えられる光制御素子10を備えているので、例えば光制御素子10を広視野角モードに切り換えることで、一つのモニターで画像を同時に大勢で観賞することが可能となる。また、光制御素子10を狭視野角モードに切り換えることで、電車の中などにおいて画面の表示情報を周囲の人から覗き見られることを防ぐことができる。
また、光制御素子10は、支持基材11と液晶材料13との間の屈折率差を電気的に制御することで広視野角モードと狭視野角モードとの切換えを行うようにしているので、特に狭視野角モード時における透過光量の低下を抑えることができ、輝度低下による画質の劣化を防ぐことができる。
液晶層13の形成ピッチや形成幅等は特に制限されず、従って、例えば液晶表示素子23の画素ピッチよりも大きく形成することによって、液晶表示素子23に対する高精度なアライメント精度が不要となり、かつ画質の劣化も防ぐことができる。また、凹部12の延在方向が液晶表示素子23の画素配列方向と非平行となるように光制御素子10を液晶表示素子23上に配置することで、干渉縞の発生による画質の劣化を回避することができる。
なお、光制御素子10は、その凹部12が形成される表面側を光出射面として液晶表示素子23の前面に配置した構成例について説明したが、これとは逆に、光制御素子10の凹部12の形成面を液晶表示素子23側に向けて配置してもよい。この場合においても上述と同様な作用効果を得ることができるとともに、凹所12の境界が観察者側から見えにくくなることもあって、仕様に応じて使い分けることができる。
一方、例えば、無電場状態において液晶材料13を構成する液晶分子がY軸方向に配向するように光制御素子10が構成されている場合、液晶材料13に入射する光は、X軸方向に振動する偏光成分(X偏光)よりもY軸方向に振動する偏光成分(Y偏光)の方が界面での反射率が高く、出射規制がされやすい。そこで、液晶表示素子23の前面偏光板26aの透過軸をY軸方向に向けることで、光制御素子10に対してY偏光の光のみを入射させることが可能となり、これにより視野角制限効果を高めることができる。
なお、液晶分子がX軸方向に配向されている場合にも同様であり、この場合は前面偏光板26aの透過軸をX軸方向に向けて配置する。しかし、本例の場合、支持基材11と液晶材料13の界面に対してp偏光で光が入射することになり、界面の反射率は小さく不利となる。従って、液晶材料13の分子配向をY軸方向とし、界面に対してs偏光となるように前面偏光板26aの透過軸をY軸方向とする構成例が好ましい。
(第3の実施形態)
次に、本発明の第3の実施形態について図12を参照して説明する。図12は本実施形態の表示装置31の概略構成図である。なお、図において上述の第2の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。
本実施形態の表示装置31は、バックライトユニット22と液晶表示素子23との間に光制御素子10が配置されている。光制御素子10は、バックライトユニット22から液晶表示素子23へ入射する光の入射角を制御する機能を有する。
バックライト光が等方的に出射される場合、光制御素子10は、電圧無印加状態において支持基材11と液晶材料13との間に生じる屈折率差に基づく偏向作用によって、凹部12の配列方向に関して入射光の出射方向を制限する。これにより、液晶表示素子23に対しては入射方向が制限された光が入射されることになり、表示画像の狭視野角化が実現される。一方、光制御素子10は、電圧印加状態において支持基材11と液晶材料13との間の屈折率差をなくすため、バックライト光は光制御素子10によって出射角を制限されることなく液晶表示素子23へ入射する。これにより、表示画像の広視野角化が実現される。
これに対して、バックライト光が液晶表示素子23の正面方向(Z軸方向)に指向性のある狭い配向分布を有する場合、光制御素子10は、電圧無印加状態において、支持基材11と液晶材料13との間の屈折率差に基づく偏向作用により、凹部12の配列方向に関してバックライト光の出射角を広げて液晶表示素子23へ入射させる。これにより、広視野角モードが実現される。一方、光制御素子10は、電圧印加状態において、正面方向に出射されるバックライト光の光路を妨げずに液晶表示素子23へ入射させる。このため、表示装置31は狭視野角モードとなる。
以上のように、本実施形態によれば、バックライトユニット22の光出射特性に関係なく、視野角モードの切替を行うことができるとともに、バックライトユニット22の光出射特性に応じた最適な視野角モードを光制御素子10によって実現することができる。
以上、本発明の各実施形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
例えば以上の各実施形態では、光制御素子10を構成する液晶材料13の液晶分子として、その長軸方向の屈折率(異常光屈折率)が支持基材11の屈折率よりも大きいものを用いたが、これに限らず、長軸方向の屈折率が支持基材11の屈折率よりも小さいものを用いてもよい。
なお、液晶材料13の長軸方向の屈折率が支持基材の屈折率よりも大きい場合は、光出射面から見て支持基材11の形成幅よりも液晶材料の形成幅を大きくすることで、当該光制御素子を透過する光が液晶材料内での全反射作用によって正面方向へ出射しやすくなるため、正面輝度の向上を図ることが可能となる。
また、以上の各実施形態では、本発明に係る光制御素子を視野角制御素子として用いた例について説明したが、これに限らず、照明光源の出射角制御など光線方向の切替用途に広く適用可能である。例えば、直下型バックライトユニットにおいて、光源直上位置に液晶材料領域を対向配置させ、光源非直上位置に支持基材領域を対向配置させることで、輝度分布の調整を可能とした光源装置を構成することが可能となる。
本発明の第1の実施形態による光制御素子の要部の断面構造を概略的に示す分解斜視図である。 上記光制御素子の構成の変形例を示す図である。 図1の光制御素子をY軸方向から見たときの要部断面図である。 比較として示す従来の光吸収型の光制御素子の概略構成を示す側断面図である。 図1の光制御素子の視野角制御機能を模式的に示すY軸方向から見た要部断面図であり、Aは狭視野角モード、Bは広視野角モードをそれぞれ示している。 本発明に係る光制御素子を構成する透明電極層の構成例を模式的に示す要部断面図である。 本発明に係る光制御素子の支持基材に形成される凹部の構成の変形例を示す側断面図である。 本発明に係る光制御素子の構成の変形例を説明する要部断面図である。 本発明の第2の実施形態において説明する表示装置の概略構成図である。 上記表示装置の分解斜視図である。 上記表示装置を構成する光制御素子の各視野角モードを説明する要部平面図である。 本発明の第3の実施形態において説明する表示装置の概略構成図である。 従来技術に係る光制御素子の概略構成を示す要部断面図である。 図13の光制御素子の要部の概略構成図である。
符号の説明
10,10’…光制御素子、11…支持基材、11a…支持基材の表面、12…凹部、12a,12b…凹部の側壁面、13…液晶材料、14a,14b,18a,18b,19a,19b…透明電極層、20…凹凸構造、21,31…表示装置、22…バックライトユニット、23…液晶表示素子(画像表示素子)、24a,24b…透明基材、25…液晶層、26a,26b…偏光板

Claims (2)

  1. 画像表示素子と、
    透光性の支持基材と、
    前記支持基材の一表面に前記画像表示素子の画素ピッチよりも大きいピッチで形成された複数の凹部と、
    前記凹部の側壁面に一軸方向に対向配置された透明電極層と、
    前記一軸方向に平行に配向することが可能な第1の状態と前記一軸方向に垂直に配向することが可能な第2の状態との間を電気的に切り換えられることが可能であり、前記複数の凹部の各々に充填された液晶材料と、
    を有し、前記液晶材料の前記第1の状態と前記第2の状態とを電気的に切り換えることで前記支持基材と前記液晶材料との間の屈折率差を切り換え前記画像表示素子から出射し前記支持基材を透過する光の出射角を制御する光制御素子と
    を具備する表示装置。
  2. 液晶表示素子と、
    面発光光源と、
    透光性の支持基材と、
    前記支持基材の一表面に前記画像表示素子の画素ピッチよりも大きいピッチで形成された複数の凹部と、
    前記凹部の側壁面に一軸方向に対向配置された透明電極層と、
    前記一軸方向に平行に配向することが可能な第1の状態と前記一軸方向に垂直に配向することが可能な第2の状態との間を電気的に切り換えられることが可能であり、前記複数の凹部の各々に充填された液晶材料と、
    を有し、前記液晶材料の前記第1の状態と前記第2の状態とを電気的に切り換えることで前記支持基材と前記液晶材料との間の屈折率差を切り換え前記面発光光源から前記支持基材を透過し前記液晶表示素子へ入射する光線の方向を制御する光制御素子と
    を具備する表示装置。
JP2006063609A 2006-03-09 2006-03-09 表示装置 Expired - Fee Related JP5114853B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063609A JP5114853B2 (ja) 2006-03-09 2006-03-09 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063609A JP5114853B2 (ja) 2006-03-09 2006-03-09 表示装置

Publications (2)

Publication Number Publication Date
JP2007240903A JP2007240903A (ja) 2007-09-20
JP5114853B2 true JP5114853B2 (ja) 2013-01-09

Family

ID=38586507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063609A Expired - Fee Related JP5114853B2 (ja) 2006-03-09 2006-03-09 表示装置

Country Status (1)

Country Link
JP (1) JP5114853B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037677A1 (ja) * 2016-08-24 2018-03-01 パナソニックIpマネジメント株式会社 光学デバイス
JP2019113579A (ja) * 2017-12-20 2019-07-11 株式会社カネカ クロミックデバイスおよびクロミックデバイスの製造方法
WO2020055390A1 (en) * 2018-09-12 2020-03-19 Hewlett-Packard Development Company, L.P. Privacy films for electronic displays
CN111323982B (zh) * 2020-03-09 2023-07-21 合肥京东方光电科技有限公司 防窥膜、背光源和显示装置
CN113885239A (zh) * 2021-09-22 2022-01-04 北海惠科光电技术有限公司 光学膜片、显示组件及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785143B2 (ja) * 1985-09-19 1995-09-13 セイコーエプソン株式会社 液晶電気光学装置
JPH0695090A (ja) * 1992-07-28 1994-04-08 Hitachi Maxell Ltd 液晶表示素子
JP2002131694A (ja) * 2000-10-26 2002-05-09 Mixed Reality Systems Laboratory Inc 画像観察装置及びそれを用いた画像観察システム
JP3999206B2 (ja) * 2004-02-05 2007-10-31 シャープ株式会社 視野角制御素子およびそれを用いた映像表示装置
JP2005308854A (ja) * 2004-04-19 2005-11-04 Nippon Hoso Kyokai <Nhk> 液晶光変調器および液晶表示装置
JP2006301018A (ja) * 2005-04-15 2006-11-02 Nissan Motor Co Ltd 微細構造をもつ凹部(セル)に液晶が充填された調光構造体

Also Published As

Publication number Publication date
JP2007240903A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
US11126054B2 (en) Display panel and display device
US10247982B2 (en) Electronic device display with switchable film structures
JP4899503B2 (ja) 表示装置
JP5093710B2 (ja) 表示装置、端末装置、光源装置及び光学部材
JP4633114B2 (ja) 表示装置
WO2016195786A1 (en) Electronic device display with switchable film structures
CN107945760B (zh) 液晶显示面板及其驱动方法、显示装置
JP2010026410A (ja) 表示装置
JP2007139904A (ja) 表示素子及びこれを備えた表示装置
TWI792608B (zh) 光學元件及其製造方法
JP2007108654A (ja) 高透過率及び広視野角の半透過型液晶表示装置
WO2015190208A1 (ja) 配光調整シートおよび表示装置
JP5114853B2 (ja) 表示装置
JP5497286B2 (ja) 液晶表示装置
JP2007298844A (ja) 光線制御用フィルム装置,光線制御装置,照明角度可変光源及びこれを備えた表示装置並びに端末装置
WO2012090839A1 (ja) 液晶パネル、及び、液晶ディスプレイ
KR101389265B1 (ko) 표시장치
JP5203557B2 (ja) 液晶表示装置
JP2007047206A (ja) 光学シート、電界制御型パネル、照明装置、液晶表示装置、および光学シートの製造方法
KR20100080058A (ko) 백라이트장치 및 이를 구비한 액정표시소자
KR101172664B1 (ko) 시야각 조절 용 필터패널을 구비한 표시장치
JP3284757B2 (ja) 液晶表示装置
CN109212817B (zh) 广视角显示装置
KR20120015010A (ko) 고 휘도 투명 액정표시장치
JP4619742B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees