WO2018076858A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2018076858A1
WO2018076858A1 PCT/CN2017/095230 CN2017095230W WO2018076858A1 WO 2018076858 A1 WO2018076858 A1 WO 2018076858A1 CN 2017095230 W CN2017095230 W CN 2017095230W WO 2018076858 A1 WO2018076858 A1 WO 2018076858A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal layer
display panel
grating
Prior art date
Application number
PCT/CN2017/095230
Other languages
English (en)
French (fr)
Inventor
谭纪风
王维
杨亚锋
陈小川
高健
马新利
王灿
张粲
孟宪东
孟宪芹
张大成
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/750,035 priority Critical patent/US10444558B2/en
Publication of WO2018076858A1 publication Critical patent/WO2018076858A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates

Definitions

  • the present disclosure belongs to the field of display technologies, and in particular, to a display panel and a display device.
  • a liquid crystal display device in the field of display technology, includes a backlight and a display panel.
  • the display panel includes an array substrate and a color filter substrate disposed opposite to each other, and a liquid crystal layer, a back surface of the array substrate, and a color filter substrate are disposed between the array substrate and the color filter substrate.
  • Polarizers are provided on the back.
  • the gray scale display is realized by voltage-controlled deflection of the liquid crystal and control by two layers of polarizers.
  • a polarizing plate is used in a display panel in a liquid crystal display device, which results in a low transmittance of the liquid crystal display device (for example, a transmittance of about 7%) and a large liquid crystal cell thickness (for example, 3 um to 5 um). , and a larger box thickness will reduce the response time of the liquid crystal.
  • the color color resistance on the color filter substrate is usually realized, which also causes the display panel to be thick.
  • the present disclosure provides a display panel including a first substrate and a second substrate disposed opposite to each other, a liquid crystal layer, a first electrode, and a second electrode disposed between the first substrate and the second substrate, disposed at a waveguide layer between the first substrate and the liquid crystal layer, and a plurality of grating units combined with the liquid crystal layer and disposed in the same layer; the first electrode and the second electrode are configured to be applied by changing A voltage thereon adjusts a refractive index of the liquid crystal layer; wherein a coupling efficiency of coupling light from the waveguide layer is determined based on a difference in refractive index between the grating unit and the liquid crystal layer.
  • the grating unit is a step grating, each of the step gratings has different heights from each other, and the grating unit is configured to pass the stepped junction
  • the structure controls the light of different wavelengths for color separation.
  • the grating unit is located on a side of the liquid crystal layer adjacent to the first substrate.
  • the grating unit is located on a side of the liquid crystal layer adjacent to the second substrate.
  • the first electrode and the second electrode are located on the same side of the liquid crystal layer.
  • the first electrode and the second electrode are located on different sides of the liquid crystal layer.
  • the first electrode is located at a side of the waveguide layer adjacent to the first substrate; the grating unit is located at a side of the waveguide layer facing away from the first electrode; the liquid crystal layer is located at the side The grating unit faces away from a side of the waveguide layer; the second electrode is located on a side of the second substrate adjacent to the liquid crystal layer.
  • the refractive index of the waveguide layer is greater than the refractive index of the first electrode, and the refractive index of the first electrode is greater than or equal to the refractive index of the grating unit.
  • the refractive index of the grating unit ranges from an ordinary refractive index n o of the liquid crystal layer to a extraordinary optical refractive index n e of the liquid crystal layer.
  • the step grating has a step number of 3 to 100; the step grating has a width of 0.1 ⁇ m to 300 ⁇ m; and the height of each step in the step grating is 0 ⁇ m to 300 ⁇ m; an imaging distance of the step grating It is 2 ⁇ m to 20 ⁇ m.
  • the step grating has a step number of 3, and is used to divide the light into three different colors of red, green, and blue.
  • the material of the liquid crystal layer includes any one of nematic liquid crystal, cholesteric liquid crystal, and blue phase liquid crystal.
  • a scattering film is further disposed on a side of the second substrate facing away from the liquid crystal layer.
  • the present disclosure also provides a display device including the above display panel and backlight.
  • the backlight is a side-lit backlight for providing collimated parallel light.
  • the display device further includes a light shielding layer on a side of the display panel away from the backlight.
  • FIG. 1 is a schematic structural view of a display panel according to Embodiment 1 of the present disclosure.
  • FIG. 2 is another schematic structural view of a display panel according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a schematic diagram of a liquid crystal layer, a grating unit, and a waveguide layer forming a variable grating coupler of the display panel of Embodiment 1 of the present disclosure;
  • FIG. 4 is a schematic structural view of still another display panel of Embodiment 1 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiments 1 and 2 of the present disclosure.
  • FIG. 6 is a schematic diagram of an L0 mode of a display panel according to Embodiment 1 of the present disclosure.
  • FIG. 7 is a schematic diagram of an L255 mode of a display panel according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic diagram of a slab waveguide of a display panel according to Embodiment 1 of the present disclosure.
  • Embodiment 9 is a schematic diagram of transmission of a slab waveguide according to Embodiment 1 of the present disclosure.
  • FIG. 10 is a schematic diagram of a grating unit of a display panel according to Embodiment 1 of the present disclosure
  • 11 and 12 are schematic diagrams showing imaging distances of a display panel according to Embodiment 1 of the present disclosure.
  • reference numerals are: 1, a first substrate; 2, a second substrate; 3, a liquid crystal layer; 4, a waveguide layer; 5, a first electrode; 6, a second electrode; 7, a grating unit; 9, backlight; 10, light shielding layer; A, pixel unit.
  • the present embodiment provides a display panel including a first substrate 1 and a second substrate 2 disposed opposite to each other, and a liquid crystal layer 3 disposed between the first substrate 1 and the second substrate 2,
  • An electrode 5 and a second electrode 6 are disposed on the first substrate 1 and a waveguide layer 4 between the liquid crystal layers 3, and a plurality of grating units combined with the liquid crystal layer and disposed in the same layer; the first electrode and the second electrode are configured to change a voltage applied thereto
  • the refractive index of the liquid crystal layer is adjusted; wherein a coupling efficiency of coupling light from the waveguide layer is determined based on a difference in refractive index between the grating unit and the liquid crystal layer.
  • each of the regions of the pixel unit includes a first electrode 5 and a second electrode 6 for adjusting the refractive index of the liquid crystal layer 3 by an applied voltage, and each region of the pixel unit A grating unit combined with a liquid crystal layer is included.
  • the refractive index of the liquid crystal layer 3 can be adjusted according to the voltage difference of the voltage applied to the first electrode 5 and the second electrode 6, the coupling efficiency of the waveguide layer 4 coupled out is based on the liquid crystal.
  • the difference in refractive index between layer 3 and grating unit 7 is determined.
  • the deflection angle of the liquid crystal of the liquid crystal layer 3 changes, and the effective refractive index of the liquid crystal layer 3 with respect to the incident light also occurs.
  • the grating unit 7 can separate the light, the display panel in this embodiment can realize color display without setting a color film.
  • the grating unit 7 in this embodiment may be disposed on a side of the liquid crystal layer 3 adjacent to the first substrate 1 , that is, the grating unit 7 is closer to the waveguide layer 4 than the liquid crystal layer 3 .
  • the unit 7 can control the coupling efficiency of the light coupled out of the waveguide layer 4.
  • the grating unit 7 can also be disposed on the side of the liquid crystal layer 3 adjacent to the second substrate 2, that is, the liquid crystal layer 3 is closer to the waveguide layer 4 than the grating unit 7.
  • the liquid crystal layer 3, the grating unit 7, and the waveguide layer 4 will form a variable grating coupler, which can effectively illuminate the light. Coupling into the waveguide layer 4 or coupling light out of the waveguide layer 4.
  • ⁇ q is the propagation constant of the incident light
  • ⁇ m is the propagation constant of the m-th order mode
  • q is the diffraction order
  • the first electrode 5 and the second electrode 6 in this embodiment are located on the same side or different sides of the liquid crystal layer 3.
  • the first electrode 5 is a pixel electrode
  • the second electrode 6 is a common electrode.
  • the first electrode 5 and the second electrode 6 are located on different sides of the liquid crystal layer 3.
  • the first electrode 5 is located on a side of the liquid crystal layer 3 adjacent to the first substrate 1
  • the second electrode 6 is located on a side of the liquid crystal layer 3 adjacent to the second substrate 2
  • the display panel may be a twisted nematic (Twisted Nematic) , referred to as TN) type display panel, Vertical Alignment (VA) type display panel or Electronically Controlled Birefringence (ECB) display device.
  • TN twisted nematic
  • VA Vertical Alignment
  • EBC Electronically Controlled Birefringence
  • the first electrode 5 and the second electrode 6 are located on the same side of the liquid crystal layer 3.
  • the first electrode 5 and the second electrode 6 are both located on a side of the liquid crystal layer 3 close to the first substrate 1.
  • the display panel may be an Advanced Super Dimension Switch (ADS) display panel; when the first electrode 5 and the second electrode 6 are on the same layer
  • ADS Advanced Super Dimension Switch
  • the display panel may be an In-Plane Switching (IPS) display panel. It is not specifically drawn here. In practical applications, the display panel can also be other types of display panels, which are not listed here.
  • the material of the liquid crystal layer 3 may be a nematic liquid crystal, a cholesteric liquid crystal or a blue phase liquid crystal.
  • the TN type display panel, the VA type display panel, and the ADS type display panel generally employ nematic liquid crystal.
  • the thickness of the liquid crystal layer 3 is 1. Mm.
  • the thickness of the liquid crystal layer 3 can be set based on the ability to cover the layer in which the grating unit 7 is located and other parameter design (eg, electrical design, drive design, etc.) that facilitates the product. In this embodiment, the thickness of the liquid crystal layer 3 only needs to cover the thickness of the layer where the grating unit 7 is located. Therefore, the thickness of the liquid crystal layer 3 can be set thin, that is, the thickness of the liquid crystal cell can be set thin, thereby further improving the response of the liquid crystal. time.
  • the material of the grating unit 7 in this embodiment is a transparent dielectric material, for example, silicon dioxide SiO 2 or other organic resin.
  • the refractive index of the grating unit 7 ranges from the ordinary refractive index n o of the liquid crystal layer 3 to the extraordinary optical refractive index n e of the liquid crystal layer 3, and the preferential refractive index is n o .
  • the period of one grating unit 7 is generally the width of one pixel unit A.
  • the grating unit 7 is a step grating (nano-grating), and the color realization of each pixel unit A is to utilize the principle of interference and diffraction effect between the step gratings, so that the diffractive optical device realizes the color separation of the Fresnel diffraction field, and the selection is reasonable.
  • the grating height and phase distribution enable the spatial separation of red, green and blue colors. Referring to FIG. 5, after the light coupled from the waveguide layer 4 passes through the grating unit, light having different wavelengths (for example, light of three colors of red, green, and blue) is emitted to the display surface at different angles, thereby eliminating In the case of setting a color film substrate, effective color separation control is provided, and color display is realized.
  • the display panel further comprises a scattering film 8 on the side of the second substrate 2 facing away from the liquid crystal layer 3.
  • the function of the scattering film 8 is to scatter light having a smaller angle or a larger angle that is coupled from the waveguide layer 4 under the control of the grating unit 7, thereby improving the viewing angle of the display panel.
  • the first electrode 5 is located on a side of the waveguide layer 4 adjacent to the first substrate 1; the grating unit 7 is located in the waveguide layer 4 A side facing away from the first electrode 5; a liquid crystal layer 3 on a side of the grating unit 7 facing away from the waveguide layer 4; and a second electrode 6 on a side of the second substrate 2 close to the liquid crystal layer 3.
  • the rotation of the refractive index ellipsoid of the liquid crystal layer 3 in the cross section (paper surface) as shown in FIG. 6 can be realized, and the liquid crystal layer 3 can be realized.
  • the adjustment of the refractive index between n o and n e is equal, the function of the grating unit 7 is masked, and no light is coupled out from the waveguide layer 4, in this case, the normally black mode (L0 mode); as shown in FIG.
  • the function of the grating unit 7 is most obvious, and the coupling efficiency of the light coupled from the waveguide layer 4 is the highest, at this time, the normally white mode (L255 mode); when the liquid crystal layer 3 When the refractive index is between the above two conditions, it is other gray-scale states. Since only the polarized light (e light) in the cross section (paper surface) shown in FIG. 5 can be perceived as the change in the refractive index, the vibration direction is perpendicular to the polarized light (o light) on the paper surface. The change in the refractive index is such that the light coupled by the variable grating is polarized light (e-light).
  • an alignment film (generally PI) on the lower surface (preferably the lower surface, but not limited to the lower surface) of the second electrode 6, to control the initial alignment state of the liquid crystal molecules, and to ensure that the liquid crystal molecules can Rotate in the expected manner under the applied voltage to determine whether it is a normally black display mode or a normally white display mode.
  • the slab waveguide is composed of three layers of materials, and the middle layer is a waveguide film having a refractive index n 1 deposited on a substrate having a refractive index of n 2 . Above the film is a cover layer having a refractive index of n 3 .
  • the thickness of the film is typically on the order of microns and can be compared to the wavelength of light.
  • the difference in refractive index between the film and the substrate is generally between 10 -1 and 10 -3 .
  • light energy is confined to propagate through the film.
  • the refractive index of the waveguide layer 4 is larger than that of the first electrode 5, and the refractive index of the first electrode 5 is greater than or equal to the refractive index of the grating unit 7 to realize a planar waveguide.
  • the propagation of light in the slab waveguide can be regarded as the total reflection of light at the interface between the first electrode 5 and the waveguide layer 4, and propagates along the zigzag path in the film.
  • Light propagates in the Z direction in a zigzag pattern in the waveguide, and the light is constrained in the x direction and unconstrained in the y direction.
  • n 1 >n 2 and n 1 >n 3 when the incident angle ⁇ 1 of the incident light exceeds the critical angle ⁇ 0 :
  • phase transition ⁇ TM and ⁇ TE of the reflection point are derived as:
  • is the wavelength of light
  • k k 0 n 1 cos ⁇
  • ⁇ 13 is the phase difference of total reflection
  • h is the thickness of the waveguide
  • m is the number of modules, that is, a positive integer starting from zero. Therefore, as long as the incident angle satisfies the above formula, the light can be stably propagated in the optical waveguide.
  • the preferred step grating has a step number of 3 to 100; preferably, the number of steps is 3, that is, a third-order grating, as shown in FIG. 10, the third-order grating is used to divide the light into red and green.
  • the width d (period) of the step grating is 0.1 ⁇ m to 300 ⁇ m (the width of each step is d/3);
  • the height of each step in the step grating (h 1 , h 2 , h 3 ) is 0 ⁇ m to 300 ⁇ m;
  • the imaging distance of the step grating is 2 ⁇ m to 20 ⁇ m.
  • the thickness of the liquid crystal layer 3 needs to be greater than the height of the grating unit 7, and the grating imaging distance Z is generally larger than the thickness of the liquid crystal layer 3.
  • the imaging distance Z T of the step grating is related to the incident light wavelength ⁇ , the refractive index difference (fixed value), and the grating period.
  • the imaging distances corresponding to the three colors of red R green, green G, and blue B are Z r , Z g , and Z b , respectively .
  • the refractive index difference of each step of the grating unit 7 can be adjusted so that the imaging distances Z r , Z g , and Z b of the three colors of R green, green G, and blue B are equal to Z 1 , as shown in the figure. 12 is shown.
  • the light transmittance of light of each color can be obtained.
  • Tr is the transmittance, which is related to the incident wavelength ⁇ , the grating period d, the grating height, and the number of steps of the grating. Therefore, after the grating period d is fixed, we can control the transmittance of each pixel according to the number of steps and height of the grating.
  • the embodiment provides a display device including a backlight 9 and a display panel in Embodiment 1.
  • the backlight 9 is a side-in type backlight 9 for providing collimated parallel light.
  • other forms of backlight 9 can also be used.
  • the backlight 9 can be a direct type backlight 9 , which is not specifically drawn.
  • the backlight 9 may include an LED light source or other mode light source, wherein the LED chip may include a blue LED or other LED having a shorter wavelength than the blue light wavelength, and the other mode light source may be a laser light source.
  • the backlight 9 is a laser light source
  • a beam expanding structure may be disposed on the light emitting side of the backlight 9 (ie, between the backlight 9 and the display panel), and the beam expanding structure may emit the laser light from the laser light source.
  • the point source is expanded into a collimated source, which also increases the diameter of the beam.
  • the backlight 9 is disposed at least corresponding to the waveguide layer 4, and the light outgoing direction of the backlight 9 is parallel to the plane of the waveguide layer 4.
  • the backlight 9 and the first base The bottom 1, the waveguide layer 4 and the first electrode 5 are correspondingly disposed, and the width of the backlight 9 may be the sum of the widths of the first substrate 1, the waveguide layer 4 and the first electrode 5.
  • the width of the backlight 9 can also be set to other widths, but it is preferable not to emit light to the liquid crystal layer 3 and the liquid crystal layer, and the liquid crystal layer is disposed on the outer side of the liquid crystal layer 3, so that the liquid crystal layer is disposed on the outer side of the liquid crystal layer 3. 3
  • the emitted light does not enter the liquid crystal layer 3.
  • the arrangement of the backlight 9 is not limited to the above, as long as the light (incident light) emitted by the backlight 9 is dereflected in the waveguide layer 4.
  • the light emitted by the backlight 9 is collimated light.
  • the backlight 9 is a laser light source
  • the light emitted by the backlight 9 becomes collimated light under the action of the beam expanding structure.
  • the display device further comprises a light shielding layer 10 on the side of the display panel remote from the backlight 9, the light shielding layer 10 for coupling the light emitted by the backlight 9 from the waveguide layer 4 out of the light after the grating unit 7
  • the light remaining in the waveguide layer 4 is absorbed to prevent light leakage from the display device.
  • the display device may be an ECB display device, a TN display device, a VA display device, an IPS display device, or an ADS display device.

Abstract

一种显示面板及显示装置,显示面板包括相对设置的第一基底(1)和第二基底(2),设置在第一基底(1)和第二基底(2)之间的液晶层(3)、第一电极(5)和第二电极(6),其中还包括设置在第一基底(1)与液晶层(3)之间的波导层(4),以及与液晶层(3)相结合并且同层设置的多个光栅单元(7);第一电极(5)和第二电极(6)构造为通过改变施加在其上的电压来调节液晶层(3)的折射率;其中从波导层(4)耦合出光的耦合效率基于光栅单元(7)与液晶层(3)的折射率的差值来确定。

Description

显示面板及显示装置 技术领域
本公开属于显示技术领域,具体涉及一种显示面板及显示装置。
背景技术
在显示技术领域,液晶显示装置包括背光源和显示面板,显示面板包括相对设置的阵列基板和彩膜基板,阵列基板和彩膜基板之间设置有液晶层,阵列基板的背面和彩膜基板的背面均设置有偏光片。通过电压控制液晶的偏转以及经过两层偏光片的控制,以实现灰阶显示。
现有技术中液晶显示装置中的显示面板中采用偏振片,会导致液晶显示装置透过率很低(例如,透过率为7%左右)以及液晶盒厚较大(例如,3um-5um),而较大的盒厚会降低液晶的响应时间。在实现彩色显示时,通常彩膜基板上的彩色色阻实现,同样会造成显示面板较厚。
发明内容
本公开提供了一种显示面板,包括相对设置的第一基底和第二基底,设置在所述第一基底和所述第二基底之间的液晶层、第一电极和第二电极,设置在所述第一基底与所述液晶层之间的波导层,以及与所述液晶层相结合并且同层设置的多个光栅单元;所述第一电极和所述第二电极构造为通过改变施加在其上的电压来调节所述液晶层的折射率;其中从所述波导层耦合出光的耦合效率基于所述光栅单元与液晶层的折射率的差值来确定。
可选地,所述光栅单元为阶梯光栅,所述阶梯光栅中的各节阶梯具有彼此不同的高度,所述光栅单元构造为通过所述阶梯结 构控制不同波长的光线进行分色。
可选地,所述光栅单元位于所述液晶层靠近所述第一基底的一侧。
可选地,所述光栅单元位于所述液晶层靠近所述第二基底的一侧。
可选地,所述第一电极和所述第二电极位于所述液晶层的同一侧。
可选地,所述第一电极和所述第二电极位于所述液晶层的不同侧。
可选地,所述第一电极位于所述波导层靠近所述第一基底的一侧;所述光栅单元位于所述波导层背离所述第一电极的一侧;所述液晶层位于所述光栅单元背离所述波导层的一侧;所述第二电极位于所述第二基底靠近所述液晶层的一侧。
可选地,所述波导层的折射率大于所述第一电极的折射率,所述第一电极的折射率大于等于所述光栅单元的折射率。
可选地,所述光栅单元的折射率的范围为所述液晶层的寻常光折射率no至所述液晶层的非常光折射率ne
可选地,所述阶梯光栅的阶梯数为3至100;所述阶梯光栅的宽度为0.1μm至300μm;所述阶梯光栅中每节阶梯的高度为0μm至300μm;所述阶梯光栅的成像距离为2μm至20μm。
可选地,所述阶梯光栅的阶梯数为3,用于将光线分成红、绿、蓝三种不同颜色的光。
可选地,所述液晶层的材料包括向列相液晶、胆甾相液晶、蓝相液晶中的任意一种。
可选地,在所述第二基底背离所述液晶层的一侧还设置有散射膜。
本公开还提供一种显示装置,其包括上述的显示面板和背光源。
可选地,所述背光源为侧入式背光源,用于提供准直平行光。
可选地,所述显示装置还包括位于显示面板远离所述背光源的侧边上的遮光层。
附图说明
图1为本公开的实施例1的显示面板的一种结构示意图;
图2为本公开的实施例1的显示面板的另一种结构示意图;
图3为本公开的实施例1的显示面板的液晶层、光栅单元和波导层形成可变光栅耦合器的示意图;
图4为本公开的实施例1的显示面板的再一种结构示意图;
图5为本公开的实施例1、2的显示装置的结构示意图;
图6为本公开的实施例1的显示面板的L0模式的示意图;
图7为本公开的实施例1的显示面板的L255模式的示意图;
图8为本公开的实施例1的显示面板的平板波导的示意图;
图9为本公开的实施例1的平板波导的传输示意图;
图10为本公开的实施例1的显示面板的光栅单元的示意图;
图11、12为本公开的实施例1的显示面板的成像距离示意图。
其中附图标记为:1、第一基底;2、第二基底;3、液晶层;4、波导层;5、第一电极;6、第二电极;7、光栅单元;8、散射膜;9、背光源;10、遮光层;A、像素单元。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
实施例1:
结合图1、2所示,本实施例提供一种显示面板,包括相对设置的第一基底1和第二基底2,设置在第一基底1和第二基底2之间的液晶层3、第一电极5和第二电极6,设置在第一基底1与 液晶层3之间的波导层4,以及与所述液晶层相结合并且同层设置的多个光栅单元;所述第一电极和所述第二电极构造为通过改变施加在其上的电压来调节所述液晶层的折射率;其中从所述波导层耦合出光的耦合效率基于所述光栅单元与液晶层的折射率的差值来确定。
在本实施例中,每个所述像素单元的区域都包括用于通过所施加电压来调节液晶层3的折射率的第一电极5和第二电极6,并且每个像素单元的区域内都包括一个与液晶层相结合的光栅单元。对于每一个像素单元A而言,由于液晶层3的折射率可以根据第一电极5和第二电极6上所加载的电压的压差而进行调节,波导层4耦合出光的耦合效率是根据液晶层3与光栅单元7的折射率差值而确定的。因此,当第一电极5和第二电极6上所加载的电压的压差发生变化,液晶层3的液晶的偏转角度将会发生变化,液晶层3相对于入射光的有效折射率也将发生变化,从而导致液晶层3与光栅单元7的折射率的差值发生变化,进而导致波导层4耦合出光的耦合效率发生变化,也即该像素单元A的显示灰阶发生变化,以对于每个像素单元A实现不同灰阶的显示。同时,由于光栅单元7能够对光线进行分色,因此,本实施例中的显示面板在无需设置彩膜的情况下,可以实现彩色显示。
其中,如图1所示,本实施例中的光栅单元7可以设置在位于液晶层3靠近第一基底1的一侧,也即光栅单元7较液晶层3更靠近波导层4,此时光栅单元7可以控制光线从波导层4中耦合出光的耦合效率。如图2所示,光栅单元7也可以设置在液晶层3靠近第二基底2的一侧,也即液晶层3较光栅单元7更靠近波导层4。
具体的,无论采用上述的哪一种设置方式,如图3所示,液晶层3、光栅单元7和波导层4将会形成可变光栅耦合器,该可变光栅耦合器可将光线有效的耦合进波导层4或者将光线从波导层4中耦合出来。当入射光或者出射光满足相位匹配关系βq=βm–qK(q=0,±1,±2,…)时,入射光即可在波导层4中激发m阶导模或者 m阶导模即可在给方向上耦合出去,其中,βq为入射光的传播常数,βm为m阶导模的传播常数,q为衍射级次,K为光栅矢量。由于βm=k0Nm,K=2π/Λ,因此上述相位匹配关系公式可进一步表示成:k0ncsinθi=k0Nm–q2π/Λ(q=0,±1,±2,…),其中,k0为2π/λ,nc为液晶层3的折射率,θi为入射光波矢方向与竖直方向的夹角或者出光光波矢方向与竖直方向的夹角,Nm为m阶导模的有效折射率,Λ为光栅单元7的周期。从上述相位匹配关系公式可以看出,改变液晶层3的折射率nc可以使得光栅单元7控制光线从波导层4耦合出光的耦合效率,耦合效率与液晶层3和光栅单元7的折射率差值相关。
其中,本实施例中的第一电极5和第二电极6位于液晶层3同一侧或者不同侧。优选的,第一电极5为像素电极,第二电极6为公共电极。
具体的,第一电极5和第二电极6位于液晶层3的不同侧。其中,第一电极5位于液晶层3的靠近第一基底1的一侧,第二电极6位于液晶层3的靠近第二基底2的一侧,此时显示面板可以为扭曲向列(Twisted Nematic,简称TN)型显示面板、垂直向列(Vertical Alignment,简称VA)型显示面板或者电控双折射(Electrically Controlled Birefringence,简称ECB)显示装置。
或者,第一电极5和第二电极6位于液晶层3的同侧。其中,第一电极5和第二电极6均位于液晶层3的靠近第一基底1的一侧。当第一电极5和第二电极6位于不同层时,该显示面板可以为高级超维场转换(Advanced Super Dimension Switch,简称ADS)显示面板;当第一电极5和第二电极6位于同一层时,该显示面板可以为平面转换(In-Plane Switching,简称IPS)显示面板。此处均不再具体画出。在实际应用中,该显示面板还可以为其他类型的显示面板,此处不再一一列举。
其中,液晶层3的材料可以为向列相液晶、胆甾相液晶或者蓝相液晶。优选地,TN型显示面板、VA型显示面板以及ADS型显示面板通常均采用向列相液晶。优选地,液晶层3的厚度为1 μm。液晶层3厚度的设定可以以能够覆盖光栅单元7所在层以及便于产品的其他参数设计(例如,电学设计、驱动设计等)为依据。本实施例中液晶层3的厚度只要覆盖光栅单元7所在层的厚度即可,因此液晶层3的厚度可以设置的很薄,即液晶盒厚可以设置的很薄,从而进一步提高了液晶的响应时间。
其中,本实施例中的光栅单元7的材料为透明介质材料,例如,二氧化硅SiO2或者其他有机树脂。光栅单元7的折射率的范围为液晶层3的寻常光折射率no至液晶层3的非常光折射率ne,优先折射率为no。在实际应用中一个光栅单元7的周期一般为一个像素单元A的宽度。
其中,光栅单元7为阶梯光栅(纳米光栅),每个像素单元A的颜色实现就是利用阶梯光栅之间的干涉和衍射效应原理,使得衍射光学器件实现菲涅尔衍射场的分色,选择合理的光栅高度与相位分布,使红、绿、蓝三色在空间上高效分离。参照附图5所示,从波导层4耦合出的光线在经过光栅单元后,具有不同波长的光(例如红、绿、蓝三色的光线)以不同的角度向显示表面出射,从而在无需设置彩膜基板的情况下提供了有效的分色控制,实现了彩色显示。
其中,如图4所示,该显示面板还包括位于第二基底2背离液晶层3侧面上的散射膜8。散射膜8的作用是将在光栅单元7的控制下从波导层4耦合出来的角度较小或者角度较大的光进行散射,从而改善了显示面板的视角。
作为本实施例中的一种具体实现方式,如图1或5所示,在显示面板中第一电极5位于波导层4靠近所述第一基底1的一侧;光栅单元7位于波导层4背离第一电极5的一侧;液晶层3位于光栅单元7背离所述波导层4的一侧;所述第二电极6位于所述第二基底2靠近所述液晶层3的一侧。
具体的,通过调节施加在第一电极5和第二电极6上的电压,即可实现液晶层3折射率椭球在如图6所示的截面(纸面)内的旋转,实现液晶层3折射率在no至ne之间的调节。当液晶层3 折射率和光栅单元7的折射率相等时,光栅单元7的作用被掩盖,没有光从波导层4耦合出来,此时为常黑模式(L0模式);如图7所示,当液晶层3折射率和光栅单元7折射率相差最大时,光栅单元7的作用最明显,光线从波导层4耦合出来的耦合效率最高,此时为常白模式(L255模式);当液晶层3折射率处在以上两种情况之间时,为其他灰阶状态。由于仅有振动方向在如图5所示的截面(纸面)内的偏振光(e光)才能感受到上述折射率的变化,而振动方向垂直于纸面的偏振光(o光)感受不到上述折射率的变化,所以该可变光栅耦合出来的光为偏振光(e光)。对于一般的液晶材料,需要在第二电极6的下表面(优选下表面,但不限于下表面)增加一层配向膜(一般为PI),以控制液晶分子的初始排列状态,确保液晶分子可以在施加电压下按照预期的方式进行旋转,决定是常黑显示模式还是常白显示模式。
其中,本领域技术人员可知的是,如图8所示,平板波导由三层材料所构成,中间一层是折射率为n1的波导薄膜,它沉积在折射率为n2的基底上,薄膜上面是折射率为n3的覆盖层。薄膜的厚度一般在微米数量级,可与光的波长相比较。薄膜和基底的折射率之差一般在10-1和10-3之间。为了构成真正的光波导,要求n1必须大于n2和n3,即n1>n2>=n3。这样,光能限制在薄膜之中传播。
因此,在本实施例中的上述方式中波导层4的折射率大于第一电极5的折射率,第一电极5的折射率大于等于光栅单元7的折射率,以实现平面波导。
如图9所示,光在平板波导中的传播可以看作是光线在第一电极5和波导层4分界面上发生全反射,在薄膜中沿Z字形路径传播。光在波导中以锯齿形沿Z方向传播,光在x方向受到约束,而在y方向不受约束。
在平板波导中,n1>n2且n1>n3,当入射光的入射角θ1超过临界角θ0时:
Figure PCTCN2017095230-appb-000001
入射光发生全反射,此时,在反射点产生一定的位相跃变。我们从菲涅耳反射公式:
Figure PCTCN2017095230-appb-000002
Figure PCTCN2017095230-appb-000003
出发,推导出反射点的位相跃变φTM、φTE为:
Figure PCTCN2017095230-appb-000004
Figure PCTCN2017095230-appb-000005
式中:β=k0n1sinθ1为光的传播常数,k0=2πλ为光在真空中的波数,λ是光的波长。
要使光在波导中稳定的传播,则需要满足以下公式:
2kh-2φ12-2φ13=2mπ,m=0,1,2,3.....;
其中:k=k0n1cosθ,
Figure PCTCN2017095230-appb-000006
φ13为全反射的相位差,h为波导的厚度,m为模序数,即从零开始的正整数。所以,只要入射角满足上式的光才能在光波导中稳定地传播。
具体的,在本实施例中优选的阶梯光栅的阶梯数为3至100;优选阶梯数为3,也即三阶光栅,如图10所示,该三阶光栅用于将光线分成红、绿、蓝三种不同颜色的光;阶梯光栅的宽度d(周期)为0.1μm至300μm(每节阶梯的宽度为d/3);阶梯光栅中每节阶梯的高度(h1、h2、h3)为0μm至300μm;阶梯光栅的成像距离为2μm至20μm。在此需要说明的是,液晶层3的厚度需要大于光栅单元7的高度,光栅成像距离Z一般要大于液晶层3厚度。
其中,Z为成像距离,根据公式:
Figure PCTCN2017095230-appb-000007
由此可知,阶梯光栅的成像距离ZT与入射光波长λ、折射率差(定值)、光栅周期相关a。结合图11所示,对应红R绿、绿G、蓝B三种颜色光的成像距离分别为Zr、Zg、Zb。此时,可以通过调节光栅单元7每个阶梯的折射率差,以使R绿、绿G、蓝B三种颜色光的成像距离Zr、Zg、Zb均相等为Z1,如图12所示。
根据下述公式,可以得到每种颜色的光的透光率。
Figure PCTCN2017095230-appb-000008
根据公式可知,Tr为透过率,与入射波长λ,光栅周期d,光栅高度,光栅的阶梯数相关。故光栅周期d固定之后,我们可以根据光栅的阶梯数及高度控制每个像素的透过率。
实施例2:
如图5所示,本实施例提供一种显示装置,该显示装置包括:背光源9和实施例1中的显示面板。
本实施例中,背光源9为侧入式背光源9,用于提供准直平行光。在实际应用中,还可以采用其他形式的背光源9,例如,背光源9可以为直下式背光源9,此种情况不再具体画出。
背光源9可包括LED光源或者其他模式的光源,其中,LED芯片可包括蓝光LED或者其他波长比蓝光波长更短的LED,其他模式的光源可以为激光光源。可选地,当背光源9为激光光源时,在背光源9的出光侧(即:背光源9和显示面板之间)还可以设置扩束结构,该扩束结构可以将激光光源发出的激光点光源扩束为准直光源,同时也增大了光束的直径。
背光源9至少与波导层4对应设置,背光源9的光线的出光方向和波导层4所在平面平行。如图4所示,背光源9与第一基 底1、波导层4和第一电极5对应设置,且背光源9的宽度可以为第一基底1、波导层4和第一电极5的宽度之和。在实际应用中,背光源9的宽度还可以设置为其他宽度,但以不向液晶层3以及液晶以上各层发射光线为宜,由于液晶层3的外侧设置有封框胶,因此向液晶层3发射的光线不会射入液晶层3。当然,背光源9的设置也不局限于前述方式,只要保证背光源9所发出的光(入射光线)在波导层4内发生去反射即可。
优选地,背光源9发出的光为准直光。特别是,当背光源9为激光光源时,背光源9发出的光在扩束结构的作用下成为准直光。
优选地,显示装置还包括位于显示面板远离所述背光源9的侧边上的遮光层10,该遮光层10用于将光栅单元7将背光源9所发出的光从波导层4耦合出光之后,剩余在波导层4中的光进行吸收,以防止显示装置漏光。
本实施例中,显示装置可以为ECB显示装置、TN显示装置、VA显示装置、IPS显示装置或者ADS显示装置。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种显示面板,包括相对设置的第一基底和第二基底,以及设置在所述第一基底和所述第二基底之间的液晶层、第一电极和第二电极,其中还包括设置在所述第一基底与所述液晶层之间的波导层,以及与所述液晶层相结合并且同层设置的多个光栅单元;
    所述第一电极和所述第二电极构造为通过改变施加在其上的电压来调节所述液晶层的折射率;
    其中从所述波导层耦合出光的耦合效率基于所述光栅单元与液晶层的折射率的差值来确定。
  2. 根据权利要求1所述的显示面板,其中所述光栅单元为阶梯光栅,所述阶梯光栅中的各节阶梯具有彼此不同的高度,所述光栅单元构造为通过所述阶梯结构控制不同波长的光线进行分色。
  3. 根据权利要求1所述的显示面板,其中所述光栅单元位于所述液晶层靠近所述第一基底的一侧。
  4. 根据权利要求1所述的显示面板,其中所述光栅单元位于所述液晶层靠近所述第二基底的一侧。
  5. 根据权利要求1所述的显示面板,其中所述第一电极和所述第二电极位于所述液晶层的同一侧。
  6. 根据权利要求1所述的显示面板,其中所述第一电极和所述第二电极位于所述液晶层的不同侧。
  7. 根据权利要求1所述的显示面板,其中所述第一电极位于 所述波导层靠近所述第一基底的一侧;所述光栅单元位于所述波导层背离所述第一电极的一侧;所述液晶层位于所述光栅单元背离所述波导层的一侧;所述第二电极位于所述第二基底靠近所述液晶层的一侧。
  8. 根据权利要求7所述的显示面板,其中所述波导层的折射率大于所述第一电极的折射率,所述第一电极的折射率大于等于所述光栅单元的折射率。
  9. 根据权利要求1所述的显示面板,其中所述光栅单元的折射率的范围为所述液晶层的寻常光折射率no至所述液晶层的非常光折射率ne
  10. 根据权利要求2所述的显示面板,其中所述阶梯光栅的阶梯数为3至100;所述阶梯光栅的宽度为0.1μm至300μm;所述阶梯光栅中每节阶梯的高度为0μm至300μm;所述阶梯光栅的成像距离为2μm至20μm。
  11. 根据权利要求10所述的显示面板,其中所述阶梯光栅的阶梯数为3,用于将光线分成红、绿、蓝三种不同颜色的光。
  12. 根据权利要求1至11任一所述的显示面板,其中所述液晶层的材料包括向列相液晶、胆甾相液晶、蓝相液晶中的任意一种。
  13. 根据权利要求1至11任一所述的显示面板,其中在所述第二基底背离所述液晶层的一侧还设置有散射膜。
  14. 一种显示装置,包括:背光源和权利要求1至12任一所述的显示面板。
  15. 根据权利要求14所述的显示装置,其中所述背光源为侧入式背光源,用于提供准直平行光。
  16. 根据权利要求15所述的显示装置,其中所述显示装置还包括位于显示面板远离所述背光源的侧边上的遮光层。
PCT/CN2017/095230 2016-10-28 2017-07-31 显示面板及显示装置 WO2018076858A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,035 US10444558B2 (en) 2016-10-28 2017-07-31 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610967046.XA CN106324898B (zh) 2016-10-28 2016-10-28 显示面板及显示装置
CN201610967046.X 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018076858A1 true WO2018076858A1 (zh) 2018-05-03

Family

ID=57817282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095230 WO2018076858A1 (zh) 2016-10-28 2017-07-31 显示面板及显示装置

Country Status (3)

Country Link
US (1) US10444558B2 (zh)
CN (1) CN106324898B (zh)
WO (1) WO2018076858A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075793A (zh) * 2021-04-06 2021-07-06 业成科技(成都)有限公司 显示装置及其操作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292051B (zh) 2016-10-21 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106324898B (zh) * 2016-10-28 2017-08-25 京东方科技集团股份有限公司 显示面板及显示装置
CN106681047B (zh) * 2017-01-12 2020-08-11 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其驱动方法
CN106707624A (zh) * 2017-03-10 2017-05-24 京东方科技集团股份有限公司 一种显示器件、背光源、显示装置
CN106842598B (zh) * 2017-03-17 2019-09-06 京东方科技集团股份有限公司 显示切换装置、显示器和电子设备
CN106918917A (zh) * 2017-03-17 2017-07-04 京东方科技集团股份有限公司 液晶盒、显示器和电子设备
CN106896583B (zh) * 2017-05-05 2019-10-25 京东方科技集团股份有限公司 显示基板及其制作方法、显示面板及显示装置
JP7136094B2 (ja) * 2017-05-26 2022-09-13 Agc株式会社 回折光学素子、投影装置及び計測装置
CN107357075A (zh) * 2017-08-11 2017-11-17 京东方科技集团股份有限公司 显示面板及显示装置
CN107577093B (zh) * 2017-09-20 2020-12-01 京东方科技集团股份有限公司 一种显示模组及光波导显示装置
CN109709720B (zh) * 2019-02-25 2022-06-03 京东方科技集团股份有限公司 背光模组和显示装置
CN112255830B (zh) * 2020-10-23 2021-11-02 深圳市华星光电半导体显示技术有限公司 激光感应面板及其制作方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329463A (zh) * 2007-06-18 2008-12-24 奇美电子股份有限公司 显示装置和液晶显示面板
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN104076518A (zh) * 2014-06-13 2014-10-01 上海交通大学 一种用于三维光场动态显示的新型像素结构
CN106292051A (zh) * 2016-10-21 2017-01-04 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106291943A (zh) * 2016-10-24 2017-01-04 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106324898A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板及显示装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299289A (en) * 1991-06-11 1994-03-29 Matsushita Electric Industrial Co., Ltd. Polymer dispersed liquid crystal panel with diffraction grating
JPH09284684A (ja) * 1996-04-17 1997-10-31 Hitachi Ltd 単板式カラー液晶ディスプレイ装置
IL118209A0 (en) * 1996-05-09 1998-02-08 Yeda Res & Dev Active electro-optical wavelength-selective mirrors and active electro-optic wavelength-selective filters
JPH09318942A (ja) * 1996-05-28 1997-12-12 Mitsubishi Electric Corp カラー液晶表示装置
KR100301936B1 (ko) * 1998-06-03 2001-09-06 황기연 광도파로를이용한평판디스플레이
KR100323830B1 (ko) * 1998-12-01 2002-06-20 김규섭.최승 광원내장형광도파로디스플레이
US6600528B2 (en) * 2000-12-19 2003-07-29 International Business Machines Corporation Integrated prism sheet for improved viewing angle in direct view color filterless liquid crystal displays
JP2005300560A (ja) * 2002-02-22 2005-10-27 Mitsuteru Kimura ディスプレイ装置
US6999156B2 (en) * 2002-09-30 2006-02-14 Chou Stephen Y Tunable subwavelength resonant grating filter
JP4613651B2 (ja) * 2005-03-16 2011-01-19 旭硝子株式会社 階段状回折素子および光ヘッド装置
JP2007240744A (ja) * 2006-03-07 2007-09-20 Tecdia Kk 光スイッチ及び光アドドロップマルチプレクサ
CN100538408C (zh) * 2007-11-09 2009-09-09 清华大学 一种光栅及其背光模组
TWI452402B (zh) * 2010-12-08 2014-09-11 Au Optronics Corp 顯示元件
US9201270B2 (en) * 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9298168B2 (en) * 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
WO2015048555A1 (en) * 2013-09-26 2015-04-02 The Regents Of The University Of California Microstructured waveguide illuminator
KR101753446B1 (ko) * 2013-11-20 2017-07-19 한국전자통신연구원 지향성 백라이트 유닛, 지향성 백라이트 유닛의 작동 방법 및 상기 지향성 백라이트 유닛을 포함하는 디스플레이 디바이스
ES2912883T3 (es) * 2015-01-10 2022-05-30 Leia Inc Retroiluminación basada en rejilla de múltiples haces y un método de funcionamiento de pantalla electrónica
KR102560708B1 (ko) * 2016-01-15 2023-07-27 삼성전자주식회사 지향성 백라이트 유닛을 구비하는 디스플레이 장치 및 그 조립 방법
KR102526751B1 (ko) * 2016-01-25 2023-04-27 삼성전자주식회사 지향성 백라이트 유닛, 3차원 영상 디스플레이 장치, 및 3차원 영상 디스플레이 방법
CN106324847B (zh) * 2016-10-21 2018-01-23 京东方科技集团股份有限公司 一种三维显示装置
CN106291958B (zh) * 2016-10-21 2021-04-23 京东方科技集团股份有限公司 一种显示装置及图像显示方法
CN106292124B (zh) * 2016-10-28 2017-10-17 京东方科技集团股份有限公司 显示面板和显示装置
CN206096696U (zh) * 2016-10-28 2017-04-12 京东方科技集团股份有限公司 显示面板及显示装置
CN106444177B (zh) * 2016-10-28 2019-03-15 京东方科技集团股份有限公司 显示面板及显示装置
CN106324897B (zh) * 2016-10-28 2019-06-14 京东方科技集团股份有限公司 显示面板和显示装置
CN108303763A (zh) * 2017-01-12 2018-07-20 京东方科技集团股份有限公司 导光板及其制作方法、背光源和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329463A (zh) * 2007-06-18 2008-12-24 奇美电子股份有限公司 显示装置和液晶显示面板
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN104076518A (zh) * 2014-06-13 2014-10-01 上海交通大学 一种用于三维光场动态显示的新型像素结构
CN106292051A (zh) * 2016-10-21 2017-01-04 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106291943A (zh) * 2016-10-24 2017-01-04 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106324898A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075793A (zh) * 2021-04-06 2021-07-06 业成科技(成都)有限公司 显示装置及其操作方法
CN113075793B (zh) * 2021-04-06 2023-06-02 业成科技(成都)有限公司 显示装置及其操作方法

Also Published As

Publication number Publication date
US20190004365A1 (en) 2019-01-03
CN106324898B (zh) 2017-08-25
US10444558B2 (en) 2019-10-15
CN106324898A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2018076858A1 (zh) 显示面板及显示装置
WO2018076859A1 (zh) 显示面板及显示装置
WO2018076857A1 (zh) 显示面板和显示装置
WO2018059083A1 (zh) 显示面板和显示装置
WO2018076860A1 (zh) 显示面板和显示装置
US20220163728A1 (en) Waveguide Grating Device
US20200183202A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
US10222644B2 (en) Liquid crysal display including nanocapsule layer
CN107918233B (zh) 一种显示装置
JP4826472B2 (ja) 偏光性回折型フィルタおよび積層偏光性回折型フィルタ
US20200326584A1 (en) Transparent display panel and transparent display device
US20160091775A1 (en) Grating-based light modulation employing a liquid crystal
US11262621B2 (en) Optical film layer and display device
WO2019024487A1 (zh) 滤光结构、显示基板、显示面板及显示装置
US11099446B2 (en) High-speed optical switching engine
WO2020155279A1 (zh) 光学膜层和显示装置
CN108227285B (zh) 一种显示装置
CN206757263U (zh) 显示面板及显示装置
JP5114853B2 (ja) 表示装置
WO2020155280A1 (zh) 光学膜层和显示装置
CN206096696U (zh) 显示面板及显示装置
CN109597238B (zh) 光学膜层和显示装置
TWI686305B (zh) 光學膜
US20220043287A1 (en) Switchable Raman Nath Gratings
WO2020155246A1 (zh) 光学膜层和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863831

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17863831

Country of ref document: EP

Kind code of ref document: A1