WO2019210785A1 - 液晶显示装置以及显示方法 - Google Patents

液晶显示装置以及显示方法 Download PDF

Info

Publication number
WO2019210785A1
WO2019210785A1 PCT/CN2019/083611 CN2019083611W WO2019210785A1 WO 2019210785 A1 WO2019210785 A1 WO 2019210785A1 CN 2019083611 W CN2019083611 W CN 2019083611W WO 2019210785 A1 WO2019210785 A1 WO 2019210785A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
crystal display
shielding strip
display device
Prior art date
Application number
PCT/CN2019/083611
Other languages
English (en)
French (fr)
Inventor
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/620,755 priority Critical patent/US11226512B2/en
Publication of WO2019210785A1 publication Critical patent/WO2019210785A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a liquid crystal display device and a display method.
  • the liquid crystal display is widely used in the field of display technology because of its advantages of zero radiation, low energy consumption, low heat dissipation, accurate image reproduction, stable display and no flicker.
  • a conventional liquid crystal display device is provided with polarizers having polarization directions perpendicular to each other on both sides of the array substrate and the counter substrate, so that the structure of the liquid crystal display device is complicated.
  • inventions of the present disclosure provide a liquid crystal display device.
  • the liquid crystal display device includes: a light guide plate in which a plurality of light extraction regions are disposed in a first direction; and a liquid crystal display assembly disposed in a light exit direction of the light guide plate; wherein the liquid crystal display assembly includes an array arrangement a pixel region; each of the pixel regions includes a first electrode layer, a second electrode layer, a liquid crystal layer, and a filter disposed on a side of the liquid crystal layer away from the light guide plate in a thickness direction of the liquid crystal display device a layer; the filter layer includes a plurality of first light-shielding strips disposed along the first direction; each of the first light-shielding strips extends in a second direction substantially perpendicular to the first direction; and wherein each The light extraction area corresponds to a first light shielding strip; the width of the light extraction area in the first direction is greater than the width of the corresponding first light shielding strip in the first direction.
  • the filter layer further includes a second light shielding strip disposed between the adjacent first light shielding strips and parallel to the first light shielding strip; the first light shielding strip and the second light shielding strip A primary color filter pattern is disposed between the light-shielding strips; the primary color filter patterns on both sides of the first light-shielding strip have the same color, and the primary color filter patterns on both sides of the second light-shielding strip have different colors.
  • the primary color filter patterns on both sides of each of the first light-shielding strips are symmetric about the first light-shielding strip.
  • an orthographic projection of the second light shielding strip on the light guide plate does not overlap the light extraction area.
  • each light-taking area and the corresponding first light-shielding strip are axisymmetric patterns; the axis of symmetry of each light-taking area coincides with the axis of symmetry of the orthographic projection of the corresponding first light-shielding plate on the light guide plate The axis of symmetry of each light extraction zone is parallel to the second direction.
  • a difference c between a half width of the light extraction region in the first direction and a half width of the first light shielding strip in the first direction is determined by a thickness d of the liquid crystal layer
  • the angle ⁇ between the light that is incident on the filter layer in the light-emitting region and the thickness direction of the liquid crystal display device, and the distance h from the light-emitting surface of the light guide plate to the filter layer are determined.
  • the liquid crystal display device further includes: a filling layer disposed on a light emitting surface of the light guiding plate; wherein the light taking region is provided with a light extraction grating; and the filling layer has a refractive index smaller than the guiding The refractive index of the light plate is different from the refractive index of the grating strip of the light extraction grating.
  • the plurality of light extraction regions and the plurality of pixel regions are in one-to-one correspondence; each of the light extraction regions is located in an orthographic projection of the corresponding pixel region on the light guide plate.
  • each light extraction area corresponds to a column of pixel regions arranged along the second direction.
  • an embodiment of the present disclosure provides a display method using the liquid crystal display device as described above, comprising: inputting a data signal to the first electrode layer and the second electrode layer according to an image to be displayed, thereby An equivalent lens is formed in each of the pixel regions; and the direction of the light beam emitted from each of the light extraction regions is adjusted by the equivalent lens, thereby adjusting the amount of light incident to the corresponding first light blocking strip.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure
  • FIG. 2 is a view showing a correspondence relationship between a first light shielding strip and a light extraction area according to an embodiment of the present disclosure
  • FIG. 3 is a refraction path diagram of light rays emitted from a light extraction region according to an embodiment of the present disclosure
  • FIG. 4 is a refraction path diagram of light rays emitted from a light extraction region according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing a correspondence between a first light shielding strip and a light extraction area according to another embodiment of the present disclosure
  • FIG. 6 is a refraction path of an illuminating light emitted from a light extraction region in an equivalent lens according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing relative sizes of a first light shielding strip and a light extraction area according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of an equivalent lens according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an equivalent lens according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 11 illustrates a corresponding relationship between a first light shielding strip and a light extraction area according to another embodiment of the present disclosure.
  • a liquid crystal display device which does not require a polarizer is proposed by utilizing the principle of a liquid crystal grating.
  • the light-extracting area of the light guide plate is disposed directly under the light-shielding unit in the filter layer, and when the gray scale is displayed, the light emitted from the light-receiving area is exactly directed to the light-shielding unit, and the liquid crystal is driven by the liquid crystal at 1 to 255.
  • the layer is such that the liquid crystal layer forms a periodically arranged liquid crystal grating, and the liquid crystal grating is used for diffraction of light to realize display.
  • the shading unit is usually disposed relatively small, so that the light-taking area is relatively small, resulting in less light being coupled from the light guide plate, thereby making the utilization of light in the light guide plate low.
  • Embodiments of the present disclosure provide a liquid crystal display device.
  • the liquid crystal display device includes: a light guide plate 100 in which a plurality of light extraction regions 10 are disposed in a first direction, and a liquid crystal display assembly 200 disposed in a light exit direction of the light guide plate 100.
  • the liquid crystal display device 200 includes a plurality of pixel regions arranged in an array; each of the pixel regions includes a first electrode layer 20, a second electrode layer 30, and a liquid crystal layer 40 in a thickness direction of the liquid crystal display device 200.
  • a filter layer 50 disposed on a side of the liquid crystal layer 40 away from the light guide plate 100; the filter layer 50 includes a plurality of first light shielding strips 51 disposed along the first direction; each first The light shielding strip 51 extends in a second direction substantially perpendicular to the first direction; and wherein each light extraction area 10 corresponds to a first light shielding strip 51; the light extraction area 10 is in the first direction
  • the width Wa is greater than the width Wb of the corresponding first light-shielding strip 51 in the first direction.
  • the liquid crystal layer 40 forms an equivalent lens 43 under the driving of the first electrode layer 20 and the second electrode layer 30.
  • a data signal is input to the first electrode layer and the second electrode layer in accordance with an image to be displayed, thereby forming an equivalent lens in each pixel region.
  • the equivalent lens is used to adjust the direction of the light beam emitted from each of the light extraction regions, thereby adjusting the amount of light incident on the corresponding first light blocking strip to achieve display of different gray levels.
  • the backlight of the liquid crystal display device is emitted from the light extraction region 10 of the light guide plate 100 to enable the liquid crystal display device 200 to display.
  • the plurality of light-receiving regions 10 may be the same size and arranged in an array on the light-emitting surface of the light guide plate 100; alternatively, the plurality of light-receiving regions 10 may have the same size, and Set in the first direction. A space may be set between the plurality of light extraction zones 10.
  • the light outgoing direction of the light guide plate 100 refers to the traveling direction of the light emitted from the light extraction region 10 of the light guide plate 100.
  • Other structures may be disposed between the liquid crystal display device 200 and the light guide plate 100, or may be directly disposed on the light-emitting surface of the light guide plate 100.
  • the first direction may be a direction in which light is conducted in the light guide plate 100.
  • the direction of light conduction in the light guide plate 100 means a direction from the side where the light guide plate 100 is provided with the light source 300 to the opposite side.
  • the first direction and the second direction are perpendicular.
  • the light guide plate 100 has a rectangular shape, and the first direction and the second direction are respectively parallel to two sides perpendicular to the light guide plate 100.
  • the first electrode layer 20 and the second electrode layer 30 drive the liquid crystal layer 40 to form an equivalent lens 43.
  • the first electrode layer 20 and the second electrode layer 30 may be disposed on opposite sides of the liquid crystal layer 40.
  • the first electrode layer 20 and the second electrode layer 30 may also be disposed on the same side of the liquid crystal layer 40.
  • each of the sub-electrodes 21 in the first electrode layer 20 may be connected to a data line for supplying a driving signal to the sub-electrodes 21, for example.
  • the plurality of sub-electrodes 21 are individually driven, and the liquid crystal layer 40 also has a plurality of equivalent lenses 43.
  • the liquid crystal layer 40 may form the liquid crystal grating 42 directly under the first light-shielding strip 51, or may form the liquid crystal prism 41 located obliquely below the first light-shielding strip 51. It is also possible not to apply a voltage to the partial sub-electrodes 21 so that the liquid crystal at the unapplied voltage remains as it is.
  • the specific form of the liquid crystal layer 40 is adjusted according to the screen to be displayed.
  • the sub-electrodes 21 disposed in the first direction in the first electrode layer 20 are, for example, strip electrodes arranged side by side (the strip electrodes extend in the second direction), the pattern of each sub-electrode 21 is the same, and the plurality of sub-electrodes 21 are They are insulated from each other.
  • the plurality of sub-electrodes 21 may also be arranged in an array.
  • Each of the sub-electrodes 21 corresponds to one light-receiving area 10
  • one light-receiving area 10 corresponds to a plurality of sub-electrodes 21 for driving the liquid crystal above the corresponding light-receiving area 10.
  • the filter layer 50 may include a plurality of first light-shielding strips 51 arranged side by side and each extending in the second direction. Since each of the first light-shielding strips 51 extends in the second direction, the plurality of first light-shielding strips 51 are parallel to each other.
  • the light extraction area 10 is disposed corresponding to the first light shielding strip 51.
  • the light-receiving area 10 may be in one-to-one correspondence with the first light-shielding strips 51; alternatively, each light-receiving area 10 may correspond to the plurality of first light-shielding strips 51; alternatively, the plurality of light-receiving areas 10 may be combined with one A light shielding strip 51 corresponds.
  • the light-receiving area 10 and the first light-shielding strip 51 both extend in the second direction and correspond one-to-one.
  • one light extraction area 10 corresponds to one first light shielding strip 51, but one first light shielding strip 51 corresponds to a plurality of light extraction areas 10. That is to say, the light extraction regions 10 are also spaced apart in the second direction as shown in FIG.
  • the first light shielding strip 51 corresponding to the light extraction area 10 is disposed directly above the light extraction area 10 in the thickness direction of the liquid crystal display device.
  • FIG. 2 shows a corresponding relationship between a first light shielding strip and a light extraction area provided by an embodiment of the present disclosure.
  • the collimated light rays emitted from the portion of the light-receiving region 10 that is opposite to the first light-shielding strip 51 directly penetrate the liquid crystal layer 40 and are absorbed by the first light-shielding strip 51.
  • the liquid crystal display device 200 may further include a structure such as an alignment layer 60 disposed on both sides of the liquid crystal layer 40.
  • Other structures of the liquid crystal display device 200 can refer to a conventional liquid crystal display device, which will not be described in detail herein.
  • the specific principle of adjusting the transmittance of light from the light extraction region 10 to the filter layer 50 is as follows: as shown in FIG. 3, the transmittance of light from the light extraction region 10 toward the filter layer 50 is as shown in FIG.
  • the light emitted from the light extraction area 10 is divided into three parts.
  • the portion below the first light-shielding strip 51 directly penetrates the liquid crystal layer 40 and is absorbed by the first light-shielding strip 51 (where the sub-electrode 21 does not apply a voltage).
  • the apex angle ⁇ of the liquid crystal prism 41 can be adjusted by adjusting the magnitude of the voltage input to the sub-electrode 21, and the width Wa of the light-trapping region 10 and the width Wb of the first light-shielding strip 51 can be adjusted.
  • the relationship is to ensure that the light emitted from the edge of the light extraction region 10 is refracted by the liquid crystal prism 41 and can be incident below the first light shielding strip 51.
  • the light emitted from the light extraction region 10 is still divided into three. section.
  • the light directly below the width of the first light-shielding strip 51 forms an equivalent liquid crystal grating 42. After being diffracted by the liquid crystal grating 42, it is emitted from both sides of the first light-shielding strip 51 (the area between the adjacent first light-shielding strips 51).
  • An appropriate voltage signal is applied to a portion of the first light-shielding strip 51 that is not blocked to form a liquid crystal prism 41; the incident light is refracted by the liquid crystal prism 41 and is emitted from a region between adjacent first light-shielding strips 51.
  • the voltage applied to the sub-electrode 21 is different depending on the gray scale, and the amount of light emitted from the region between the adjacent first light-shielding strips 51 is controlled.
  • the apex angle ⁇ of the liquid crystal prisms 41 formed on the left and right sides may be the same or different. Of course, at this time, the light is not refracted toward the first light-shielding strip 51 after being refracted by the liquid crystal prism 41.
  • the width of the light extraction region 10 in the first direction is set to be larger than the width of the corresponding first light shielding strip 51 in the first direction, so that the light coupled from the light guide plate 100 is High light extraction efficiency and improved light utilization. Further, the amount of light emitted from the area between the adjacent first light-shielding strips 51 is increased, so that the light-emitting efficiency is increased.
  • the width of the light extraction region 10 in the first direction is large, the diffraction angle caused by the diffraction of the small holes can be neglected, so that the width of the first light shielding strip 51 in the first direction can be reduced, and the liquid crystal display assembly 200 can be improved. Opening ratio.
  • the filter layer 50 further includes a second light-shielding strip 52 disposed between the adjacent first light-shielding strips 51 and parallel with the first light-shielding strip 51;
  • a primary color filter pattern is disposed between the light-shielding strip 51 and the second light-shielding strip 55.
  • the primary color filter patterns on both sides of the first light-shielding strip 51 have the same color, and the primary color filter patterns on both sides of the second light-shielding strip 52 have different colors.
  • the area between adjacent second light-shielding strips 52 corresponds to a column of pixels emitting light of the same color (for example, a pixel R for emitting red light or a pixel G for emitting green light).
  • the pixel B for emitting blue light as shown by the dashed box in FIG. 2, the first light-shielding strip 51 located between the adjacent second light-shielding strips 52 divides each pixel into two parts.
  • the primary color filter patterns disposed on both sides of the first light-shielding strip 51 have the same color.
  • the second light-shielding strip 52 is for preventing light from being emitted by adjacent pixels from being mixed, and the colors of the primary color filter patterns disposed on both sides of the second light-shielding strip 52 are different. Light from the light extraction region 10 that is incident on the filter layer 50 is emitted from a region between the first light-shielding strip 51 and the second light-shielding strip 52.
  • the first light-shielding strip 51 and the second light-shielding strip 52 can be made of, for example, a material of a black matrix, and the two are formed in synchronization.
  • the primary color filter patterns on both sides of each of the first light-shielding strips 51 are symmetrical with respect to the first light-shielding strips 51.
  • the first light-shielding strip 51 divides the pixel area into two areas of equal area, and the first light-shielding strip 51 is an axis of symmetry and is symmetrically distributed in a mirror image.
  • the orthographic projection of the second light-shielding strip 52 on the light guide plate 100 is The light extraction areas 10 do not overlap.
  • the width of the light-receiving area 10 in the first direction is smaller than the gap between the adjacent second light-shielding strips 52.
  • the width of the light extraction region 10 in the first direction is smaller than the width of the pixel region in the first direction.
  • the width of the pixel region in the first direction includes a width of the first light-shielding strip 51 in the first direction and a width of the primary color filter pattern on both sides of the first light-shielding strip 51 in the first direction.
  • the plurality of pixel regions may be arranged in an array, for example.
  • each of the light extraction regions 10 and the corresponding first light shielding strips 51 are axisymmetric patterns;
  • the axis of symmetry of the light extraction region 10 and the symmetry axis of the orthographic projection of the first light shielding strip 51 corresponding to the light extraction region 10 on the light guide plate 100 are coincident; the axis of symmetry of each light extraction region 10 is parallel to the second direction.
  • the edges of the light-receiving regions 10 on both sides of the symmetry axis are respectively equal to the distance c from the edge of the first light-shielding strip 51 closest thereto.
  • a difference c between the half width of the light extraction region 10 in the first direction and the half width of the first light shielding strip 51 in the first direction is determined by the thickness d of the liquid crystal layer 40, The angle ⁇ between the light that is incident on the filter layer 50 from the light-receiving region 10 and the thickness direction of the liquid crystal display device and the distance h from the light-emitting surface of the light guide plate 100 to the filter layer 50 are determined.
  • the angle ⁇ between the light emitted from the light extraction region 10 toward the filter layer 50 and the thickness direction of the liquid crystal display device means that the light extraction region 10 is incident on the liquid crystal prism 41 and is refracted by the liquid crystal prism 41.
  • N2 is the refractive index of the liquid crystal layer 40
  • n1 is the refractive index of the medium on both sides of the liquid crystal layer 40.
  • ⁇ 1 is an angle (incident angle) of light rays that are incident on the liquid crystal prism 41 from the light extraction region 10.
  • ⁇ 2 is an angle (refraction angle) at which the light is refracted in the liquid crystal prism 41.
  • ⁇ 3 is an incident angle when light is emitted from the liquid crystal prism 41.
  • ⁇ 4 is a refraction angle when light rays are emitted from the liquid crystal prism 41.
  • the angle ⁇ can be calculated from the geometric relationship and the law of refraction.
  • Refractive index of liquid crystal prism 41 Where n e is the extraordinary refractive index and n o is the ordinary refractive index.
  • the refractive path of the light in the liquid crystal display device is as shown in FIG.
  • ⁇ 4- ⁇ , where ⁇ is the apex angle of the liquid crystal prism, ⁇ 4 is the exit angle of the collimated light refracted by the liquid crystal prism, and ⁇ is the angle between the refracted ray and the vertical normal.
  • the width Wa of the light-receiving area 10 is equal to the width Wb of the light-shielding strip plus the distance c from the edge of the light-receiving area 10 to the edge of the light-shielding strip.
  • FIG. 8 is a schematic diagram of an equivalent lens according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of another equivalent lens according to an embodiment of the present disclosure.
  • the initial direction of the long axis of the liquid crystal molecules is a horizontal direction, and acts on polarized light (i.e., e-light) that vibrates in-plane.
  • the initial direction of the long axis of the liquid crystal molecules is a vertical direction, which acts on polarized light (i.e., e-light) that vibrates in-plane.
  • the deflection angle of the liquid crystal By controlling the deflection angle of the liquid crystal, different effective refractive indices can be achieved, and the refractive index is related to the deflection angle of the liquid crystal.
  • the apex angle ⁇ ⁇ 40 degrees of the formed liquid crystal prism should be considered in designing the width of the light extraction region 10.
  • the liquid crystal display device further includes a filling layer 70 disposed on the light emitting surface of the light guide plate 100;
  • the refractive index of the filling layer 70 is smaller than the refractive index of the light guide plate 100, and is different from the refractive index of the grating strip of the light extraction grating 11.
  • the liquid crystal display assembly 200 may further include an upper substrate 80 disposed on a side of the filter layer 50 away from the liquid crystal layer 40.
  • the plurality of light extraction regions 10 and the plurality of pixel regions are in one-to-one correspondence; each of the light extraction regions 10 is located on the light guide plate 100 corresponding to the pixel region. Inside the orthographic projection.
  • the array of light-receiving regions 10 is arranged such that the light-receiving regions 10 are spaced apart in the first direction and the second direction. Viewed from a top view, the outline of each pixel region (shown by the dashed box in FIG. 5) encloses the contour of the corresponding light extraction region 10.
  • each of the light extraction regions 10 corresponds to a column of pixel regions arranged along the second direction. Thereby, the manufacturing process and structure of the light guide plate 100 can be further simplified.
  • the embodiment of the present disclosure further provides a display method using the liquid crystal display device as described above, comprising: inputting a data signal to the first electrode layer 20 and the second electrode layer 30 according to an image to be displayed, thereby An equivalent lens is formed in the pixel region; and the direction of the light beam emitted from each of the light extraction regions 10 is adjusted by the equivalent lens, thereby adjusting the amount of light incident on the corresponding first light blocking strip 51.
  • the data signal input to the first electrode layer 20 includes a form for changing the equivalent lens 43 corresponding to the pixel data, The transmittance of the pixel for outputting the pixel data in the liquid crystal display device is made zero.
  • the present disclosure is to achieve a display of 0-255 gray scales, each of which requires application of a data signal to the first electrode layer 20 or the second electrode layer 30.
  • the applied voltage is adjusted according to the gray scale to be displayed, thereby forming the shape of the desired lens.
  • the display method provided by the embodiment of the present disclosure applies a data signal to the first electrode layer 20 according to the gray scale to be displayed; the width of the light extraction region 10 in the first direction may be set to be larger than the width of the first light shielding strip 51 in the first direction. Therefore, the light extracted from the light guide plate 100 has high light extraction efficiency, and the utilization ratio of the light is improved. Further, the amount of light emitted from the area between the adjacent first light-shielding strips 51 is increased, so that the light-emitting efficiency is increased.
  • the width of the light extraction region 10 in the first direction is large, the diffraction angle caused by the diffraction of the small holes can be neglected, so that the width of the first light shielding strip 51 in the first direction can be reduced, and the liquid crystal display assembly 200 can be improved. Opening ratio.

Abstract

一种液晶显示装置和显示方法,液晶显示装置包括:沿第一方向设置有多个取光区(10)的导光板(100)、以及设置在导光板(100)的出光方向上的液晶显示组件(200);在液晶显示组件(200)的厚度方向上,每个像素区包括第一电极层(20)、第二电极层(30)、液晶层(40)、以及设置在液晶层(40)远离导光板(100)一侧的滤光层(50);滤光层(50)包括沿第一方向设置的多个第一遮光条(51);每个第一遮光条(51)沿与第一方向基本上垂直的第二方向延伸;并且其中,每个取光区(10)对应于一个第一遮光条(51);沿第一方向,取光区(10)的宽度大于对应的第一遮光条(51)的宽度。

Description

液晶显示装置以及显示方法
相关申请
本申请要求保护在2018年5月4日提交的申请号为201810421549.6的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及显示技术领域,尤其涉及一种液晶显示装置以及显示方法。
背景技术
液晶显示器因其具有零辐射、低耗能、散热小、可精确还原图像、画面显示稳定不闪烁等优点,被广泛的应用于显示技术领域。传统的液晶显示器件在阵列基板和对盒基板的两侧分别设置有偏振方向垂直的偏光片,使得液晶显示器件的结构复杂。
发明内容
一方面,本公开的实施例提供了一种液晶显示装置。所述液晶显示装置包括:沿第一方向设置有多个取光区的导光板、以及设置在所述导光板的出光方向上的液晶显示组件;其中,所述液晶显示组件包括阵列布置的多个像素区;在所述液晶显示组件的厚度方向上,每个像素区包括第一电极层、第二电极层、液晶层、以及设置在所述液晶层远离所述导光板一侧的滤光层;所述滤光层包括沿所述第一方向设置的多个第一遮光条;每个第一遮光条沿与所述第一方向基本上垂直的第二方向延伸;并且其中,每个取光区对应于一个第一遮光条;所述取光区在所述第一方向上的宽度大于对应的第一遮光条在所述第一方向上的宽度。
可选的,所述滤光层还包括设置在相邻的所述第一遮光条之间且与所述第一遮光条平行的第二遮光条;所述第一遮光条与所述第二遮光条之间设置有基色滤光图案;所述第一遮光条两侧的基色滤光图案的颜色相同,所述第二遮光条两侧的基色滤光图案的颜色不同。
可选的,每个第一遮光条两侧的基色滤光图案关于所述第一遮光条对称。
可选的,所述第二遮光条在所述导光板上的正投影与所述取光区不交叠。
可选的,每个取光区和对应的第一遮光条都是轴对称图形;每个取光区的对称轴和对应的第一遮光条在所述导光板上的正投影的对称轴重合;每个取光区的对称轴平行于所述第二方向。
可选的,所述取光区在所述第一方向上的半宽与所述第一遮光条在所述第一方向上的半宽之差c由所述液晶层的厚度d、从所述取光区射向所述滤光层的光与所述液晶显示装置的厚度方向的夹角θ以及所述导光板的出光面到所述滤光层的距离h决定。
可选的,所述取光区在所述第一方向上的半宽与所述第一遮光条在所述第一方向上的半宽之差的最大值c max=h*tanθ;所述取光区在所述第一方向上的半宽与所述第一遮光条在所述第一方向上的半宽之差的最小值c min=(h-d)*tanθ。
可选的,所述液晶显示装置还包括:设置在所述导光板的出光面上的填充层;其中,所述取光区设置有取光光栅;所述填充层的折射率小于所述导光板的折射率,且不同于所述取光光栅的栅条的折射率。
可选的,所述多个取光区和所述多个像素区一一对应;每个取光区位于对应的像素区在所述导光板上的正投影内。
可选的,每个取光区对应于沿所述第二方向排列的一列像素区。
另一方面,本公开的实施例提供了一种利用如上所述的液晶显示装置的显示方法,包括:根据待显示的图像,向所述第一电极层和第二电极层输入数据信号,从而在每个像素区内形成等效透镜;以及利用所述等效透镜调节从每个取光区发出的光束的方向,从而调节入射到对应的第一遮光条的光量。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些 附图获得其他的附图。
图1为本公开实施例提供的液晶显示装置的结构示意图;
图2示出了本公开实施例提供的第一遮光条与取光区的对应关系;
图3为本公开实施例提供的从取光区出射的光线的折射路径图;
图4为本公开实施例提供的从取光区出射的光线的折射路径图;
图5示出了本公开另一实施例提供的第一遮光条与取光区的对应关系;
图6为本公开实施例提供的从取光区出射的光线的在等效透镜中的折射路径;
图7为本公开实施例提供的第一遮光条与取光区的相对尺寸示意图;
图8为本公开实施例提供的等效透镜的示意图;
图9为本公开实施例提供的等效透镜的示意图;
图10为本公开实施例提供的液晶显示装置的结构示意图;以及
图11示出了本公开另一实施例提供的第一遮光条与取光区的对应关系。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在相关技术中,利用液晶光栅原理,提出了一种无需设置偏光片的液晶显示器件。将导光板的取光区设置在滤光层中遮光单元的正下方,在0灰阶显示时,取光区射出的光正好全部射向遮光单元,在1-255灰阶时,通过驱动液晶层,使液晶层形成周期性排布的液晶光栅,利用液晶光栅对光线的衍射实现显示。然而,为了增大开口率,遮光单元通常设置的比较小,使得取光区比较小,导致从导光板中耦合出的光线占比较少,进而使得导光板中光线的利用率较低。
本公开实施例提供一种液晶显示装置。如图1和图2所示,所述液晶显示装置包括:沿第一方向设置有多个取光区10的导光板100、 以及设置在所述导光板100的出光方向上的液晶显示组件200;其中,所述液晶显示组件200包括阵列布置的多个像素区;在所述液晶显示组件200的厚度方向上,每个像素区包括第一电极层20、第二电极层30、液晶层40、以及设置在所述液晶层40远离所述导光板100一侧的滤光层50;所述滤光层50包括沿所述第一方向设置的多个第一遮光条51;每个第一遮光条51沿与所述第一方向基本上垂直的第二方向延伸;并且其中,每个取光区10对应于一个第一遮光条51;所述取光区10在所述第一方向上的宽度Wa大于对应的第一遮光条51在所述第一方向上的宽度Wb。
在本公开实施例中,如图3和图4所示,液晶层40在第一电极层20和第二电极层30的驱动下形成等效透镜43。根据待显示的图像,向所述第一电极层和第二电极层输入数据信号,从而在每个像素区内形成等效透镜。利用所述等效透镜调节从每个取光区发出的光束的方向,从而调节入射到对应的第一遮光条的光量,以实现不同灰阶的显示。
需要说明的是,液晶显示装置的背光从导光板100的取光区10射出,以使液晶显示组件200实现显示。对于取光区10的分布,例如多个取光区10的大小可以相同,且呈阵列排布在导光板100的出光面上;可替换地,多个取光区10的大小可以相同,且沿第一方向间隔设置。所述多个取光区10之间可以设置间隔。
导光板100的出光方向是指从导光板100的取光区10出射的光线的行进方向。液晶显示组件200与导光板100之间可以设置其他结构,也可以直接设置在导光板100的出光面上。
在一些实施例中,所述第一方向可以是导光板100中光传导的方向。在本公开的上下文中,“导光板100中光传导的方向”是指从导光板100设置有光源300的一侧到相对侧的方向。所述第一方向和第二方向垂直。例如,导光板100为矩形,第一方向和第二方向分别平行于导光板100相互垂直的两条边。
第一电极层20和第二电极层30驱动液晶层40形成等效透镜43。第一电极层20和第二电极层30可以设置在液晶层40相对的两侧。第一电极层20和第二电极层30也可以设置在液晶层40的同一侧。
其中,第一电极层20中的每个子电极21例如可以分别连接一根 用于为子电极21提供驱动信号的数据线。多个子电极21单独驱动,液晶层40形成的等效透镜43也为多个。
根据向第一电极层20施加的电压,如图1所示,液晶层40可以形成位于第一遮光条51正下方的液晶光栅42,也可以形成位于第一遮光条51斜下方的液晶棱镜41,还可以不向部分子电极21施加电压,使未施加电压处的液晶保持原样。此处,在显示过程中,对于液晶层40具体的形态,根据待显示画面来调整。
其中,第一电极层20中沿第一方向间隔设置的子电极21例如是并排设置的条状电极(条状电极沿第二方向延伸),每个子电极21的图案相同,多个子电极21之间相互绝缘。多个子电极21也可以阵列排布,每个子电极21对应一个取光区10,一个取光区10对应多个子电极21,子电极21用于驱动与其对应的取光区10上方的液晶。
如图2所示,滤光层50可以包括多个并排设置且均沿第二方向延伸的第一遮光条51。由于每个第一遮光条51均沿第二方向延伸,因此,多个第一遮光条51之间相互平行。
取光区10与第一遮光条51对应设置。取光区10可以与第一遮光条51一一对应;可替换地,每个取光区10可以与多个第一遮光条51对应;可替换地,多个取光区10可以与一个第一遮光条51对应。例如,取光区10和第一遮光条51均沿第二方向延伸,且一一对应。可替换地,一个取光区10对应一个第一遮光条51,但一个第一遮光条51对应多个取光区10。也就是说,取光区10如图2所示的,沿第二方向也间隔设置。
如图1所示,沿液晶显示装置的厚度方向,与取光区10对应的第一遮光条51设置在取光区10的正上方。图2示出了本公开实施例提供的第一遮光条与取光区的对应关系。从取光区10中与第一遮光条51正对的部分出射的准直光线直接穿透液晶层40后被第一遮光条51吸收。
如图1所示,液晶显示组件200还可以包括设置在液晶层40两侧的取向层60等结构。液晶显示组件200的其他结构可以参考常规的液晶显示组件,此处不再详述。
本公开调整从取光区10射向滤光层50的光的透过率的具体原理如下:如图3所示,当从取光区10射向滤光层50的光的透过率为0 时(实现0灰阶显示),从取光区10出射的光线分为三部分。第一遮光条51下方的部分直接穿透液晶层40后被第一遮光条51吸收(此处的子电极21不施加电压)。左右两侧第一遮光条51宽度外的光线,经由如图3所示的液晶棱镜41的折射后入射到第一遮光条51的下方被第一遮光条51吸收。其中,本领域技术人员应该明白,为了实现0灰阶的显示,从取光区10边缘出射的光经液晶棱镜41折射后需能入射到第一遮光条51的下方。为此,可以通过调整向子电极21输入的电压的大小来调整液晶棱镜41的顶角(apex angle)α,也可以调整取光区10的宽度Wa和第一遮光条51的宽度Wb的大小关系,来确保从取光区10边缘出射的光经液晶棱镜41折射后能入射到第一遮光条51的下方。
如图4所示,当从取光区10射向滤光层50的光的透过率为非0时(实现1-255灰阶显示),从取光区10出射的光线仍分为三部分。第一遮光条51宽度正下方的光线形成等效液晶光栅42。经过液晶光栅42的衍射作用后,从第一遮光条51两侧(相邻第一遮光条51之间的区域)出射。对于第一遮光条51未遮挡的部分,施加适当的电压信号,形成液晶棱镜41;入射的光线经液晶棱镜41的折射后从相邻第一遮光条51之间的区域出射。根据灰阶的不同,向子电极21施加的电压不同,控制从相邻第一遮光条51之间的区域出射的光的量。对于左右两侧形成的液晶棱镜41的顶角α,可以相同,也可以不同。当然,此时光线经液晶棱镜41折射后不再朝向所述第一遮光条51传播。
在本公开实施例提供的液晶显示装置中,取光区10沿第一方向的宽度设置为大于对应的第一遮光条51沿第一方向的宽度,使得从导光板100中耦合出来的光的出光效率高,提高了光线的利用率。并且,相邻的第一遮光条51之间的区域的出光量增加,使得出光效率增加。
此外,由于取光区10沿第一方向的宽度较大,从而可以忽略小孔衍射造成的衍射角,从而可以减小第一遮光条51沿第一方向上的宽度,提高液晶显示组件200的开口率。
在一些实施例中,如图1和图2所示,滤光层50还包括设置在相邻的第一遮光条51之间且与第一遮光条51平行的第二遮光条52;第一遮光条51与第二遮光条55之间设置有基色滤光图案,第一遮光条51两侧的基色滤光图案的颜色相同,第二遮光条52两侧的基色滤光图 案的颜色不同。
如图1和图2所示,相邻第二遮光条52之间的区域对应一列发同种颜色光的像素区(例如,用于发红光的像素R或者用于发绿光的像素G或者用于发蓝光的像素B,如图2中的虚线框所示),位于相邻第二遮光条52之间的第一遮光条51将每个像素区分为两部分。第一遮光条51两侧设置的基色滤光图案的颜色相同。第二遮光条52用于防止相邻像素发出的光发生混光,第二遮光条52两侧设置的基色滤光图案的颜色不相同。取光区10射向滤光层50的光从第一遮光条51和第二遮光条52之间的区域射出。
第一遮光条51和第二遮光条52例如可以采用黑矩阵的材料来制作,两者同步形成。
在一些实施例中,为了便于透过率的调节,每个第一遮光条51两侧的基色滤光图案关于所述第一遮光条51对称。
也就是说,第一遮光条51将像素区划分为两个面积相等的区域,以第一遮光条51为对称轴,呈镜像对称分布。
在一些实施例中,为了避免从滤光层50透过的光在液晶显示组件200的上基板上发生全反射,如图2所示,第二遮光条52在导光板100上的正投影与取光区10不交叠。
也就是说,第二遮光条52的正下方没有取光区10,取光区10沿第一方向的宽度小于相邻第二遮光条52之间的间隙。例如,取光区10沿第一方向的宽度小于像素区沿第一方向的宽度。像素区沿第一方向的宽度包括第一遮光条51沿第一方向的宽度和第一遮光条51两侧的基色滤光图案沿第一方向的宽度。
其中,多个像素区例如可以呈阵列排布。
在一些实施例中,为了使整个液晶显示装置的结构简化,便于各部件合理设置,如图5所示,每个取光区10和对应的第一遮光条51都是轴对称图形;每个取光区10的对称轴和与取光区10对应的第一遮光条51在导光板100上的正投影的对称轴重合;每个取光区10的对称轴平行于所述第二方向。
也就是说,沿第一方向,取光区10的位于对称轴两侧的边缘分别到距其最近的第一遮光条51的边缘的距离c相等。
在一些实施例中,所述取光区10在所述第一方向上的半宽与第一 遮光条51在所述第一方向上的半宽之差c是由液晶层40的厚度d、从取光区10射向滤光层50的光与液晶显示装置的厚度方向的夹角θ以及导光板100的出光面到滤光层50的距离h决定。
如图6所示,从取光区10射向滤光层50的光与液晶显示装置的厚度方向的夹角θ是指,从取光区10射向液晶棱镜41,经液晶棱镜41折射后射向滤光层50的光与液晶显示装置的厚度方向的夹角。n2为液晶层40的折射率,n1为液晶层40两侧的介质的折射率。θ1为从取光区10射向液晶棱镜41的光线的角度(入射角)。θ2为光线在液晶棱镜41中折射后的角度(折射角)。θ3为光线从液晶棱镜41射出时的入射角。θ4为光线射出液晶棱镜41时的折射角。
夹角θ可以根据几何关系和折射定律来计算。sinθ1*n1=sinθ2*n2,90°-θ2+90°-θ3+α=180°,θ2=-θ3+α,sinθ3*n2=sinθ4*n1,从而可以得出θ=θ4-θ3+θ1-θ2。液晶棱镜41的折射率
Figure PCTCN2019083611-appb-000001
其中n e为非寻常光折射率,n o为寻常光折射率。
在一些实施例中,如图7所示,从取光区10出射的光垂直于所述液晶棱镜41的入光面。即,θ1=θ2=0。此时,光线在液晶显示装置中的折射路径如图7所示。
此时,θ=θ4-α,其中α为液晶棱镜的顶角,θ4为准直光经过液晶棱镜折射后的出射角,θ为折射光线与垂直法线的夹角。
这样一来,对于取光区10的边缘到第一遮光条51的边缘的距离c应满足以下条件:c的最大值c max=h*tanθ,c的最小值c min=(h-d)*tanθ。
而沿第一方向,取光区10的宽度Wa就等于遮光条的宽度Wb加上取光区10的边缘到遮光条的边缘的距离c,当取光区10为轴对称图形时,取光区10的宽度Wa=Wb+2c。
图8为本公开实施例提供的一种等效透镜的示意图;图9为本公开实施例提供的另一种等效透镜的示意图。例如,在图8所示的实施例中,液晶分子长轴的初始方向为水平方向,对在面内振动的偏振光(即,e光)起作用。在图9所示的实施例中,液晶分子长轴的初始方向为竖直方向,对在面内振动的偏振光(即,e光)起作用。
通过控制液晶的偏转角度,即可实现不同的有效折射率,折射率的大小与液晶的偏转角度有关。为了避免从滤光层50透过的光在液晶 显示组件200的上基板上发生全反射,在设计取光区10的宽度时应考虑到形成的液晶棱镜的顶角α<40度。
在一些实施例中,为了确保光线在导光板100中传导,如图10所示,所述液晶显示装置还包括设置在导光板100的出光面上的填充层70;取光区10设置有取光光栅11;所述填充层70的折射率小于导光板100的折射率,且不同于取光光栅11的栅条的折射率。
其中,液晶显示组件200还可以包括设置在滤光层50远离液晶层40一侧的上基板80。
在一些实施例中,如图5所示,所述多个取光区10和所述多个像素区一一对应;每个取光区10位于对应的像素区在所述导光板100上的正投影内。
取光区10阵列排布是指取光区10沿第一方向和第二方向均间隔设置。从俯视图来看,每个像素区(如图5中的虚线框所示)的轮廓包围对应的取光区10的轮廓。
在一些实施例中,如图11所示,每个取光区10对应于沿所述第二方向排列的一列像素区。由此,可以进一步简化导光板100的制作工艺和结构。
本公开实施例还提供一种利用如上所述的液晶显示装置的显示方法,包括:根据待显示的图像,向所述第一电极层20和第二电极层30输入数据信号,从而在每个像素区内形成等效透镜;以及利用所述等效透镜调节从每个取光区10发出的光束的方向,从而调节入射到对应的第一遮光条51的光量。
其中,在待显示图像的像素数据中包含至少一个0灰阶的像素数据的情况下,向第一电极层20输入的数据信号中包含用于改变与像素数据对应的等效透镜43的形态,使得液晶显示装置中用于输出该像素数据的像素的透过率为0。
因此,本公开要实现0-255灰阶的显示,每一种灰阶都需要向第一电极层20或第二电极层30施加数据信号。当然,根据要显示的灰阶来调整施加的电压,从而形成期望的透镜的形态。
本公开实施例提供的显示方法,根据需要显示的灰阶向第一电极层20施加数据信号;取光区10沿第一方向的宽度可以设置为大于第一遮光条51沿第一方向的宽度,从而使得从导光板100中耦合出来的 光的出光效率高,提高了光线的利用率。并且,相邻的第一遮光条51之间的区域的出光量增加,使得出光效率增加。
此外,由于取光区10沿第一方向的宽度较大,从而可以忽略小孔衍射造成的衍射角,从而可以减小第一遮光条51沿第一方向上的宽度,提高液晶显示组件200的开口率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种液晶显示装置,包括:沿第一方向设置有多个取光区的导光板、以及设置在所述导光板的出光方向上的液晶显示组件;
    其中,所述液晶显示组件包括阵列布置的多个像素区;在所述液晶显示组件的厚度方向上,每个像素区包括第一电极层、第二电极层、液晶层、以及设置在所述液晶层远离所述导光板一侧的滤光层;所述滤光层包括沿所述第一方向设置的多个第一遮光条;每个第一遮光条沿与所述第一方向基本上垂直的第二方向延伸;
    并且其中,每个取光区对应于一个第一遮光条;所述取光区在所述第一方向上的宽度大于对应的第一遮光条在所述第一方向上的宽度。
  2. 根据权利要求1所述的液晶显示装置,其中,所述滤光层还包括设置在相邻的所述第一遮光条之间且与所述第一遮光条平行的第二遮光条;
    所述第一遮光条与所述第二遮光条之间设置有基色滤光图案;所述第一遮光条两侧的基色滤光图案的颜色相同,所述第二遮光条两侧的基色滤光图案的颜色不同。
  3. 根据权利要求2所述的液晶显示装置,其中,每个第一遮光条两侧的基色滤光图案关于所述第一遮光条对称。
  4. 根据权利要求2所述的液晶显示装置,其中,所述第二遮光条在所述导光板上的正投影与所述取光区不交叠。
  5. 根据权利要求1所述的液晶显示装置,其中,每个取光区和对应的第一遮光条都是轴对称图形;每个取光区的对称轴和对应的第一遮光条在所述导光板上的正投影的对称轴重合;每个取光区的对称轴平行于所述第二方向。
  6. 根据权利要求5所述的液晶显示装置,其中,所述取光区在所述第一方向上的半宽与所述第一遮光条在所述第一方向上的半宽之差c由所述液晶层的厚度d、从所述取光区射向所述滤光层的光与所述液晶显示装置的厚度方向的夹角θ以及所述导光板的出光面到所述滤光层的距离h决定。
  7. 根据权利要求6所述的液晶显示装置,其中,所述取光区在所述第一方向上的半宽与所述第一遮光条在所述第一方向上的半宽之差 的最大值c max=h*tanθ;所述取光区在所述第一方向上的半宽与所述第一遮光条在所述第一方向上的半宽之差的最小值c min=(h-d)*tanθ。
  8. 根据权利要求1所述的液晶显示装置,还包括:设置在所述导光板的出光面上的填充层;
    其中,所述取光区设置有取光光栅;
    所述填充层的折射率小于所述导光板的折射率,且不同于所述取光光栅的栅条的折射率。
  9. 根据权利要求1-8任一项所述的液晶显示装置,其中,所述多个取光区和所述多个像素区一一对应;每个取光区位于对应的像素区在所述导光板上的正投影内。
  10. 根据权利要求1-8任一项所述的液晶显示装置,其中,每个取光区对应于沿所述第二方向排列的一列像素区。
  11. 一种利用如权利要求1-10任一项所述的液晶显示装置的显示方法,包括:
    根据待显示的图像,向所述第一电极层和第二电极层输入数据信号,从而在每个像素区内形成等效透镜;以及
    利用所述等效透镜调节从每个取光区发出的光束的方向,从而调节入射到对应的第一遮光条的光量。
PCT/CN2019/083611 2018-05-04 2019-04-22 液晶显示装置以及显示方法 WO2019210785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,755 US11226512B2 (en) 2018-05-04 2019-04-22 Liquid crystal display device and display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810421549.6A CN108594517B (zh) 2018-05-04 2018-05-04 一种液晶显示装置及其控制方法
CN201810421549.6 2018-05-04

Publications (1)

Publication Number Publication Date
WO2019210785A1 true WO2019210785A1 (zh) 2019-11-07

Family

ID=63619847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083611 WO2019210785A1 (zh) 2018-05-04 2019-04-22 液晶显示装置以及显示方法

Country Status (3)

Country Link
US (1) US11226512B2 (zh)
CN (1) CN108594517B (zh)
WO (1) WO2019210785A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594517B (zh) 2018-05-04 2021-04-06 京东方科技集团股份有限公司 一种液晶显示装置及其控制方法
CN110412801A (zh) * 2019-07-31 2019-11-05 京东方科技集团股份有限公司 显示面板和显示装置
CN110398864B (zh) * 2019-07-31 2021-10-26 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN110646977B (zh) * 2019-09-27 2023-01-10 京东方科技集团股份有限公司 一种量子点显示面板、显示装置
KR20230057495A (ko) * 2021-10-21 2023-05-02 삼성디스플레이 주식회사 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141314A (ja) * 2014-01-29 2015-08-03 セイコーエプソン株式会社 電気光学装置、及び電子機器
CN106707608A (zh) * 2017-03-23 2017-05-24 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN106773314A (zh) * 2017-01-12 2017-05-31 京东方科技集团股份有限公司 一种显示面板及显示装置
CN107238974A (zh) * 2017-07-24 2017-10-10 京东方科技集团股份有限公司 一种背光源及液晶显示模组
CN107945760A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN108594517A (zh) * 2018-05-04 2018-09-28 京东方科技集团股份有限公司 一种液晶显示装置及其控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325961A (ja) * 1994-03-17 1998-12-08 Hitachi Ltd アクティブマトリクス型液晶表示装置
KR950029830A (ko) * 1994-04-19 1995-11-24 가네꼬 히사시 액정 디스플레이 셀
JP2006058533A (ja) * 2004-08-19 2006-03-02 Sharp Corp 液晶表示装置
CN101479643B (zh) * 2006-06-27 2013-08-28 Nlt科技股份有限公司 显示面板,显示装置和终端装置
JP5609791B2 (ja) * 2011-06-29 2014-10-22 凸版印刷株式会社 液晶表示用の対向基板及び液晶表示装置
JP5881057B2 (ja) * 2011-11-30 2016-03-09 Nltテクノロジー株式会社 横電界方式の液晶表示装置及びその製造方法
CN102654665B (zh) 2011-12-14 2014-02-26 京东方科技集团股份有限公司 液晶透镜型调光装置及显示器
CN103543552B (zh) * 2012-07-10 2016-07-06 群康科技(深圳)有限公司 液晶显示面板、其驱动方法及包含其的液晶显示器
CN102866550B (zh) * 2012-09-24 2015-03-25 北京京东方光电科技有限公司 阵列基板、显示面板及其制备方法
KR102147520B1 (ko) * 2013-07-29 2020-08-25 삼성디스플레이 주식회사 곡면표시장치
JP2015206879A (ja) * 2014-04-18 2015-11-19 株式会社ジャパンディスプレイ 液晶表示装置
CN104407480B (zh) * 2014-11-05 2017-05-31 深圳市华星光电技术有限公司 像素结构及具有该像素结构的液晶显示面板
CN104932145B (zh) * 2015-06-30 2017-09-22 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN105511175A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 显示面板及其制作方法
CN105511179B (zh) * 2016-03-03 2020-02-18 京东方科技集团股份有限公司 一种液晶显示器
US20180061862A1 (en) * 2016-12-09 2018-03-01 HKC Corporation Limited Display panel and display device
JP2019148621A (ja) * 2018-02-26 2019-09-05 三菱電機株式会社 表示装置、および、表示装置の駆動方法
CN109031760B (zh) * 2018-08-21 2021-10-26 京东方科技集团股份有限公司 一种3d液晶显示面板、显示装置和驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141314A (ja) * 2014-01-29 2015-08-03 セイコーエプソン株式会社 電気光学装置、及び電子機器
CN106773314A (zh) * 2017-01-12 2017-05-31 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106707608A (zh) * 2017-03-23 2017-05-24 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN107238974A (zh) * 2017-07-24 2017-10-10 京东方科技集团股份有限公司 一种背光源及液晶显示模组
CN107945760A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN108594517A (zh) * 2018-05-04 2018-09-28 京东方科技集团股份有限公司 一种液晶显示装置及其控制方法

Also Published As

Publication number Publication date
US11226512B2 (en) 2022-01-18
US20200103697A1 (en) 2020-04-02
CN108594517A (zh) 2018-09-28
CN108594517B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2019210785A1 (zh) 液晶显示装置以及显示方法
US10831053B2 (en) Display panel and display device
WO2018072508A1 (zh) 显示装置及其显示方法
US10627664B2 (en) Display panel, display device and display method
US5959704A (en) Display device having diffraction grating
WO2013157341A1 (ja) 液晶表示装置
WO2020007181A1 (zh) 显示面板及显示装置
WO2017117907A1 (zh) 一种3d显示装置
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
CN208297887U (zh) 一种显示装置
US10613394B2 (en) Display device
WO2020052466A1 (zh) 显示面板和显示装置
WO2015039467A1 (zh) 一种阵列基板、显示面板及其显示装置
US20190278152A1 (en) Display panel, method for adjusting grayscale of the same, and display device
US10698275B2 (en) Display apparatus
KR20140052819A (ko) 시야각 제어가 가능한 백라이트 유닛을 구비한 액정표시장치
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2017219854A1 (zh) 一种显示装置
WO2017118007A1 (zh) 一种双视裸眼3d显示器件及其制作方法、液晶显示装置
WO2020233494A1 (zh) 具有漏光消除元件的液晶眼镜和液晶显示面板
WO2017219865A1 (zh) 一种显示装置
WO2017177671A1 (zh) 显示装置
WO2013163878A1 (zh) 调光装置及显示器
US9958688B2 (en) Stereoscopic display
US10473833B2 (en) Light modulation panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796964

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19796964

Country of ref document: EP

Kind code of ref document: A1