TWI363208B - Large view angle liquid crystal display - Google Patents

Large view angle liquid crystal display Download PDF

Info

Publication number
TWI363208B
TWI363208B TW94142523A TW94142523A TWI363208B TW I363208 B TWI363208 B TW I363208B TW 94142523 A TW94142523 A TW 94142523A TW 94142523 A TW94142523 A TW 94142523A TW I363208 B TWI363208 B TW I363208B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
substrate
lens array
lens
crystal display
Prior art date
Application number
TW94142523A
Other languages
Chinese (zh)
Other versions
TW200722815A (en
Inventor
Jen Tsorng Chang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94142523A priority Critical patent/TWI363208B/en
Publication of TW200722815A publication Critical patent/TW200722815A/en
Application granted granted Critical
Publication of TWI363208B publication Critical patent/TWI363208B/en

Links

Description

六、 [0001] [0002] [0003] 100年.12月15日核正_頁 發明說明: 【發明所屬之技術領域】 本發明涉及一種廣視角液晶顯示器。 【先前技術】 近年來,具有輕薄、輕巧、低耗電量等優點之液晶顯示 器被廣泛地應躲個人電腦、機電話、電視攝影機 、測量儀器等顯示器上,尤其係具有高畫f、空間利用 效率高、低消耗功率、無輕射等優越特性之薄膜電晶體 液晶顯示器(Thin Film Transist〇r Uquid Crys一 tal Display,TFT LCD)已逐漸成為市場之主流。 TFT LCD係用來控制每一個晝素光通過量之組件,其影像 之產生係讓面板之每一個獨立畫素都能產生想要之色彩 。為了達到這個目的,多個冷陰極燈管必須被用來作為 顯不之貪光源’為了要讓光通過每一個畫素,面板必 須被分割且製造成一個個小門或開關來讓光通過。液晶 顯示器則係使用液晶組件來調變光之屏幕,液晶可以改 變其分子結構’因此可以讓不同程度之光量通過其本身( 亦可完全阻斷光線)。如第一圖所示,係一種先前技術之 液晶顯示器之平面示意圖。該液晶顯示器1 00 —般包括第 一基板101、第二基板102和夹於二者之間之液晶層107 。該第一基板101與該第二基板1〇2相對設置。該第一基 板101之内表面依次設置一第一透明電極層103與一第一 配向膜105,該第一基板1〇1之外表面設置一第一偏光片 110。該第二基板102之内表面依次設置一彩色濾光片 108、一第二透明電極層1〇4及一第二配向膜1〇6 ’該第 094142523 表單编號A0101 1003464377-0 1363208 100年12月15日修正替換頁 二基板102之外表面設置一第二偏光片111。其中,第一 偏光片110、第二偏光片111、彩色濾光片108、第一配 向膜105及第二配向膜106可決定光通量之最大值與顏色 之產生。當施以一個電壓給配向層,則產生一個電場, 使配向層介面之液晶分子朝某一個方向排列。每一個晝 素都由紅、綠、藍三個子畫素所組成,就如同映像管一 樣。 [0004] 目前最普遍之液晶模式為扭轉向列液晶(TFT-Twisted Nematic,TFT-TN),其運作原理為電晶體對子畫素施加 零伏特電壓。液晶以及他們控制通過之偏光於兩塊基板 中水平旋轉9¾度。因為第二偏光片111之偏光軸相對於第 一偏光片110之偏光軸偏移90度,所以光線可以通過,如 果紅、綠、藍之子畫素可以充分被照亮,他們將會混合 而於畫面上產生一個白點;惟,如果施加電壓於氧化銦 錫膜(ITO),則會形成一垂直電場,其將會摧毁液晶之螺 旋結構,液晶分子會試圖將其自身排列成與電場相同之 方向,那樣表示液晶分子最後會與第二偏光片111垂直, 於這個狀態下,偏向入射光線通不過整個子晝素,子晝 素之白點變成了黑點,整個晝面就會呈現黑色。 [0005] 以傳統之陰極射線管(CRT)顯示器與TFT-TN比較, TFT-TN存在視角較小這一問題。當從某個角度觀看TFT-LCD時,將發現顯示器之輝度急劇下降及嚴重色偏現象。 TFT-TN通常只有90度之視角,也就是左右兩邊各45度, 因此,改善視角一直係LCD產業努力之方向。 【發明内容】 094142523 表單編號A0101 第5頁/共18頁 1003464377-0 1363208 [0006] [0007] [0008] [0009] [0010] 094142523 100年.12月15日修正替换頁 有鑑於此,提供一種廣視角液晶顯示器實為必需。 一種廣視角液晶顯示器,其包括一第一基板與一第二基 板,該第一基板與該第二基板相對設置;一液晶層,夾 於該第一基板與該第二基板之間;其中,該第一基板之 遠離液晶層之表面利用厚膜光阻劑形成有第一透鏡陣列 ,該第二基板之遠離液晶層之表面利用厚膜光阻劑形成 有第二透鏡陣列,該第一透鏡陣列包含複數直接形成在 該第一基板表面的透鏡,該第二透鏡陣列包含複數直接 形成在該第二基板表面的透鏡,該第一透鏡陣列之每個 透鏡與第二透鏡陣列之每個透鏡對應於該廣視角液晶顯 示器的一個薄膜電晶體晝素。當光線由一面光源垂直入 射至該第一基板上時,光線被該第一透鏡陣列之複數透 鏡會聚,經過該液晶層,入射至該第二基板,被該第二 透鏡陣列之複數透鏡發散。 相較於先前技術,所述之廣視角液晶顯示器因為於第一 基板與第二基板上分別形成有第一透鏡陣列與第二透鏡 陣列,該第一透鏡陣列與第二透鏡陣列均包含複數透鏡 。所以當光線由面光源近似垂直入射至第一基板時,光 線由第一基板之第一透鏡陣列經液晶層入射至第二基板 之第二透鏡陣列,再由第二透鏡陣列之複數透鏡將光線 發散。因此,能夠提高該液晶顯示器之視角。 【實施方式】 下面將結合附圖對本發明作進一步詳細說明。 請參閱第二圖,係本發明液晶顯示器之立體示意圖。該 液晶顯示器200主要包括一第一基板201、一第二基板 表單編號A0101 第6頁/共18頁 .1003464377-0 136,3208 ldo年.12月15日修正替換頁 202及一液晶層207。 [0011] 該第一基板201與該第二基板202相對設置。該液晶層 207夾於該第一基板201與該第二基板202之間。該第一 基板201之内表面2010依次設置一第一透明電極層203與 一第一配向膜205。該第二基板202之内表面2020依次設 置一彩色濾光片208、第二透明電極層204及一第二配向 膜206。該第一基板201之外表面利用厚膜光阻劑形成第 一凸透鏡陣列2011,該第一凸透鏡陣列2011之外表面設 置一第一偏光片211,該第二基板202之外表面利用厚膜 光阻劑形成第二凸透鏡陣列2021,該第二凸透鏡陣列 2 021之外表面設置一第二偏光片212。該第一凸透鏡陣列 2011包含複數微小凸透鏡2012,該凸透鏡2012之焦點為 Fj,焦距為^ ;該第二凸透鏡陣列2021包含複數微小凸 透鏡2022,該凸透鏡2022之焦點為?2,焦距為%。該第 一凸透鏡陣列2011及第二凸透鏡陣列2021之凸透鏡201 2 與2022之半徑範圍均為200微米至400微米。該第一凸透 鏡陣列2011之每個微小凸透鏡2012與第二凸透鏡陣列 2021之每個微小凸透鏡2022對應於一個薄膜電晶體畫素 。該第一凸透鏡陣列2011之凸透鏡2012之焦點Fi與第二 凸透鏡陣列2021之凸透鏡2022之焦點F2均位於液晶層 207中,且第二凸透鏡陣列2021之凸透鏡2022之焦點F2 位於第一凸透鏡陣列2011之凸透鏡2012之一倍焦距^内 〇 [0012] 請參閱第三圖,係光線通過第二圖所示液晶顯示器一畫 素之傳播路線示意圖。當光線由面光源近似垂直入射至 094142523 表單編號A0101 第7頁/共18頁 1003464377-0 1363208 100年.12月15日核正替換 第一基板201之第一凸透繞陣列2〇11上時,光線被其上之 複數微小凸透鏡2012會聚於該凸透鏡2〇12於液晶層2〇7 之焦點’光線繼續沿原方向於液晶層2〇7中傳播射向第 二基板202之第二凸透鏡陣列2〇21,由於第二凸透鏡陣列 2021之凸透鏡2022之焦位於第一凸透鏡陣列2011之 L· 凸透鏡2012之一倍焦距内,所以光線經其上複數微小 凸透鏡2022呈發散狀態射出。出射角度遠遠大於光線入 射至第一基板201之角度,因此,人眼能夠從更大角度看 到顯示器20 0顯示之圖像’即該液晶顯示器2〇〇之視角得 到提高。 [0013] 請參閱第四圖,係本發明另一實施例液晶顯示器之立體 示意圖》該液晶顯示器4〇〇主要包括一第一基板4〇1、一 第二基板402及一液晶層407。 [0014] 該第一基板401與該第二基板402相對設置。該液晶層 407夾於該第一基板4〇1與該第二基板402之間。該第一 基板401之内表面4〇1〇依次設置一第一透明電極層403與 一第一配向膜405。該第二基板402之内表面4020依次設 置一彩色濾光片408、第二透明電極層404及一第二配向 膜406。該第一基板401之外表面利用厚膜光阻劑形成第 一凸透鏡陣列4011,該第一凸透鏡陣列4011之外表面設 置一第一偏光片411,該第二基板402之外表面利用厚膜 光阻劑形成第二凹透鏡陣列4021,該第二凹透鏡陣列 4021之外表面設置一第二偏光片412。該第一凸透鏡陣列 4011包含複數微小凸透鏡4012,該凸透鏡4〇12之焦點為 F1,焦距為^ ;該第二凹透鏡陣列4〇21包含複數微小四 094142523 表單編號A0101 第8頁/共18頁 1003464377-0 1363208 __ 100年12月15日修正替换頁 透鏡4022,該凹透鏡4022之焦點為?2,焦距為%。該第 一凸透鏡陣列4011及第二凹透鏡陣列4021之凸透鏡4012 與凹透鏡4022之半徑範圍均為200微米至400微米。該第 一凸透鏡陣列4011之每個微小凸透鏡4012與第二凹透鏡 陣列4021之每個微小凹透鏡4022對應於一個薄膜電晶體 畫素-該第一凸透鏡陣列4011之凸透鏡4012之焦點F/立 於液晶層407中,第二凹透鏡陣列4021之凹透鏡4022之 焦點f2可設置於任何位置。 [0015] 請參閱第五圖,係光線通過第四圖所示液晶顯示器一畫 素之傳播路線示意圖。當光線由面光源近似垂直入射至 第一基板401之第一凸透鏡陣列4011上時,光線被其上之 複數微小凸透鏡4012會聚於該凸透鏡4012於液晶層407 之焦點F1,光線繼續沿原方向於液晶層407中傳播射向第 二基板402之第二凹透鏡陣列4021,光線經其上複數微小 凹透鏡4022呈發散狀態射出。出射角度遠遠大於光線入 射至第一基板401之角度,因此,人眼能夠從更大角度看 到顯示器400顯示之圖像,即該液晶顯示器400之視角得 到提高。 [0016] 第四圖所示之液晶顯示器400,其中第一基板401之第一 凸透鏡陣列4011之凸透鏡4012焦點與第二基板402之第 二凹透鏡陣列4021之凹透鏡4022焦點均設計於第二基板 402遠離液晶層407—側,且第二基板402之第二凹透鏡 陣列4021之凹透鏡4022焦點設計於第一基板401之第一 凸透鏡陣列4011之凸透鏡4012之一倍焦距、内。 [0017] 請參閱第六圖,係光線通過第四圖所示液晶顯示器一晝 094142523 表單編號A0101 第9頁/共18頁 1003464377-0 1363208 100年12月15日核正替換頁 素之另一種傳播路線示意圖。當光線由面光源近似垂直 入射至第一基板401之第一凸透鏡陣列4011上時,光線被 其上之複數微小凸透鏡4012會聚射向第二基板402之第二 凹透鏡陣列4021,光線經其上複數微小凹透鏡4022呈發 散狀態射出。出射角度遠遠大於光線入射至第一基板401 之角度,因此,人眼能夠從更大角度看到顯示器400顯示 之圖像,即該液晶顯示器400之視角得到提高。 [0018] 與先前技術相比,所述之廣視角液晶顯示器因為於第一 基板與第二基板上分別形成有第一透鏡陣列與第二透鏡 陣列,該第一透鏡陣列與第二透鏡陣列均包含複數透鏡 。所以當光線由面光源近似垂直入射至第一基板時,光 線由第一基板之第一透鏡陣列經液晶層入射至第二基板 之第二透鏡陣列,再由第二透鏡陣列之複數透鏡將光線 發散。因此,能夠提高該液晶顯示器之視角。 [0019] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0020] 第一圖係先前技術之液晶顯示器之平面示意圖。 [0021] 第二圖係本發明之液晶顯示器之立體示意圖。 [0022] 第三圖係光線通過第二圖所示之液晶顯示器一畫素之傳 播路線示意圖。 094142523 表單編號A0101 第10頁/共18頁 1003464377-0 1363208 [0023] 100年.12月15日修正替換頁 第四圖係本發明另一實施例之液晶顯示器之立體示意圖 〇 [0024] 第五圖係光線通過第四圖所示之液晶顯示器一畫素之傳 播路線不意圖。 [0025] 第六圖係光線通過第四圖所示液晶顯示器一晝素之另一 種傳播路線示意圖。 [0026] 【主要元件符號說明】 液晶顯示器:200、400 [0027] 第一基板:201、401 [0028] 第二基板:202、402 [0029] 第一透明電極層:203、403 [0030] 第二透明電極層:204、404 [0031] 第一配向膜:205、405 [0032] 第二配向膜:206、406 [0033] 液晶層:207、407 [0034] 彩色濾光片:208、408 [0035] 第一偏光片:211、411 [0036] 第二偏光片:212、412 [0037] 第一基板内表面:2010、4010 [0038] 第二基板内表面:2020、4020 [0039] 第一凸透鏡陣列:2011、4011 094142523 表單編號A0101 第11頁/共18頁 1003464377-0 1363208 100年.12月15日梭正替換頁 [0040] 第二凸透鏡陣列:2021 [0041] 凸透鏡:2012、2022、4012 [0042] 第二凹透鏡陣列:4021 [0043] 凹透鏡:4022 1003464377-0 094142523 表單编號A0101 第12頁/共18頁[0001] [0002] [0002] [0003] 100 years. December 15th, the present invention is directed to: [Technical Field] The present invention relates to a wide viewing angle liquid crystal display. [Prior Art] In recent years, liquid crystal displays with advantages such as lightness, lightness, low power consumption, etc. have been widely used to hide personal computers, telephones, television cameras, measuring instruments, etc., especially with high-definition f, space utilization. Thin Film Transist〇r Uquid Crys-tal Display (TFT LCD) with high efficiency, low power consumption and no light-emitting characteristics has gradually become the mainstream of the market. The TFT LCD is used to control the components of each element's light throughput. The image is generated so that each individual pixel of the panel produces the desired color. In order to achieve this, a plurality of cold cathode lamps must be used as a source of light. In order for light to pass through each pixel, the panels must be segmented and fabricated into small doors or switches to allow light to pass. Liquid crystal displays use liquid crystal components to modulate the light screen, and liquid crystals can change their molecular structure. This allows different levels of light to pass through itself (and also completely blocks light). As shown in the first figure, it is a schematic plan view of a prior art liquid crystal display. The liquid crystal display 100 generally includes a first substrate 101, a second substrate 102, and a liquid crystal layer 107 sandwiched therebetween. The first substrate 101 is disposed opposite to the second substrate 1〇2. A first transparent electrode layer 103 and a first alignment film 105 are disposed on the inner surface of the first substrate 101. A first polarizer 110 is disposed on the outer surface of the first substrate 101. The inner surface of the second substrate 102 is sequentially provided with a color filter 108, a second transparent electrode layer 1〇4 and a second alignment film 1〇6'. The 094142523 form number A0101 1003464377-0 1363208 100 years 12 On the 15th of the month, a second polarizer 111 is disposed on the outer surface of the replacement substrate 2 substrate 102. The first polarizer 110, the second polarizer 111, the color filter 108, the first alignment film 105, and the second alignment film 106 determine the maximum value of the luminous flux and the generation of the color. When a voltage is applied to the alignment layer, an electric field is generated to align the liquid crystal molecules of the alignment layer interface in a certain direction. Each element consists of three sub-pixels of red, green and blue, just like a picture tube. [0004] The most common liquid crystal mode at present is a TFT-Twisted Nematic (TFT-TN), which operates on the principle that a transistor applies a zero volt to a sub-pixel. The liquid crystals and their controlled polarization are rotated 93⁄4 degrees horizontally in the two substrates. Since the polarization axis of the second polarizer 111 is offset by 90 degrees with respect to the polarization axis of the first polarizer 110, the light can pass, and if the red, green, and blue sub-pixels can be fully illuminated, they will be mixed. A white point is produced on the screen; however, if a voltage is applied to the indium tin oxide film (ITO), a vertical electric field is formed which will destroy the helical structure of the liquid crystal, and the liquid crystal molecules will attempt to align themselves to the same electric field. The direction, that is, the liquid crystal molecules will eventually be perpendicular to the second polarizer 111. In this state, the incident light will not pass through the entire sub-small element, and the white point of the sub-small will become a black dot, and the entire surface will appear black. [0005] A conventional cathode ray tube (CRT) display has a smaller viewing angle than a TFT-TN. When viewing the TFT-LCD from a certain angle, it will be found that the brightness of the display drops sharply and the color shift phenomenon is severe. TFT-TN usually only has a viewing angle of 90 degrees, that is, 45 degrees on both sides. Therefore, improving the viewing angle has always been the direction of the LCD industry. SUMMARY OF THE INVENTION 094142523 Form No. A0101 Page 5 of 18 Page 1003464377-0 1363208 [0007] [0008] [0009] [0010] 094142523 100. December 15th Amendment Replacement Page In view of this, A wide viewing angle liquid crystal display is really necessary. A wide viewing angle liquid crystal display includes a first substrate and a second substrate, the first substrate is disposed opposite to the second substrate; a liquid crystal layer is sandwiched between the first substrate and the second substrate; a surface of the first substrate remote from the liquid crystal layer is formed with a first lens array by using a thick film photoresist, and a surface of the second substrate remote from the liquid crystal layer is formed with a second lens array by using a thick film photoresist, the first lens The array includes a plurality of lenses directly formed on a surface of the first substrate, the second lens array including a plurality of lenses directly formed on a surface of the second substrate, each lens of the first lens array and each lens of the second lens array Corresponding to a thin film transistor halogen of the wide viewing angle liquid crystal display. When light is vertically incident on the first substrate by a light source, the light is concentrated by a plurality of lenses of the first lens array, passes through the liquid crystal layer, is incident on the second substrate, and is diverged by the plurality of lenses of the second lens array. Compared with the prior art, the wide viewing angle liquid crystal display has a first lens array and a second lens array respectively formed on the first substrate and the second substrate, and the first lens array and the second lens array both comprise a plurality of lenses. . Therefore, when the light is incident substantially perpendicularly to the first substrate by the surface light source, the light is incident from the first lens array of the first substrate through the liquid crystal layer to the second lens array of the second substrate, and then the light is applied by the plurality of lenses of the second lens array. Divergence. Therefore, the viewing angle of the liquid crystal display can be improved. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Please refer to the second figure, which is a perspective view of the liquid crystal display of the present invention. The liquid crystal display 200 mainly includes a first substrate 201, a second substrate, a form number A0101, a sixth page, a total of 18 pages, a 1003464377-0 136, a 3208 ldo year, a December 15th revision replacement page 202, and a liquid crystal layer 207. [0011] The first substrate 201 is disposed opposite to the second substrate 202. The liquid crystal layer 207 is sandwiched between the first substrate 201 and the second substrate 202. The inner surface 2010 of the first substrate 201 is sequentially provided with a first transparent electrode layer 203 and a first alignment film 205. The inner surface 2020 of the second substrate 202 is sequentially provided with a color filter 208, a second transparent electrode layer 204 and a second alignment film 206. A first convex lens array 2011 is formed on the outer surface of the first substrate 201 by using a thick film photoresist. A first polarizer 211 is disposed on the outer surface of the first convex lens array 2011, and a thick film light is used on the outer surface of the second substrate 202. The resist forms a second convex lens array 2021, and a second polarizer 212 is disposed on the outer surface of the second convex lens array 2 021. The first convex lens array 2011 includes a plurality of micro convex lenses 2012 having a focal point Fj and a focal length of ^; the second convex lens array 2021 includes a plurality of micro convex lenses 2022, and the focal point of the convex lens 2022 is ? 2, the focal length is %. The convex lenses 201 2 and 2022 of the first convex lens array 2011 and the second convex lens array 2021 have a radius ranging from 200 μm to 400 μm. Each of the micro convex lenses 2012 and the second convex lens arrays 2022 of the first convex lens array 2011 corresponds to a thin film transistor. The focal point Fi of the convex lens 2012 of the first convex lens array 2011 and the focal point F2 of the convex lens 2022 of the second convex lens array 2021 are both located in the liquid crystal layer 207, and the focal point F2 of the convex lens 2022 of the second convex lens array 2021 is located in the first convex lens array 2011. One of the focal lengths of the convex lens 2012 ^00 [0012] Please refer to the third figure, which is a schematic diagram of the propagation path of a pixel through the liquid crystal display shown in the second figure. When the light is approximately perpendicularly incident from the surface light source to 094142523 Form No. A0101 Page 7 / 18 pages 1003464377-0 1363208 100. On December 15th, when the first convex substrate 1 〇 11 of the first substrate 201 is replaced The light is condensed by the plurality of micro convex lenses 2012 on the convex lens 2〇12 at the focus of the liquid crystal layer 2〇7. The light continues to propagate in the liquid crystal layer 2〇7 in the original direction to the second convex lens array of the second substrate 202. 2〇21, since the focal length of the convex lens 2022 of the second convex lens array 2021 is within one focal length of the L· convex lens 2012 of the first convex lens array 2011, the light is emitted in a divergent state via the plurality of micro convex lenses 2022. The exit angle is much larger than the angle at which the light is incident on the first substrate 201, so that the human eye can see the image displayed by the display 20 from a larger angle, i.e., the viewing angle of the liquid crystal display 2 is improved. [0013] Referring to FIG. 4, a perspective view of a liquid crystal display according to another embodiment of the present invention includes a first substrate 4, a second substrate 402, and a liquid crystal layer 407. [0014] The first substrate 401 is disposed opposite to the second substrate 402. The liquid crystal layer 407 is sandwiched between the first substrate 4〇1 and the second substrate 402. A first transparent electrode layer 403 and a first alignment film 405 are sequentially disposed on the inner surface 4 of the first substrate 401. The inner surface 4020 of the second substrate 402 is sequentially provided with a color filter 408, a second transparent electrode layer 404 and a second alignment film 406. A first convex lens array 4011 is formed on the outer surface of the first substrate 401 by using a thick film photoresist. A first polarizer 411 is disposed on the outer surface of the first convex lens array 4011, and a thick film light is used on the outer surface of the second substrate 402. The resist forms a second concave lens array 4021, and a second polarizer 412 is disposed on the outer surface of the second concave lens array 4021. The first convex lens array 4011 includes a plurality of micro convex lenses 4012 having a focal point F1 and a focal length of ^; the second concave lens array 4〇21 includes a plurality of tiny four 094142523 Form No. A0101 Page 8 / 18 pages 1003464377 -0 1363208 __ On December 15, 100, the replacement page lens 4022 was modified. What is the focus of the concave lens 4022? 2, the focal length is %. The convex lens 4012 and the concave lens 4022 of the first convex lens array 4011 and the second concave lens array 4021 have a radius ranging from 200 micrometers to 400 micrometers. Each of the micro convex lenses 4012 of the first convex lens array 4011 and each of the second concave lens arrays 4021 corresponds to a thin film transistor pixel - the focal point F of the convex lens 4012 of the first convex lens array 4011 is standing on the liquid crystal layer In 407, the focal point f2 of the concave lens 4022 of the second concave lens array 4021 can be set at any position. [0015] Please refer to the fifth figure, which is a schematic diagram of the propagation path of a pixel through the liquid crystal display shown in the fourth figure. When the light is incident on the first convex lens array 4011 of the first substrate 401 by the surface light source, the light is concentrated on the convex lens 4012 at the focal point F1 of the liquid crystal layer 407 by the plurality of micro convex lenses 4012, and the light continues in the original direction. The second concave lens array 4021 that is incident on the second substrate 402 is propagated in the liquid crystal layer 407, and the light is emitted in a diverging state via the plurality of micro concave lenses 4022. The exit angle is much larger than the angle at which the light is incident on the first substrate 401, so that the human eye can see the image displayed by the display 400 from a larger angle, that is, the viewing angle of the liquid crystal display 400 is improved. [0016] The liquid crystal display 400 shown in FIG. 4, wherein the focus of the convex lens 4012 of the first convex lens array 4011 of the first substrate 401 and the concave lens 4022 of the second concave lens array 4021 of the second substrate 402 are both designed on the second substrate 402. The focus of the concave lens 4022 of the second concave lens array 4021 of the second substrate 402 is designed to be one of the focal lengths of the convex lens 4012 of the first convex lens array 4011 of the first substrate 401. [0017] Please refer to the sixth figure, the light is passed through the liquid crystal display shown in the fourth figure. 094142523 Form No. A0101 Page 9/18 pages 1003464377-0 1363208 December 15th, the nuclear replacement page is another Schematic diagram of the route of communication. When the light is incident substantially perpendicularly on the first convex lens array 4011 of the first substrate 401 by the surface light source, the light is concentrated by the plurality of micro convex lenses 4012 on the second concave lens array 4021 of the second substrate 402, and the light passes through the plurality of concave lens arrays 4021. The minute concave lens 4022 is emitted in a divergent state. The exit angle is much larger than the angle at which the light is incident on the first substrate 401, so that the human eye can see the image displayed by the display 400 from a larger angle, that is, the viewing angle of the liquid crystal display 400 is improved. [0018] Compared with the prior art, the wide viewing angle liquid crystal display has a first lens array and a second lens array respectively formed on the first substrate and the second substrate, and the first lens array and the second lens array are respectively Includes multiple lenses. Therefore, when the light is incident substantially perpendicularly to the first substrate by the surface light source, the light is incident from the first lens array of the first substrate through the liquid crystal layer to the second lens array of the second substrate, and then the light is applied by the plurality of lenses of the second lens array. Divergence. Therefore, the viewing angle of the liquid crystal display can be improved. [0019] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0020] The first figure is a schematic plan view of a prior art liquid crystal display. [0021] The second figure is a schematic perspective view of a liquid crystal display of the present invention. [0022] The third figure is a schematic diagram of the propagation path of light passing through a pixel of the liquid crystal display shown in the second figure. 094142523 Form No. A0101 Page 10 of 18 1003464377-0 1363208 [0023] 100 years. December 15th revised replacement page The fourth figure is a perspective view of a liquid crystal display according to another embodiment of the present invention [0024] The light of the figure passes through the propagation route of the pixel of the liquid crystal display shown in the fourth figure. [0025] The sixth figure is a schematic diagram of another propagation path of the light passing through the liquid crystal display shown in the fourth figure. [Description of main component symbols] Liquid crystal display: 200, 400 [0027] First substrate: 201, 401 [0028] Second substrate: 202, 402 [0029] First transparent electrode layer: 203, 403 [0030] Second transparent electrode layer: 204, 404 [0031] First alignment film: 205, 405 [0032] Second alignment film: 206, 406 [0033] Liquid crystal layer: 207, 407 [0034] Color filter: 208, 408 [0035] First polarizer: 211, 411 [0036] Second polarizer: 212, 412 [0037] First substrate inner surface: 2010, 4010 [0038] Second substrate inner surface: 2020, 4020 [0039] First convex lens array: 2011, 4011 094142523 Form No. A0101 Page 11/18 pages 1003464377-0 1363208 100 years. December 15th Shuttle replacement page [0040] Second convex lens array: 2021 [0041] Convex lens: 2012, 2022, 4012 [0042] Second concave lens array: 4021 [0043] Concave lens: 4022 1003464377-0 094142523 Form number A0101 Page 12 of 18

Claims (1)

1363208 _ 100年.12月15日修正替換頁 七、申請專利範圍: 1 . 一種廣視角液晶顯示器,其包括: 第一基板; 第二基板,該第一基板與該第二基板相對設置; 一液晶層,夾於該第一基板與該第二基板之間; 其中,該第一基板之遠離液晶層之表面利用厚膜光.阻劑形 成有第一透鏡陣列,該第二基板之遠離液晶層之表面利用 厚膜光阻劑形成有第二透鏡陣列,該第一透鏡陣列包含複 數直接形成在該第一基板表面的透鏡,該第二透鏡陣列包 含複數直接形成在該第二基板表面的透鏡,該第一透鏡陣 列之每個透鏡與第二透鏡陣列之每個透鏡對應於該廣視角 液晶顯示器的一個薄膜電晶體晝素,當光線由一面光源垂 直入射至該第一基板上時,光線被該第一透鏡陣列之複數 透鏡會聚,經過該液晶層,入射至該第二基板,被該第二 透鏡陣列之複數透鏡發散。 2 .如申請專利範圍第1項所述之廣視角液晶顯示器,其中, 該第一透鏡陣列之透鏡為凸透鏡。 3 .如申請專利範圍第2項所述之廣視角液晶顯示器,其中, 該第二透鏡陣列之透鏡為凸透鏡。 4 .如申請專利範圍第3項所述之廣視角液晶顯示器,其中, 該兩個透鏡陣列之凸透鏡焦點均設計於液晶層内且第二透 鏡陣列之凸透鏡焦點設計於第一透鏡陣列之凸透鏡之一倍 焦距内。 5.如申請專利範圍第2項所述之廣視角液晶顯示器,其中, 該第二透鏡陣列之透鏡為凹透鏡。 094142523 表單編號A0101 第13頁/共18頁 1003464377-0 1363208 100年.12月15日核正替換頁 6.如申請專利範圍第5項所述之廣視角液晶顯示器,其中, 該第一透鏡陣列之凸透鏡焦點設計於液晶層内。 7 .如申請專利範圍第5項所述之廣視角液晶顯示器,其中, 該兩個透鏡陣列之焦點均設計於第二基板遠離液晶層一側 ,且第二透鏡陣列之凹透鏡焦點設計於第一透鏡陣列之凸 透鏡之一倍焦距内。 8.如申請專利範圍第1項所述之廣視角液晶顯示器,其中, 該第一透鏡陣列與第二透鏡陣列之透鏡半徑範圍為200微 米至400微米。 1003464377-0 094142523 表單編號A0101 第14頁/共18頁1363208 _ 100 years. December 15th revised replacement page VII. Patent application scope: 1. A wide viewing angle liquid crystal display, comprising: a first substrate; a second substrate, the first substrate is opposite to the second substrate; a liquid crystal layer is sandwiched between the first substrate and the second substrate; wherein a surface of the first substrate remote from the liquid crystal layer is formed with a thick film of light and a resist is formed with a first lens array, and the second substrate is away from the liquid crystal The surface of the layer is formed with a second lens array by using a thick film photoresist, the first lens array comprising a plurality of lenses directly formed on the surface of the first substrate, the second lens array comprising a plurality of directly formed on the surface of the second substrate a lens, each lens of the first lens array and each lens of the second lens array corresponding to a thin film transistor of the wide viewing angle liquid crystal display, when light is vertically incident on the first substrate by a light source, The light is concentrated by the plurality of lenses of the first lens array, passes through the liquid crystal layer, is incident on the second substrate, and is diverged by the plurality of lenses of the second lens array. 2. The wide viewing angle liquid crystal display of claim 1, wherein the lens of the first lens array is a convex lens. 3. The wide viewing angle liquid crystal display of claim 2, wherein the lens of the second lens array is a convex lens. 4. The wide viewing angle liquid crystal display of claim 3, wherein the convex lens focal points of the two lens arrays are both designed in the liquid crystal layer and the convex lens focal points of the second lens array are designed in the convex lens of the first lens array. Within one focal length. 5. The wide viewing angle liquid crystal display of claim 2, wherein the lens of the second lens array is a concave lens. 094142523 Form No. A0101, page 13 of 18, 1003464377-0, 1363208, 100. December 15, vol. 5, pp. The convex lens focus is designed in the liquid crystal layer. 7. The wide viewing angle liquid crystal display of claim 5, wherein the focus of the two lens arrays are both designed on a side of the second substrate away from the liquid crystal layer, and the concave lens focus of the second lens array is designed first. One of the convex lenses of the lens array is within a focal length. 8. The wide viewing angle liquid crystal display of claim 1, wherein the first lens array and the second lens array have a lens radius ranging from 200 micrometers to 400 micrometers. 1003464377-0 094142523 Form No. A0101 Page 14 of 18
TW94142523A 2005-12-02 2005-12-02 Large view angle liquid crystal display TWI363208B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94142523A TWI363208B (en) 2005-12-02 2005-12-02 Large view angle liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94142523A TWI363208B (en) 2005-12-02 2005-12-02 Large view angle liquid crystal display

Publications (2)

Publication Number Publication Date
TW200722815A TW200722815A (en) 2007-06-16
TWI363208B true TWI363208B (en) 2012-05-01

Family

ID=46750619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94142523A TWI363208B (en) 2005-12-02 2005-12-02 Large view angle liquid crystal display

Country Status (1)

Country Link
TW (1) TWI363208B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI365325B (en) 2008-10-31 2012-06-01 Au Optronics Corp Display apparatus

Also Published As

Publication number Publication date
TW200722815A (en) 2007-06-16

Similar Documents

Publication Publication Date Title
JP7263447B2 (en) liquid crystal display
WO2018171270A1 (en) Display panel, display device and driving method
TWI239423B (en) Display device
US7277140B2 (en) Image shifting device, image display, liquid crystal display, and projection image display
US10747016B2 (en) 3D display device
US8237885B2 (en) Liquid crystal display with narrow angular range of incident light and method of making the display
JP2005301276A (en) Liquid crystal display device having double-sided display function
KR20070070722A (en) Liquid crystal display device
TW202014776A (en) Display device
JP2007052323A (en) Electrooptical device and electronic equipment
JP5084769B2 (en) Liquid crystal display
WO2017148048A1 (en) Liquid crystal panel, display device, and display method
US9304343B2 (en) Liquid crystal display device
KR100857516B1 (en) Liquid crystal display, projection apparatus, and electronic apparatus
US7382427B2 (en) Liquid crystal display device
JP4993879B2 (en) Liquid crystal display
CN1979284A (en) Liquid-crystal display
JP2007183559A (en) Display device
TWI363208B (en) Large view angle liquid crystal display
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
JP2000206311A (en) Display device
KR101292582B1 (en) back light assembly and liquid crystal display module using thereof
JP2008003372A (en) Liquid crystal display device
TW201624069A (en) Display device
WO2023138542A1 (en) Polarization grating device and liquid crystal display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees