WO2013163878A1 - 调光装置及显示器 - Google Patents

调光装置及显示器 Download PDF

Info

Publication number
WO2013163878A1
WO2013163878A1 PCT/CN2012/086223 CN2012086223W WO2013163878A1 WO 2013163878 A1 WO2013163878 A1 WO 2013163878A1 CN 2012086223 W CN2012086223 W CN 2012086223W WO 2013163878 A1 WO2013163878 A1 WO 2013163878A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
electrode
light
droplet
dimming device
Prior art date
Application number
PCT/CN2012/086223
Other languages
English (en)
French (fr)
Inventor
张卓
谢春燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013163878A1 publication Critical patent/WO2013163878A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source

Definitions

  • Embodiments of the present invention relate to a dimming device and a display. Background technique
  • liquid crystal displays are typically passively illuminated transmissive displays.
  • the light emitted by the backlight enters from one end of the liquid crystal panel, passes through the first polarizer, and then changes into light of a specific direction, and then enters the liquid crystal layer, and after being processed by the liquid crystal layer, is then passed through the second polarizer.
  • the second polarizer Selectively output. It can be seen that in the liquid crystal display, since a polarizer is required, most of the light emitted by the backlight is filtered when transmitted. At the same time, the aperture ratio of each layer in the liquid crystal panel is limited, so that the overall light transmittance of the liquid crystal panel is low. Under normal conditions, the color transmittance of a color liquid crystal panel is only 5% to 8%.
  • This structure of the liquid crystal panel greatly affects the brightness and contrast of the entire display.
  • An electrowetting display is a reflective display technology that has a light reflection efficiency of more than 50%.
  • electrowetting technology is applied to a transmissive display, since the droplets need to be added with a black pigment to achieve light absorption, the absorption performance of the droplet itself is limited, and the light absorption performance is further lowered after the tile is enlarged, so the contrast is not high.
  • embodiments of the present invention provide a dimming device and a display in order to solve the problem of low utilization of a transmissive backlight.
  • the structure of the embodiment of the invention can control the intensity of the light transmitted by the backlight without a polarizer, thereby greatly improving the utilization of the backlight.
  • An aspect of the invention provides a dimming device, the device comprising: a lens screen and a baffle, the baffle being disposed opposite to the lens screen on a light emitting side of the lens screen; wherein the lens screen comprises a bottom electrode, a top electrode, and a liquid between the bottom electrode and the top electrode, the liquid being capable of forming at least one droplet lens; the baffle comprising a light shielding region and a light transmitting region.
  • the droplet lens is disposed on a surface of the bottom electrode; the top electrode is provided with a light transmitting region at a position corresponding to each of the droplet lenses, and the other positions of the top electrode are Shading area.
  • the bottom electrode is a surface electrode
  • the top electrode is a surface electrode
  • the bottom electrode is a surface electrode
  • the top electrode includes a position corresponding to each droplet lens.
  • At least one independent electrode; or the bottom electrode includes at least one independent electrode disposed at a position corresponding to each of the droplet lenses, the top electrode being a surface electrode; or the bottom electrode including corresponding to each droplet lens
  • At least one individual electrode disposed at a position the top electrode including at least one individual electrode disposed at a position corresponding to each of the droplet lenses.
  • At least one retaining wall that limits the size and extent of the droplets is provided on the bottom electrode.
  • the baffle is provided with a light blocking region at a position corresponding to each of the liquid droplet lenses.
  • the bottom electrode is provided with a hydrophobic insulating layer, and the droplet lens is an electrowetting droplet lens.
  • an electric field is formed between the bottom electrode and the top electrode, and the focal length of the droplet lens is adjusted by controlling the magnitude of the electric field.
  • the area of the light-transmitting region of the top electrode is not more than 1.1 times the area of the droplet lens corresponding thereto.
  • the distance between the baffle and the drop lens is greater than the minimum focal length of the drop lens.
  • Another aspect of the present invention provides a display comprising the dimming device as described above, and a surface light source disposed outside the bottom electrode of the dimming device.
  • a reflective layer is further provided in the non-lens area of the bottom electrode.
  • an optical diffusion structure is placed at or outside the baffle, corresponding to each droplet lens position or corresponding to the entire lenticular screen.
  • the display for example, by colorizing the drop lens, and/or placing a color filter at a location corresponding to the drop lens, and/or in the light transmissive region of the baffle The corresponding position of the drop lens is colored and/or the light transmissive area of the top electrode is colored to achieve colorized display.
  • the backlight is passed through the droplet lens and then focused at different positions through the corresponding opening, and then the light is appropriately blocked by the baffle, so that the backlight can be transparent.
  • the adjustment of the intensity of the passing light using the structure of the embodiment of the present invention, Dimming can be achieved without setting a polarizer, thus greatly improving the utilization of the backlight.
  • FIG. 1 is a schematic view showing the basic structure of a dimming device of the present invention
  • FIG. 2 is a schematic structural view of a coloring embodiment 1 of a dimming device according to the present invention.
  • FIG. 3 is a schematic structural view of a coloring embodiment 2 of a dimming device according to the present invention.
  • FIG. 4 is a schematic structural view of a coloring embodiment 3 of the dimming device of the present invention.
  • Fig. 5 is a view showing the structure of a coloring embodiment 4 of the dimming device of the present invention. detailed description
  • the dimming device of the embodiment of the present invention forms a lens with a controllable focal length by electrowetting.
  • the basic structure of the dimming device in one embodiment of the present invention is as shown in FIG.
  • the device is generally composed of two layers: a lenticular screen 1 and a baffle 2, which are disposed opposite each other, and the baffle 2 is disposed on the light exiting side of the lenticular screen 1.
  • the lenticular screen 1 is composed of two layers of electrodes 3, 5 and a liquid between two layers of electrodes for forming at least one droplet lens, and the bottom electrode 3 and the top electrode 5 are after they are applied with a voltage An electric field is formed between them. Further, by controlling the magnitude of the electric field formed between the electrodes 3, 5, it is possible to control the formation of droplet lenses having different focal lengths.
  • the bottom electrode 3 is disposed on the substrate 31, spaced apart from the top electrode 5 by a predetermined distance, for example, by a spacer to maintain a distance therebetween; the distance may be determined according to the maximum height required for the drop lens in the application.
  • the distance between the bottom electrode 3 and the baffle 2 is L.
  • the bottom electrode 3 is formed as a patterned structure (not shown) including a separate electrode disposed at a position corresponding to each of the droplet lenses; a liquid is disposed on the surface of the bottom electrode 3 to form a bottom electrode pattern Corresponding at least one droplet lens 4.
  • the drop lens 4 can be either transparent (i.e., colorless) or colored.
  • the top electrode 5 is provided with a light blocking region 502 and a light transmitting region 501.
  • the top electrode 5 is formed with a light transmitting region 501 at a position corresponding to each of the liquid droplet lenses 4, and the light transmitting region 501 may be a slit or a small hole. It can also be a transparent conductive material.
  • the other position of the top electrode 5 is the light blocking area 502.
  • the baffle 2 includes a light-shielding region 201 and a light-transmitting region 202, that is, the baffle 2 is a patterned structure.
  • the light transmissive area 202 of the baffle 2 may be a slit or an aperture.
  • the slit may be a regular polygon such as a square, a regular pentagon, a regular hexagon or the like.
  • the shutter 2 is provided with a light blocking region 201 at a position corresponding to each of the electrowetting droplet lenses 4.
  • the area of the light-shielding region 201 is smaller than the area of the droplet lens 4 corresponding thereto.
  • the substrate 31 including the bottom electrode 3 is surface-coated with a hydrophobic insulating material to form a hydrophobic insulating layer on the surface (the layer may be thin, so it is not particularly shown in the drawing).
  • the drop lens 4 is an electrowetting drop lens.
  • the electrowetting drop lens can be composed of a mixture of a hydrophobic insulating liquid and a conductive liquid.
  • the hydrophobic insulating material may be DuPont's AF1600, Cytonix's Fluoropel 804A, etc., and the hydrophobic insulating material may also be carbon disulfide, carbon tetrachloride, tetrachloroethylene silicone oil, alkanes, etc.; the conductive liquid may be a salt solution of water, or Ionic liquids, etc.
  • the wettability of the surface of the substrate 31 and the liquid in the droplet lens 4 can be controlled by the voltage applied between the electrodes 3, 5, thereby controlling the shape of the droplet lens 4 to form different focal lengths. By controlling the magnitude of the electric field between the two layers of electrodes, it is possible to control the formation of droplet lenses having different focal lengths.
  • an adjustment voltage is applied to the bottom electrode 3 to change the wettability of the hydrophobic insulating material and the liquid in the drop lens, and accordingly the shape of the liquid in the drop lens changes to form different lens focal lengths.
  • the embodiment of the invention utilizes different voltages to control the focal length of the lens of the electrowetting droplets, and the light from the backlight can be focused on different positions after passing through the droplet lens, and a baffle 2 capable of absorbing light is disposed outside the minimum focal length. You only need to adjust the appropriate focal length to adjust the light intensity around the baffle. Since the design has no polarizer and can pass through the lens so that most of the light from the backlight is projected through the slit by the lens, the backlight utilization is much higher than that of the conventional liquid crystal panel.
  • the working principle of the dimming device of the embodiment of the present invention is as follows.
  • the light emitted by the backlight 10 passes through the bottom electrode 3 and the electrowetting droplet lens 4, passes through the light transmitting region 501 of the top electrode 5, and finally passes through the patterned light blocking region 201 disposed outside the minimum focal length.
  • the baffle 2 obtains transmitted light of a specified intensity at each point (droplet lens), thereby completing the entire dimming device.
  • the focal length of the corresponding electrowetting droplet lens 4 can be controlled to focus the light transmitted through the droplet lens 4 at different focal length positions; for example, the top electrode 5 can adjust the direction of the light transmitted therethrough.
  • the lens 4 aligns the focal length with the light-shielding region 201 of the baffle 2, the light is completely absorbed and is not transparent; when the focal length of the lens 4 is greater than or smaller than the baffle distance L, part of the light is permeable. . Therefore, by adjusting the focal length of the lens 4, the intensity of the light bypassing the shutter 2 can be adjusted, thereby realizing dimming. Since the structure of the embodiment of the present invention has no polarizer, and most of the light from the backlight can pass through the light-transmitting region of the top electrode through the lens, the utilization rate of the backlight is much higher than that of the conventional liquid crystal panel. Moreover, embodiments of the present invention can significantly reduce the power consumption of the backlight while achieving higher brightness and contrast.
  • the top electrode 5 is provided with a light blocking region 502 and a light transmitting region 401.
  • the opening area on the top electrode 5 i.e., the area of the light transmitting region 501 is preferably within 1.1 times the lens area, more preferably within 1 time, and most preferably within 0.8 times.
  • the light transmitting region 501 of the top electrode 5 may be a slit or a small hole.
  • the slit may be a regular polygon such as a square, a regular pentagon, a regular hexagon, or the like.
  • the distance L of the baffle 2 for light absorption from the droplet lens must be outside the minimum focal length of the lens 4, More preferably, the distance is greater than twice the minimum focal length.
  • the bottom electrode 3 is a face electrode
  • the top electrode 5 may also be a face electrode.
  • Specific examples include: the light blocking region 502 of the top electrode 5 and the conductive material of the light transmitting region 501 are connected to form an equal voltage to constitute a surface electrode.
  • a retaining wall 32 (shown by a broken line) may be formed on the bottom electrode 3 to restrict the liquid of the liquid droplet lens in the retaining wall 32, and a plurality of retaining wall units may be set as needed to control the droplets. The size makes it easier to control the focal length range of the drop lens.
  • the retaining wall 32 is, for example, disposed in a strip shape or a grid shape perpendicular to the surface of the bottom electrode, and may have a height smaller than a distance between the top electrode 5 and the bottom electrode 3.
  • the bottom electrode 3 is a face electrode
  • the top electrode 5 may have a patterned structure including a single individual electrode disposed at a position corresponding to each of the drop lenses.
  • the top electrode 5 is a patterned electrode.
  • the bottom electrode 3 may have a patterned structure including a single individual electrode disposed at a position corresponding to each of the drop lenses.
  • a plurality of data lines and gate lines (not shown) are disposed on the substrate 31, and the data lines and the gate lines intersect to form a matrix unit, and each of the matrix units is provided with a separate electrode (preferably, the individual electrodes are transparent)
  • the electrode material is formed, such as indium tin oxide (ITO), a TFT (Thin Film Transistor), or the like. This is similar to the composition and material of an array substrate of an LCD (Liquid Crystal Display).
  • the surface of the bottom electrode is then surface coated with a hydrophobic insulating material. In each matrix unit, a drop lens is placed.
  • a retaining wall may be provided around the matrix unit to form a cell space, and the liquid of the drop lens is confined within the matrix unit.
  • the top electrode 5 may be in the form of a surface electrode or a patterned structure including a single individual electrode disposed at a position corresponding to each of the droplet lenses.
  • the light-transmitting region of the top electrode 5 can be formed of ITO (Indium Tin Oxides) which is transparent and electrically conductive.
  • the light blocking region of the top electrode 5 may be formed of a metal or a black material to achieve a light blocking function.
  • a retaining wall that limits the size and range of the droplets may be set in the region of the bottom electrode 3 to restrict the liquid of the droplet lens within the retaining wall; and a plurality of retaining walls may be set as needed.
  • the unit in order to control the droplet size, makes it easier to control the focal length range of the droplet lens.
  • a uniform is added behind the display
  • the backlight is ready to use.
  • dimming can be realized without providing a polarizer, thereby greatly improving the utilization ratio of the backlight.
  • a reflective layer may be disposed in the bottom electrode non-lens area of the drop lens. Further, for example, a reflective layer (such as layer 33 in FIG.
  • the backlight may also be provided with a reflective structure on a side away from the bottom electrode (for example, by reflecting a reflective layer formed of a reflective material) (not shown); thus, when light from the backlight cannot be transmitted from the non-lens area of the bottom electrode 3, reflection from the reflective layer can be reflected by the reflective layer The structure is then reflected by the reflective structure of the backlight to the bottom electrode, thereby increasing the utilization of the backlight of the display.
  • an optical diffusion structure may also be placed outside the corresponding position of the lens (each droplet lens or the entire lenticular screen), such as at the same layer or at the baffle position of the baffle position, the optical diffusion structure It can be an optical diffusion film (attached to a baffle or attached to a transparent material) or an optical diffuser; in addition, it can also be colored by the color of the droplet itself, or can be colored by other layers, such as The color filter layer or other light transmissive layer is changed to color or the like.
  • the dimming device can also be used as an optical signal detecting, receiving, etc., because it does not change the polarization state of the light, and can be used for optical communication.
  • FIG. 2 An embodiment 1 of coloring a lens type dimming device is shown in Fig. 2.
  • the colorization of the entire dimming device is achieved by coloring the droplet lens.
  • three droplet lenses are disposed in one pixel unit, and the three droplet lenses are respectively colored into three colors of red (R), green (G), and blue (B);
  • the area is red
  • the vertical line stripe indicates that the area is green
  • the horizontal line stripe indicates that the area is blue
  • the stripe of the following figures has the same meaning as in FIG. 2, and will not be described below.
  • the color and brightness displayed on one pixel unit are obtained by a combination of transmitted light of three colors of different intensities.
  • a plurality of such pixel cell array arrangements can result in a color display panel having a corresponding resolution.
  • Embodiment 2 of the coloring of the lens type dimming device is shown in FIG.
  • colorization of the entire dimming device is achieved by placing a color filter.
  • the position of the colored color distribution (example The positions where 1, G, B are distributed) correspond to the droplet lens.
  • a color filter 6 is placed between the top electrode and the shutter, or a color filter 6 is placed outside the shutter. Similar to the array substrate of a thin film transistor liquid crystal display (TFT-LCD), three sub-pixel units of red, green, and blue are disposed in one pixel unit of the color filter; each sub-pixel unit corresponds to one droplet lens, and The light transmitted by the droplet lens is filtered into light of a corresponding color. The color and brightness displayed on one pixel unit are obtained by a combination of three colors of light of different intensities. A plurality of such pixel cell array arrangements can result in a color display panel having a corresponding resolution.
  • TFT-LCD thin film transistor liquid crystal display
  • the third embodiment of the coloring of the lens type dimming device is as shown in Fig. 4.
  • the coloring of the entire dimming device is achieved by colorizing the light transmitting region of the baffle.
  • the colored color is distributed in the light-transmitting region of the baffle, and each of the light-transmitting regions of the baffle is divided into two colors, and the same color is disposed on both sides adjacent to each of the light-shielding regions 201.
  • the overall position of each color corresponds to the drop lens.
  • the area of the light blocking area 201 of the shutter is smaller than the area of the liquid droplet lens corresponding thereto.
  • filters of various colors are arranged in the light-transmitting area of the baffle, and three sub-pixel units of red, green and blue are formed in one pixel unit on the baffle; each sub-pixel unit and one Corresponding to the droplet lens, the light transmitted by the droplet lens is filtered into light of a corresponding color, and the color and brightness displayed on one pixel unit are obtained by a combination of three colors of transmitted light of different intensities.
  • a plurality of such pixel cell array arrangements can result in a color display panel having a corresponding resolution.
  • the coloring of the entire dimming device is realized by colorizing the light transmitting region of the top electrode.
  • filters of various colors are arranged in the light-transmitting region of the top electrode, and three sub-pixel units of red, green, and blue are formed in one pixel unit on the top electrode (ie, including three different
  • Each of the sub-pixel units corresponds to one droplet lens, and the light transmitted by the droplet lens is filtered into light of a corresponding color, and a pixel unit is obtained by combining light of three colors of different intensities.
  • a plurality of such pixel cell array arrangements can result in a color display panel having a corresponding resolution.
  • the backlight passes through the droplet lens and then is focused at different positions through the corresponding opening, and then the light is appropriately used by using the baffle.
  • the occlusion can adjust the intensity of the light transmitted through the backlight.
  • dimming can be realized without providing a polarizer, thereby greatly improving the utilization of the backlight.
  • the embodiment of the present invention can obviously obtain higher brightness and contrast, and can significantly reduce the power consumption of the device because there is no need to increase the backlight power.
  • a wide viewing angle and colorization can be realized by simple improvement, and the utilization of the backlight is further improved, and the application prospect is wide.

Abstract

一种调光装置及显示器。调光装置包括透镜屏(1)和挡板(2)。挡板(2)在透镜屏(1)的出光侧与透镜屏相对设置。透镜屏(1)包括底电极(3)、顶电极(5)以及位于底电极和顶电极之间的液体,液体能形成至少一个液滴透镜(4),挡板(2)包括遮光区域(201)与透光区域(202)。该调光装置无需设置偏光片即可实现调光,提高了背光利用率。

Description

调光装置及显示器 技术领域
本发明的实施例涉及一种调光装置及显示器。 背景技术
传统的液晶显示器通常是被动发光的透射型显示器。在液晶显示器之中, 背光源发出的光从液晶面板的一端进入, 经过第一偏光片后改变为特定方向 的光, 然后进入液晶层, 在被液晶层处理后, 经第二偏光片再被选择性地输 出。 可以看出, 液晶显示器中由于需要使用偏光片, 透射时会过滤掉背光源 发出的大部分光。 同时液晶面板中各层的开口率有一定限制, 因此液晶面板 整体的光透过率很低。 通常状况下彩色液晶面板的光透过率仅有 5% ~ 8%。 液晶面板的这种结构使得显示器整体的亮度和对比度受到很大影响, 此外, 为了保证显示器的亮度和对比度在一定范围内,必须釆用功率较大的背光源, 也造成了额外的能量损耗。
电润湿显示器是一种反射式显示技术, 它的光反射效率超过 50%。 当将 电润湿技术应用于透射型显示器, 由于液滴需要添加黑色颜料实现吸光, 其 本身吸光性能有限,平铺扩大面积后吸光性能进一步下降, 因此对比度不高。 发明内容
针对上述缺点, 本发明的实施例为了解决透射型背光源的利用率低的问 题, 提供了一种调光装置及显示器。 本发明实施例的结构无需偏光片即可控 制背光源透过光线的强度大小, 因而大大提高了背光利用率。
本发明的一个方面提供一种调光装置, 所述装置包括: 透镜屏和挡板, 所述挡板在所述透镜屏的出光侧与所述透镜屏相对设置; 其中, 所述透镜屏 包括底电极、 顶电极以及位于所述底电极和顶电极之间的液体, 所述液体能 形成至少一个液滴透镜; 所述挡板包括遮光区域与透光区域。
对于该调光装置, 例如, 所述液滴透镜设置在底电极表面上; 所述顶电 极在与每一液滴透镜相对应的位置设置透光区域, 所述顶电极的其他位置为 遮光区域。
对于该调光装置, 例如, 所述底电极为面电极, 所述顶电极为面电极; 或所述底电极为面电极, 所述顶电极包括与每一个液滴透镜相对应的位置设 置的至少一个独立电极; 或所述底电极包括与每一个液滴透镜相对应的位置 设置的至少一个独立电极, 所述顶电极为面电极; 或所述底电极包括与每一 个液滴透镜相对应的位置设置的至少一个独立电极, 所述顶电极包括与每一 个液滴透镜相对应的位置设置的至少一个独立电极。
对于该调光装置, 例如, 底电极上设立至少一个限制液滴大小和范围的 挡墙。
对于该调光装置, 例如, 所述挡板在与每一液滴透镜相应的位置设有遮 光区域。
对于该调光装置, 例如, 所述底电极上设置一层疏水绝缘层, 所述液滴 透镜为电润湿液滴透镜。
对于该调光装置, 例如, 所述底电极和所述顶电极之间形成电场, 通过 控制所述电场的大小来调节所述液滴透镜的焦距。
对于该调光装置, 例如, 所述顶电极的透光区域的面积不大于与其所对 应的所述液滴透镜面积的 1.1倍。
对于该调光装置, 例如, 所述挡板与所述液滴透镜的距离大于所述液滴 透镜的最小焦距。
本发明的另一方面提供了一种显示器, 所述显示器包括如上所述的调光 装置, 以及设置在所述调光装置的底电极外侧的面光源。
对于该显示器, 例如, 在所述底电极的非透镜区域还设置有反射层。 对于该显示器, 例如, 在所述挡板处或挡板之外、 对应每一液滴透镜位 置或对应整个透镜屏的位置放置光学扩散结构。
对于该显示器, 例如, 通过将所述液滴透镜彩色化、 和 /或在与所述液滴 透镜相对应的位置放置彩色滤光片、和 /或将挡板的透光区域中与所述液滴透 镜相对应的位置彩色化和 /或将顶电极的透光区域彩色化来实现彩色化显示。
本发明的实施例中通过控制液滴透镜的焦距, 使得背光源通过液滴透镜 后再经过相应的开口在不同位置聚焦, 进而通过挡板对光进行适当的遮挡, 即可实现对背光源透过光线的强度大小的调节, 釆用本发明实施例的结构, 无需设置偏光片即可实现调光, 因而大大提高了背光源的利用率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明中调光装置的基本结构示意图;
图 2为本发明中调光装置的彩色化实施例 1的结构示意图;
图 3为本发明中调光装置的彩色化实施例 2的结构示意图;
图 4为本发明中调光装置的彩色化实施例 3的结构示意图;
图 5为本发明中调光装置的彩色化实施例 4的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。
"上" 、 "下" 、 "左" 、 "右" 、 "前" 、 "后" 等仅用于表示相对位置 关系, 当被描述对象的绝对位置改变后, 则该相对位置关系也可能相应地改 变。 本发明实施例的调光装置通过电润湿的方式形成可控焦距的透镜。 本发 明的一个实施例中的调光装置的基本结构如图 1所示。 该装置一般由两层构 成: 透镜屏 1和挡板 2, 二者相对设置, 挡板 2设置在透镜屏 1的出光侧。 透镜屏 1由两层电极 3、 5和两层电极中间的液体组成,所述液体用于形成至 少一个液滴透镜, 而所述底电极 3和所述顶电极 5在施加电压后在它们之间 形成电场。 进一步地, 通过控制形成在两电极 3、 5之间的电场的大小, 就可 以控制形成具有不同焦距的液滴透镜。底电极 3设置在基板 31上,与顶电极 5 彼此间隔开预定距离, 例如可以通过隔垫物保持二者之间的距离; 该距离 可以根据液滴透镜在应用中需要最高高度确定。 底电极 3与挡板 2之间的距 离为 L。
优选地, 底电极 3形成为图案化结构 (未示出) , 包括在与每一个液滴 透镜相对应的位置设置有一个独立电极; 液体设置在底电极 3的表面上, 形 成与底电极图案相对应的至少一个液滴透镜 4。液滴透镜 4可以为透明的(即 无色的)也可以为彩色的。 顶电极 5设置有挡光区域 502和透光区域 501 , 顶电极 5在与每一液滴透镜 4相对应的位置形成有透光区域 501 , 该透光区 域 501可以为狭缝或小孔, 也可以为透明导电材料。 顶电极 5的其他位置为 遮光区域 502。挡板 2包括遮光区域 201与透光区域 202, 即挡板 2为图案化 的结构。
可选地, 挡板 2的透光区域 202可以为狭缝或者小孔。 当挡板 2的透光 区域 202为狭缝时, 狭缝可以为正多边形, 如正方形、 正五边形、 正六边形 等其他形状。 较佳地, 挡板 2在与每一电润湿液滴透镜 4相应的位置设有遮 光区域 201。可选地,所述遮光区域 201的面积小于与其所对应的液滴透镜 4 的面积。
较佳地, 包括底电极 3的基板 31釆用疏水绝缘材料进行表面涂覆,在其 表面上形成一层疏水绝缘层(该层可以很薄, 所以图中未特别示出) 。 液滴 透镜 4为电润湿液滴透镜。 示例性地, 电润湿液滴透镜可由一种疏水绝缘性 液体和一种导电液体混合组成。 例如, 疏水绝缘材料可以为杜邦公司的 AF1600, Cytonix公司的 Fluoropel804A等,疏水绝缘性材料还可以为二硫化 碳、 四氯化碳、 四氯乙烯硅油、 烷烃等; 导电液体可为水的盐溶液, 或者离 子液体等。 利用施加到电极 3、 5之间的电压可控制基板 31的表面与液滴透镜 4中 的液体的浸润性, 从而控制液滴透镜 4的形状以形成不同的焦距。 通过控制 两层电极之间电场的大小, 可以控制形成具有不同焦距的液滴透镜。 例如, 可以下述一种电润湿( Electrowetting ) 方式实现。 在底电极 3上施加调整电 压来改变疏水绝缘材料与液滴透镜中的液体的浸润性, 相应地液滴透镜中的 液体形状发生变化,从而形成不同的透镜焦距。本发明实施例利用不同电压, 控制电润湿液滴的透镜焦距, 将来自背光源的光经过液滴透镜后可聚焦在不 同位置, 在最小焦距外设置一个可吸收光的挡板 2, 因此只需要调节合适的 焦距, 就可以调节绕过挡板的光强大小。 因为该设计无偏光片, 而且可以通 过透镜从而使大部分来自背光源的光能被透镜投射通过狭缝, 所以背光源利 用率比传统液晶面板要高很多。
本发明实施例的调光装置的工作原理如下所述。背光源 10发出的光(如 箭头所示 )通过底电极 3和电润湿液滴透镜 4, 再经过顶电极 5的透光区域 501 , 最后通过在最小焦距外设置的具有图案化遮光区域 201的挡板 2, 获得 各个点 (液滴透镜)处指定强度的透射光, 从而完成整个调光装置。 利用不 同电压, 可以控制相应的电润湿液滴透镜 4的焦巨, 将透过该液滴透镜 4的 光聚焦在不同焦距位置; 例如, 顶电极 5可调整透过其的光的方向。
具体地, 当透镜 4将焦距对准在挡板 2的遮光区域 201时, 则光线被完 全吸收, 不能透过; 当透镜 4的焦距大于或小于挡板距离 L时, 则部分光线 可透过。 因而, 通过调节透镜 4的焦距大小, 就可以调节绕过挡板 2的光强 大小, 从而实现了调光。 由于本发明实施例的结构中无偏光片, 而且可以通 过透镜使大部分来自背光源的光能透过顶电极的透光区域, 所以背光源的利 用率比传统液晶面板要高很多。 而且, 本发明的实施例在获得较高亮度和对 比度的同时也可显著降低背光源的功耗。
在本发明实施例的调光装置中, 顶电极 5设置有挡光区域 502和透光区 域 401。 顶电极 5上的开口面积(也即透光区域 501的面积)优选在透镜面 积 1.1倍以内, 更佳的在 1倍以内, 最佳的在 0.8倍以内。 所述顶电极 5的透 光区域 501可以为狭缝或者小孔。当所述顶电极 5的透光区域 501为狭缝时, 狭缝可以为正多边形, 如正方形、 正五边形、 正六边形等其他形状。 此外, 用于吸光的挡板 2的与所述液滴透镜的距离 L必须在透镜 4的最小焦距外, 更佳的其距离大于最小焦距的 2倍。
在本发明的另一个实施例中, 对于底电极 3和顶电极 5, 可选地, 底电 极 3为一个面电极, 顶电极 5也可以为一个面电极。 具体的示例包括: 顶电 极 5的挡光区域 502和透光区域 501的导电材料都连接起来, 以便形成等电 压,构成面电极。进一步地,在底电极 3上可以设立挡墙 32(如图虚线所示), 将液滴透镜的液体限制在挡墙 32内,并可以根据需要设立多个挡墙单元,以 便于控制液滴大小,从而更易于控制液滴透镜的焦距范围。该挡墙 32例如垂 直于底电极的表面设置为长条状或者网格状, 其高度可以小于顶电极 5与底 电极 3之间的距离。
可选地, 底电极 3为一个面电极, 顶电极 5可以具有图案化结构, 包括 在与每一个液滴透镜相对应的位置设置的单个独立电极。 此时, 顶电极 5为 图案化的电极。
可选地, 底电极 3可以具有图案化结构, 包括在与每一个液滴透镜相对 应的位置设置的单个独立电极。在基板 31上设置有多条数据线和栅线(未示 出) , 该数据线和栅线交叉形成矩阵单元, 每一个矩阵单元里设置一个独立 电极(较佳地, 该独立电极釆用透明电极材料形成,如铟锡氧化物(ITO ) )、 一个 TFT ( Thin Film Transistor, 薄膜晶体管)等。 这与 LCD ( Liquid Crystal Display, 液晶显示器)的阵列基板的构成和材料相类似。 然后对底电极的表 面釆用疏水绝缘材料进行表面涂覆。在每个矩阵单元里,设置一个液滴透镜。 进一步地, 可在矩阵单元四周设置挡墙以形成单元空间, 将液滴透镜的液体 限制在该矩阵单元内。 此时, 顶电极 5可以选用面电极的形式, 也可以具有 图案化结构, 包括与每一个液滴透镜相对应的位置设置的单个独立电极。
顶电极 5 的透光区域可以用 ITO(Indium Tin Oxides,铟锡氧化物)来形 成, 该材料透明且具有导电性。
顶电极 5的挡光区域可以用金属或者是黑色材料来形成, 以实现挡光的 功能。
进一步地, 本发明的实施例中, 在底电极 3的区域中可以设立限制液滴 大小和范围的挡墙, 将液滴透镜的液体限制在挡墙内; 并可以根据需要设立 多个挡墙单元, 以便于控制液滴大小,从而更易于控制液滴透镜的焦距范围。
当本发明实施例的调光装置可以用在显示器中, 在其背后加一个均匀的 面背光源即可使用。 釆用本发明实施例的结构, 无需设置偏光片即可实现调 光, 因而大大提高了背光源的利用率。 为提高显示器的背光源利用率, 可在 液滴透镜的底电极非透镜区域设置反射层。 进一步地, 例如, 在液滴透镜的 底电极非透镜区域靠近背光源的那一侧设置反射层(如图 1中的层 33 ) , 背 光源在远离底电极的一侧也可以设置反射结构 (例如通过涂覆反射材料形成 的反射层) (未示出) ; 这样, 当来自背光源的光不能从底电极 3的非透镜 区域透过的时候, 则可以经反射层反射到背光源的反射结构, 再由此背光源 的反射结构反射到底电极, 由此提高显示器的背光源的利用率。 为实现宽视 角, 例如, 还可在透镜(每一液滴透镜或整个透镜屏)对应位置外 (如在挡 板位置同一层或挡板位置之外)放置光学扩散结构, 所述光学扩散结构可以 为光学扩散薄膜 (附在挡板上或附在某一透明材料上 )或光学扩散片; 此外, 还可以利用液滴本身的颜色实现彩色化, 也可通过其他层实现彩色化, 如增 加彩色滤光片层或将其他透光层改为彩色等。
该调光装置还可以作为光信号检测、 接收等应用, 因为不改变光的偏振 状态, 可以艮好的用于光通信。
下面结合各附图来说明将本发明中的透镜型调光装置彩色化的几种实施 方式。
实施例 1
透镜型调光装置彩色化的实施例 1如图 2所示。 在该实施例 1中, 通过 将液滴透镜彩色化来实现整个调光装置的彩色化。
例如, 在一个像素单元内设置三个液滴透镜, 将这三个液滴透镜分别彩 色化为红(R ) 、 绿(G ) 、 蓝(B )三色; 在图 2中斜线条紋表示该区域为 红色, 竖线条紋表示该区域为绿色, 横线条紋表示该区域为蓝色; 以下各附 图的条紋与图 2中含义相同, 下文中不再赘述。
通过不同强度的三种颜色的透过光的组合来得到一个像素单元上显示的 色彩和亮度。 多个这样的像素单元阵列式的排布可得到具有相应分辨率的彩 色显示面板。
实施例 2
透镜型调光装置彩色化的实施例 2如图 3所示。 在该实施例 2中, 通过 放置彩色滤光片来实现整个调光装置的彩色化。 彩色的颜色分布的位置(例 如1 、 G、 B分布的位置)与所述液滴透镜相对应。
例如, 在顶电极和挡板之间放置彩色滤光片 6、 或者在挡板之外放置彩 色滤光片 6。 与薄膜晶体管液晶显示器(TFT-LCD ) 的阵列基板相类似, 彩 色滤光片上一个像素单元内设置有红、 绿、 蓝三个子像素单元; 每个子像素 单元与一个液滴透镜相对应, 将该液滴透镜透过的光过滤为相应颜色的光。 通过不同强度的三种颜色透过光的组合来得到一个像素单元上显示的色彩和 亮度。 多个这样的像素单元阵列式的排布可得到具有相应分辨率的彩色显示 面板。
实施例 3
透镜型调光装置彩色化的实施例 3如图 4所示, 在该实施例 3中, 通过 将挡板的透光区域彩色化来实现整个调光装置的彩色化。 彩色的颜色分布在 挡板的透光区域中, 挡板的每个透光区域划分为两种颜色, 在临近每个遮光 区域 201的两侧设置的是同样的颜色。 每种颜色的整体位置与液滴透镜相对 应。 此时可选地, 挡板的遮光区域 201的面积小于与其所对应的液滴透镜的 面积。
例如, 与实施例 2相类似, 在挡板的透光区域布置各种颜色的滤光片, 挡板上一个像素单元内形成为红、 绿、 蓝三个子像素单元; 每个子像素单元 与一个液滴透镜相对应, 将该液滴透镜透过的光过滤为相应颜色的光, 通过 不同强度的三种颜色透过光的组合来得到一个像素单元上显示的色彩和亮 度。 多个这样的像素单元阵列式的排布可得到具有相应分辨率的彩色显示面 板。
实施例 4
透镜型调光装置彩色化的实施例 4如图 5所示, 在该实施例 4中, 通过 将顶电极的透光区域彩色化来实现整个调光装置的彩色化。
例如,与实施例 3相类似,在顶电极的透光区域布置各种颜色的滤光片, 在顶电极上一个像素单元内形成为红、 绿、 蓝三个子像素单元(即包括三个 不同颜色的开口) ; 每个子像素单元与一个液滴透镜相对应, 将该液滴透镜 透过的光过滤为相应颜色的光, 通过不同强度的三种颜色透过光的组合来得 到一个像素单元上显示的色彩和亮度。 多个这样的像素单元阵列式的排布可 得到具有相应分辨率的彩色显示面板。 当然, 釆用上述实施例 2至实施例 4中多种实施方式的组合来实现整个 调光装置的彩色化也是本发明的实施方式之一。
本发明实施例的透镜型调光装置中, 通过控制液滴透镜的焦距的大小, 使得背光源通过液滴透镜后再经过相应的开口在不同位置聚焦, 进而通过使 用挡板对光进行适当的遮挡, 可实现对背光源透过光线的强度大小的调节。 釆用本发明实施例的结构, 无需设置偏光片即可实现调光, 因而大大提高了 背光源的利用率。 相较于传统的液晶面板, 本发明的实施例可明显获得较高 的亮度和对比度, 由于不需要提高背光源功率, 也可显著降低器件功耗。 此 外, 当用作显示器时, 通过简单地改进即可实现广视角和彩色化, 更进一步 地提高背光源的利用率, 应用前景广泛。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种调光装置, 包括:
透镜屏和挡板,所述挡板在所述透镜屏的出光侧与所述透镜屏相对设置; 其中, 所述透镜屏包括底电极、 顶电极以及位于所述底电极和顶电极之 间的液体, 所述液体形成至少一个液滴透镜;
所述挡板包括遮光区域与透光区域。
2、 根据权利要求 1所述的调光装置, 其中,
所述液滴透镜设置在底电极的表面上;
所述顶电极在与每一液滴透镜相对应的位置设置透光区域, 所述顶电极 的其他位置为遮光区域。
3、 根据权利要求 1或 2所述的调光装置, 其中,
所述底电极为面电极, 所述顶电极为面电极; 或
所述底电极为面电极, 所述顶电极包括在与每一个液滴透镜相对应的位 置设置的至少一个独立电极; 或
所述底电极包括与每一个液滴透镜相对应的位置设置的至少一个独立电 极, 所述顶电极为面电极; 或
所述底电极包括与每一个液滴透镜相对应的位置设置的至少一个独立电 极, 所述顶电极包括与每一个液滴透镜相对应的位置设置的至少一个独立电 极。
4、根据权利要求 3所述的调光装置, 其中, 所述底电极上设立至少一个 限制液滴大小和范围的挡墙。
5、 根据权利要求 1-4任一所述的调光装置, 其中,
所述挡板在与每一液滴透镜相应的位置设有遮光区域。
6、 根据权利要求 1-5任一所述的调光装置, 其中, 所述底电极上设置一 层疏水绝缘层, 所述液滴透镜为电润湿液滴透镜。
7、 根据权利要求 1-6任一所述的调光装置, 其中, 所述底电极和所述顶 电极之间形成电场, 通过控制所述电场的大小来调节所述液滴透镜的焦距。
8、 根据权利要求 1-7任一所述的调光装置, 其中, 所述顶电极的透光区 域的面积不大于与其所对应的所述液滴透镜面积的 1.1倍。
9、 根据权利要求 1-8任一所述的调光装置, 其中, 所述挡板与所述液滴 透镜的距离大于所述液滴透镜的最 d、焦距。
10、 一种显示器, 包括如权利要求 1-9任一项所述的调光装置, 以及设 置在所述调光装置的底电极外侧的面光源。
11、根据权利要求 10所述的显示器, 其中, 在所述底电极的非透镜区域 还设置有反射层。
12、 根据权利要求 10或 11所述的显示器, 其中, 在所述挡板处或在挡 板之夕卜、对应每一液滴透镜位置或对应整个透镜屏的位置放置光学扩散结构。
13、 根据权利要求 10-12所述的显示器, 其中, 通过将所述液滴透镜彩 色化、 和 /或在与所述液滴透镜相对应的位置放置彩色滤光片、 和 /或将挡板 的透光区域中与所述液滴透镜相对应的位置彩色化和 /或将顶电极的透光区 域彩色化来实现彩色化显示。
PCT/CN2012/086223 2012-05-04 2012-12-07 调光装置及显示器 WO2013163878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210138135.5 2012-05-04
CN201210138135.5A CN102681164B (zh) 2012-05-04 2012-05-04 调光装置及显示器

Publications (1)

Publication Number Publication Date
WO2013163878A1 true WO2013163878A1 (zh) 2013-11-07

Family

ID=46813336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086223 WO2013163878A1 (zh) 2012-05-04 2012-12-07 调光装置及显示器

Country Status (2)

Country Link
CN (1) CN102681164B (zh)
WO (1) WO2013163878A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211825A1 (zh) * 2019-04-19 2020-10-22 京东方科技集团股份有限公司 可变光阑及其控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681164B (zh) * 2012-05-04 2014-10-01 京东方科技集团股份有限公司 调光装置及显示器
CN105158974B (zh) * 2015-09-29 2019-03-19 惠州Tcl移动通信有限公司 一种背光源模块及具有该背光源模块的移动设备
CN109753260B (zh) * 2018-12-29 2021-07-16 联想(北京)有限公司 一种电子设备及其控制方法
CN109765774B (zh) * 2019-03-22 2022-04-19 京东方科技集团股份有限公司 一种全息显示装置和全息显示装置的驱动方法
CN109782430B (zh) * 2019-03-22 2022-07-08 京东方科技集团股份有限公司 一种全息显示装置和全息显示装置的驱动方法
CN110262035A (zh) * 2019-06-18 2019-09-20 京东方科技集团股份有限公司 基于电润湿微液滴的显示器件和显示面板
CN112859323B (zh) * 2021-03-19 2023-05-12 京东方科技集团股份有限公司 显示面板、显示设备及显示方法
CN114153086A (zh) * 2021-12-08 2022-03-08 武汉华星光电技术有限公司 显示面板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259040A (ja) * 2005-03-16 2006-09-28 Sony Corp 表示装置、表示制御方法、並びにプログラム
US20070075922A1 (en) * 2005-09-28 2007-04-05 Jessop Richard V Electronic display systems
WO2009050274A2 (en) * 2007-10-19 2009-04-23 Seereal Technologies S.A. Spatial light modulator using electrowetting cells
CN101482627A (zh) * 2009-02-17 2009-07-15 东南大学 一种具有较小像差的微透镜阵列
CN101578545A (zh) * 2007-01-10 2009-11-11 索尼株式会社 液体装置、液体装置制造设备和方法以及图像显示装置
CN102654665A (zh) * 2011-12-14 2012-09-05 京东方科技集团股份有限公司 液晶透镜型调光装置及显示器
CN102681164A (zh) * 2012-05-04 2012-09-19 京东方科技集团股份有限公司 调光装置及显示器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145794B2 (ja) * 2001-10-11 2008-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2d/3d表示装置
CN1782835A (zh) * 2004-11-30 2006-06-07 三洋电机株式会社 液晶显示装置
JP4934974B2 (ja) * 2005-03-17 2012-05-23 エプソンイメージングデバイス株式会社 画像表示装置
JP4934975B2 (ja) * 2005-03-17 2012-05-23 エプソンイメージングデバイス株式会社 画像表示装置
TWI460469B (zh) * 2011-06-15 2014-11-11 Au Optronics Corp 可切換透明式電潤濕顯示裝置
CN102253438A (zh) * 2011-08-02 2011-11-23 昆山龙腾光电有限公司 电润湿透镜的形成方法及电润湿透镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259040A (ja) * 2005-03-16 2006-09-28 Sony Corp 表示装置、表示制御方法、並びにプログラム
US20070075922A1 (en) * 2005-09-28 2007-04-05 Jessop Richard V Electronic display systems
CN101578545A (zh) * 2007-01-10 2009-11-11 索尼株式会社 液体装置、液体装置制造设备和方法以及图像显示装置
WO2009050274A2 (en) * 2007-10-19 2009-04-23 Seereal Technologies S.A. Spatial light modulator using electrowetting cells
CN101482627A (zh) * 2009-02-17 2009-07-15 东南大学 一种具有较小像差的微透镜阵列
CN102654665A (zh) * 2011-12-14 2012-09-05 京东方科技集团股份有限公司 液晶透镜型调光装置及显示器
CN102681164A (zh) * 2012-05-04 2012-09-19 京东方科技集团股份有限公司 调光装置及显示器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211825A1 (zh) * 2019-04-19 2020-10-22 京东方科技集团股份有限公司 可变光阑及其控制方法
US11500267B2 (en) 2019-04-19 2022-11-15 Beijing Boe Technology Development Co., Ltd. Variable diaphragm and control method thereof

Also Published As

Publication number Publication date
CN102681164B (zh) 2014-10-01
CN102681164A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2013163878A1 (zh) 调光装置及显示器
US10678086B2 (en) Display panel, display device, and driving method
CN106773379B (zh) 显示面板、显示装置及其控制方法
TWI615634B (zh) 透明自動立體顯示器
US9201268B2 (en) Liquid-crystal-lens type light-modulating apparatus and liquid crystal display having the same
WO2013157341A1 (ja) 液晶表示装置
WO2018072508A1 (zh) 显示装置及其显示方法
TW201728965A (zh) 顯示裝置及驅動方法
WO2011043100A1 (ja) 表示パネル、表示システム、携帯端末、電子機器
KR20220004760A (ko) 광 제어 장치, 수동 발광 이미지 소스 및 헤드업 디스플레이 시스템
US8610845B2 (en) Display device having color filter and polymer-dispersed liquid crystal (PDLC) layer
WO2017173810A1 (zh) 显示装置、裸眼3d显示系统和虚拟现实眼镜
TWI691768B (zh) 視角控制膜片與採用其之顯示裝置
KR20110118476A (ko) 컬러 필터 및 이를 채용한 디스플레이 장치
KR20150016608A (ko) 무안경 입체 디스플레이 디바이스 및 구동 방법
WO2020151434A1 (zh) 显示面板及其驱动方法和显示系统
JP2007066555A (ja) 面光源及び液晶表示装置
US10613394B2 (en) Display device
WO2017148010A1 (zh) 液晶显示器以及电子设备
US10558083B2 (en) Liquid crystal display module and liquid crystal display device
KR20180081781A (ko) 디스플레이 장치 및 디스플레이 제어 방법
WO2017118224A1 (zh) 视角定向光源装置及显示装置
KR20170106567A (ko) 광학 필름 및 이를 포함하는 액정표시장치
WO2012060306A1 (ja) 表示システム、携帯端末、及び電子機器
WO2018129998A1 (zh) 液晶显示器及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (03.03.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12875755

Country of ref document: EP

Kind code of ref document: A1