WO2020233494A1 - 具有漏光消除元件的液晶眼镜和液晶显示面板 - Google Patents

具有漏光消除元件的液晶眼镜和液晶显示面板 Download PDF

Info

Publication number
WO2020233494A1
WO2020233494A1 PCT/CN2020/090210 CN2020090210W WO2020233494A1 WO 2020233494 A1 WO2020233494 A1 WO 2020233494A1 CN 2020090210 W CN2020090210 W CN 2020090210W WO 2020233494 A1 WO2020233494 A1 WO 2020233494A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
electrode
light
polarization direction
Prior art date
Application number
PCT/CN2020/090210
Other languages
English (en)
French (fr)
Inventor
王海燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/264,908 priority Critical patent/US11294225B2/en
Publication of WO2020233494A1 publication Critical patent/WO2020233494A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/288Filters employing polarising elements, e.g. Lyot or Solc filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present application relates to the field of display technology, in particular, to liquid crystal glasses and liquid crystal display panels with light leakage elimination elements.
  • the existing zoom glasses usually integrate a lens unit such as a Fresnel lens and a liquid crystal on the lens, and the lens unit and the liquid crystal together realize the conversion of the focal length of the glasses.
  • the non-ideality of the lens unit causes light leakage in the zoom glasses and causes stray light spots, which affects the viewing effect.
  • the liquid crystal lens also has non-ideality, which causes stray light to appear, causes light leakage, and reduces the contrast of the display panel.
  • the present disclosure provides liquid crystal glasses, including: a first substrate and a second substrate that are arranged in alignment; a first electrode, which is arranged on a side of the first substrate facing the second substrate; A second electrode, which is arranged on the side of the second substrate facing the first substrate and on the side of the first electrode away from the first substrate; a liquid crystal layer, which is filled in the first substrate Between an electrode and the second electrode; a lens unit arranged between the second electrode and the liquid crystal layer, the lens unit including an effective area and an ineffective area, the effective area and the ineffective area One of them is configured to converge a collimated light beam through refraction, and the other of the effective area and the ineffective area is configured to diverge parallel light beams through refraction; a light leakage elimination element, the light leakage elimination element is disposed on the Between the second electrode and the lens unit, the orthographic projection of the light leakage elimination element on the second substrate and the orthographic projection of the ineffective area on the second substrate at least partially overlap, and the light leak
  • the orthographic projection of the light leakage elimination element on the second substrate and the orthographic projection of the effective area on the second substrate do not overlap.
  • the lens unit is a Fresnel lens
  • the Fresnel lens includes a plurality of lens protrusions
  • each lens protrusion includes a first side surface and a second side surface that intersect each other and enters the lens
  • the component having the first polarization direction of the parallel beam of the protrusion is refracted and converged at the first side surface, and the component of the parallel light beam entering the protrusion of the lens having the first polarization direction is refracted and diverged at the second side surface.
  • the lens unit includes a plurality of effective regions and a plurality of ineffective regions, each of the effective regions is defined by the first side surface, and is configured to converge a component of a parallel light beam having a first polarization direction through refraction, each The ineffective region is defined by the second side surface, and is configured to diverge the component of the parallel light beam having the first polarization direction through refraction.
  • the orthographic projection of the light leakage elimination element on the second substrate and the orthographic projection of at least one of the plurality of ineffective regions on the second substrate at least partially overlap.
  • the wire grid polarizer is configured to block light having a second polarization direction perpendicular to the first polarization direction, and the width of the wire grid polarizer along the first polarization direction ranges from 6 ⁇ m to 30 ⁇ m.
  • the width of the half-wave plate along the first polarization direction is smaller than the width of the wire grid polarizer along the first polarization direction.
  • the width difference between the wire grid polarizer and the half-wave plate ranges from 0.4 ⁇ m to 0.8 ⁇ m.
  • the liquid crystal glasses include a plurality of the light leakage elimination elements, and the orthographic projection of each of the plurality of invalid regions on the second substrate corresponds to the corresponding one of the plurality of light leakage elimination elements An orthographic projection on the second substrate at least partially overlaps.
  • the light blocking element is a polarizer.
  • the polarizer is disposed on a side of the first substrate away from the lens unit.
  • the light blocking element is an upper liquid crystal cell disposed on a side of the first substrate away from the lens unit.
  • the upper liquid crystal cell includes: a third substrate and a fourth substrate arranged in a pair, a third electrode arranged on a side of the third substrate close to the fourth substrate, and arranged close to the fourth substrate.
  • the fourth electrode on the side of the third substrate and on the side of the third electrode away from the third substrate, an upper liquid crystal layer disposed between the third electrode and the fourth electrode, and an upper light leakage elimination element , which is disposed between the fourth electrode and the upper liquid crystal layer, and includes an upper wire grid polarizer, the orthographic projection of the upper light leakage elimination element on the second substrate and the light leakage elimination element in the The orthographic projections on the second substrate overlap, and the upper wire grid polarizer is configured to block light having a second polarization direction perpendicular to the first polarization direction.
  • the upper light leakage elimination element further includes an upper half-wave plate stacked on the upper wire grid polarizer and away from the fourth electrode.
  • the width of the upper wire grid polarizer along the first polarization direction ranges from 6 ⁇ m to 30 ⁇ m.
  • the width of the upper half-wave plate along the first polarization direction is smaller than the width of the upper wire grid polarizer along the first polarization direction.
  • the upper liquid crystal cell further includes: an upper lens unit located between the upper liquid crystal layer and the upper light leakage elimination element, the upper lens unit includes an effective area and an ineffective area, the upper lens unit One of the effective area of the lens unit and the ineffective area is configured to converge the component of the parallel light beam having the first polarization direction by refraction, and the other of the effective area of the upper lens unit and the ineffective area is configured To diverge the component with the first polarization direction of the parallel beam through refraction.
  • the orthographic projection of the ineffective area of the upper lens unit on the second substrate overlaps the orthographic projection of the ineffective area of the lens unit on the second substrate.
  • the present disclosure provides a liquid crystal display panel, including: a first substrate and a second substrate arranged in an aligned manner; a first electrode arranged on a side of the first substrate facing the second substrate A second electrode, which is arranged on the side of the second substrate facing the first substrate and on the side of the first electrode away from the first substrate; a color adjustment layer, which includes alternately arranged The color film pattern and the black matrix pattern; a liquid crystal layer, which is filled between the first electrode and the second electrode, and includes an effective area and an ineffective area, the ineffective area is positive on the second substrate
  • the projection overlaps with the orthographic projection of a portion of the black matrix pattern adjacent to the adjacent color filter pattern on the second substrate, and the effective area is the portion of the liquid crystal layer excluding the ineffective area; and light leakage An elimination element, the light leakage elimination element is disposed between the second electrode and the liquid crystal layer, the orthographic projection of the light leakage elimination element on the second substrate and the ineffective area are on the second substrate
  • the orthographic projection of the light leakage elimination element on the second substrate and the orthographic projection of the effective area on the second substrate do not overlap.
  • the liquid crystal display panel further includes a liquid crystal control element configured to control the liquid crystal control voltage applied to the first electrode and the second electrode, so that the liquid crystal layer is configured as a plurality of liquid crystal prisms, so Each of the plurality of liquid crystal prisms has a different angle between the light entrance surface and the light exit surface under different liquid crystal control voltages.
  • the wire grid polarizer is configured to block light having a second polarization direction perpendicular to the first polarization direction, and the width of the wire grid polarizer along the first polarization direction ranges from 3 ⁇ m to 20 ⁇ m.
  • the width of the half-wave plate along the first polarization direction is smaller than the width of the wire grid polarizer along the first polarization direction.
  • the width difference between the wire grid polarizer and the half-wave plate ranges from 0.1 ⁇ m to 0.4 ⁇ m.
  • Figure 1 is a cross-sectional view of the structure of existing zoom glasses
  • Figure 2 is an optical path diagram of existing zoom glasses
  • 3 is a cross-sectional view of the structure of the Fresnel lens in the existing zoom glasses
  • Figure 4 is an enlarged view of part A in Figure 3;
  • FIG. 5 is a cross-sectional view and an optical path diagram of a liquid crystal display panel according to some embodiments.
  • FIG. 6 is a structural cross-sectional view of liquid crystal glasses according to an embodiment of the present disclosure.
  • Fig. 7 is an enlarged schematic diagram of part B in Fig. 6;
  • FIG. 8 is an optical path diagram of the liquid crystal glasses shown in FIG. 6, for example, according to an embodiment of the present disclosure
  • FIG. 9 is a structural cross-sectional view and optical path diagram of liquid crystal glasses according to an embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view of the structure of a liquid crystal display panel according to an embodiment of the present disclosure
  • Fig. 11 is an enlarged schematic diagram and an optical path diagram of part C in Fig. 10.
  • the zoom glasses can change the focal length, which is suitable for hyperopia and nearsighted eyes.
  • the existing zoom glasses usually realize the conversion of the focal length of the glasses through a lens unit such as a Fresnel lens and a liquid crystal.
  • the Fresnel lens 19 in the existing zoom glasses has problems. As shown in FIGS. 1 to 4, the Fresnel lens 19 includes a plurality of lens protrusions 191, and each lens protrusion 19 includes a first side surface S1 and a second side surface S2 that intersect each other.
  • the second side surface S2 is perpendicular to the bottom surface of the Fresnel lens, but due to process errors, there is an anchor angle error of 15°.
  • the parallel light beam entering the lens protrusion 191 is refracted and converged at the first side surface S1, and is refracted and diverged at the second side surface S2. Therefore, the ineffective area 3 defined by the second side surface S2 and the corresponding bottom surface will cause the original light to deviate from the predetermined direction and scatter, and eventually cause stray light spots, which affects the viewing of human eyes.
  • the existing liquid crystal display panel usually realizes the control of the polarization direction of light by arranging upper and lower polarizers.
  • the deflection of the liquid crystal 7 can be controlled so that the liquid crystal 7 in the corresponding area of each pixel is equivalent to a lens structure (such as a liquid crystal prism 20).
  • the light irradiated to each pixel area is partially deflected and then enters the black matrix 18 to control the display gray scale of the display panel.
  • the display panel does not need to be provided with a polarizer, thereby improving the light utilization rate.
  • the equivalent lens structure formed after the deflection of the liquid crystal 7 also has the problem of light leakage caused by the invalid region 3 of the lens in the above zoom glasses.
  • the present disclosure provides a light leakage elimination element, and liquid crystal glasses and a liquid crystal display panel having the light leakage elimination element, which can at least solve one of the above-mentioned problems.
  • the present disclosure provides liquid crystal glasses, including: a first substrate and a second substrate that are arranged in alignment; a first electrode, which is arranged on a side of the first substrate facing the second substrate; and a second electrode, It is arranged on the side of the second substrate facing the first substrate and on the side of the first electrode away from the first substrate; the liquid crystal layer is filled between the first electrode and the second electrode; the lens unit is arranged Between the second electrode and the liquid crystal layer, the lens unit includes an effective area and an ineffective area, one of the effective area and the ineffective area is configured to converge the collimated light beam by refraction, and the other of the effective area and the ineffective area is configured to The parallel beams are diverged through refraction; the light leakage elimination element is arranged between the second electrode and the lens unit, and the orthographic projection of the light leakage elimination element on the second substrate and the orthographic projection of the invalid area on the second substrate are at least partially Overlapping, the light leakage elimination unit includes a wire grid polarizer and
  • FIGS. 6-8 show an example of liquid crystal glasses with light leakage elimination elements.
  • the liquid crystal glasses include: a first substrate 5 and a second substrate 6 arranged in a pair; a first electrode 8 arranged on the side of the first substrate 5 facing the second substrate 6; a second electrode 9 arranged on The side of the second substrate 6 facing the first substrate 5 and located on the side of the first electrode 8 away from the first substrate 5; a liquid crystal layer, which includes liquid crystal molecules 7 and is filled in the first electrode 8 and the second electrode 9
  • the side of the layer away from the second electrode 9 is configured to block the light passing through the light leakage elimination element 4 and the invalid region 3 from exiting the liquid crystal glasses.
  • the lens unit 1 includes an effective area 2 and an ineffective area 3.
  • the effective area 2 is used to refract incident light to the target area, and the ineffective area 3 can refract the incident light to areas outside the target area.
  • one of the effective area 2 and the ineffective area 3 is configured to converge the collimated light beam through refraction
  • the other of the effective area 2 and the ineffective area 3 is configured to diverge the parallel beams through refraction.
  • the light leakage elimination unit 4 includes a wire grid polarizer 41 and a half-wave plate 42 stacked in sequence away from the second electrode 9, and the orthographic projection of the light leakage elimination unit 4 on the second substrate 6 and the orthographic projection of the ineffective area 3 on the second substrate 6 The projections overlap at least partially. In some embodiments, the orthographic projection of the light leakage elimination element 4 on the second substrate 6 and the orthographic projection of the effective area 2 on the second substrate 6 do not overlap.
  • the light leakage elimination unit 4 can convert the polarization direction of the light incident to the invalid area 3 to prevent the light incident to the invalid area 3 from being refracted to areas other than the target area.
  • the target area refers to the normal image imaging area.
  • the area outside the target area refers to the area where the image should not be formed.
  • the image of the area outside the target area will interfere with the image of the target area, affect the imaging effect of the image, and thus affect the viewing effect of the human eye.
  • the liquid crystal glasses are provided with a light elimination unit 4 including a wire grid polarizer and a half-wave plate, which can convert the polarization direction of the light incident to the invalid region 3 of the light refraction unit 1, so as to prevent the light incident to the invalid region 3 from being refracted to Areas outside the target area, so as to prevent the light outside the target area from interfering with the light in the target area, thereby ensuring the imaging effect of the light in the target area, and ultimately ensuring the viewing effect of the human eye.
  • a light elimination unit 4 including a wire grid polarizer and a half-wave plate, which can convert the polarization direction of the light incident to the invalid region 3 of the light refraction unit 1, so as to prevent the light incident to the invalid region 3 from being refracted to Areas outside the target area, so as to prevent the light outside the target area from interfering with the light in the target area, thereby ensuring the imaging effect of the light in the target area, and ultimately ensuring the viewing effect of the human eye.
  • the light blocking element 10 is a polarizer 10, which is disposed on the side of the first substrate 5 away from the second substrate 6.
  • the polarizer 10 can pass light in the first polarization direction among incident light.
  • the liquid crystal 7 can be deflected under the action of an electric field formed after the first electrode 8 and the second electrode 9 are applied with a voltage.
  • the lens unit 1 is a Fresnel lens, for example, the Fresnel lens 19 shown in FIG. 3.
  • the Fresnel lens 19 includes a plurality of lens protrusions 191, and each lens protrusion 191 includes a first side surface S1 and a second side surface S2 that intersect each other, a component of a parallel light beam entering the lens protrusion having a first polarization direction It is refracted and converged at the first side surface S1, and the component having the first polarization direction of the parallel light beam entering the lens protrusion 191 is refracted at the second side surface S2 to diverge.
  • the first side surface and the bottom surface of each lens protrusion define an effective area 2.
  • the effective area 2 is configured to converge the component of the parallel light beam having the first polarization direction by refraction.
  • the second side surface and the bottom surface of each lens protrusion The surface defines an ineffective region 3, and the ineffective region 3 is configured to diverge the component having the first polarization direction of the parallel beam through refraction.
  • the ineffective area 3 is the area where the included angle of the zigzag structure of the Fresnel lens is located.
  • the Fresnel lens cooperates with the liquid crystal 7 to enable the light in the first polarization direction in the incident light to be zoomed and converged.
  • the light leakage elimination unit 4 is located between the second electrode 9 and the Fresnel lens.
  • the liquid crystal glasses may be zoom sunglasses.
  • the zooming effect of the zoom sunglasses is suitable for long-sighted or short-sighted people to wear and watch.
  • the light path passing through the effective area 2 of the lens unit 1 is shown in FIG. 8.
  • Natural light includes circularly polarized light and elliptically polarized light.
  • the natural light is decomposed into light in the first polarization direction and light in the second polarization direction whose polarization directions are perpendicular to each other.
  • the light in the first polarization direction is horizontally polarized light
  • the second polarization is The light in the direction is vertical polarization light.
  • the light incident to the effective area of the Fresnel lens 2 includes horizontal polarization light and vertical polarization light.
  • the Fresnel lens only changes the optical path for horizontal polarization light, but does not change the optical path for vertical polarization light.
  • the polarizer 10 can pass horizontally polarized light in incident light.
  • the liquid crystal 7 only changes the propagation direction of light, but does not change the polarization direction of light.
  • the horizontally polarized light is deflected after passing through the Fresnel lens, and under the combined action of the deflected liquid crystal 7, after passing through the polarizer 10, the emitted light is condensed on the retina of the human eye, thereby realizing natural light zooming through the sunglasses After entering the human eye.
  • the vertically polarized light in the incident light is not modulated by the Fresnel lens, and is still substantially perpendicular to the first substrate 5. Because its polarization direction is different from the transmission axis of the polarizer 10, this part of the light is not absorbed. Therefore, the polarizer 10 can make the sunglasses play a role of preventing vertigo from strong sunlight.
  • the wire grid polarizer 41 may be configured to pass light of a first polarization direction among incident light rays and block light having a second polarization direction perpendicular to the first polarization direction.
  • the wire grid polarizer 41 includes a metal wire grid polarizer.
  • the light path passing through the invalid region 3 of the lens unit 1 is shown in FIG. 8.
  • the light incident to the ineffective zone 3 passes through the wire grid polarizer 41, the vertical polarization light in the natural light is absorbed; the remaining horizontal polarization light is incident on the half-wave plate 42 through the wire grid polarizer 41 and passes through
  • this part of the vertical polarization light is not modulated when passing through the Fresnel lens, but still travels substantially vertically to and passes through the first substrate 5, and then passes through the polarizer. Absorbed at 10 o'clock, unable to shoot out. Therefore, the light leakage elimination unit 4 can prevent the light incident to the invalid area 3 from reaching the area outside the target area, thereby ensuring the imaging effect of the light in the target area, and ultimately ensuring the viewing effect of the human eye.
  • the width of the wire grid polarizer 41 along the first polarization direction ranges from 6 ⁇ m to 30 ⁇ m. In some embodiments, the width of the half-wave plate 42 along the first polarization direction is smaller than the width of the wire grid polarizer 41 along the first polarization direction. In some embodiments, the width difference between the wire grid polarizer 41 and the half-wave plate 42 ranges from 0.4 ⁇ m to 0.8 ⁇ m. Such a setting can better prevent the light incident to the invalid area 3 from reaching the area outside the target area, thereby ensuring the imaging effect of the light in the target area, and ultimately ensuring the viewing effect of the human eye.
  • the width of the half-wave plate 42 along the first polarization direction may also be equal to the width of the wire grid polarizer 41 along the first polarization direction.
  • the liquid crystal glasses include a plurality of light leakage elimination elements 4, and the orthographic projection of each of the plurality of ineffective regions 3 on the second substrate 6 and the corresponding one of the plurality of light leakage elimination elements 4 are on the second substrate 6.
  • the orthographic projections overlap at least partially. For example, as shown in FIG. 6, there are multiple invalid regions 3 of the Fresnel lens, and there are also multiple light leakage elimination units 4, and the multiple light leakage elimination units 4 are arranged in a one-to-one correspondence with the multiple invalid regions 3.
  • each ineffective area 3 is provided with a light leakage elimination unit 4, which can completely prevent the light incident to the ineffective area 3 from reaching areas other than the target area, thereby avoiding the original
  • the light entering the target area enters the area outside the target area, thereby ensuring the imaging effect of the light in the target area, and ultimately ensuring the viewing effect of the human eye.
  • the zoom sunglasses are used for zooming to satisfy near-sightedness or hyperopia viewing.
  • the zoom sunglasses are not zoomed, that is, when the zoom sunglasses do not use zooming to change the degree of near-sightedness or hyperopia
  • the technical problems in this disclosure will be No longer exists.
  • the lens unit 1 no longer plays the role of light refraction (for example, the lens unit 1 is no longer provided in the glasses)
  • the invalid area 3 of the lens unit 1 no longer exists
  • the stray spot problem in the invalid area 3 no longer exists At this time, the light leakage elimination element 4 also no longer plays a role in preventing the light incident to the invalid region 3 from reaching areas other than the target area.
  • liquid crystal glasses used as zoom sunglasses can also be provided with other essential structures, such as alignment films, insulating layers, planarization layers, etc., which are not shown here and will not be repeated here.
  • Fig. 9 shows another example of liquid crystal glasses having a light leakage elimination element.
  • the light blocking element is the upper liquid crystal cell 12 provided on the side of the first substrate 5 away from the lens unit 1.
  • the first substrate 5, the second substrate 6, the first electrode 8, the second electrode 9, the liquid crystal layer having the liquid crystal 7, the lens unit 1 and the light leakage elimination element 4 may constitute the lower liquid crystal cell 11.
  • the upper liquid crystal cell 12 includes: a third substrate 120 and a fourth substrate 121 arranged to be aligned, a third electrode 13 arranged on the side of the third substrate 120 close to the fourth substrate 121, and a third electrode 13 arranged on the fourth substrate 121 close to the The fourth electrode 14 on the side of the third substrate 120 and on the side of the third electrode 13 away from the third substrate 120, the upper liquid crystal layer 15 provided between the third electrode 13 and the fourth electrode 14, and the upper light leakage elimination element 44 .
  • the upper light leakage elimination element 44 is disposed between the fourth electrode 14 and the upper liquid crystal layer 15, and includes an upper wire grid polarizer 440 and an upper half-wave plate 441.
  • the orthographic projection of the upper light leakage elimination element 44 on the second substrate 6 and light leakage elimination overlaps, and the upper wire grid polarizer 440 is configured to block light having a second polarization direction perpendicular to the first polarization direction.
  • the liquid crystal 7'of the upper liquid crystal layer 15 can be deflected under the action of the electric field formed after the third electrode 13 and the fourth electrode 14 apply voltage.
  • the upper liquid crystal cell 12 may further include: an upper lens unit 16 located between the upper liquid crystal layer 15 and the upper light leakage elimination element 44, the upper lens unit 16 includes an effective area and an ineffective area, and the effective area and the ineffective area of the upper lens unit 16 One is configured to converge the component having the first polarization direction of the parallel light beam through refraction, and the other is configured to diverge the component having the first polarization direction of the parallel light beam through refraction.
  • the upper lens unit 16 is a second Fresnel lens 16; the second Fresnel lens 16 is located between the upper liquid crystal layer 15 and the fourth electrode 14; the second Fresnel lens 16 and the upper liquid crystal layer 15 cooperate with each other to enable the light of the second polarization direction in the incident light to be zoomed and converged; the first polarization direction is perpendicular to the second polarization direction.
  • the first polarization direction is the horizontal polarization direction
  • the second polarization direction is the vertical polarization direction.
  • the second Fresnel lens 16 may include an effective area 2'and an ineffective area 3'.
  • natural light enters from the second substrate 6 and exits from the upper liquid crystal cell 12 to enter human eyes.
  • the incident light is natural light
  • the natural light includes two polarization states of light, namely horizontal polarization state light and vertical polarization state light.
  • Both the Fresnel lens 1 and the second Fresnel lens 16 only change the optical path for the horizontal polarization state light, but do not change the optical path for the vertical polarization state light.
  • the horizontally polarized light is modulated and focused to the focal point ;
  • the vertically polarized light is collimated and emitted to the upper liquid crystal cell 12, because the second Fresnel lens 16 in the upper liquid crystal box 12 does not change the optical path of the vertically polarized light, and the liquid crystal 7'in the upper liquid crystal cell 12 is vertically oriented , So the vertically polarized light is deflected and focused to the focal point, so that the emitted light is concentrated on the retina of the human eye.
  • the upper wire grid polarizer 440 is a metal wire grid polarizer. Another part of the external natural light incident on the zoom glasses is incident on the light refracting unit invalid area 3, after passing through the first wire grid polarizer 430 in the first liquid crystal cell 11, the vertical polarization light in the natural light is absorbed; The horizontally polarized light beam enters the first half-wave plate 431, and after passing through the first half-wave plate 431, it is converted into vertically polarized light; the vertically polarized light is collimated and enters the second liquid crystal cell 12, because the second liquid crystal The direction of the transmission axis of the second wire grid polarizer 440 in the box 12 is the same as that of the first wire grid polarizer 430, so the second wire grid polarizer 440 only allows horizontally polarized light to pass through, while the vertically polarized light is completely absorbed , It cannot be emitted from the second wire grid polarizer 440.
  • the light leakage elimination unit 4 can prevent the light incident to the invalid area 3 from reaching the area outside the target area, thereby preventing the light that should originally enter the target area from entering the area outside the target area. Area, thereby ensuring the imaging effect of the light in the target area, and ultimately ensuring the viewing effect of the human eye.
  • the upper light leakage elimination unit 44 may also include an upper wire grid polarizer 440, that is, without the upper half-wave plate 441, the light incident to the invalid area 3 can be completely prevented from reaching the area outside the target area.
  • the width of the upper wire grid polarizer 440 along the first polarization direction ranges from 6 ⁇ m to 30 ⁇ m. In some embodiments, the width of the upper half-wave plate 441 along the first polarization direction is smaller than the width of the upper wire grid polarizer 440 along the first polarization direction. In some embodiments, the width difference between the upper wire grid polarizer 440 and the upper half-wave plate 441 ranges from 0.4 ⁇ m to 0.8 ⁇ m. This setting can better prevent the light incident to the invalid area from reaching the area outside the target area, so as to prevent the light that should have entered the target area from entering the area outside the target area, thereby ensuring the imaging effect of the light in the target area. Ensure the viewing effect of the human eye.
  • the width of the upper half-wave plate 441 along the first polarization direction may also be equal to the width of the upper wire grid polarizer 440 along the first polarization direction.
  • the orthographic projection of the ineffective area of the upper lens unit 16 on the second substrate 6 overlaps with the orthographic projection of the ineffective area of the lens unit 1 on the second substrate 6.
  • the upper liquid crystal cell 12 includes a plurality of upper light leakage elimination elements 44, and the orthographic projection of each of the plurality of ineffective regions 3'on the second substrate 6 corresponds to a corresponding one of the plurality of upper light leakage elimination elements 44.
  • the orthographic projections on the second substrate 6 at least partially overlap.
  • the upper Fresnel lens 16 has multiple ineffective regions 3'
  • the upper light leakage elimination element 44 has multiple
  • the multiple upper light leakage elimination elements 44 correspond to the multiple ineffective areas 3'of the upper Fresnel lens 16.
  • liquid crystal glasses as ordinary zoom glasses can also be provided with other necessary structures, such as alignment films, insulating layers, planarization layers, etc., which are not shown here and will not be repeated here.
  • the present disclosure provides a liquid crystal display panel, including: a first substrate and a second substrate arranged in an aligned manner; a first electrode arranged on a side of the first substrate facing the second substrate A second electrode, which is provided on the side of the second substrate facing the first substrate and on the side of the first electrode away from the first substrate; a color adjustment layer, which is provided on the side
  • the liquid crystal layer has a side far from the second electrode and includes alternately arranged color film patterns and black matrix patterns; a liquid crystal layer, which is filled between the first electrode and the second electrode, and includes effective Area and an ineffective area, the orthographic projection of the ineffective area on the second substrate overlaps the orthographic projection of a portion of the black matrix pattern adjacent to the adjacent color filter pattern on the second substrate, and
  • the effective area is the portion of the liquid crystal layer from which the ineffective area is removed; and a light leakage elimination element, the light leakage elimination element is disposed between the second electrode and the liquid crystal layer, and the light leakage elimination element is located in the first The
  • the liquid crystal display panel includes: a first substrate 5 and a second substrate 6 that are arranged so as to be aligned; a first electrode 8 is arranged on one of the first substrate 5 facing the second substrate 6.
  • the second electrode 9 which is provided on the side of the second substrate 6 facing the first substrate 5 and located on the side of the first electrode 8 away from the first substrate 5; the color adjustment layer, which includes alternately arranged colors Film pattern 17 and black matrix pattern 18; a liquid crystal layer including liquid crystal 7, which is filled between the first electrode 8 and the second electrode 9, and includes an effective area 2 and an ineffective area 3, the ineffective area 3 on the second substrate 6
  • the orthographic projection of the black matrix pattern 18 overlaps the orthographic projection of the portion of the black matrix pattern 18 adjacent to the adjacent color film pattern 17 on the second substrate 6, the effective area is the portion of the liquid crystal layer from which the ineffective area is removed; and the light leakage elimination element 4, which Disposed between the second electrode 9 and the liquid crystal layer, the orthographic projection of the light leakage elimination element 4 on the second substrate 6 and the orthographic projection of the ineffective area 3 on the second substrate 6 at least partially overlap, and the light leakage elimination element 4 includes A wire grid polarizer 41 and a half-wave plate 42 are stacked in sequence with two electrode
  • the orthographic projection of the light leakage elimination element 4 on the second substrate 6 and the orthographic projection of the effective area 2 on the second substrate 6 do not overlap.
  • the color filter pattern 17 and the black matrix pattern 18 are located between the first substrate 5 and the first electrode 8.
  • the liquid crystal display panel may further include a liquid crystal control element configured to control the liquid crystal control voltage applied to the first electrode 8 and the second electrode 9 such that the liquid crystal layer is configured as a plurality of liquid crystal prisms, the plurality of Each of the liquid crystal prisms has a different angle between the light entrance surface and the light exit surface under different liquid crystal control voltages.
  • the liquid crystal layer can be equivalent to multiple prisms.
  • the liquid crystal prism is also non-ideal, and can also include an effective area and an ineffective area.
  • the deflection of the liquid crystal 7 under the action of an electric field is used to control the gray scale.
  • different forms of liquid crystal prisms are formed to deflect light at different angles.
  • the gray scale is 255, that is, when L255, no liquid crystal control voltage is applied.
  • the liquid crystal 7 does not form a prism.
  • the light passing through the liquid crystal 7 is not deflected, and is directed upward to the color film pattern 17, the color film pattern 17 is excited to emit red, green and blue (RGB) light.
  • RGB red, green and blue
  • the gray scale is the largest, which is defined as L255; at L0, apply an appropriate voltage to the second electrode 9 to make the liquid crystal prism form the largest inclination angle (that is, the prism's The angle between the light-incident surface and the light-emitting surface), so that most of the light is deflected to the black matrix pattern 18.
  • no light is emitted from the display panel, which is defined as 0 gray scale, that is, L0; ,
  • the liquid crystal control voltage to form liquid crystal prisms with different tilt angles, and controlling the gray scale by controlling the amount of deflected light emitted from the liquid crystal prism. While the display panel realizes display gray scale control, there is no need to provide upper and lower polarizers, thereby reducing the overall thickness of the display panel, and at the same time improving the light transmittance, thereby improving the light utilization rate.
  • the first electrode 8 is a flat electrode
  • the second electrode 9 is a strip electrode.
  • the shape of the liquid crystal prism is adjusted by controlling the voltage of the second electrode 9.
  • Form liquid crystal prisms with different inclination angles may also be other forms of electrodes, as long as the electric field formed can control the deflection of the liquid crystal 7 to form liquid crystal prisms with different tilt angles.
  • the wire grid polarizer 41 may be configured to pass light in a first polarization direction among incident light rays and block light having a second polarization direction perpendicular to the first polarization direction.
  • the wire grid polarizer 41 includes a metal wire grid polarizer.
  • the light in the first polarization direction is horizontal polarization light
  • the light in the second polarization direction is vertical polarization light.
  • the light of the backlight becomes horizontally polarized after passing through the wire grid polarizer and enters the display panel from the side of the second substrate 6 without passing through the polarizer, which can improve the light utilization rate of the display panel.
  • the horizontally polarized light incident on the liquid crystal prism effective area 2 can be displayed normally; the horizontally polarized light incident on the liquid crystal prism invalid area 3 passes through the wire grid polarizer 41, and then this part of the light becomes vertical after passing through the half wave plate 42 Polarized light, this part of the vertically polarized light is collimated and incident to the black matrix 18, so that it is absorbed by the black matrix 18 and cannot be emitted, so that when a certain grayscale display is realized, the light not needed for display can be emitted to the black matrix 18. Avoid light leakage caused by the emission of light that is not needed for display, thereby improving the contrast and display effect of the display panel.
  • the width of the wire grid polarizer 41 along the first polarization direction ranges from 3 ⁇ m to 20 ⁇ m. In some embodiments, the width of the half-wave plate 42 along the first polarization direction is smaller than the width of the wire grid polarizer 41 along the first polarization direction. In some embodiments, the width difference between the wire grid polarizer 41 and the half-wave plate 42 ranges from 0.1 ⁇ m to 0.4 ⁇ m. This setting can better prevent the light incident to the invalid area 3 from reaching the area outside the black matrix 18, so that the light that is not needed for display hits the black matrix 18, and avoids the light that is not needed for display. The phenomenon of light leakage further improves the contrast and display effect of the display panel.
  • the width of the half-wave plate 42 along the first polarization direction may also be equal to the width of the wire grid polarizer 41 along the first polarization direction.
  • each invalid region 3 is provided with a light leakage elimination unit 4, which can completely prevent the light incident to the invalid region 3 from reaching the area outside the black matrix 18, so that it is not needed for The displayed light is directed to the black matrix 18 to avoid light leakage caused by the emission of light not needed for display, thereby improving the display contrast and display effect of the display panel.
  • the liquid crystal display panel may also include other indispensable structures, such as alignment films, insulating layers, planarization layers, etc., which are not shown here and will not be repeated here.

Abstract

一种具有漏光消除元件(4)的液晶眼镜和液晶显示面板。液晶眼镜包括:对合设置的第一基板(5)和第二基板(6);第一电极(8),其设置在第一基板(5)的面对第二基板(6)的一侧;第二电极(9),其设置在第二基板(6)的面对第一基板(5)的一侧并且位于第一电极(8)的远离第一基板(5)的一侧;液晶层,其填充在第一电极(8)和第二电极(9)之间;透镜单元(1),其包括有效区(2)和无效区(3),有效区(2)和无效区(3)中的一者构造为通过折射使准直光束会聚,有效区(2)和无效区(3)中的另一者构造为通过折射使平行光束发散;漏光消除元件(4),设置于第二电极(9)与透镜单元(1)之间,漏光消除元件(4)在第二基板(6)上的正投影与无效区(3)在第二基板(6)上的正投影至少部分地重叠,漏光消除元件(4)包括远离第二电极(9)依次堆叠的线栅偏振片(41)和半波片(42);以及光阻挡元件(10),其设置在液晶层的远离第二电极(9)的一侧,并且构造为阻挡穿过漏光消除元件(4)和无效区(3)的光射出到液晶眼镜外。

Description

具有漏光消除元件的液晶眼镜和液晶显示面板 技术领域
本申请涉及显示技术领域,具体地,涉及一种具有漏光消除元件的液晶眼镜和液晶显示面板。
背景技术
目前,在具有透镜或等效透镜的液晶光学装置中,存在由于透镜的非理想性而导致的漏光的问题。
例如,现有的变焦眼镜通常通过将诸如菲涅尔透镜的透镜单元和液晶集成于镜片上,通过透镜单元和液晶共同实现眼镜焦距的变换。但是,透镜单元的非理想性使得变焦眼镜存在漏光并造成杂散光斑,影响观看效果。
例如,在将液晶层构造为多个液晶透镜以控制显示灰阶的显示面板中,液晶透镜同样存在非理想性,从而导致出现杂散光,造成漏光现象,使显示面板对比度降低。
发明内容
在一方面,本公开提供一种液晶眼镜,包括:对合设置的第一基板和第二基板;第一电极,其设置在所述第一基板的面对所述第二基板的一侧;第二电极,其设置在所述第二基板的面对所述第一基板的一侧并且位于所述第一电极的远离所述第一基板的一侧;液晶层,其填充在所述第一电极和所述第二电极之间;透镜单元,其设置在所述第二电极与所述液晶层之间,所述透镜单元包括有效区和无效区,所述有效区和所述无效区中的一者构造为通过折射使准直光束会聚,所述有效区和所述无效区中的另一者构造为通过折射使平行光束发散;漏光消除元件,所述漏光消除元件设置于所述第二电极与所述透镜单元之间,所述漏光消除元件在所述第二基板上的正投影与所述无效区在所述第二基板上的正投影至少部分地重叠,所述漏光消除元件包括远离所述第二 电极依次堆叠的线栅偏振片和半波片;以及光阻挡元件,其设置在所述液晶层的远离所述第二电极的一侧,并且构造为阻挡穿过所述漏光消除元件和所述无效区的光射出到所述液晶眼镜外。
在一些实施例中,所述漏光消除元件在所述第二基板上的正投影与所述有效区在所述第二基板上的正投影不重叠。
在一些实施例中,所述透镜单元是菲涅尔透镜,所述菲涅尔透镜包括多个透镜突起部,每个透镜突起部包括彼此相交的第一侧表面和第二侧表面,进入透镜突起部的平行光束的具有第一偏振方向的分量在第一侧表面处被折射而会聚,进入透镜突起部的平行光束的具有第一偏振方向的分量在第二侧表面处被折射而发散。所述透镜单元包括多个有效区和多个无效区,每个所述有效区由所述第一侧表面限定,并且构造为通过折射使平行光束的具有第一偏振方向的分量会聚,每个所述无效区由所述第二侧表面限定,并且构造为通过折射使平行光束的具有第一偏振方向的分量发散。所述漏光消除元件在所述第二基板上的正投影与所述多个无效区中的至少一个在所述第二基板上的正投影至少部分地重叠。
在一些实施例中,所述线栅偏振片构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线,并且所述线栅偏振片沿所述第一偏振方向的宽度范围为6μm-30μm。
在一些实施例中,所述半波片沿所述第一偏振方向的宽度小于所述线栅偏振片沿所述第一偏振方向的宽度。
在一些实施例中,所述线栅偏振片与所述半波片的宽度差范围为0.4μm-0.8μm。
在一些实施例中,所述液晶眼镜包括多个所述漏光消除元件,多个所述无效区中的每一个在所述第二基板上的正投影与所述多个漏光消除元件中的对应一个在所述第二基板上的正投影至少部分地重叠。
在一些实施例中,所述光阻挡元件是偏光片。
在一些实施例中,所述偏光片设置在所述第一基板的远离所 述透镜单元的一侧。
在一些实施例中,所述光阻挡元件是设置在所述第一基板的远离所述透镜单元的一侧的上液晶盒。所述上液晶盒包括:对合设置的第三基板和第四基板,设置于所述第三基板的靠近所述第四基板一侧的第三电极,设置于所述第四基板的靠近所述第三基板一侧且在所述第三电极的远离第三基板一侧的第四电极,设置于所述第三电极和所述第四电极之间的上液晶层,以及上漏光消除元件,其设置于所述第四电极与所述上液晶层之间,并且包括上线栅偏振片,所述上漏光消除元件在所述第二基板上的正投影与所述漏光消除元件在所述第二基板上的正投影重叠,所述上线栅偏振片构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线。
在一些实施例中,所述上漏光消除元件还包括上半波片,其堆叠在所述上线栅偏振片上并且远离所述第四电极。
在一些实施例中,所述上线栅偏振片沿所述第一偏振方向的宽度范围为6μm-30μm。
在一些实施例中,所述上半波片沿所述第一偏振方向的宽度小于所述上线栅偏振片沿所述第一偏振方向的宽度。
在一些实施例中,所述上液晶盒还包括:上透镜单元,其位于所述上液晶层与所述上漏光消除元件之间,所述上透镜单元包括有效区和无效区,所述上透镜单元的有效区和所述无效区中的一者构造为通过折射使平行光束的具有第一偏振方向的分量会聚,所述上透镜单元的有效区和所述无效区中的另一者构造为通过折射使平行光束的具有第一偏振方向的分量发散。所述上透镜单元的无效区在所述第二基板上的正投影与所述透镜单元的无效区在所述第二基板上的正投影重叠。
在一方面,本公开提供一种液晶显示面板,包括:对合设置的第一基板和第二基板;第一电极,其设置在所述第一基板的面对所述第二基板的一侧;第二电极,其设置在所述第二基板的面对所述第一基板的一侧并且位于所述第一电极的远离所述第一基 板的一侧;色彩调整层,其包括交替设置的彩膜图案和黑矩阵图案;液晶层,其填充在所述第一电极和所述第二电极之间,并且包括有效区和无效区,所述无效区在所述第二基板上的正投影与所述黑矩阵图案的与相邻的彩膜图案邻接的一部分在所述第二基板上的正投影重叠,所述有效区是所述液晶层的除去所述无效区的部分;以及漏光消除元件,所述漏光消除元件设置于所述第二电极与所述液晶层之间,所述漏光消除元件在所述第二基板上的正投影与所述无效区在所述第二基板上的正投影至少部分地重叠,所述漏光消除元件包括远离所述第二电极依次堆叠的线栅偏振片和半波片。所述黑矩阵图案阻挡穿过所述漏光消除元件和所述无效区的光射出到所述液晶显示面板外。
在一些实施例中,所述漏光消除元件在所述第二基板上的正投影与所述有效区在所述第二基板上的正投影不重叠。
在一些实施例中,液晶显示面板还包括液晶控制元件,其构造为控制施加至所述第一电极和所述第二电极的液晶控制电压,使得所述液晶层构造为多个液晶棱镜,所述多个液晶棱镜中的每一个在不同的液晶控制电压下具有不同的入光面与出光面之间的夹角。
在一些实施例中,所述线栅偏振片构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线,并且所述线栅偏振片沿所述第一偏振方向的宽度范围为3μm-20μm。
在一些实施例中,所述半波片沿所述第一偏振方向的宽度小于所述线栅偏振片沿所述第一偏振方向的宽度。
在一些实施例中,所述线栅偏振片与所述半波片的宽度差范围为0.1μm–0.4μm。
附图说明
图1为现有变焦眼镜的结构剖视图;
图2为现有变焦眼镜的光路图;
图3为现有变焦眼镜中菲涅尔透镜的结构剖视图;
图4为图3中A部分的放大图;
图5为根据一些实施例的液晶显示面板的剖视图及光路图;
图6为根据本公开实施例的液晶眼镜的结构剖视图;
图7为图6中B部分的放大示意图;
图8为根据本公开实施例的例如图6示出的液晶眼镜的光路图;
图9为根据本公开实施例的液晶眼镜的结构剖视图及光路图;
图10为根据本公开实施例的液晶显示面板的结构剖视图;
图11为图10中C部分的放大示意图及光路图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开一种滤光结构、眼镜和显示面板作进一步详细描述。
变焦眼镜能够进行焦距变换,从而适用于远视眼和近视眼观看使用。现有的变焦眼镜通常通过诸如菲涅尔透镜的透镜单元和液晶共同实现眼镜焦距的变换。在现有加工工艺条件下,现有变焦眼镜内的菲涅尔透镜19存在问题。如图1-图4所示,菲涅尔透镜19包括多个透镜突起部191,每个透镜突起部19包括彼此相交的第一侧表面S1和第二侧表面S2。理想情况下,在菲涅尔透镜19的一个周期Pitch内,第二侧表面S2垂直于菲涅尔透镜的底表面,但是由于工艺误差,此处有15°的抛锚角误差。这种情况下,进入透镜突起部191的平行光束在第一侧表面S1处被折射而会聚,在第二侧表面S2处被折射而发散。因此,由第二侧表面S2和相应的底表面限定的无效区3将造成原有光线偏离预定方向散射,最终造成杂散光斑,影响人眼的观看。
另外,现有液晶显示面板通常通过设置上下偏光片来实现对光线偏振方向的控制。为了提高液晶显示面板的光线利用率,如图5所示,可以通过控制液晶7的偏转,使各像素对应区域的液晶7偏转后等效为透镜结构(如液晶棱镜20),该透镜结构能使 照射至各像素区域的光线部分偏折后射入黑矩阵18,从而控制显示面板的显示灰阶。该显示面板无需设置偏光片,从而提高了光线利用率。但液晶7偏转后形成的等效透镜结构同样会出现上面变焦眼镜中存在的透镜的无效区3所带来的漏光问题。
为此,本公开提供一种漏光消除元件以及具有该漏光消除元件的液晶眼镜和液晶显示面板,其至少能够解决上述问题之一。
在一方面,本公开提供一种液晶眼镜,包括:对合设置的第一基板和第二基板;第一电极,其设置在第一基板的面对第二基板的一侧;第二电极,其设置在第二基板的面对第一基板的一侧并且位于第一电极的远离第一基板的一侧;液晶层,其填充在第一电极和第二电极之间;透镜单元,其设置在第二电极与液晶层之间,透镜单元包括有效区和无效区,有效区和无效区中的一者构造为通过折射使准直光束会聚,有效区和无效区中的另一者构造为通过折射使平行光束发散;漏光消除元件,漏光消除元件设置于第二电极与透镜单元之间,漏光消除元件在第二基板上的正投影与无效区在第二基板上的正投影至少部分地重叠,漏光消除单元包括远离第二电极依次堆叠的线栅偏振片和半波片;以及光阻挡元件,其设置在液晶层的远离第二电极的一侧,并且构造为阻挡穿过漏光消除元件和无效区的光射出到液晶眼镜外。
图6-图8示出了具有漏光消除元件的液晶眼镜的一个示例。该液晶眼镜包括:对合设置的第一基板5和第二基板6;第一电极8,其设置在第一基板5的面对第二基板6的一侧;第二电极9,其设置在第二基板6的面对第一基板5的一侧并且位于第一电极8的远离第一基板5的一侧;液晶层,其包括液晶分子7并且填充在第一电极8和第二电极9之间;透镜单元1,其设置在第二电极9与液晶层1之间;漏光消除元件4,其设置于第二电极9与透镜单元1之间;以及光阻挡元件10,其设置在液晶层的远离第二电极9的一侧,并且构造为阻挡穿过漏光消除元件4和无效区3的光射出到液晶眼镜外。
透镜单元1包括有效区2和无效区3。有效区2用于使入射 光线折射至目标区域,无效区3能使入射光线折射至目标区域以外的区域,例如,有效区2和无效区3中的一者构造为通过折射使准直光束会聚,有效区2和无效区3中的另一者构造为通过折射使平行光束发散。
漏光消除单元4包括远离第二电极9依次堆叠的线栅偏振片41和半波片42,并且漏光消除单元4在第二基板6上的正投影与无效区3在第二基板6上的正投影至少部分地重叠。在一些实施例中,漏光消除元件4在第二基板6上的正投影与有效区2在第二基板6上的正投影不重叠。漏光消除单元4能对入射至无效区3的光线进行偏振方向转换,以阻挡入射至无效区3的光线折射至目标区域以外的区域。
其中,目标区域指正常的图像成像区域。目标区域以外的区域指不该形成图像的区域。目标区域以外的区域的图像会对目标区域的图像形成干扰,影响图像的成像效果,从而影响人眼观看效果。
该液晶眼镜通过设置包括线栅偏振片和半波片的光消除单元4,能够对入射至光线折射单元1的无效区3的光线进行偏振方向转换,以阻挡入射至无效区3的光线折射至目标区域以外的区域,从而避免目标区域以外区域的光线对目标区域的光线形成干扰,进而确保了目标区域光线的成像效果,最终确保了人眼的观看效果。
在本实施例中,光阻挡元件10是偏光片10,其设置于第一基板5的远离第二基板6一侧,偏光片10能使入射光线中第一偏振方向的光线通过。液晶7能在第一电极8和第二电极9施加电压后所形成电场的作用下偏转。
在一些实施例中,透镜单元1是菲涅尔透镜,例如,图3所示的菲涅尔透镜19。菲涅尔透镜19包括多个透镜突起部191,每个透镜突起部191包括彼此相交的第一侧表面S1和第二侧表面S2,进入透镜突起部的平行光束的具有第一偏振方向的分量在第一侧表面S1处被折射而会聚,进入透镜突起部191的平行光束的 具有第一偏振方向的分量在第二侧表面S2处被折射而发散。每个透镜突起部的第一侧表面和底表面限定有效区2,有效区2构造为通过折射使平行光束的具有第一偏振方向的分量会聚,每个透镜突起部的第二侧表面和底表面限定无效区3,无效区3构造为通过折射使平行光束的具有第一偏振方向的分量发散。换言之,无效区3为菲涅尔透镜的锯齿状结构的夹角所在区域。菲涅尔透镜与液晶7相互配合,能使入射光线中第一偏振方向的光线进行变焦汇聚。漏光消除单元4位于第二电极9和菲涅尔透镜之间。
本实施例中,液晶眼镜可以为变焦墨镜。该变焦墨镜的变焦作用适用于远视或近视的人眼佩戴观看。其中,该液晶眼镜中,经过透镜单元1有效区2的光路如图8所示,当外界自然光入射到眼镜时,自然光从第二基板6射入,从第一基板5射出,进入人眼。自然光包括圆偏振光和椭圆偏振光,这里将自然光分解为偏振方向相互垂直的第一偏振方向的光和第二偏振方向的光,假设第一偏振方向的光为水平偏振态光线,第二偏振方向的光为垂直偏振态光线。入射到菲涅尔透镜有效区2的光线包括水平偏振态光线和垂直偏振态光线,其中菲涅尔透镜只对水平偏振态光线起改变光路的作用,而对垂直偏振态光线没有改变光路的作用。偏光片10能使入射光线中水平偏振态光线通过。液晶7只改变光线的传播方向,而不改变光线的偏振方向。入射光线中水平偏振态光线经过菲涅尔透镜后发生偏折,并在偏转的液晶7的共同作用下,在经过偏光片10之后,出射光会聚到人眼视网膜上,从而实现自然光经过墨镜变焦后进入人眼。另外入射光线中的垂直偏振态光线不受菲涅尔透镜的调制作用,仍基本垂直地入射到第一基板5,因其偏振方向与偏光片10透光轴不同,所以该部分光线被吸收不出射,所以偏光片10能使墨镜起到防强太阳光眩晕的作用。
线栅偏振片41可以构造为使入射光线中第一偏振方向的光线通过而阻挡具有与第一偏振方向垂直的第二偏振方向的光线。在一些实施例中,线栅偏振片41包括金属线栅偏振片。
经过透镜单元1无效区3的光路如图8所示。入射到无效区3的光线在经过线栅偏振片41后,自然光中的垂直偏振态光线被吸收;剩下的水平偏振态光线通过线栅偏振片41入射到半波片42上,并在经过半波片42后被转化为垂直偏振态光线,该部分垂直偏振态光线之后在经过菲涅尔透镜时不被调制,仍基本垂直地行进至并穿过第一基板5,然后在经过偏光片10时被吸收,无法射出去。因此,该漏光消除单元4能够阻止入射至无效区3的光线射至目标区域以外的区域,从而确保了目标区域光线的成像效果,最终确保了人眼的观看效果。
在一些实施例中,线栅偏振片41沿第一偏振方向的宽度范围为6μm-30μm。在一些实施例中,半波片42沿第一偏振方向的宽度小于线栅偏振片41沿第一偏振方向的宽度。在一些实施例中,线栅偏振片41与半波片42的宽度差范围为0.4μm-0.8μm。如此设置,能够更好地阻止入射至无效区3的光线射至目标区域以外的区域,从而确保了目标区域光线的成像效果,最终确保了人眼的观看效果。
需要说明的是,半波片42沿第一偏振方向的宽度也可以等于线栅偏振片41沿第一偏振方向的宽度。
在一些实施例中,液晶眼镜包括多个漏光消除元件4,多个无效区3中的每一个在第二基板6上的正投影与多个漏光消除元件4中的对应一个在第二基板6上的正投影至少部分地重叠。例如,如图6所示,菲涅尔透镜的无效区3为多个,漏光消除单元4也为多个,多个漏光消除单元4与多个无效区3一一对应设置。由于菲涅尔透镜具有多个无效区3,所以在每个无效区3均对应设置漏光消除单元4,能够彻底阻止入射至无效区3的光线射至目标区域以外的区域,从而避免原本应当射入目标区域的光线进入目标区域以外的区域,进而确保了目标区域光线的成像效果,最终确保了人眼的观看效果。
另外需要说明的是,该变焦墨镜用于通过变焦满足近视沿或远视眼观看,当该变焦墨镜不变焦时,即该变焦墨镜不通过变焦 变换近视或远视度数时,本公开中的技术问题将不复存在。例如,当透镜单元1不再发挥光线折射作用(例如,眼镜中不再设置透镜单元1)时,透镜单元1的无效区3也不复存在,无效区3的杂散光斑问题也不复存在,此时,漏光消除元件4也不再发挥阻止入射至无效区3的光线射至目标区域以外的区域的作用。
本实施例中,作为变焦墨镜的液晶眼镜中还可以设置其他的必不可少的结构,如取向膜、绝缘层、平坦化层等,这里未示出且不再赘述。
图9示出了具有漏光消除元件的液晶眼镜的另一个示例。与参照图6-8描述的液晶眼镜的示例不同的是,在图9所示的液晶眼镜中,光阻挡元件是设置在第一基板5的远离透镜单元1的一侧的上液晶盒12。这种情况下,第一基板5、第二基板6、第一电极8、第二电极9、具有液晶7的液晶层、透镜单元1、漏光消除元件4可以构成下液晶盒11。
上液晶盒12包括:对合设置的第三基板120和第四基板121,设置于第三基板120的靠近第四基板121一侧的第三电极13,和设置于第四基板121的靠近第三基板120一侧且在第三电极13的远离第三基板120一侧的第四电极14,设置于第三电极13和第四电极14之间的上液晶层15,以及上漏光消除元件44。上漏光消除元件44设置于第四电极14与上液晶层15之间,并且包括上线栅偏振片440和上半波片441,上漏光消除元件44在第二基板6上的正投影与漏光消除元件4在第二基板6上的正投影重叠,上线栅偏振片440构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线。上液晶层15的液晶7’能在第三电极13和第四电极14施加电压后所形成电场的作用下偏转。
上液晶盒12还可以包括:上透镜单元16,其位于上液晶层15与上漏光消除元件44之间,上透镜单元16包括有效区和无效区,上透镜单元16的有效区和无效区中的一者构造为通过折射使平行光束的具有第一偏振方向的分量会聚,另一者构造为通过折射使平行光束的具有第一偏振方向的分量发散。
在一些实施例中,上透镜单元16是第二菲涅尔透镜16;第二菲涅尔透镜16位于上液晶层15和第四电极14之间;第二菲涅尔透镜16与上液晶层15相互配合,能使入射光线中第二偏振方向的光线进行变焦汇聚;第一偏振方向垂直于第二偏振方向。其中,第一偏振方向为水平偏振方向,第二偏振方向为垂直偏振方向。与菲涅尔透镜1类似,第二菲涅尔透镜16可以包括有效区2’和无效区3’。
其中,该液晶眼镜中,自然光从第二基板6射入,从上液晶盒12射出,进入人眼。入射光为自然光,自然光包括两个偏振态光线,即水平偏振态光线和垂直偏振态光线。菲涅尔透镜1和第二菲涅尔透镜16均只对水平偏振态光线起改变光路的作用,而对垂直偏振态光线没有改变光路的作用。对于菲涅尔透镜的有效区,自然光通过下液晶盒11后,由于菲涅尔透镜1对水平偏振态光线改变光路,且液晶7为水平取向,所以水平偏振态光线被调制,聚焦到焦点处;另外垂直偏振态光线准直出射到上液晶盒12,由于上液晶盒12中第二菲涅尔透镜16对垂直偏振态光线不会改变光路,且上液晶盒12中液晶7’为垂直取向,所以垂直偏振态光线被偏折聚焦到焦点处,从而使出射光汇聚到人眼视网膜上。
在一些实施例中,上线栅偏振片440是金属线栅偏振片。入射到变焦眼镜的外界自然光中的另一部分入射到光线折射单元无效区3的光线,通过第一液晶盒11中的第一线栅偏振片430后,自然光中的垂直偏振态光线被吸收;剩下的水平偏振态光线入射到第一半波片431,经过第一半波片431后,转化为垂直偏振态光线;该垂直偏振态光线准直入射到第二液晶盒12,由于第二液晶盒12中的第二线栅偏振片440的透光轴方向与第一线栅偏振片430相同,所以第二线栅偏振片440只允许水平偏振态光线通过,而该垂直偏振态光线则完全被吸收,不能从第二线栅偏振片440出射,因此,该漏光消除单元4能够阻止入射至无效区3的光线射至目标区域以外的区域,从而避免原本应当射入目标区域的光线进入目标区域以外的区域,进而确保了目标区域光线的成像效 果,最终确保了人眼的观看效果。
在一些实施例中,上漏光消除单元44也可以包括上线栅偏振片440,即不设置上半波片441也完全可以阻止入射至无效区3的光线射至目标区域以外的区域。
在一些实施例中,上线栅偏振片440沿第一偏振方向的宽度范围均为6μm-30μm。在一些实施例中,上半波片441沿第一偏振方向的宽度小于上线栅偏振片440沿第一偏振方向的宽度。在一些实施例中,上线栅偏振片440与上半波片441的宽度差范围为0.4μm-0.8μm。如此设置,能够更好地阻止入射至无效区的光线射至目标区域以外的区域,从而避免原本应当射入目标区域的光线进入目标区域以外的区域,进而确保了目标区域光线的成像效果,最终确保了人眼的观看效果。
需要说明的是,上半波片441沿第一偏振方向的宽度也可以等于上线栅偏振片440沿第一偏振方向的宽度。
在一些实施例中,上透镜单元16的无效区在第二基板6上的正投影与透镜单元1的无效区在第二基板6上的正投影重叠。
在一些实施例中,上液晶盒12包括多个上漏光消除元件44,多个无效区3’中的每一个在第二基板6上的正投影与多个上漏光消除元件44中的对应一个在第二基板6上的正投影至少部分地重叠。例如,上菲涅尔透镜16的无效区3’为多个,上漏光消除元件44为多个,多个上漏光消除元件44与上菲涅尔透镜16的多个无效区3’一一对应设置。
本实施例中,作为普通变焦眼镜的液晶眼镜还可以设置其他的必不可少的结构,如取向膜、绝缘层、平坦化层等,这里未示出且不再赘述。
在一方面,本公开提供一种液晶显示面板,包括:对合设置的第一基板和第二基板;第一电极,其设置在所述第一基板的面对所述第二基板的一侧;第二电极,其设置在所述第二基板的面对所述第一基板的一侧并且位于所述第一电极的远离所述第一基板的一侧;色彩调整层,其设置在所述液晶层的远离所述第二电 极的一侧,并且包括交替设置的彩膜图案和黑矩阵图案;液晶层,其填充在所述第一电极和所述第二电极之间,并且包括有效区和无效区,所述无效区在所述第二基板上的正投影与所述黑矩阵图案的与相邻的彩膜图案邻接的一部分在所述第二基板上的正投影重叠,所述有效区是所述液晶层的除去所述无效区的部分;以及漏光消除元件,所述漏光消除元件设置于所述第二电极与所述液晶层之间,所述漏光消除元件在所述第二基板上的正投影与所述无效区在所述第二基板上的正投影至少部分地重叠,所述漏光消除元件包括远离所述第二电极依次堆叠的线栅偏振片和半波片。所述黑矩阵图案阻挡穿过所述漏光消除元件和所述无效区的光射出到所述液晶显示面板外。
图10-11示出了根据本公开实施例的液晶显示面板的一个示例。如图10-图11所示,该液晶显示面板包括:对合设置的第一基板5和第二基板6;第一电极8,其设置在第一基板5的面对第二基板6的一侧;第二电极9,其设置在第二基板6的面对第一基板5的一侧并且位于第一电极8的远离第一基板5的一侧;色彩调整层,其包括交替设置的彩膜图案17和黑矩阵图案18;包括液晶7的液晶层,其填充在第一电极8和第二电极9之间,并且包括有效区2和无效区3,无效区3在第二基板6上的正投影与黑矩阵图案18的与相邻的彩膜图案17邻接的一部分在第二基板6上的正投影重叠,有效区是液晶层的除去无效区的部分;以及漏光消除元件4,其设置于第二电极9与液晶层之间,漏光消除元件4在第二基板6上的正投影与无效区3在第二基板6上的正投影至少部分地重叠,漏光消除元件4包括远离第二电极9依次堆叠的线栅偏振片41和半波片42。黑矩阵图案18阻挡穿过漏光消除元件4和无效区3的光射出到液晶显示面板外。
在一些实施例中,漏光消除元件4在第二基板6上的正投影与有效区2在第二基板6上的正投影不重叠。
在一些实施例中,彩膜图案17和黑矩阵图案18位于第一基板5与第一电极8之间。
根据本公开实施例的液晶显示面板还可包括液晶控制元件,其构造为控制施加至第一电极8和第二电极9的液晶控制电压,使得液晶层构造为多个液晶棱镜,所述多个液晶棱镜中的每一个在不同的液晶控制电压下具有不同的入光面与出光面之间的夹角。换言之,在电压控制下,液晶层可等效为多个棱镜。与上文所述的菲涅尔透镜类似,液晶棱镜同样具有非理想性,并且同样可以包括有效区和无效区。
在该液晶显示面板中,利用液晶7在电场作用下的偏转来控制灰阶,在黑矩阵下方,通过电极电压调控作用,形成不同形态的液晶棱镜,用以将光线进行不同角度的偏折。例:灰阶为255时,即L255时,不施加液晶控制电压,此时液晶7不形成棱镜,这时透过液晶7的光线不偏折,向上直射出射到彩膜图案17上,彩膜图案17被激发出红绿蓝(RGB)光,此时灰阶最大,被定义为L255;L0时,给第二电极9加上合适的电压,使液晶棱镜形成最大的倾角(即,该棱镜的入光面与出光面之间的夹角),使绝大部分光线被偏折到黑矩阵图案18上,此时,显示面板没有光线出射,定义为0灰阶,即L0;中间灰阶时,通过调节液晶控制电压,形成不同倾角的液晶棱镜,通过控制从液晶棱镜出射的偏折光线的多少来控制灰阶。该显示面板在实现显示灰阶控制的同时,无需再设置上下偏振片,从而减薄了显示面板的整体厚度,同时还提高了光线透过率,从而提高了光线利用率。
为了使液晶7形成不同倾角的液晶棱镜,在一些实施例中,第一电极8为平铺电极,第二电极9为条形电极,通过对第二电极9电压控制来调控液晶棱镜的形态,形成不同倾角的液晶棱镜。当然,第一电极8和第二电极9也可以是其他形式的电极,只要其形成的电场能够控制液晶7偏转形成不同倾角的液晶棱镜即可。
在该显示面板中,液晶棱镜在实现除255以外的其他灰阶控制时,其无效区3会产生杂散光,造成漏光现象,使显示面板显示的对比度降低。
线栅偏振片41可以构造为使入射光线中第一偏振方向的光 线通过而阻挡具有与第一偏振方向垂直的第二偏振方向的光线。在一些实施例中,线栅偏振片41包括金属线栅偏振片。
其中,第一偏振方向的光线为水平偏振态光线,第二偏振方向的光线为垂直偏振态光线。本实施例中,背光通过线栅偏光片后成为水平偏振态光线从第二基板6侧入射至显示面板中而没有经过偏光片,如此能够提高显示面板的光线利用率。入射至液晶棱镜有效区2的水平偏振态光线能够正常进行显示;入射至液晶棱镜无效区3的水平偏振态光线通过线栅偏振片41,然后该部分光线在经过半波片42后变成垂直偏振态光线,该部分垂直偏振态光线准直入射至黑矩阵18,从而被黑矩阵18吸收,无法射出,从而能够在实现某灰阶显示时,使不需要用于显示的光线射至黑矩阵18,避免不需要用于显示的光线射出所导致的漏光现象,进而提高了显示面板显示的对比度和显示效果。
在一些实施例中,线栅偏振片41沿第一偏振方向的宽度范围为3μm-20μm。在一些实施例中,半波片42沿第一偏振方向的宽度小于线栅偏振片41沿第一偏振方向的宽度。在一些实施例中,线栅偏振片41与半波片42的宽度差范围为0.1μm-0.4μm。如此设置,能够更好地阻止入射至无效区3的光线射至黑矩阵18以外的区域,以使不需要用于显示的光线射至黑矩阵18,避免不需要用于显示的光线射出所导致的漏光现象,进而提高了显示面板显示的对比度和显示效果。
需要说明的是,半波片42沿第一偏振方向的宽度也可以等于线栅偏振片41沿第一偏振方向的宽度。
本实施例中,无效区3为多个,漏光消除单元4也为多个,多个漏光消除单元4与多个无效区3一一对应设置。由于液晶棱镜具有多个无效区3,所以在每个无效区3均对应设置漏光消除单元4,能够彻底阻止入射至无效区3的光线射至黑矩阵18以外的区域,以使不需要用于显示的光线射至黑矩阵18,避免不需要用于显示的光线射出所导致的漏光现象,进而提高了显示面板显示的对比度和显示效果。
本实施例中,液晶显示面板还可以包括其他的必不可少的结构,如取向膜、绝缘层、平坦化层等,这里未示出且不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种液晶眼镜,包括:
    对合设置的第一基板和第二基板;
    第一电极,其设置在所述第一基板的面对所述第二基板的一侧;
    第二电极,其设置在所述第二基板的面对所述第一基板的一侧并且位于所述第一电极的远离所述第一基板的一侧;
    液晶层,其填充在所述第一电极和所述第二电极之间;
    透镜单元,其设置在所述第二电极与所述液晶层之间,所述透镜单元包括有效区和无效区,所述有效区和所述无效区中的一者构造为通过折射使准直光束会聚,所述有效区和所述无效区中的另一者构造为通过折射使平行光束发散;
    漏光消除元件,所述漏光消除元件设置于所述第二电极与所述透镜单元之间,所述漏光消除元件在所述第二基板上的正投影与所述无效区在所述第二基板上的正投影至少部分地重叠,所述漏光消除元件包括远离所述第二电极依次堆叠的线栅偏振片和半波片;以及
    光阻挡元件,其设置在所述液晶层的远离所述第二电极的一侧,并且构造为阻挡穿过所述漏光消除元件和所述无效区的光射出到所述液晶眼镜外。
  2. 根据权利要求1所述的液晶眼镜,其中,所述漏光消除元件在所述第二基板上的正投影与所述有效区在所述第二基板上的正投影不重叠。
  3. 根据权利要求1所述的液晶眼镜,其中,所述透镜单元是菲涅尔透镜,所述菲涅尔透镜包括多个透镜突起部,每个透镜突起部包括彼此相交的第一侧表面和第二侧表面,进入透镜突起部的平行光束的具有第一偏振方向的分量在第一侧表面处被折射而 会聚,进入透镜突起部的平行光束的具有第一偏振方向的分量在第二侧表面处被折射而发散,
    所述透镜单元包括多个有效区和多个无效区,每个所述有效区由所述第一侧表面限定,并且构造为通过折射使平行光束的具有第一偏振方向的分量会聚,每个所述无效区由所述第二侧表面限定,并且构造为通过折射使平行光束的具有第一偏振方向的分量发散,并且
    所述漏光消除元件在所述第二基板上的正投影与所述多个无效区中的至少一个在所述第二基板上的正投影至少部分地重叠。
  4. 根据权利要求3所述的液晶眼镜,其中,所述线栅偏振片构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线,并且所述线栅偏振片沿所述第一偏振方向的宽度范围为6μm-30μm。
  5. 根据权利要求4所述的液晶眼镜,其中,所述半波片沿所述第一偏振方向的宽度小于所述线栅偏振片沿所述第一偏振方向的宽度。
  6. 根据权利要求5所述的液晶眼镜,其中,所述线栅偏振片与所述半波片的宽度差范围为0.4μm-0.8μm。
  7. 根据权利要求3所述的液晶眼镜,其中,所述液晶眼镜包括多个所述漏光消除元件,多个所述无效区中的每一个在所述第二基板上的正投影与所述多个漏光消除元件中的对应一个在所述第二基板上的正投影至少部分地重叠。
  8. 根据权利要求3-7中任一项所述的液晶眼镜,其中,所述光阻挡元件是偏光片。
  9. 根据权利要求8所述的液晶眼镜,其中,所述偏光片设置在所述第一基板的远离所述透镜单元的一侧。
  10. 根据权利要求3-7中任一项所述的液晶眼镜,其中,所述光阻挡元件是设置在所述第一基板的远离所述透镜单元的一侧的上液晶盒,所述上液晶盒包括:
    对合设置的第三基板和第四基板,
    设置于所述第三基板的靠近所述第四基板一侧的第三电极,
    设置于所述第四基板的靠近所述第三基板一侧且在所述第三电极的远离第三基板一侧的第四电极,
    设置于所述第三电极和所述第四电极之间的上液晶层,以及
    上漏光消除元件,其设置于所述第四电极与所述上液晶层之间,并且包括上线栅偏振片,所述上漏光消除元件在所述第二基板上的正投影与所述漏光消除元件在所述第二基板上的正投影重叠,所述上线栅偏振片构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线。
  11. 根据权利要求10所述的液晶眼镜,其中,所述上漏光消除元件还包括上半波片,其堆叠在所述上线栅偏振片上并且远离所述第四电极。
  12. 根据权利要求11所述的液晶眼镜,其中,所述上线栅偏振片沿所述第一偏振方向的宽度范围为6μm-30μm。
  13. 根据权利要求12所述的液晶眼镜,其中,所述上半波片沿所述第一偏振方向的宽度小于所述上线栅偏振片沿所述第一偏振方向的宽度。
  14. 根据权利要求10所述的液晶眼镜,其中,所述上液晶盒还包括:上透镜单元,其位于所述上液晶层与所述上漏光消除元件之间,所述上透镜单元包括有效区和无效区,所述上透镜单元的有效区和所述无效区中的一者构造为通过折射使平行光束的具有第一偏振方向的分量会聚,所述上透镜单元的有效区和所述无效区中的另一者构造为通过折射使平行光束的具有第一偏振方向的分量发散,并且
    所述上透镜单元的无效区在所述第二基板上的正投影与所述透镜单元的无效区在所述第二基板上的正投影重叠。
  15. 一种液晶显示面板,包括:
    对合设置的第一基板和第二基板;
    第一电极,其设置在所述第一基板的面对所述第二基板的一侧;
    第二电极,其设置在所述第二基板的面对所述第一基板的一侧并且位于所述第一电极的远离所述第一基板的一侧;
    色彩调整层,其包括交替设置的彩膜图案和黑矩阵图案;
    液晶层,其填充在所述第一电极和所述第二电极之间,并且包括有效区和无效区,所述无效区在所述第二基板上的正投影与所述黑矩阵图案的与相邻的彩膜图案邻接的一部分在所述第二基板上的正投影重叠,所述有效区是所述液晶层的除去所述无效区的部分;以及
    漏光消除元件,所述漏光消除元件设置于所述第二电极与所述液晶层之间,所述漏光消除元件在所述第二基板上的正投影与所述无效区在所述第二基板上的正投影至少部分地重叠,所述漏光消除元件包括远离所述第二电极依次堆叠的线栅偏振片和半波片,
    其中,所述黑矩阵图案阻挡穿过所述漏光消除元件和所述无效区的光射出到所述液晶显示面板外。
  16. 根据权利要求15所述的液晶显示面板,其中,所述漏光消除元件在所述第二基板上的正投影与所述有效区在所述第二基板上的正投影不重叠。
  17. 根据权利要求15所述的液晶显示面板,还包括液晶控制元件,其构造为控制施加至所述第一电极和所述第二电极的液晶控制电压,使得所述液晶层构造为多个液晶棱镜,所述多个液晶棱镜中的每一个在不同的液晶控制电压下具有不同的入光面与出光面之间的夹角。
  18. 根据权利要求15所述的液晶显示面板,其中,所述线栅偏振片构造为阻挡具有与第一偏振方向垂直的第二偏振方向的光线,并且所述线栅偏振片沿所述第一偏振方向的宽度范围为3μm-20μm。
  19. 根据权利要求15所述的液晶显示面板,其中,所述半波片沿所述第一偏振方向的宽度小于所述线栅偏振片沿所述第一偏振方向的宽度。
  20. 根据权利要求19所述的液晶显示面板,其中,所述线栅偏振片与所述半波片的宽度差范围为0.1μm–0.4μm。
PCT/CN2020/090210 2019-05-21 2020-05-14 具有漏光消除元件的液晶眼镜和液晶显示面板 WO2020233494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,908 US11294225B2 (en) 2019-05-21 2020-05-14 Liquid crystal glasses and liquid crystal display panel with light leakage elimination element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910425188.7A CN110146994B (zh) 2019-05-21 2019-05-21 一种滤光结构、眼镜和显示面板
CN201910425188.7 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020233494A1 true WO2020233494A1 (zh) 2020-11-26

Family

ID=67592592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090210 WO2020233494A1 (zh) 2019-05-21 2020-05-14 具有漏光消除元件的液晶眼镜和液晶显示面板

Country Status (3)

Country Link
US (1) US11294225B2 (zh)
CN (1) CN110146994B (zh)
WO (1) WO2020233494A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146994B (zh) * 2019-05-21 2021-08-06 京东方科技集团股份有限公司 一种滤光结构、眼镜和显示面板
CN112374563B (zh) * 2020-11-03 2023-09-05 荆门麦隆珂机器人科技有限公司 高透光率菲涅尔透镜机器人太阳能海水淡化整机
CN117296004A (zh) * 2021-05-21 2023-12-26 华为技术有限公司 光学离焦镜片和实现光学离焦的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333557A (ja) * 1994-06-09 1995-12-22 Sony Corp 画像投影装置
CN1773315A (zh) * 2004-11-09 2006-05-17 Lg电子株式会社 显示面板的前部滤光器及其制造方法
CN103064211A (zh) * 2012-10-15 2013-04-24 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及保密显示器件
CN105700268A (zh) * 2016-04-08 2016-06-22 武汉华星光电技术有限公司 液晶透镜及3d显示装置
CN107656379A (zh) * 2017-11-18 2018-02-02 莆田市烛火信息技术有限公司 一种基于液晶透镜的变焦眼镜
CN110146994A (zh) * 2019-05-21 2019-08-20 京东方科技集团股份有限公司 一种滤光结构、眼镜和显示面板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230601A (ja) * 1984-05-01 1985-11-16 Masayasu Negishi 膜処理方法
US6577434B2 (en) * 2000-01-14 2003-06-10 Minolta Co., Ltd. Variable focal position spatial modulation device
JP2003029255A (ja) * 2001-07-13 2003-01-29 Omron Corp 液晶表示装置
US20050117095A1 (en) * 2003-12-02 2005-06-02 Yao-Dong Ma Reflective cholesteric displays employing linear polarizer
CN103676322B (zh) * 2012-09-17 2016-07-06 北京京东方光电科技有限公司 一种液晶显示装置及其相位补偿方法
CN103135280B (zh) * 2012-11-15 2016-05-25 中航华东光电有限公司 一种液晶障栅立体显示系统
CN104076572B (zh) * 2014-06-20 2017-01-18 京东方科技集团股份有限公司 菲涅尔液晶透镜面板、其制备方法及应用其的3d显示器
JP6628137B2 (ja) * 2016-01-20 2020-01-08 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ
CN105700233A (zh) * 2016-04-05 2016-06-22 深圳市华星光电技术有限公司 背光模组及液晶显示装置
CN106707608A (zh) 2017-03-23 2017-05-24 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN107219573B (zh) * 2017-07-31 2019-05-07 京东方科技集团股份有限公司 菲涅尔透镜及眼镜
CN108427222A (zh) 2018-03-23 2018-08-21 惠州市华星光电技术有限公司 液晶显示装置及其显示控制方法
CN108717243B (zh) * 2018-05-29 2022-09-27 京东方科技集团股份有限公司 显示装置
CN108873505B (zh) * 2018-07-27 2022-04-05 京东方科技集团股份有限公司 液晶透镜、模组、增强现实设备、眼镜、显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333557A (ja) * 1994-06-09 1995-12-22 Sony Corp 画像投影装置
CN1773315A (zh) * 2004-11-09 2006-05-17 Lg电子株式会社 显示面板的前部滤光器及其制造方法
CN103064211A (zh) * 2012-10-15 2013-04-24 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及保密显示器件
CN105700268A (zh) * 2016-04-08 2016-06-22 武汉华星光电技术有限公司 液晶透镜及3d显示装置
CN107656379A (zh) * 2017-11-18 2018-02-02 莆田市烛火信息技术有限公司 一种基于液晶透镜的变焦眼镜
CN110146994A (zh) * 2019-05-21 2019-08-20 京东方科技集团股份有限公司 一种滤光结构、眼镜和显示面板

Also Published As

Publication number Publication date
US20210325727A1 (en) 2021-10-21
CN110146994A (zh) 2019-08-20
US11294225B2 (en) 2022-04-05
CN110146994B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2020233494A1 (zh) 具有漏光消除元件的液晶眼镜和液晶显示面板
WO2018171270A1 (zh) 显示面板、显示装置及驱动方法
US5982563A (en) Projection-type display apparatus
US10627664B2 (en) Display panel, display device and display method
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
CN110888270B (zh) 一种显示面板和显示装置
US11226512B2 (en) Liquid crystal display device and display method
WO2020007181A1 (zh) 显示面板及显示装置
US10684529B2 (en) Display panel, method for adjusting grayscale of the same, and display device
WO2017117907A1 (zh) 一种3d显示装置
WO2018130009A1 (zh) 液晶显示器及其驱动方法
WO2017148010A1 (zh) 液晶显示器以及电子设备
US10831054B2 (en) Display panel and display apparatus
WO2017161656A1 (zh) 显示眼镜及其驱动方法
JP2014153383A (ja) 液晶装置および電子機器
US7542101B2 (en) Dioptric element array substrate, image display device and image display apparatus
WO2017177671A1 (zh) 显示装置
WO2018129998A1 (zh) 液晶显示器及其驱动方法
CN209400831U (zh) 一种显示面板和显示装置
KR101212149B1 (ko) 멀티 도메인 액정 표시 장치 및 이의 제조 방법
JP2010060906A (ja) 液晶表示素子、および液晶表示装置
US11204527B2 (en) Liquid crystal display panel, driving method therefor, and display device
US6552766B2 (en) Reflection liquid crystal display device having slanted parts in interfaces
JP2006139059A (ja) 光変調装置及びこれを用いたプロジェクタ
WO2023138542A1 (zh) 偏振光栅装置及液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810309

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20810309

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.08.2022)