WO2018059083A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2018059083A1
WO2018059083A1 PCT/CN2017/093133 CN2017093133W WO2018059083A1 WO 2018059083 A1 WO2018059083 A1 WO 2018059083A1 CN 2017093133 W CN2017093133 W CN 2017093133W WO 2018059083 A1 WO2018059083 A1 WO 2018059083A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
refractive index
electrode
display panel
Prior art date
Application number
PCT/CN2017/093133
Other languages
English (en)
French (fr)
Inventor
谭纪风
王维
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/750,599 priority Critical patent/US10620469B2/en
Publication of WO2018059083A1 publication Critical patent/WO2018059083A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display panel and a display device.
  • a liquid crystal display device in the field of display technology, includes a backlight and a display panel.
  • the display panel includes an array substrate and a color filter substrate disposed opposite to each other, and a liquid crystal layer, a back surface of the array substrate, and a color filter substrate are disposed between the array substrate and the color filter substrate.
  • Polarizers are provided on the back.
  • the gray scale display is realized by voltage-controlled deflection of the liquid crystal and control by two layers of polarizers.
  • the color color resistance in the color filter substrate can be made of a quantum dot material, and the quantum dot material is used as the color color resistance to increase the color gamut of the display panel, but the quantum dot material destroys the polarization state of the incident light, thereby The problem of quantum dot depolarization is caused, and thus the quantum dot material cannot be applied to a liquid crystal display device.
  • a polarizing plate is used in a display panel in a liquid crystal display device, which results in a low transmittance of the liquid crystal display device (for example, a transmittance of about 7%) and a large liquid crystal cell thickness (for example, 3 um to 5 um). , and a larger box thickness will reduce the response time of the liquid crystal.
  • the invention provides a display panel and a display device for enabling a quantum dot material to be applied to a liquid crystal display device, improving transmittance of the display panel, and improving response time of the liquid crystal.
  • the present invention provides a display panel comprising: a first substrate, a liquid crystal layer, a waveguide layer, a grating layer, a quantum dot color filter layer, a first electrode and a second electrode, the liquid crystal layer
  • the grating layer, the quantum dot color filter layer, the first electrode and the second electrode are located between the waveguide layer and the first substrate, and the grating layer is located at the waveguide a side of the layer adjacent to the liquid crystal layer;
  • the first electrode and the second electrode are configured to adjust a refractive index of the liquid crystal layer by changing a voltage applied thereto;
  • the coupling efficiency of coupling light from the waveguide layer is determined according to the difference between the refractive index of the liquid crystal layer and the refractive index of the grating layer.
  • the second electrode and the first electrode are located on the same side or different sides of the liquid crystal layer.
  • the refractive index of the grating layer ranges from an ordinary refractive index n o of the liquid crystal layer to a extraordinary optical refractive index n e of the liquid crystal layer.
  • the refractive index of the grating layer is a very light refractive index n o of the liquid crystal layer.
  • the method further includes: a second substrate, the second substrate being located on a side of the waveguide layer away from the first substrate.
  • the second electrode is located on a side of the waveguide layer adjacent to the first substrate, and the grating layer is located on a side of the second electrode adjacent to the first substrate.
  • the liquid crystal layer is located on a side of the grating layer adjacent to the first substrate;
  • the first electrode is located on a side of the first substrate adjacent to the second substrate.
  • the quantum dot color filter layer is located on a side of the first electrode adjacent to the first substrate; or the quantum dot color filter layer is located on the second electrode and the grating layer between.
  • the second electrode has a refractive index smaller than a refractive index of the waveguide layer
  • the second substrate has a refractive index smaller than a refractive index of the waveguide layer
  • the material of the liquid crystal layer may be a nematic liquid crystal, a cholesteric liquid crystal, or a blue phase liquid crystal.
  • the grating layer comprises spaced apart light shielding strips, the liquid crystal layer covers the grating layer and is filled in a gap between the light shielding strips, the liquid crystal layer has a thickness greater than a thickness of the grating layer .
  • the coupling efficiency of the waveguide layer coupled light is 0, so that the display panel is in the L0 gray-scale state.
  • the coupling efficiency of the waveguide layer coupling out light is set coupling efficiency, so that the display panel In the L255 grayscale state;
  • the coupling efficiency of the waveguide layer coupled light is greater than 0 and less than The coupling efficiency is set such that the display panel is in a grayscale state between the L0 grayscale state and the L255 grayscale state.
  • the present invention provides a display device comprising: a backlight and the above display panel.
  • the backlight is located at a side of the display panel, and the backlight is disposed at least corresponding to the waveguide layer, and a light emitting direction of the backlight is parallel to a plane of the waveguide layer.
  • the display panel includes a first substrate, a liquid crystal layer, a waveguide layer, a grating layer, a quantum dot color filter layer, a first electrode and a second electrode, and the first electrode
  • the second electrode is configured to adjust a refractive index of the liquid crystal layer by changing a voltage applied thereto, and coupling efficiency of coupling light from the waveguide layer is determined according to a difference between a refractive index of the liquid crystal layer and a refractive index of the grating layer, in the present invention
  • Transmittance in this embodiment, it is not necessary to provide a polarizing plate in the display panel, so that the phase retardation amount of the entire liquid crystal layer is not required, so that the thickness of the liquid crystal cell can be set thin, thereby improving the response time of the liquid crystal.
  • FIG. 1 is a schematic structural diagram of a display panel according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the coupling of a grating layer waveguide of FIG. 1;
  • FIG. 3 is a schematic structural diagram of a display panel according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a display device according to Embodiment 3 of the present invention.
  • 5a is a schematic diagram showing a display mode when the display device is an ECB display device
  • FIG. 5b is a schematic diagram of another display mode when the display device is an ECB display device.
  • 6a is a schematic diagram of a display mode when the display device is an IPS display device
  • 6b is a schematic diagram showing another display mode when the display device is an IPS display device
  • FIG. 7a is a schematic diagram showing a display mode when the display device is an IPS display device
  • 7b is a schematic diagram showing another display mode when the display device is an IPS display device
  • FIG. 8a is a schematic diagram showing a display mode when the display device is a VA display device
  • 8b is a schematic view showing another display mode when the display device is a VA display device
  • 9a is a schematic diagram showing a display mode when the display device is a VA display device
  • Fig. 9b is a schematic view showing another display mode when the display device is a VA display device.
  • the display panel includes: a first substrate 2, a liquid crystal layer 3, a waveguide layer 4, a grating layer, and quantum dot color.
  • the filter layer 6, the first electrode 8 and the second electrode 7, the liquid crystal layer 3, the grating layer, the quantum dot color filter layer 6, the first electrode 8 and the second electrode 7 are located on the waveguide layer 4 and the first substrate 2 between.
  • the first electrode 8 and the second electrode 7 are configured to adjust the refractive index of the liquid crystal layer 3 by changing the voltage applied thereto; the coupling efficiency of coupling light from the waveguide layer 4 depends on the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer The difference is determined.
  • the coupling efficiency of the light coupled out of the waveguide layer 4 varies depending on the difference in the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer. Since the refractive index of the liquid crystal layer 3 can be adjusted according to the pressure difference of the voltage applied to the first electrode 8 and the second electrode 7, the refraction of the liquid crystal layer 3 when the pressure difference of the voltage applied by the first electrode 8 and the second electrode 7 changes The rate also changes so that the coupling efficiency of the waveguide layer 4 to couple out light also changes.
  • the display panel may further include a second base substrate 1 located on a side of the waveguide layer 4 away from the first base substrate 2.
  • the waveguide layer 4 can also function as the second substrate 1, that is, the waveguide layer and the second substrate are functionally Combine into one.
  • the material of the second base substrate 1 may be glass or resin, and the material of the first base substrate 2 may be glass or resin.
  • the second base substrate 1 and the first base substrate 2 may also be made of other materials, which are not enumerated here.
  • the second electrode 7 and the first electrode 8 are located on the same side or different sides of the liquid crystal layer 3.
  • the second electrode 7 is a pixel electrode
  • the first electrode 8 is a common electrode.
  • the second electrode 7 and the first electrode 8 are located on different sides of the liquid crystal layer 3.
  • the second electrode 7 is located on a side of the liquid crystal layer 3 adjacent to the second substrate 1
  • the first electrode 8 is located on a side of the liquid crystal layer 3 adjacent to the first substrate 2
  • the display panel may be distorted.
  • a Twisted Nematic (TN) type display panel, a Vertical Alignment (VA) type display panel, or an electrically controlled birefringence (ECB) display device is used to the display panel.
  • the second electrode 7 and the first electrode 8 are located on the same side of the liquid crystal layer 3. Specifically, the second electrode 7 and the first electrode 8 are both located on the side of the liquid crystal layer 3 close to the second base substrate 1.
  • the display panel may be an Advanced Super Dimension Switch (ADS) display panel; when the second electrode 7 and the first electrode 8 are on the same layer
  • ADS Advanced Super Dimension Switch
  • the display panel may be an In-Plane Switching (IPS) display panel. It is not specifically drawn here. In practical applications, the display panel can also be other types of display panels, which are not listed here.
  • the quantum dot color filter layer 6 may include a red quantum dot pattern 61, a green quantum dot pattern 62, and a transparent resin pattern 63, wherein the red quantum dot pattern 61 generates red light under excitation of light of a specific wavelength, and the green quantum dot pattern 62 Green light is generated by excitation of light of a specific wavelength, and the transparent resin pattern 63 directly transmits light of a specific wavelength, in which case light of a specific wavelength is blue light.
  • the quantum dot color filter layer 6 may include a red quantum dot pattern, a green quantum dot pattern, and a blue quantum dot pattern, wherein the red quantum dot pattern generates red light under excitation of light of a specific wavelength, and the green quantum dot pattern is The green light is generated by the excitation of light of a specific wavelength, and the blue quantum dot pattern generates blue light under the excitation of light of a specific wavelength.
  • the light of a specific wavelength may be light of other wavelengths shorter than the wavelength of the blue light. The situation is no longer specifically drawn.
  • the quantum dot color filter layer 6 is located on the side of the first base substrate 2 close to the second base substrate 1. In practical applications, the quantum dot color filter layer 6 may also be located on the side of the first substrate 2 away from the second substrate 1 , which is not specifically drawn.
  • the material of the liquid crystal layer 3 may be a nematic liquid crystal, a cholesteric liquid crystal or a blue phase liquid crystal.
  • the TN type display panel, the VA type display panel, and the ADS type display panel generally employ nematic liquid crystal.
  • the grating layer comprises spaced apart light-shielding strips 51 which cover the grating layer and are filled in the gap 52 between the light-shielding strips 51.
  • the thickness of the liquid crystal layer 3 is greater than the thickness of the grating layer. Usually, the thickness of the liquid crystal layer 3 is less than or equal to 200 nm, and the thickness of the liquid crystal layer 3 is more than 200 nm and less than 20 ⁇ m.
  • the thickness of the liquid crystal layer 3 is 1 ⁇ m.
  • the thickness of the liquid crystal layer 3 can be set. Based on the ability to cover the grating layer and to facilitate other parameter design of the product (eg, electrical design, drive design, etc.). In the present embodiment, the thickness of the liquid crystal layer 3 is only required to cover the thickness of the grating layer. Therefore, the thickness of the liquid crystal layer 3 can be set thin, that is, the thickness of the liquid crystal cell can be set thin, thereby further improving the response time of the liquid crystal.
  • the second electrode 7 is located on a side of the waveguide layer 5 adjacent to the first substrate 2
  • the grating layer is located on a side of the second electrode 7 adjacent to the first substrate 1
  • the liquid crystal layer 3 is located on a side of the grating layer close to the first substrate 2
  • the first electrode 8 is located on a side of the first substrate 2 close to the second substrate 1.
  • the quantum dot color filter layer 6 is located on a side of the first electrode 8 adjacent to the first substrate 2, and specifically, a quantum dot color filter layer is located between the first electrode 8 and the liquid crystal layer 3.
  • the grating layer is located between the liquid crystal layer 3 and the second electrode 7.
  • the material of the grating layer is a transparent dielectric material such as silica SiO 2 or other organic resin.
  • the refractive index of the grating layer ranges from the ordinary refractive index n o of the liquid crystal layer 3 to the extraordinary optical refractive index n e of the liquid crystal layer 3 .
  • the refractive index of the grating layer is the extraordinary refractive index n o of the liquid crystal layer 3 .
  • the range of the thickness of the grating layer includes, but is not limited to, 200 nm to 1 ⁇ m, and preferably, the thickness of the grating layer is 500 nm.
  • the thickness of the grating layer can be set as needed, for example, a red pixel (red quantum dot pattern 61),
  • the thickness of the grating layer corresponding to the green pixel (green quantum dot pattern 62) and the blue pixel (transparent resin pattern 63) may be the same or different.
  • the duty cycle of the period of the grating layer may be 0.5, but the duty ratio of the period may be set as needed in the actual product design, for example, for the purpose of adjusting the light intensity or balancing the brightness difference of different positions of the display panel. .
  • the waveguide layer 4 is located between the second base substrate 1 and the second electrode 7.
  • the material of the waveguide layer 4 may be a transparent material such as silicon nitride Si 3 N 4 .
  • the range of the thickness of the waveguide layer 4 includes, but is not limited to, 100 nm to 10 ⁇ m.
  • the thickness of the waveguide layer 4 is 100 nm to facilitate the control of the light exiting direction and wavelength of the grating layer.
  • the waveguide layer 4 is a single mode waveguide, that is, the thickness is sufficiently thin, but when the collimation of the light of the side-entry collimated backlight is good or the mode coupled into the waveguide layer 4 can be effectively controlled, it can be appropriately
  • the requirement for the thickness of the waveguide layer 4 is relaxed, for example, the thickness of the waveguide layer 4 can be set to a thickness of several hundred nanometers or even several micrometers. Since the thickness of the waveguide layer 4 is much smaller than the thickness of the second electrode 7 and the thickness of the waveguide layer 4 is much smaller than the thickness of the second base substrate 1, most of the light emitted by the side-entry collimated backlight will be coupled into the first The two electrodes 7 and the second base substrate 1 are.
  • the light coupled into the second electrode 7 and the second substrate 1 will also have a small divergence. angle.
  • the refractive index of the second electrode 7 is smaller than the refractive index of the waveguide layer 4
  • the refractive index of the second base substrate 1 is smaller than the refractive index of the waveguide layer 4
  • the light in the second electrode 7 and the second substrate 1 Will not be well bound, but injected into the waveguide layer 4, supplementing the attenuation of the waveguide mode of the waveguide layer 4 due to propagation or grating layer coupling, in summary, the second electrode 7 and the second substrate
  • the substrate 1 functions as an auxiliary waveguide.
  • the display panel further includes a scattering film 9.
  • the scattering film 9 is located on a side of the first base substrate 2 remote from the second base substrate 1.
  • the function of the scattering film 9 is to scatter light having a small angle or a large angle of coupling from the waveguide layer 4 under the control of the grating layer, thereby improving the viewing angle of the display panel.
  • the display panel further includes an alignment film (not shown) disposed on both sides of the liquid crystal layer 3.
  • an alignment film may be disposed on the quantum dot color filter layer 6, and an alignment film may be disposed on the grating layer.
  • the alignment film is provided to control the initial alignment state of the liquid crystal molecules in the liquid crystal layer 3, thereby ensuring that the liquid crystal molecules can be rotated in a desired manner under application of a voltage to determine whether it is a normally black display mode or a normally white display mode.
  • the material of the liquid crystal layer 3 is a blue phase liquid crystal, since the blue phase liquid crystal does not need to be oriented, an alignment film may not be provided in the display panel.
  • the display panel further includes a gate line, a data line, and a thin film transistor.
  • the gate line, the data line, and the thin film transistor may be located between the waveguide layer 4 and the second electrode 7.
  • the thin film transistor includes a gate electrode, an active layer, a source and a drain, and the second electrode 7 is connected to a drain of the thin film transistor.
  • the thin film transistor of Fig. 1 is not shown.
  • the display panel may include a color film substrate and an array substrate disposed opposite to each other, wherein the array substrate includes a second substrate substrate 1 , a waveguide layer 4 , and a second electrode 7 disposed in sequence.
  • the color filter substrate comprises a first substrate 2, a first electrode 8 and a quantum dot color filter layer 6 disposed in sequence, and a liquid crystal layer 3 is disposed between the color filter substrate and the array substrate.
  • FIG. 2 is a schematic view of the grating waveguide coupling of FIG. 1.
  • the liquid crystal layer 3, the grating layer and the waveguide layer 4 form a variable grating coupler which can efficiently couple light into the waveguide layer 4. Or the light is coupled out of the waveguide layer 4.
  • the mode can be coupled out in the direction of the direction, where ⁇ q is the propagation constant of the incident light, ⁇ m is the propagation constant of the m-th order mode, q is the diffraction order, and K is the grating vector.
  • phase matching relationship formula that changing the refractive index n c of the liquid crystal layer 3 enables the grating layer to control the coupling efficiency of light coupled out from the waveguide layer 4, and the coupling efficiency is related to the refractive index difference between the liquid crystal layer 3 and the grating layer.
  • the period of the grating layer is usually small (for example, several micrometers or several hundred nanometers), so the size of the pixel can be made small, so the structure of the display panel is also an ideal choice for realizing high PPI display.
  • the refractive index of the voltage between the second electrode 7 and the first electrode 8 is adjusted to adjust the refractive index of the liquid crystal layer 3.
  • the refractive index of the liquid crystal layer 3 changes, the refractive index and the grating of the liquid crystal layer 3
  • the difference in refractive index of the layer also changes, so that the coupling efficiency of the light coupled to the waveguide layer 4 can be controlled by controlling the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer.
  • the coupling efficiency of the waveguide layer 4 coupled light is 0, so that the display panel is in the L0 gray-scale state).
  • the effect of the grating layer is masked, and no light is coupled out from the waveguide layer 4, at which time the display panel is in the L0 gray-scale state.
  • the coupling efficiency of the light coupled out of the waveguide layer 4 is set coupling efficiency so that the display panel is in the L255 gray-scale state.
  • the absolute value of the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer is the maximum difference
  • the refractive index of the grating layer is fixed, so that the ordinary refractive index n o and the extraordinary refractive index can be
  • the refractive index of the liquid crystal layer 3 is adjusted between n e such that the absolute value of the difference between the refractive index of the adjusted liquid crystal layer 3 and the refractive index of the grating layer is the maximum difference, and the difference is set to the maximum difference, correspondingly
  • the set coupling efficiency is the maximum coupling efficiency
  • the grating layer has the largest effect
  • the light output from the waveguide layer 4 is the largest
  • the display panel is in the L255 gray-scale state.
  • the coupling efficiency of the waveguide layer 4 coupled light is greater than 0 and less than the set coupling efficiency, so that the display panel A grayscale state between the L0 grayscale state and the L255 grayscale state.
  • the coupling efficiency is between 0 and the maximum coupling efficiency, so that the display panel is in the intermediate gray-scale state. Adjusting the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer allows the display panel to be in a different grayscale state.
  • the display panel includes a first substrate, a liquid crystal layer, a waveguide layer, a grating layer, a quantum dot color filter layer, a first electrode and a second electrode, and the first electrode and the second electrode. It is configured to adjust the refractive index of the liquid crystal layer by changing the voltage applied thereto, and the coupling efficiency of coupling out the light from the waveguide layer is determined according to the difference between the refractive index of the liquid crystal layer and the refractive index of the grating layer, which is not required to be displayed in this embodiment.
  • the polarizing plate is disposed in the panel to avoid the problem of defocusing of the quantum dots, so that the quantum dot material can be applied to the liquid crystal display device; in this embodiment, the polarizing plate is not required to be disposed in the display panel, thereby improving the transmittance of the display panel. In this embodiment, it is not necessary to provide a polarizing plate in the display panel, so that the phase retardation amount of the entire liquid crystal layer is not required, so that the thickness of the liquid crystal cell can be set thin, thereby improving the response time of the liquid crystal. Since the display panel of the embodiment has a high transmittance, the display panel can be applied to a transparent display product. In the embodiment, the display panel adopts a quantum dot material as a color film, and the half-width of the light-emitting wavelength is narrow, the color is pure, and the color gamut is high.
  • FIG. 3 is a schematic structural diagram of a display panel according to Embodiment 2 of the present invention.
  • the difference between this embodiment and the first embodiment is that the quantum dot color filter layer 6 is located in the second embodiment.
  • the side of the base substrate 1 close to the first base substrate 2.
  • the quantum dot color filter layer 6 is located between the second electrode 7 and the grating layer.
  • the first embodiment which is not described in detail herein.
  • the quantum dot color filter layer 6 is located on one side of the second base substrate 1, the second base substrate 1, the waveguide layer 4, the second electrode 7, the quantum dot color filter layer 6, and the grating
  • the layer forms a color filter on array (COA).
  • the display panel includes a first substrate, a liquid crystal layer, a waveguide layer, a grating layer, a quantum dot color filter layer, a first electrode and a second electrode, and the first electrode and the second electrode.
  • the refractive index of the liquid crystal layer can be adjusted, the grating layer controls the light to be coupled out from the waveguide layer, and the coupling efficiency of the light coupled to the waveguide layer is determined according to the difference between the refractive index of the liquid crystal layer and the refractive index of the grating layer, which is not required in the display panel in this embodiment.
  • the polarizing plate is disposed to avoid the problem of defocusing of the quantum dots, so that the quantum dot material can be applied to the liquid crystal display device; in this embodiment, it is not necessary to provide a polarizing plate in the display panel, thereby improving the transmittance of the display panel; In this embodiment, it is not necessary to provide a polarizing plate in the display panel, so that it is not required to require a phase retardation amount of the entire liquid crystal layer, so that the thickness of the liquid crystal cell can be set thin, thereby improving the response time of the liquid crystal. Since the display panel of the embodiment has a high transmittance, the display panel can be applied to a transparent display product. In the embodiment, the display panel adopts a quantum dot material as a color film, and the half-width of the light-emitting wavelength is narrow, the color is pure, and the color gamut is high.
  • the display device includes a backlight 10 and a display panel.
  • the backlight 10 is located at the side of the display panel, and thus the backlight of the embodiment is a side-in type backlight.
  • the backlight may be a direct-lit backlight, which is not specifically drawn in this case.
  • the backlight 10 can include an LED light source or other mode of light source, wherein the LED chip can include a blue LED or other LED having a shorter wavelength than the blue wavelength, and other modes of the light source can be a laser light source.
  • the backlight 10 is a laser light source
  • a beam expanding structure may be disposed on the light emitting side of the backlight 10 (ie, between the backlight 10 and the display panel), and the beam expanding structure may emit the laser light from the laser light source.
  • the point source is expanded into a collimated source, which also increases the diameter of the beam.
  • the backlight 10 is disposed at least corresponding to the waveguide layer 4, and the light outgoing direction of the backlight 10 is parallel to the plane of the waveguide layer 4.
  • the backlight 10 is disposed corresponding to the second substrate 1, the waveguide layer 4, and the second electrode 7, and the width of the backlight 10 may be the second substrate 1, the waveguide layer 4, and the second electrode.
  • the width of the backlight 10 may be set to other widths, but it is preferable not to emit light to the liquid crystal layer 3 and the liquid crystal layer 3, and the outer layer of the liquid crystal layer 3 is provided with a sealant. Light emitted from the liquid crystal layer 3 does not enter the liquid crystal layer 3.
  • the light emitted by the backlight 10 is collimated light.
  • the backlight 10 is a laser light source
  • the light emitted by the backlight 10 becomes collimated light under the action of the beam expanding structure.
  • the light emitted by the backlight 10 is blue light.
  • the display panel in this embodiment uses the display panel shown in FIG. 1 .
  • the display panel in this embodiment may also adopt the display panel shown in FIG. 2 .
  • the display panel in this embodiment may also adopt the display panel shown in FIG. 2 .
  • the description in the second embodiment which is not specifically shown here.
  • the display device may be an ECB display device, a TN display device, a VA display device, an IPS display device, or an ADS display device.
  • FIG. 5a is a schematic diagram showing a display mode when the display device is an ECB display device
  • FIG. 5b is a schematic view showing another display mode when the display device is an ECB display device.
  • the material of the liquid crystal layer 3 may be a nematic liquid crystal.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the alignment direction of the liquid crystal molecules of the liquid crystal layer 3, so that the refractive index of the liquid crystal layer 3 is equal to the refractive index of the grating layer.
  • the grating layer controls the light from being coupled out of the waveguide layer 4, so the ECB display device is in the L0 grayscale state. As shown in FIG.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the alignment direction of the liquid crystal molecules of the liquid crystal layer 3, thereby making the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer.
  • the absolute value is a set difference
  • the set difference is a maximum difference.
  • the grating layer controls the light-emitting efficiency of the light coupled from the waveguide layer 4 to set the light-emitting efficiency, and the set light-emitting efficiency is the maximum light-emitting efficiency. Therefore, the ECB display device is placed in the L255 grayscale state. It should be noted that the filling pattern of the liquid crystal layer 3 in FIGS. 5a and 5b only shows that the alignment directions of the liquid crystal molecules in the two figures are different, and the definition of the alignment direction of the liquid crystal molecules is not formed here.
  • FIG. 6a is a schematic diagram of a display mode when the display device is an IPS display device
  • FIG. 6b is a schematic view showing another display mode when the display device is an IPS display device
  • the device differs in that the second electrode 7 and the first electrode 8 are both located between the waveguide layer 4 and the grating layer, the second electrode 7 and the first electrode 8 are located in the same layer and the second electrode 7 and the first electrode 8 are alternately arranged.
  • the material of the liquid crystal layer 3 may be a nematic liquid crystal. As shown in FIG.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the alignment direction of the liquid crystal molecules of the liquid crystal layer 3, so that the refractive index of the liquid crystal layer 3 is equal to the refractive index of the grating layer.
  • the grating layer controls that light cannot be coupled out of the waveguide layer 4, so The IPS display device is in the L0 grayscale state.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the alignment direction of the liquid crystal molecules of the liquid crystal layer 3, thereby making the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer.
  • the absolute value is a set difference, and the set difference is a maximum difference.
  • the grating layer controls the light-emitting efficiency of the light coupled from the waveguide layer 4 to set the light-emitting efficiency, and the set light-emitting efficiency is the maximum light-emitting efficiency. Therefore, the IPS display device is placed in the L255 grayscale state. It should be noted that the filling pattern of the liquid crystal layer 3 in FIGS. 6a and 6b only shows that the alignment directions of the liquid crystal molecules in the two figures are different, and the definition of the alignment direction of the liquid crystal molecules is not formed here.
  • FIG. 7a is a schematic diagram showing a display mode when the display device is an IPS display device
  • FIG. 7b is a schematic view showing another display mode when the display device is an IPS display device
  • the device differs in that the second electrode 7 and the first electrode 8 are both located between the waveguide layer 4 and the grating layer, the second electrode 7 and the first electrode 8 are located in the same layer and the second electrode 7 and the first electrode 8 are alternately arranged.
  • the material of the liquid crystal layer 3 may be a blue phase liquid crystal. As shown in FIG.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the liquid crystal molecules of the liquid crystal layer 3 to be isotropic, so that the refractive index of the liquid crystal layer 3 is equal to the refractive index of the grating layer.
  • the grating layer controls the light from being coupled out of the waveguide layer 4, so the IPS display device is in the L0 grayscale state.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the liquid crystal molecular anisotropy of the liquid crystal layer 3, thereby causing the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer.
  • the absolute value is a set difference, and the set difference is a maximum difference.
  • the grating layer controls the light-emitting efficiency of the light coupled from the waveguide layer 4 to set the light-emitting efficiency, and the set light-emitting efficiency is the maximum light-emitting efficiency. Therefore, the IPS display device is placed in the L255 grayscale state. It should be noted that the filling pattern of the liquid crystal layer 3 in FIGS. 7a and 7b is only to show that the liquid crystal molecules in the two figures are isotropic or anisotropic, and the liquid crystal molecules are not limited herein.
  • FIG. 8a is a schematic diagram showing a display mode when the display device is a VA display device
  • FIG. 8b is a schematic view showing another display mode when the display device is a VA display device.
  • the material of the liquid crystal layer 3 may be a blue phase liquid crystal.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the liquid crystal molecules of the liquid crystal layer 3 to be isotropic, so that the refractive index of the liquid crystal layer 3 is equal to the refractive index of the grating layer.
  • the grating layer controls the light from being coupled out of the waveguide layer 4, so the VA display device is in the L0 grayscale state.
  • Adjust the second as shown in Figure 8b The difference between the voltages of the electrode 7 and the first electrode 8 is to adjust the liquid crystal molecular anisotropy of the liquid crystal layer 3, so that the absolute value of the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer is set to a difference value,
  • the set difference is the maximum difference.
  • the grating layer controls the light-emitting efficiency of the light coupled from the waveguide layer 4 to set the light-emitting efficiency, and the set light-emitting efficiency is the maximum light-emitting efficiency, so that the VA display device is in the L255 gray scale. status.
  • the filling pattern of the liquid crystal layer 3 in FIGS. 8a and 8b only shows that the liquid crystal molecules in the two figures are isotropic or anisotropic, and the liquid crystal molecules are not limited herein.
  • FIG. 9a is a schematic diagram showing a display mode when the display device is a VA display device
  • FIG. 9b is a schematic view showing another display mode when the display device is a VA display device.
  • the material of the liquid crystal layer 3 may be a nematic liquid crystal.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the alignment direction of the liquid crystal molecules of the liquid crystal layer 3, so that the refractive index of the liquid crystal layer 3 is equal to the refractive index of the grating layer.
  • the grating layer controls the light from being coupled out of the waveguide layer 4, so the ECB display device is in the L0 grayscale state. As shown in FIG.
  • the difference between the voltages of the second electrode 7 and the first electrode 8 is adjusted to adjust the alignment direction of the liquid crystal molecules of the liquid crystal layer 3, thereby making the difference between the refractive index of the liquid crystal layer 3 and the refractive index of the grating layer.
  • the absolute value is a set difference
  • the set difference is a maximum difference.
  • the grating layer controls the light-emitting efficiency of the light coupled from the waveguide layer 4 to set the light-emitting efficiency, and the set light-emitting efficiency is the maximum light-emitting efficiency. Therefore, the VA display device is placed in the L255 gray scale state. It should be noted that the filling pattern of the liquid crystal layer 3 in FIGS. 9a and 9b is only to show that the alignment directions of the liquid crystal molecules in the two figures are different, and the definition of the alignment direction of the liquid crystal molecules is not formed here.
  • the refractive index of the liquid crystal layer 3 can be felt only by the e-light polarized light having a vibration direction on the paper surface (the cross section shown in each drawing).
  • the change, and the o-light polarized light whose vibration direction is perpendicular to the paper surface does not change the refractive index of the liquid crystal layer 3, so the light coupled from the waveguide layer 4 is e-light polarized light, and the liquid crystal molecules of the liquid crystal layer 3 are controlled by The deflection can control the coupling efficiency of the e-light polarized light, thereby realizing gray scale display.
  • the display device when the display device is an ECB display device or a VA display device, the display device can generate a polarized light in a vibration direction without providing a polarizing plate in the display panel, thereby realizing gray without providing a polarizing plate in the display panel.
  • Order display when the display device is an ECB display device or a VA display device, the display device can generate a polarized light in a vibration direction without providing a polarizing plate in the display panel, thereby realizing gray without providing a polarizing plate in the display panel.
  • the display device when the display device is an IPS display device, the polarized light of the e-light and the o-light polarized light whose direction of vibration is perpendicular to the plane of the paper in the vibration direction on the paper surface (the cross section shown in each drawing) A change in the refractive index of the liquid crystal layer 3 can be felt, which causes the display device to have no good dark state display. Therefore, a polarizing device can be disposed on the light emitting side of the backlight 10, and the light emitted from the backlight 10 passes through the polarizing device.
  • the light of one vibration direction may be o-polarized or e-light polarized, so when the display device is an IPS display device, there is no need to provide a polarizing plate in the display panel, only in the backlight
  • a polarizing device is disposed on the light-emitting side of the source 10 (outside the display panel) to generate polarized light in a vibration direction, thereby realizing gray scale display without providing two polarizing plates in the display panel.
  • the display panel includes a second substrate, a first substrate, a liquid crystal layer, a waveguide layer, a grating layer, a quantum dot color filter layer, a first electrode, and a second electrode,
  • the electrode and the second electrode are configured to adjust a refractive index of the liquid crystal layer by changing a voltage applied thereto, and a coupling efficiency of coupling light from the waveguide layer is determined according to a difference between a refractive index of the liquid crystal layer and a refractive index of the grating layer, and the present embodiment
  • the polarizing plate is not required to be disposed in the display panel, and the problem of defocusing of the quantum dots is avoided, so that the quantum dot material can be applied to the liquid crystal display device; in this embodiment, the polarizing plate is not required to be disposed in the display panel, thereby improving the display.
  • the transmittance of the device in this embodiment, it is not necessary to provide a polarizing plate in the display panel, so that the phase retardation amount of the entire liquid crystal layer is not required, so that the thickness of the liquid crystal cell can be set thin, thereby improving the response time of the liquid crystal. Since the display device of the embodiment has a high transmittance, the display device can be applied to a transparent display product.
  • a quantum dot material is used as a color film, and the half-width of the light-emitting wavelength is narrow, the color is pure, and the color gamut is high.

Abstract

一种显示面板和显示装置,该显示面板包括:第一衬底基板(2)、液晶层(3)、波导层(4)、光栅层、量子点彩色滤光层(6)、第一电极(8)和第二电极(7),第一电极(8)和第二电极(7)构造为通过改变施加在其上的电压来调节液晶层(3)的折射率;从波导层(4)耦合出光的耦合效率根据液晶层(3)的折射率和光栅层的折射率的差值确定。无需在显示面板中设置偏振片,避免了量子点退偏的问题,从而使得量子点材料能够应用到液晶显示装置中;提高了显示面板的透过率;以及使得液晶盒厚可以设置的较薄,从而提高了液晶的响应时间。

Description

显示面板和显示装置 技术领域
本发明涉及显示技术领域,特别涉及一种显示面板和显示装置。
背景技术
在显示技术领域,液晶显示装置包括背光源和显示面板,显示面板包括相对设置的阵列基板和彩膜基板,阵列基板和彩膜基板之间设置有液晶层,阵列基板的背面和彩膜基板的背面均设置有偏光片。通过电压控制液晶的偏转以及经过两层偏光片的控制,以实现灰阶显示。
现有技术中,彩膜基板中的彩色色阻可采用量子点材料制成,采用量子点材料作为彩色色阻可提高显示面板的色域,但是量子点材料会破坏入射光的偏振态,从而造成量子点退偏的问题,因此量子点材料无法应用到液晶显示装置中。
现有技术中液晶显示装置中的显示面板中采用偏振片,会导致液晶显示装置透过率很低(例如,透过率为7%左右)以及液晶盒厚较大(例如,3um-5um),而较大的盒厚会降低液晶的响应时间。
发明内容
本发明提供一种显示面板和显示装置,用于使得量子点材料能够应用到液晶显示装置中,提高显示面板的透过率,以及提高液晶的响应时间。
为实现上述目的,本发明提供了一种显示面板,包括:第一衬底基板、液晶层、波导层、光栅层、量子点彩色滤光层、第一电极和第二电极,所述液晶层、所述光栅层、所述量子点彩色滤光层、所述第一电极和所述第二电极位于所述波导层和所述第一衬底基板之间,所述光栅层位于所述波导层的靠近所述液晶层的一侧;
所述第一电极和所述第二电极构造为通过改变施加在其上的电压来调节所述液晶层的折射率;
从所述波导层耦合出光的耦合效率根据所述液晶层的折射率和所述光栅层的折射率的差值确定。
可选地,所述第二电极和所述第一电极位于所述液晶层的同侧或者不同侧。
可选地,所述光栅层的折射率的范围为液晶层的寻常光折射率no至液晶层的非常光折射率ne
可选地,所述光栅层的折射率为液晶层的非常光折射率no
可选地,还包括:第二衬底基板,所述第二衬底基板位于所述波导层的远离所述第一衬底基板的一侧。
可选地,所述第二电极位于所述波导层的靠近所述第一衬底基板的一侧,所述光栅层位于所述第二电极的靠近所述第一衬底基板的一侧,所述液晶层位于所述光栅层的靠近所述第一衬底基板的一侧;
所述第一电极位于所述第一衬底基板的靠近所述第二衬底基板的一侧。
可选地,所述量子点彩色滤光层位于所述第一电极的靠近第一衬底基板的一侧;或者,所述量子点彩色滤光层位于所述第二电极和所述光栅层之间。
可选地,所述第二电极的折射率小于所述波导层的折射率,所述第二衬底基板的折射率小于所述波导层的折射率。
可选地,所述液晶层的材料可以为向列相液晶、胆甾相液晶或者蓝相液晶。
可选地,所述光栅层包括间隔设置的遮光条,所述液晶层覆盖所述光栅层且填充于所述遮光条之间的间隙中,所述液晶层的厚度大于所述光栅层的厚度。
可选地,若所述液晶层的折射率和所述光栅层的折射率的差值为0时,所述波导层耦合出光的耦合效率为0,以使所述显示面板处于L0灰阶状态;或者
若所述液晶层的折射率与所述光栅层的折射率的差值的绝对值为设定差值时,所述波导层耦合出光的耦合效率为设定耦合效率,以使所述显示面板处于L255灰阶状态;或者
若所述液晶层的折射率与所述光栅层的折射率的差值的绝对值大于0且小于所述设定差值时,所述波导层耦合出光的耦合效率大于0且小于 设定耦合效率,以使所述显示面板处于L0灰阶状态和L255灰阶状态之间的灰阶状态。
为实现上述目的,本发明提供了一种显示装置,包括:背光源和上述显示面板。
可选地,所述背光源位于所述显示面板的侧边,所述背光源至少与所述波导层对应设置,所述背光源的光线的出光方向和所述波导层所在平面平行。
本发明具有以下有益效果:
本发明提供的显示面板和显示装置的技术方案中,显示面板包括第一衬底基板、液晶层、波导层、光栅层、量子点彩色滤光层、第一电极和第二电极,第一电极和第二电极构造为通过改变施加在其上的电压来调节液晶层的折射率,从波导层耦合出光的耦合效率根据液晶层的折射率和光栅层的折射率的差值确定,本发明中无需在显示面板中设置偏振片,避免了量子点退偏的问题,从而使得量子点材料能够应用到液晶显示装置中;本实施例中无需在显示面板中设置偏振片,从而提高了显示面板的透过率;本实施例中无需在显示面板中设置偏振片,因此无需要求液晶层整体的相位延迟量,使得液晶盒厚可以设置的较薄,从而提高了液晶的响应时间。
附图说明
图1为本发明实施例一提供的一种显示面板的结构示意图;
图2为图1中光栅层波导耦合示意图;
图3为本发明实施例二提供的一种显示面板的结构示意图;
图4为本发明实施例三提供的一种显示装置的结构示意图;
图5a为显示装置为ECB显示装置时的一种显示模式示意图;
图5b为显示装置为ECB显示装置时的另一种显示模式示意图;
图6a为显示装置为IPS显示装置时的一种显示模式示意图;
图6b为显示装置为IPS显示装置时的另一种显示模式示意图;
图7a为显示装置为IPS显示装置时的一种显示模式示意图;
图7b为显示装置为IPS显示装置时的另一种显示模式示意图;
图8a为显示装置为VA显示装置时的一种显示模式示意图;
图8b为显示装置为VA显示装置时的另一种显示模式示意图;
图9a为显示装置为VA显示装置时的一种显示模式示意图;
图9b为显示装置为VA显示装置时的另一种显示模式示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的显示面板和显示装置的进行详细描述。
图1为本发明实施例一提供的一种显示面板的结构示意图,如图1所示,该显示面板包括:第一衬底基板2、液晶层3、波导层4、光栅层、量子点彩色滤光层6、第一电极8和第二电极7,液晶层3、光栅层、量子点彩色滤光层6、第一电极8和第二电极7位于波导层4和第一衬底基板2之间。第一电极8和第二电极7构造为通过改变施加在其上的电压来调节液晶层3的折射率;从波导层4耦合出光的耦合效率根据液晶层3的折射率和光栅层的折射率的差值确定。
本实施例中,波导层4耦合出光的耦合效率根据液晶层3的折射率和光栅层的折射率的差值的变化而变化。由于液晶层3的折射率可根据第一电极8和第二电极7加载的电压的压差调节,因此当第一电极8和第二电极7加载的电压的压差变化时液晶层3的折射率也变化,从而使得波导层4耦合出光的耦合效率也会变化。
进一步地,该显示面板还可以包括第二衬底基板1,第二衬底基板1位于波导层4的远离第一衬底基板2的一侧。本实施例中,当显示面板中不包括第二衬底基板1时,波导层4还可以起到充当第二衬底基板1的作用,也就是说波导层和第二衬底基板在功能上合二为一。
第二衬底基板1的材料可以为玻璃或者树脂,第一衬底基板2的材料可以为玻璃或者树脂。在实际应用中,第二衬底基板1和第一衬底基板2还可以采用其它材料制成,此处不再一一列举。
本实施例中,第二电极7和第一电极8位于液晶层3的同侧或者不同侧。优选地,第二电极7为像素电极,第一电极8为公共电极。
如图1所示,第二电极7和第一电极8位于液晶层3的不同侧。具 体地,第二电极7位于液晶层3的靠近第二衬底基板1的一侧,第一电极8位于液晶层3的靠近第一衬底基板2的一侧,此时显示面板可以为扭曲向列(Twisted Nematic,简称TN)型显示面板、垂直向列(Vertical Alignment,简称VA)型显示面板或者电控双折射(Electrically Controlled Birefringence,简称ECB)显示装置。
或者,第二电极7和第一电极8位于液晶层3的同侧。具体地,第二电极7和第一电极8均位于液晶层3的靠近第二衬底基板1的一侧。当第二电极7和第一电极8位于不同层时,该显示面板可以为高级超维场转换(Advanced Super Dimension Switch,简称ADS)显示面板;当第二电极7和第一电极8位于同一层时,该显示面板可以为平面转换(In-Plane Switching,简称IPS)显示面板。此处均不再具体画出。在实际应用中,该显示面板还可以为其他类型的显示面板,此处不再一一列举。
量子点彩色滤光层6可包括红色量子点图形61、绿色量子点图形62和透明树脂图形63,其中,红色量子点图形61在特定波长的光的激发下产生红色光,绿色量子点图形62在特定波长的光的激发下产生绿色光,透明树脂图形63直接透射特定波长的光,此种情况下特定波长的光为蓝光。或者,量子点彩色滤光层6可包括红色量子点图形、绿色量子点图形和蓝色量子点图形,其中,红色量子点图形在特定波长的光的激发下产生红色光,绿色量子点图形在特定波长的光的激发下产生绿色光,蓝色量子点图形在特定波长的光的激发下产生蓝色光,此种情况下特定波长的光可以为其他波长比蓝光波长更短的光,此种情况不再具体画出。量子点彩色滤光层6位于第一衬底基板2的靠近第二衬底基板1的一侧。在实际应用中,量子点彩色滤光层6还可以位于第一衬底基板2的远离第二衬底基板1的一侧,此种情况不再具体画出。
液晶层3的材料可以为向列相液晶、胆甾相液晶或者蓝相液晶。优选地,TN型显示面板、VA型显示面板以及ADS型显示面板通常均采用向列相液晶。优选地,光栅层包括间隔设置的遮光条51,液晶层3覆盖光栅层且填充于遮光条51之间的间隙52中。液晶层3的厚度大于光栅层的厚度。通常液晶层3的厚度小于或等于200nm,则液晶层3的厚度大于200nm且小于20μm,优选地,液晶层3的厚度为1μm。液晶层3厚度的设定可 以以能够覆盖光栅层以及便于产品的其他参数设计(例如,电学设计、驱动设计等)为依据。本实施例中液晶层3的厚度只要覆盖光栅层的厚度即可,因此液晶层3的厚度可以设置的很薄,即液晶盒厚可以设置的很薄,从而进一步提高了液晶的响应时间。
如图1所示,本实施例中,第二电极7位于波导层5的靠近第一衬底基板2的一侧,光栅层位于第二电极7的靠近第一衬底基板1的一侧,液晶层3位于光栅层的靠近第一衬底基板2的一侧,第一电极8位于第一衬底基板2的靠近第二衬底基板1的一侧。
量子点彩色滤光层6位于第一电极8的靠近第一衬底基板2的一侧,具体地,量子点彩色滤光层位于所述第一电极8和所述液晶层3之间。
具体地,光栅层位于液晶层3和第二电极7之间。光栅层的材料为透明介质材料,例如,二氧化硅SiO2或者其他有机树脂。光栅层的折射率的范围为液晶层3的寻常光折射率no至液晶层3的非常光折射率ne,优选地,光栅层的折射率为液晶层3的非常光折射率no。光栅层的厚度的范围包括但不限于200nm至1μm,优选地,光栅层的厚度为500nm。在实际应用中,由于光栅层控制光线从波导层4耦合出光的过程对光栅层的厚度不是特别敏感,因此可根据需要设定光栅层的厚度,例如,红色像素(红色量子点图形61)、绿色像素(绿色量子点图形62)和蓝色像素(透明树脂图形63)对应的光栅层的厚度可以相同或者不同。优选地,光栅层的周期的占空比可以为0.5,但在实际产品设计中可以根据需要设置周期的占空比,例如,出于调节出光强度的目的或者平衡显示面板不同位置亮度差异的目的。
具体地,波导层4位于第二衬底基板1和第二电极7之间。波导层4的材料可以为透明材料,例如,氮化硅Si3N4。波导层4的厚度的范围包括但不限于100nm至10μm,优选地,波导层4的厚度为100nm,以便于光栅层对光线出光方向和波长的控制。通常波导层4为单模波导,即厚度要足够薄,但是当侧入式准直背光源的光线的准直性较好或者可以对耦合入波导层4中的模式进行有效控制时,可以适当放宽对波导层4的厚度的要求,例如,可以将波导层4的厚度设置成几百纳米甚至几微米的厚度。由于波导层4的厚度远小于第二电极7的厚度且波导层4的厚度远小于第二 衬底基板1的厚度,因此侧入式准直背光源发出的光线绝大部分将被耦合进第二电极7和第二衬底基板1中。鉴于侧入式准直背光源发出的光线不可能绝对准直,总会有较小的发散角,因此耦合入第二电极7和第二衬底基板1中的光线也会具有较小的发散角度。又由于第二电极7的折射率小于波导层4的折射率,且第二衬底基板1的折射率小于波导层4的折射率,因此第二电极7和第二衬底基板1中的光线将不能很好的被束缚,而是被注入到波导层4中,补充波导层4的波导模式因传播或光栅层耦合所引起的衰减,综上所示,第二电极7和第二衬底基板1充当了辅助波导的作用。
进一步地,该显示面板还包括散射膜9。散射膜9位于第一衬底基板2的远离第二衬底基板1的一侧。散射膜9的作用是将在光栅层的控制下从波导层4耦合出来的角度较小或者角度较大的光进行散射,从而改善了显示面板的视角。
进一步地,可选地,该显示面板还包括设置于液晶层3两侧的配向膜(图中未示出)。具体地,可在量子点彩色滤光层6上设置配向膜,以及在光栅层之上设置配向膜。设置配向膜可控制液晶层3中的液晶分子的初始排列状态,从而确保液晶分子可以在施加电压下按照预期的方式进行旋转以决定是常黑显示模式还是常白显示模式。需要说明的是:当液晶层3的材料为蓝相液晶时,由于蓝相液晶不需要取向,因此显示面板中可不设置配向膜。
进一步地,该显示面板还包括栅线、数据线和薄膜晶体管。该栅线、数据线和薄膜晶体管可位于波导层4和第二电极7之间。薄膜晶体管包括栅极、有源层、源极和漏极,第二电极7与薄膜晶体管的漏极连接。图1中薄膜晶体管未示出。
作为一个优选实施例,如图1所示,该显示面板可包括相对设置的彩膜基板和阵列基板,其中,阵列基板包括依次设置的第二衬底基板1、波导层4、第二电极7和光栅层,彩膜基板包括依次设置的第一衬底基板2、第一电极8和量子点彩色滤光层6,彩膜基板和阵列基板之间设置有液晶层3。
图2为图1中光栅波导耦合示意图,如图2所示,液晶层3、光栅层和波导层4形成可变光栅耦合器,该可变光栅耦合器可将光线有效的耦合 进波导层4或者将光线从波导层4中耦合出来。当入射光或者出射光满足相位匹配关系βq=βm–qK(q=0,±1,±2,…)时,入射光即可在波导层4中激发m阶导模或者m阶导模即可在给方向上耦合出去,其中,βq为入射光的传播常数,βm为m阶导模的传播常数,q为衍射级次,K为光栅矢量。由于βm=k0Nm,K=2π/Λ,因此上述相位匹配关系公式可进一步表示成:k0ncsinθi=k0Nm–q2π/Λ(q=0,±1,±2,…),其中,k0=2π/λ,nc为液晶层3的折射率,θi为入射光波矢方向与竖直方向的夹角或者出光光波矢方向与竖直方向的夹角,Nm为m阶导模的有效折射率,Λ为光栅层的周期。从上述相位匹配关系公式可以看出,改变液晶层3的折射率nc可以使得光栅层控制光线从波导层4耦合出光的耦合效率,耦合效率与液晶层3和光栅层的折射率差值相关。光栅层的周期通常都比较小(例如,几微米或者几百纳米),因此像素的尺寸可以做得很小,故该显示面板的结构也是一种实现高PPI显示的理想选择。
可选地,如图2所示,若第二衬底基板1的材料为透明介质,则相位匹配关系公式βq=βm–qK(q=0,±1,±2,…)可进一步表示成:k0nssinθi=k0Nm–q2π/Λ(q=0,±1,±2,…),其中,ns为第二衬底基板1的折射率,光线可以从第二衬底基板1的一侧耦合入波导层4,而后从波导层4耦合输出。
本实施例中,通过调节第二电极7和第一电极8之间的电压的压差以调节液晶层3的折射率,当液晶层3的折射率变化时,液晶层3的折射率和光栅层的折射率的差值也会发生变化,因此可通过控制液晶层3的折射率和光栅层的折射率的差值控制波导层4耦合出光的耦合效率。
若液晶层3的折射率和光栅层的折射率的差值为0时,波导层4耦合出光的耦合效率为0,以使显示面板处于L0灰阶状态)。此种情况下光栅层的作用被掩盖,没有光从波导层4耦合出来,此时显示面板处于L0灰阶状态。
若液晶层3的折射率与光栅层的折射率的差值的绝对值为设定差值时,波导层4耦合出光的耦合效率为设定耦合效率,以使显示面板处于L255灰阶状态。此种情况下液晶层3的折射率与光栅层的折射率的差值的绝对值为最大差值,光栅层的折射率是固定的,因此可在寻常光折射率no 和非常光折射率ne之间调节液晶层3的折射率使得调节后的液晶层3的折射率和光栅层的折射率的差值的绝对值为最大差值,此时设定差值为最大差值,相应的设定耦合效率为最大耦合效率,光栅层的作用最大,从波导层4耦合出来的光的出光量最大,此时显示面板处于L255灰阶状态。
若液晶层3的折射率与光栅层的折射率的差值的绝对值大于0且小于设定差值时,波导层4耦合出光的耦合效率大于0且小于设定耦合效率,以使显示面板处于L0灰阶状态和L255灰阶状态之间的灰阶状态。此时耦合效率处于0和最大耦合效率之间,从而使得显示面板处于中间灰阶状态。调节液晶层3的折射率与光栅层的折射率的差值,可以使显示面板处于不同的灰阶状态。
本实施例提供的显示面板中,该显示面板包括第一衬底基板、液晶层、波导层、光栅层、量子点彩色滤光层、第一电极和第二电极,第一电极和第二电极构造为通过改变施加在其上的电压来调节液晶层的折射率,从波导层耦合出光的耦合效率根据液晶层的折射率和光栅层的折射率的差值确定,本实施例中无需在显示面板中设置偏振片,避免了量子点退偏的问题,从而使得量子点材料能够应用到液晶显示装置中;本实施例中无需在显示面板中设置偏振片,从而提高了显示面板的透过率;本实施例中无需在显示面板中设置偏振片,因此无需要求液晶层整体的相位延迟量,使得液晶盒厚可以设置的较薄,从而提高了液晶的响应时间。由于本实施例的显示面板的透过率较高,因此该显示面板可应用于透明显示产品中。本实施例中显示面板采用量子点材料作为彩膜,其出光波长半峰宽很窄,颜色纯且色域高。
图3为本发明实施例二提供的一种显示面板的结构示意图,如图3所示,本实施例与上述实施例一的区别在于,本实施例中量子点彩色滤光层6位于第二衬底基板1的靠近第一衬底基板2的一侧。具体地,量子点彩色滤光层6位于第二电极7和光栅层之间。其余描述可参见上述实施例一,此处不再具体描述。
本实施例中,由于量子点彩色滤光层6位于第二衬底基板1的一侧,因此第二衬底基板1、波导层4、第二电极7、量子点彩色滤光层6和光栅层形成彩膜阵列基板(color filter on array,简称COA)。
本实施例提供的显示面板中,该显示面板包括第一衬底基板、液晶层、波导层、光栅层、量子点彩色滤光层、第一电极和第二电极,第一电极和第二电极可调节液晶层的折射率,光栅层控制光线从波导层耦合出光,波导层耦合出光的耦合效率根据液晶层的折射率和光栅层的折射率的差值确定,本实施例中无需在显示面板中设置偏振片,避免了量子点退偏的问题,从而使得量子点材料能够应用到液晶显示装置中;本实施例中无需在显示面板中设置偏振片,从而提高了显示面板的透过率;本实施例中无需在显示面板中设置偏振片,因此无需要求液晶层整体的相位延迟量,使得液晶盒厚可以设置的较薄,从而提高了液晶的响应时间。由于本实施例的显示面板的透过率较高,因此该显示面板可应用于透明显示产品中。本实施例中显示面板采用量子点材料作为彩膜,其出光波长半峰宽很窄,颜色纯且色域高。
图4为本发明实施例三提供的一种显示装置的结构示意图,如图4所示,该显示装置包括:背光源10和显示面板。
本实施例中,背光源10位于显示面板的侧边,因此本实施例的背光源为侧入式背光源。在实际应用中,还可以采用其他形式的背光源,例如,背光源可以为直下式背光源,此种情况不再具体画出。
背光源10可包括LED光源或者其他模式的光源,其中,LED芯片可包括蓝光LED或者其他波长比蓝光波长更短的LED,其他模式的光源可以为激光光源。可选地,当背光源10为激光光源时,在背光源10的出光侧(即:背光源10和显示面板之间)还可以设置扩束结构,该扩束结构可以将激光光源发出的激光点光源扩束为准直光源,同时也增大了光束的直径。
背光源10至少与波导层4对应设置,背光源10的光线的出光方向和波导层4所在平面平行。如图1所示,背光源10与第二衬底基板1、波导层4和第二电极7对应设置,且背光源10的宽度可以为第二衬底基板1、波导层4和第二电极7的宽度之和。在实际应用中,背光源10的宽度还可以设置为其他宽度,但以不向液晶层3以及液晶层3以上各层发射光线为宜,由于液晶层3的外侧设置有封框胶,因此向液晶层3发射的光线不会射入液晶层3。
优选地,背光源10发出的光为准直光。特别是,当背光源10为激光光源时,背光源10发出的光在扩束结构的作用下成为准直光。且本实施例中,背光源10发出的光为蓝光。
本实施例中的显示面板采用图1中所示的显示面板,具体描述可参见实施例一中的描述,此处不再赘述。
可选地,本实施例中的显示面板还可以采用图2中所示的显示面板,具体描述可参见实施例二中的描述,此处不再具体画出。
本实施例中,显示装置可以为ECB显示装置、TN显示装置、VA显示装置、IPS显示装置或者ADS显示装置。
图5a为显示装置为ECB显示装置时的一种显示模式示意图,图5b为显示装置为ECB显示装置时的另一种显示模式示意图。如图5a和图5b所示,液晶层3的材料可以为向列相液晶。如图5a所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子的排列方向,从而使液晶层3的折射率等于光栅层的折射率,此时光栅层控制光线无法从波导层4耦合出光,因此ECB显示装置处于L0灰阶状态。如图5b所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子的排列方向,从而使液晶层3的折射率与光栅层的折射率的差值的绝对值为设定差值,该设定差值为最大差值,此时光栅层控制光线从波导层4耦合出光的出光效率为设定出光效率,该设定出光效率为最大出光效率,因此使ECB显示装置处于L255灰阶状态。需要说明的是:图5a和图5b中液晶层3的填充图形仅为表示出两张图中液晶分子的排列方向是不同的,此处并未构成对液晶分子的排列方向的限定。
图6a为显示装置为IPS显示装置时的一种显示模式示意图,图6b为显示装置为IPS显示装置时的另一种显示模式示意图,图6a和图6b中的显示装置与图4中的显示装置的区别在于,第二电极7和第一电极8均位于波导层4和光栅层之间,第二电极7和第一电极8位于同一层且第二电极7和第一电极8交替设置。如图6a和图6b所示,液晶层3的材料可以为向列相液晶。如图6a所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子的排列方向,从而使液晶层3的折射率等于光栅层的折射率,此时光栅层控制光线无法从波导层4耦合出光,因此 IPS显示装置处于L0灰阶状态。如图6b所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子的排列方向,从而使液晶层3的折射率与光栅层的折射率的差值的绝对值为设定差值,该设定差值为最大差值,此时光栅层控制光线从波导层4耦合出光的出光效率为设定出光效率,该设定出光效率为最大出光效率,因此使IPS显示装置处于L255灰阶状态。需要说明的是:图6a和图6b中液晶层3的填充图形仅为表示出两张图中液晶分子的排列方向是不同的,此处并未构成对液晶分子的排列方向的限定。
图7a为显示装置为IPS显示装置时的一种显示模式示意图,图7b为显示装置为IPS显示装置时的另一种显示模式示意图,图7a和图7b中的显示装置与图4中的显示装置的区别在于,第二电极7和第一电极8均位于波导层4和光栅层之间,第二电极7和第一电极8位于同一层且第二电极7和第一电极8交替设置。如图7a和图7b所示,液晶层3的材料可以为蓝相液晶。如图7a所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子各向同性,从而使液晶层3的折射率等于光栅层的折射率,此时光栅层控制光线无法从波导层4耦合出光,因此IPS显示装置处于L0灰阶状态。如图7b所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子各向异性,从而使液晶层3的折射率与光栅层的折射率的差值的绝对值为设定差值,该设定差值为最大差值,此时光栅层控制光线从波导层4耦合出光的出光效率为设定出光效率,该设定出光效率为最大出光效率,因此使IPS显示装置处于L255灰阶状态。需要说明的是:图7a和图7b中液晶层3的填充图形仅为表示出两张图中液晶分子为各向同性或者各向异性,此处并未构成对液晶分子的限定。
图8a为显示装置为VA显示装置时的一种显示模式示意图,图8b为显示装置为VA显示装置时的另一种显示模式示意图。如图8a和图8b所示,液晶层3的材料可以为蓝相液晶。如图8a所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子各向同性,从而使液晶层3的折射率等于光栅层的折射率,此时光栅层控制光线无法从波导层4耦合出光,因此VA显示装置处于L0灰阶状态。如图8b所示,调节第二 电极7和第一电极8的电压的差值以调节液晶层3的液晶分子各向异性,从而使液晶层3的折射率与光栅层的折射率的差值的绝对值为设定差值,该设定差值为最大差值,此时光栅层控制光线从波导层4耦合出光的出光效率为设定出光效率,该设定出光效率为最大出光效率,因此使VA显示装置处于L255灰阶状态。需要说明的是:图8a和图8b中液晶层3的填充图形仅为表示出两张图中液晶分子为各向同性或者各向异性,此处并未构成对液晶分子的限定。
图9a为显示装置为VA显示装置时的一种显示模式示意图,图9b为显示装置为VA显示装置时的另一种显示模式示意图。如图9a和图9b所示,液晶层3的材料可以为向列相液晶。如图9a所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子的排列方向,从而使液晶层3的折射率等于光栅层的折射率,此时光栅层控制光线无法从波导层4耦合出光,因此ECB显示装置处于L0灰阶状态。如图9b所示,调节第二电极7和第一电极8的电压的差值以调节液晶层3的液晶分子的排列方向,从而使液晶层3的折射率与光栅层的折射率的差值的绝对值为设定差值,该设定差值为最大差值,此时光栅层控制光线从波导层4耦合出光的出光效率为设定出光效率,该设定出光效率为最大出光效率,因此使VA显示装置处于L255灰阶状态。需要说明的是:图9a和图9b中液晶层3的填充图形仅为表示出两张图中液晶分子的排列方向是不同的,此处并未构成对液晶分子的排列方向的限定。
本实施例中,当显示装置为ECB显示装置或者VA显示装置时,由于仅有振动方向在纸面(各附图所示截面)内的e光偏振光才能感受到液晶层3的折射率的变化,而振动方向垂直于纸面的o光偏振光感受不到液晶层3的折射率的变化,因此从波导层4耦合出来的光为e光偏振光,通过控制液晶层3的液晶分子的偏转就可以控制e光偏振光的耦合效率的大小,从而实现灰阶显示。所以当显示装置为ECB显示装置或者VA显示装置时,显示装置中无需在显示面板中设置偏振片就能生成一种振动方向的偏振光,从而实现无需在显示面板中设置偏振片就可以实现灰阶显示。
本实施例中,当显示装置为IPS显示装置时,由于振动方向在纸面(各附图所示截面)内e光偏振光以及振动方向垂直于纸面的o光偏振光 均可以感受到液晶层3的折射率的变化,这样会导致显示装置不具备很好的暗态显示,因此可以在背光源10的出光侧设置偏振装置,从背光源10发出的光经过偏振装置后形成一种振动方向的光,例如,一种振动方向的光可以为o光偏振光或者e光偏振光,所以当显示装置为IPS显示装置时,显示面板中无需设置偏振片,仅在背光源10出光侧(显示面板之外)设置一偏振装置就能生成一种振动方向的偏振光,从而实现无需在显示面板中设置两层偏振片就可以实现灰阶显示。
以上仅以几种类型的显示装置为例对不同的显示模式进行说明,对其余类型的显示装置的显示模式不再一一列举。
本实施例提供的显示装置中,显示面板包括第二衬底基板、第一衬底基板、液晶层、波导层、光栅层、量子点彩色滤光层、第一电极和第二电极,第一电极和第二电极构造为通过改变施加在其上的电压来调节液晶层的折射率,从波导层耦合出光的耦合效率根据液晶层的折射率和光栅层的折射率的差值确定,本实施例中无需在显示面板中设置偏振片,避免了量子点退偏的问题,从而使得量子点材料能够应用到液晶显示装置中;本实施例中无需在显示面板中设置偏振片,从而提高了显示装置的透过率;本实施例中无需在显示面板中设置偏振片,因此无需要求液晶层整体的相位延迟量,使得液晶盒厚可以设置的较薄,从而提高了液晶的响应时间。由于本实施例的显示装置的透过率较高,因此该显示装置可应用于透明显示产品中。本实施例中显示装置采用量子点材料作为彩膜,其出光波长半峰宽很窄,颜色纯且色域高。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种显示面板,其特征在于,包括:第一衬底基板、液晶层、波导层、光栅层、量子点彩色滤光层、第一电极和第二电极,所述液晶层、所述光栅层、所述量子点彩色滤光层、所述第一电极和所述第二电极位于所述波导层和所述第一衬底基板之间,所述光栅层位于所述波导层的靠近所述液晶层的一侧;
    所述第一电极和所述第二电极构造为通过改变施加在其上的电压来调节所述液晶层的折射率;
    其中从所述波导层耦合出光的耦合效率根据所述液晶层的折射率和所述光栅层的折射率的差值确定。
  2. 根据权利要求1所述的显示面板,其特征在于,所述第二电极和所述第一电极位于所述液晶层的同侧或者不同侧。
  3. 根据权利要求1所述的显示面板,其特征在于,所述光栅层的折射率的范围为液晶层的寻常光折射率no至液晶层的非常光折射率ne
  4. 根据权利要求3所述的显示面板,其特征在于,所述光栅层的折射率为液晶层的非常光折射率no
  5. 根据权利要求1所述的显示面板,其特征在于,还包括:第二衬底基板,所述第二衬底基板位于所述波导层的远离所述第一衬底基板的一侧。
  6. 根据权利要求5所述的显示面板,其特征在于,所述第二电极位于所述波导层的靠近所述第一衬底基板的一侧,所述光栅层位于所述第二电极的靠近所述第一衬底基板的一侧,所述液晶层位于所述光栅层的靠近所述第一衬底基板的一侧;
    所述第一电极位于所述第一衬底基板的靠近所述第二衬底基板的一 侧。
  7. 根据权利要求6所述的显示面板,其特征在于,所述量子点彩色滤光层位于所述第一电极的靠近第一衬底基板的一侧;或者,所述量子点彩色滤光层位于所述第二电极和所述光栅层之间。
  8. 根据权利要求7所述的显示面板,其特征在于,所述第二电极的折射率小于所述波导层的折射率,所述第二衬底基板的折射率小于所述波导层的折射率。
  9. 根据权利要求1至8任一所述的显示面板,其特征在于,所述液晶层的材料可以为向列相液晶、胆甾相液晶或者蓝相液晶。
  10. 根据权利要求1至8任一所述的显示面板,其特征在于,所述光栅层包括间隔设置的遮光条,所述液晶层覆盖所述光栅层且填充于所述遮光条之间的间隙中,所述液晶层的厚度大于所述光栅层的厚度。
  11. 根据权利要求1所述的显示面板,其特征在于,
    若所述液晶层的折射率和所述光栅层的折射率的差值为0时,所述波导层耦合出光的耦合效率为0,以使所述显示面板处于L0灰阶状态;或者
    若所述液晶层的折射率与所述光栅层的折射率的差值的绝对值为设定差值时,所述波导层耦合出光的耦合效率为设定耦合效率,以使所述显示面板处于L255灰阶状态;或者
    若所述液晶层的折射率与所述光栅层的折射率的差值的绝对值大于0且小于所述设定差值时,所述波导层耦合出光的耦合效率大于0且小于设定耦合效率,以使所述显示面板处于L0灰阶状态和L255灰阶状态之间的灰阶状态。
  12. 一种显示装置,其特征在于,包括:背光源和权利要求1至11 任一所述的显示面板。
  13. 根据权利要求12所述的显示装置,其特征在于,所述背光源位于所述显示面板的侧边,所述背光源至少与所述波导层对应设置,所述背光源的光线的出光方向和所述波导层所在平面平行。
PCT/CN2017/093133 2016-09-30 2017-07-17 显示面板和显示装置 WO2018059083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,599 US10620469B2 (en) 2016-09-30 2017-07-17 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875682.X 2016-09-30
CN201610875682.XA CN106292049B (zh) 2016-09-30 2016-09-30 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2018059083A1 true WO2018059083A1 (zh) 2018-04-05

Family

ID=57717895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093133 WO2018059083A1 (zh) 2016-09-30 2017-07-17 显示面板和显示装置

Country Status (3)

Country Link
US (1) US10620469B2 (zh)
CN (1) CN106292049B (zh)
WO (1) WO2018059083A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292049B (zh) 2016-09-30 2017-11-24 京东方科技集团股份有限公司 显示面板和显示装置
CN106292051B (zh) 2016-10-21 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106444177B (zh) 2016-10-28 2019-03-15 京东方科技集团股份有限公司 显示面板及显示装置
CN108089384A (zh) * 2016-11-21 2018-05-29 群创光电股份有限公司 显示装置
CN106681047B (zh) 2017-01-12 2020-08-11 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法
CN106647004A (zh) * 2017-01-25 2017-05-10 京东方科技集团股份有限公司 显示器件及含有其的显示设备
CN106647093A (zh) * 2017-03-02 2017-05-10 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其显示方法
CN107153297B (zh) * 2017-07-21 2019-04-23 深圳市华星光电技术有限公司 显示面板及显示设备
CN107357075A (zh) * 2017-08-11 2017-11-17 京东方科技集团股份有限公司 显示面板及显示装置
CN107479253A (zh) * 2017-08-31 2017-12-15 京东方科技集团股份有限公司 一种透明显示装置
CN107367883A (zh) 2017-09-15 2017-11-21 京东方科技集团股份有限公司 液晶光栅、显示面板及显示装置
CN107577093B (zh) * 2017-09-20 2020-12-01 京东方科技集团股份有限公司 一种显示模组及光波导显示装置
CN107490901B (zh) * 2017-09-29 2020-04-28 京东方科技集团股份有限公司 双视显示面板和显示装置
CN108447407B (zh) * 2018-02-09 2020-04-14 武汉华星光电技术有限公司 一种微晶粒发光二极管显示面板
CN108957821B (zh) * 2018-08-08 2020-07-10 深圳市华星光电半导体显示技术有限公司 液晶面板结构及显示装置
CN108957813B (zh) * 2018-08-24 2021-11-12 南京京东方显示技术有限公司 一种反射式显示器及其制造方法
CN109031736B (zh) * 2018-09-04 2021-03-09 京东方科技集团股份有限公司 准直背光源、显示装置及其驱动方法
CN109031770A (zh) 2018-09-26 2018-12-18 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
US20190049781A1 (en) * 2018-10-05 2019-02-14 Intel Corporation High efficiency quantum dot liquid crystal displays
CN109212821A (zh) 2018-10-30 2019-01-15 惠科股份有限公司 光学复合膜和显示面板
CN109239968B (zh) 2018-10-30 2021-05-25 惠科股份有限公司 光学复合膜层、显示面板和显示装置
CN109283747A (zh) 2018-10-30 2019-01-29 惠科股份有限公司 光学复合膜、显示面板和显示装置
CN109188766B (zh) 2018-10-30 2020-10-13 惠科股份有限公司 光学复合膜、显示面板和显示装置
CN109212820B (zh) 2018-10-30 2021-06-18 惠科股份有限公司 光学复合膜和显示面板
CN109085718B (zh) 2018-10-30 2021-04-20 惠科股份有限公司 光学复合膜和显示面板
CN109298564B (zh) * 2018-11-09 2022-02-08 京东方科技集团股份有限公司 显示装置
CN109856861B (zh) * 2019-04-02 2021-04-16 京东方科技集团股份有限公司 一种显示面板、显示装置,以及显示面板的驱动方法
CN111812873B (zh) * 2019-04-11 2023-08-11 京东方科技集团股份有限公司 透明显示面板及其制备方法、显示装置
CN110187536B (zh) 2019-05-28 2021-11-30 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法
CN110471210B (zh) * 2019-08-22 2022-06-10 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN112198705A (zh) * 2020-10-26 2021-01-08 武汉华星光电技术有限公司 彩膜基板、阵列基板及显示面板
CN114122231B (zh) * 2022-01-25 2023-02-03 北京芯海视界三维科技有限公司 发光器件及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098140A1 (en) * 2004-11-09 2006-05-11 Ki-Dong Lee Liquid crystal display device and fabrication method thereof
US20120092590A1 (en) * 2010-10-13 2012-04-19 Samsung Electronics Co., Ltd. Backlight unit and display apparatus employing the same
CN102866535A (zh) * 2011-07-05 2013-01-09 乐金显示有限公司 包括光转换层的液晶显示面板以及液晶显示器件
CN105044975A (zh) * 2015-08-31 2015-11-11 京东方科技集团股份有限公司 一种液晶显示装置
CN105929587A (zh) * 2016-06-24 2016-09-07 京东方科技集团股份有限公司 一种显示装置
CN106292049A (zh) * 2016-09-30 2017-01-04 京东方科技集团股份有限公司 显示面板和显示装置
CN206387979U (zh) * 2016-09-30 2017-08-08 京东方科技集团股份有限公司 显示面板和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL118209A0 (en) * 1996-05-09 1998-02-08 Yeda Res & Dev Active electro-optical wavelength-selective mirrors and active electro-optic wavelength-selective filters
KR100323830B1 (ko) * 1998-12-01 2002-06-20 김규섭.최승 광원내장형광도파로디스플레이
CN100504543C (zh) * 2007-03-06 2009-06-24 孙润光 显示装置以及含有该显示装置的手机、计算机和电视机
JP4985059B2 (ja) * 2007-04-05 2012-07-25 旭硝子株式会社 液晶表示装置
JP4798633B2 (ja) * 2007-06-07 2011-10-19 奇美電子股▲ふん▼有限公司 液晶表示装置
CN101329463B (zh) * 2007-06-18 2011-04-20 奇美电子股份有限公司 显示装置和液晶显示面板
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN103309087A (zh) * 2013-06-08 2013-09-18 北京京东方光电科技有限公司 一种阵列基板、液晶显示面板和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098140A1 (en) * 2004-11-09 2006-05-11 Ki-Dong Lee Liquid crystal display device and fabrication method thereof
US20120092590A1 (en) * 2010-10-13 2012-04-19 Samsung Electronics Co., Ltd. Backlight unit and display apparatus employing the same
CN102866535A (zh) * 2011-07-05 2013-01-09 乐金显示有限公司 包括光转换层的液晶显示面板以及液晶显示器件
CN105044975A (zh) * 2015-08-31 2015-11-11 京东方科技集团股份有限公司 一种液晶显示装置
CN105929587A (zh) * 2016-06-24 2016-09-07 京东方科技集团股份有限公司 一种显示装置
CN106292049A (zh) * 2016-09-30 2017-01-04 京东方科技集团股份有限公司 显示面板和显示装置
CN206387979U (zh) * 2016-09-30 2017-08-08 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US10620469B2 (en) 2020-04-14
CN106292049A (zh) 2017-01-04
CN106292049B (zh) 2017-11-24
US20190339566A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018059083A1 (zh) 显示面板和显示装置
WO2018076860A1 (zh) 显示面板和显示装置
WO2018076859A1 (zh) 显示面板及显示装置
US20200183202A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
US20190025644A1 (en) Display panel and display device
US11126054B2 (en) Display panel and display device
CN107918233B (zh) 一种显示装置
WO2018076858A1 (zh) 显示面板及显示装置
WO2018072508A1 (zh) 显示装置及其显示方法
US11262612B2 (en) Transparent display panel and transparent display device
US20170307917A1 (en) Liquid crysal display including nanocapsule layer
WO2018076961A1 (zh) 显示面板及显示装置
KR101222951B1 (ko) 시야각 제어 액정표시장치
KR101474668B1 (ko) 투명 디스플레이
KR20150073695A (ko) 거울 겸용 표시 장치
Choi et al. Fast control of haze value using electrically switchable diffraction in a fringe-field switching liquid crystal device
KR20130064692A (ko) 전기-광 위상 변조기
TW201107835A (en) Liquid crystal display apparatus, manufacturing method of liquid crystal display apparatus
KR20070046354A (ko) 액정 표시 장치 및 그 구동 방법
CN206387979U (zh) 显示面板和显示装置
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
JP4579184B2 (ja) 液晶表示装置
WO2013031625A1 (ja) 液晶表示装置
JP2003029264A (ja) 液晶表示装置
JP2009025354A (ja) 液晶表示パネルおよび液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854537

Country of ref document: EP

Kind code of ref document: A1