WO2020151434A1 - 显示面板及其驱动方法和显示系统 - Google Patents

显示面板及其驱动方法和显示系统 Download PDF

Info

Publication number
WO2020151434A1
WO2020151434A1 PCT/CN2019/127128 CN2019127128W WO2020151434A1 WO 2020151434 A1 WO2020151434 A1 WO 2020151434A1 CN 2019127128 W CN2019127128 W CN 2019127128W WO 2020151434 A1 WO2020151434 A1 WO 2020151434A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display panel
refractive index
light
display
Prior art date
Application number
PCT/CN2019/127128
Other languages
English (en)
French (fr)
Inventor
石常洪
王进
陶文昌
李宗祥
廖加敏
周敏
刘耀
吴洪江
刘祖文
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/980,169 priority Critical patent/US11244639B2/en
Publication of WO2020151434A1 publication Critical patent/WO2020151434A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • G02F2203/023Function characteristic reflective total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/06Polarisation independent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0456Pixel structures with a reflective area and a transmissive area combined in one pixel, such as in transflectance pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a driving method thereof, and a display system.
  • display can be achieved by controlling the deflection of liquid crystal molecules, and the gray scale of the display screen can be controlled.
  • a liquid crystal spatial light modulator can be used to load the holographic interference image.
  • a display panel in one aspect, includes a plurality of sub-pixels, and at least one sub-pixel of the plurality of sub-pixels includes: a first electrode, a light modulation structure arranged on one side of the first electrode, and a The second electrode on one side of the electrode.
  • the light modulation structure includes a refractive index adjustment layer and a light adjustment layer. The refractive index of the refractive index adjustment layer can be changed under the action of the electric field between the first electrode and the second electrode.
  • the dimming layer is located between the refractive index adjustment layer and the first electrode, and the dimming layer is in contact with the refractive index adjustment layer, and at least a part of the surface of the dimming layer in contact with the refractive index adjustment layer is a curved surface.
  • the dimming layer includes a plurality of protrusions.
  • the plurality of protrusions are distributed on the surface of the first electrode on the side close to the refractive index adjustment layer; the surface of at least one protrusion of the plurality of protrusions that contacts the refractive index adjustment layer is a curved surface.
  • the plurality of protrusions are arranged in an array, and the outer dimensions of the plurality of protrusions are the same.
  • the plurality of protrusions are arranged in a matrix, and the outer dimensions of the plurality of protrusions are the same.
  • the surface of at least one of the protrusions in contact with the refractive index adjustment layer is a hemispherical surface.
  • the material constituting the refractive index adjustment layer includes an electro-optic crystal material.
  • each sub-pixel of the plurality of sub-pixels includes a first electrode, a light modulation structure, and a second electrode; all the second electrodes included in the plurality of sub-pixels are connected as a whole layer .
  • the display panel further includes: a base substrate; and, a plurality of gate lines and a plurality of data lines on the base substrate.
  • the plurality of gate lines and the plurality of data lines cross vertically and horizontally to define a plurality of sub-pixel regions for accommodating the plurality of sub-pixels.
  • the display panel further includes a transistor disposed in each sub-pixel region of the plurality of sub-pixel regions, the gate of the transistor is electrically connected to the corresponding gate line of the plurality of gate lines, and the transistor The first electrode of the transistor is electrically connected to the corresponding data line of the plurality of data lines, and the second electrode of the transistor is electrically connected to the first electrode in the sub-pixel area where it is located.
  • the display panel further includes a black matrix.
  • the black matrix is located on the side of the second electrode away from the first electrode; wherein the black matrix covers at least a part of the transistor; and/or the black matrix covers at least a part of the plurality of gate lines and the plurality of data lines At least part of it.
  • the display panel further includes a power supply electrode, the power supply electrode is electrically connected to the second electrode, and the power supply electrode is configured to provide a common voltage to the second electrode.
  • the display panel further includes a color filter layer.
  • the color filter layer is disposed on the side of the second electrode away from the first electrode; or, the color filter layer is disposed on the side of the first electrode away from the second electrode.
  • the color filter layer covers the light modulation structure in the display panel.
  • the driving method includes: inputting a pixel voltage to a first electrode and simultaneously inputting a common voltage to a second electrode. Under the action of the electric field between the electrode and the second electrode, the refractive index of the refractive index adjustment layer is controlled to change, so that the corresponding sub-pixels in the display panel can realize different grayscale display.
  • the refractive index of the refractive index adjustment layer decreases with the increase of the pixel voltage; in the direction of the electric field, when the second electrode points to the first electrode and the common voltage is unchanged, the refractive index of the refractive index adjustment layer increases with the increase of the pixel voltage.
  • a display system in another aspect, includes: the display panel according to any one of claims 1 to 12; and a light source configured to provide an illumination beam to the display panel.
  • the light source is arranged on one side of the display panel, and the light emitting surface of the light source is parallel to the display surface of the display panel.
  • the light source is located on the side of the first electrode away from the second electrode.
  • the light source is arranged on one side of the display panel, and the plane where the light-emitting surface of the light source is located intersects the plane where the display surface of the display panel is located.
  • the display system also includes a half mirror and a reflecting mirror arranged on the light exit path of the light source, and the half mirror is located between the reflecting mirror and the light source. The half mirror is configured to transmit the light emitted from the light source, so that the light is directed to the reflecting mirror, and the light reflected by the reflecting mirror is reflected to the display panel.
  • the half mirror is located on the side of the first electrode away from the second electrode; the display system further includes a lens, and the lens is disposed on the side of the half mirror away from the display panel.
  • the display system includes a processor, and the processor is electrically connected to the display panel.
  • the processor is configured to output a display signal corresponding to the display image to the display panel.
  • FIG. 1 is a schematic diagram of dividing a plurality of sub-pixel regions of a display panel according to some embodiments of the present disclosure
  • FIG. 2 is a partial structure diagram of a display panel provided according to some embodiments of the present disclosure.
  • Fig. 3 is a schematic diagram of light propagation in the dimming layer in Fig. 2;
  • Fig. 4a is another schematic diagram of light propagation in the dimming layer in Fig. 2;
  • FIG. 4b is another schematic diagram of light propagation of the light-adjusting layer in FIG. 2;
  • Fig. 4c is another schematic diagram of light propagation in the dimming layer in Fig. 2;
  • Fig. 5 is a schematic diagram of a holographic interference image provided according to some embodiments of the present disclosure.
  • Fig. 6 is a structural diagram of the light modulation structure in Fig. 2;
  • FIG. 7 is another schematic diagram of sub-pixel division of a display panel according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a display panel provided according to some embodiments of the present disclosure.
  • FIG. 9a is a schematic diagram of a display mode of the display panel shown in FIG. 8;
  • FIG. 9b is a schematic diagram of another display mode of the display panel shown in FIG. 8;
  • FIG. 9c is a schematic diagram of still another display mode of the display panel shown in FIG. 8;
  • FIG. 10 is a structural diagram of a display system according to some embodiments of the present disclosure.
  • FIG. 11 is a structural diagram of another display system according to some embodiments of the present disclosure.
  • FIG. 12 is a structural diagram of still another display system according to some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of yet another display system provided according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B
  • “A and/or B” includes the following three combinations: A only, B only, and the combination of A and B.
  • the holographic display device uses a liquid crystal spatial light modulator to load the holographic interference image.
  • the liquid crystal molecules in the liquid crystal spatial light modulator are prone to polarization, which causes the display quality of the holographic display device to be easily affected, thereby reducing the display effect of the holographic display device.
  • the display panel 01 has a plurality of sub-pixel regions P for accommodating a plurality of sub-pixels.
  • the multiple sub-pixel regions P may be defined by multiple gate lines and multiple data lines that cross vertically and horizontally in the display panel 01, and each sub-pixel region P is used to accommodate one sub-pixel.
  • the above-mentioned display panel 01 further includes a plurality of sub-pixels 10, and at least one sub-pixel 10 of the plurality of sub-pixels 10 includes a first electrode 11, a light modulation structure 20 disposed on one side of the first electrode 11, And the second electrode 12 disposed on the side of the light modulation structure 20 away from the first electrode 11.
  • each of the above-mentioned multiple sub-pixels 10 includes a first electrode, a light modulation structure, and a second electrode, that is, the display panel 10 may include a plurality of Each of the second electrodes 12 is located in a sub-pixel 10, and the second electrode 12 covers the light modulation structure 20 located in the same sub-pixel 10. At this time, during the display process, the voltages applied by the second electrodes 12 located in different sub-pixels 10 may be the same or different.
  • each sub-pixel of the plurality of sub-pixels 10 includes a first electrode, a light modulation structure, and a second electrode, and all the second electrodes included in the plurality of sub-pixels are connected as one Whole floor.
  • the light modulation structure 20 included in a plurality of sub-pixels may share a second electrode layer (the second electrode layer is connected by a plurality of second electrodes 12 to form a whole layer), that is, in this case, the The second electrode layer can cover all the light modulation structures 20 in the display panel 01.
  • the above-mentioned first electrode 11 is called a pixel electrode, and the second electrode 12 is called a common electrode.
  • the material constituting the first electrode 11 and the second electrode 12 may be a transparent conductive material.
  • ITO indium Tin Oxide
  • IZO indium zinc oxide
  • the light modulation structure 20 includes a light modulation layer 201 and a refractive index adjustment layer 202.
  • the refractive index adjustment layer 202 is located between the first electrode 11 and the second electrode 12.
  • the refractive index of the refractive index adjustment layer 202 can change its refractive index under the action of the electric field between the first electrode 11 and the second electrode 12. That is, when a voltage is applied to the first electrode 11 and the second electrode 12, an electric field is generated between the first electrode 10 and the second electrode 12. Under the action of the electric field, the refractive index of the refractive index adjustment layer 202 can follow the The size and direction of the electric field change.
  • the material constituting the aforementioned refractive index adjustment layer 202 includes an electro-optic crystal material. Under the action of an external electric field, the refractive index of the electro-optic crystal material can change.
  • At least a part of the surface A of the dimming layer 201 in contact with the refractive index adjustment layer 202 is a curved surface, so that the light can be adjusted on the surface A of the dimming layer 201 and the refractive index adjustment layer 202.
  • the incident angle ⁇ is a part of the surface A of the dimming layer 201 in contact with the refractive index adjustment layer 202.
  • At least a part of the surface A of the dimming layer 201 in contact with the refractive index adjustment layer 202 is curved. In this case, it is incident on the contact surface A of the dimming layer 201 and the refractive index adjustment layer 202 at different positions. Because the direction of the surface normal of the light is different, the incident angle ⁇ 1 and ⁇ 2 of the light are also different.
  • the display panel 01 has a light modulation structure 20 that includes a dimming layer 201 and a refractive index adjustment layer 202 that are in contact with each other.
  • the refractive index of the refractive index adjustment layer 202 can follow the change of the electric field between the first electrode 11 and the second electrode 12.
  • the total reflection angle ⁇ of the light on the surface A where the light adjusting layer 201 and the refractive index adjusting layer 202 are in contact is related to the refractive index of the refractive index adjusting layer 202. In this way, by changing the electric fields of the first electrode 11 and the second electrode 12, the purpose of adjusting the total reflection angle ⁇ of the light on the surface A of the light modulating layer 201 in contact with the refractive index adjusting layer 202 can be achieved.
  • the refractive index of the dimming layer 201 is n 1 ; under the action of the electric field between the first electrode 11 and the second electrode 12, the refractive index of the refractive index adjustment layer 202 is n 2 .
  • the above-mentioned total reflection angle ⁇ is:
  • the dimming layer 201 can affect the light incident on the contact surface A of the dimming layer and the refractive index adjustment layer.
  • the incident angle ⁇ is adjusted.
  • the incident angles of light rays at all the surfaces A where the light-adjusting layer 201 and the refractive index adjustment layer 202 are in contact such as the incident angles ⁇ 1 and ⁇ in FIG. 3 2 may be greater than the above-mentioned total reflection angle ⁇ .
  • the light incident to the light modulation structure 20 is all reflected as shown in FIG. 4a.
  • the refractive index n 2 of the refractive index adjustment layer 202 can approach 0. Therefore, the above-mentioned total reflection angle ⁇ is the smallest The value can also approach 0 degrees.
  • the refractive index n 2 of the refractive index adjustment layer 202 is increased by changing the electric field between the first electrode 11 and the second electrode 12, thereby increasing the above-mentioned total reflection angle ⁇ , the incident angle ⁇ 1 > ⁇ ; The angle ⁇ 2 ⁇ .
  • the light incident on the surface A at the incident angle ⁇ 1 is totally reflected in the light adjustment layer 201, and the light incident on the surface A at the incident angle ⁇ 2 can pass through the light adjustment layer.
  • 201 is incident on the refractive index adjustment layer 202.
  • the incident angle ⁇ 1 and the incident angle The angle ⁇ 2 is all smaller than ⁇ .
  • the incident angle [theta] 1 of the surface A to light is incident at an incident angle [theta] 1 of the surface A to light, and the light incident at an incident angle ⁇ 2 of the surface A to be able to average the refractive index adjusting layer 202 is incident through the light control layer 201 .
  • the total reflection angle ⁇ may reach the maximum value, which is 90 degrees.
  • the display panel 01 can display images with different gray levels.
  • the aforementioned display panel 01 can be used to load holographic interference fringes with different gray levels, such as the holographic interference fringe shown in FIG. 5.
  • the display device adopting the above-mentioned display panel 01 can display holographic images.
  • the display device does not need to load the holographic interference fringes through the liquid crystal spatial light modulator with liquid crystal molecules, so the polarization of the liquid crystal molecules can be avoided. The resulting display quality degradation problem.
  • dimming layer 201 There are many structural forms of the dimming layer 201. The structure of the dimming layer 201 will be described in detail below with reference to the drawings and some examples.
  • the dimming layer 201 includes a plurality of protrusions 2010.
  • the above-mentioned multiple protrusions 2010 are distributed on the surface of the first electrode 11 close to the refractive index adjustment layer 202.
  • the surface A of the protrusion 2010 in contact with the refractive index adjustment layer 202 is a curved surface.
  • the dimming layer 201 includes a plurality of protrusions 2010, the area of the surface A of the dimming layer 201 in contact with the refractive index adjustment layer 202 can be increased through the plurality of protrusions 2010, and the incident light can be The above-mentioned reflection and/or transmission phenomenon occurs on the surface of each protrusion 2010 in contact with the refractive index adjustment layer 202, thereby improving the light extraction efficiency and uniformity of the light emitted by the light modulation structure 20.
  • the present disclosure does not limit the method of manufacturing the dimming layer 201 composed of a plurality of protrusions 2010.
  • an inkjet printing method may be used to fabricate the above-mentioned multiple protrusions 2010 on the surface of the first electrode 11 close to the second electrode 12.
  • the plurality of protrusions 2010 are arranged in an array (such as a matrix), and the outer dimensions of any two protrusions 2010 are the same.
  • the manufacturing process of the dimming layer 201 can be simplified, without additional adjustment of manufacturing parameters, so as to manufacture bumps 2010 of different specifications.
  • the plurality of protrusions 2010 arranged in a matrix can make the light emitted by the light modulation structure 20 more uniform.
  • the surface of each of the above-mentioned protrusions in contact with the refractive index adjustment layer 202 is a hemispherical surface. This can increase the amount of light incident on the light-adjusting layer 201 at the position of each protrusion 2010.
  • the display panel 01 further includes a base substrate 100, and is located on the base substrate 100 Multiple gate lines (GL) and multiple data lines (DL) crossing horizontally and vertically.
  • the plurality of gate lines GL and the data line DL cross to define the plurality of sub-pixel regions P.
  • the above-mentioned display panel 01 further includes a transistor T located in each sub-pixel region P, the gate (g) of the transistor is electrically connected to the gate line GL, and the first electrode (for example, the source s) of the transistor is connected to the data
  • the line DL is electrically connected, and the second electrode (for example, the drain d) of the transistor is electrically connected to the first electrode 11.
  • the surface of the gate g of the transistor T is covered with a gate insulating layer 102, and there is an active layer 103 between the gate insulating layer and the source s and drain d of the transistor T.
  • the surfaces of the source s and the drain d of the transistor T are covered with a first insulating layer 104, and a second insulating layer 105 is provided between the refractive index adjustment layer 202 and the second electrode 12.
  • the first electrode 11, the dimming layer 201 and the refractive index adjustment layer 202 are located between the first insulating layer 104 and the second insulating layer 105.
  • the gate line GL when the gate scan signal is input to the gate line GL to gate it, the gate line GL can turn on the transistor T electrically connected to it, and then the data voltage Vdata on the data line DL It can be transmitted to the first electrode 11 electrically connected to the transistor T through the turned-on transistor T, thereby charging the first electrode 11.
  • the above-mentioned display panel 01 further includes a power supply electrode 30 provided in each sub-pixel 10.
  • the power supply electrode 30 is electrically connected to the second electrode 12 through a via hole provided on the insulating layer.
  • the power supply electrode 30 described above is used to provide a common voltage to the second electrode 12.
  • the power supply electrode 30 may be the same layer and the same material as the gate g of the transistor T. In this way, the power supply electrode 30 and the transistor gate g can be fabricated at the same time through one patterning process.
  • the second electrode 12 can be charged through the power supply electrode 30.
  • the patterning process may include a photolithography process, or, a photolithography process and an etching step, and may also include printing, inkjet, etc. for forming predetermined patterns. Craftsmanship.
  • the photolithography process refers to the process of using photoresist, mask, exposure machine, etc. to form patterns including film formation, exposure, development and other processes.
  • the corresponding patterning process can be selected according to the structure formed in the present disclosure.
  • the one patterning process in some embodiments of the present disclosure is an example of forming different exposed areas through a single mask exposure process, and then performing multiple etching, ashing and other removal processes on the different exposed areas to obtain the desired pattern as an example The description made.
  • the above-mentioned display panel 01 further includes a cover plate 101 covering the second electrode 12.
  • the material constituting the cover 101 may be transparent glass or transparent resin material.
  • the above-mentioned display panel 01 further includes a black matrix 40 disposed on the side of the cover 101 close to the base substrate 100 and on the side of the second electrode 12 away from the first electrode 11.
  • the black matrix 40 can cover at least a part of the transistor T.
  • the orthographic projection of the black matrix 40 on the base substrate 100 may cover at least part of the orthographic projection of the active layer region of the transistor T on the base substrate 100.
  • the black matrix 40 may also cover at least a part of the plurality of gate lines GL and a plurality of data At least part of the line DL.
  • the display panel 01 is provided with a plurality of sub-pixels 10 on the edge of the display area, and a sealant 50 is also provided.
  • the sealant 50 can isolate the display area from the non-display area.
  • a color filter layer 61 is further provided in the display panel 01.
  • the color filter layer 61 is disposed on the side of the second electrode 12 away from the first electrode 11; for another example, as shown in FIG. 11, the color filter layer 61 is disposed on the side of the first electrode 11. The side away from the second electrode 12.
  • the color filter layer 61 covers the light modulation structure in the display panel 01, so as to filter the light transmitted or reflected by the light modulation structure, so as to realize the display of different colors, such as red, blue, or green.
  • Some embodiments of the present disclosure also provide a driving method of the display panel 01 applied to any one of the above embodiments.
  • the driving method includes: inputting a pixel voltage to the first electrode 11 and simultaneously inputting a common voltage to the second electrode 12, Under the action of the electric field between the first electrode 11 and the second electrode 12, the refractive index of the refractive index adjustment layer 202 is controlled to change, so that the corresponding sub-pixels in the display panel 01 realize different grayscale display.
  • the refractive index of the refractive index adjustment layer 202 decreases with the increase of the pixel voltage; in the direction of the electric field When the second electrode 12 points to the first electrode 11 and the common voltage is unchanged, the refractive index of the refractive index adjustment layer 202 increases with the increase of the pixel voltage.
  • the following takes the display panel 01 shown in FIG. 8 as an example to describe a part of the display mode of the display panel 01.
  • the voltage applied to the first electrode 11 is +8V
  • the voltage applied to the second electrode 12 is 0V.
  • the refractive index n 2 of the refractive index adjustment layer 202 has a minimum value
  • the total reflection angle ⁇ of the light on the surface A where the light adjustment layer 201 contacts the refractive index adjustment layer 202 has the smallest value. value. It can be understood that the value of the total reflection angle ⁇ can approach zero here.
  • the light from the light source incident on the dimming layer 201 has an incident angle on the aforementioned surface A greater than the aforementioned total reflection angle ⁇ . In this way, all incident light is on the dimming layer 201.
  • the surface A in contact with the refractive index adjustment layer 202 is totally reflected, so that the light adjustment layer 201 does not emit light to the refractive index adjustment layer 202.
  • the light provided by the light source is all emitted from the side of the base substrate 100, and the grayscale value displayed on the display panel 01 is the largest.
  • the display side when the side of the display panel 01 where the cover plate 101 opposite to the base substrate 100 is located is the display side, the light provided by the light source is reflected, so no light is emitted from the cover plate 101 side.
  • the gray scale value displayed on the display panel 01 is the smallest, it is in a dark state.
  • the light from the light source incident on the dimming layer 201 has an incident angle on the aforementioned surface A that is less than the aforementioned total reflection angle ⁇ , so that all incident light can pass through the dimming
  • the layer 201 is incident on the refractive index adjustment layer 202.
  • the side of the base substrate 100 in the display panel 01 is the display side
  • the light provided by the light source passes through the dimming layer 201, so no light is emitted from the side of the base substrate 100.
  • the gray scale value displayed on the display panel 01 is the smallest and is in a dark state.
  • the display panel 01 when the side where the cover 101 is located in the display panel 01 is the display side, all the light provided by the light source passes through the dimming layer 201, and therefore all exits from the side of the cover 101. At this time, the display panel 01 The gray scale value displayed is the largest.
  • part of the light provided by the light source is emitted from the side where the base substrate 100 is located, and part of the light is emitted from the side where the cover 101 is located. Therefore, whether the display side of the display panel 01 is located on the side where the base substrate 100 is located or the side where the cover 101 is located, the grayscale value of the image displayed on the display panel 01 is between the maximum grayscale value and the minimum grayscale value. Middle gray scale value.
  • both the side where the base substrate 100 is located and the side where the cover 101 is located in the display panel 01 can display images. Therefore, the display panel 01 provided by some embodiments of the present disclosure can achieve double-sided display.
  • the display system 02 includes any one of the display panels 01 described above, and a light source 60 configured to provide an illumination beam to the display panel 01.
  • the display system 02 in this example has the same technical effect as the display panel 01 provided by any of the foregoing embodiments, and will not be repeated here.
  • the above-mentioned display system 02 can realize reflective display and transmissive display.
  • the above two display modes are described in detail below.
  • the display system 02 when the display system 02 implements transmissive display, the display system 02 includes the light source 60 described above.
  • the light source 60 is located on a side of the display panel 01, for example, the light source 60 is located on a side of the first electrode 11 away from the second electrode 12.
  • the light emitting surface of the light source 60 is parallel to the display surface of the display panel 01.
  • the display surface of the above-mentioned display panel 01 refers to the side on which the display panel 01 displays a screen.
  • the display surface of the display panel 01 is a plane corresponding to the side where the cover 101 of the display panel 01 is located.
  • the light emitted by the light source 60 can pass through the first electrode 11 and be incident on the surface A of the dimming layer 201 in contact with the refractive index adjustment layer 202.
  • the display panel 01 is in a dark state.
  • the incident angle ⁇ of all the light on the surface A is less than the total reflection angle ⁇ , all the light passes through the refractive index adjustment layer 202 and the second electrode 12 and exits from the cover 101. At this time, the grayscale value displayed on the display panel 01 is the highest.
  • the incident angle ⁇ of part of the light on the surface A is greater than the total reflection angle ⁇ , and the incident angle ⁇ of part of the light on the surface A is less than the total reflection angle ⁇ , the incident angle ⁇ is larger (such as ⁇ 1 in Figure 4b).
  • the light is totally reflected on the aforementioned surface A, and the light with a small incident angle ⁇ (such as ⁇ 2 in FIG. 4b) passes through the refractive index adjustment layer 202 and the second electrode 12, and is emitted from the cover 101.
  • the display panel 01 displays an intermediate gray scale.
  • the display panel 01 further includes the above-mentioned color filter layer 61.
  • the color filter layer 61 is located on the side of the second electrode 12 away from the first electrode 11, and the color filter layer 61 covers the light modulation structure 20 of the display panel 01.
  • the light emitted from the light modulation structure 20 can pass through the color filter layer 61 when it is transmitted in the direction toward the cover plate 101, so that the color filter layer 61 makes the sub
  • the pixel 10 emits colored light, such as blue, red, or green light.
  • the wavelength of light that can be transmitted by the color filter layer 61 in each sub-pixel 10 is different.
  • multiple sub-pixels 10 located in the same pixel can respectively emit light of different colors, such as red light, green light, and blue light.
  • the display system 02 when the above-mentioned display system 02 implements reflective display, the display system 02 includes the above-mentioned light source 60, a half mirror 62 and a reflecting mirror 63.
  • the light source 60 is arranged on one side of the display panel 01.
  • the light source is arranged on the side of the cover plate 101 close to the display panel 01; for another example, as shown in FIG. 12, the light source is arranged on the side of the base substrate 100 close to the display panel 01.
  • the plane where the light-emitting surface of the light source 60 is located intersects the plane where the display surface of the display panel 01 is located.
  • the display surface of the display panel 01 may be a plane corresponding to the side where the base substrate 100 is located in the display panel 01, or it may be where the cover 101 is located. One side corresponds to the plane.
  • the display panel 01 A double-sided display can be realized, that is, the human eye can view the displayed image on the side close to the base substrate 100, and can also view the displayed image on the side close to the cover 101.
  • the plane corresponding to the light-emitting surface of the light source 60 refers to the orthographic projection of the light-emitting surface along the light-emitting direction as a plane.
  • the light-emitting surface may also be a curved surface; similarly, the display panel 01
  • the plane corresponding to the display surface of refers to that the orthographic projection of the display surface along the viewing direction of the user is a plane.
  • the display surface may also be a curved surface.
  • the half mirror 62 and the mirror 63 are arranged on the light exit path of the light source 60, and the half mirror 62 is located between the mirror 63 and the light source 60.
  • the first part of the display panel 01 The side of the electrode 11 away from the second electrode 12 is close to the half mirror 62. This enables the light emitted from the light source 60 to be directed to the half mirror 62, and transmitted through the half mirror 62, then directed to the mirror 63, and then the light is reflected by the mirror 63 to the half mirror 62, and then The half mirror 62 reflects the light reflected by the mirror 63 to the display panel 01.
  • the light emitted by the light source 60 can be first incident into the light modulation structure 20 ⁇ 201 ⁇ The dimming layer 201.
  • the refractive index adjustment can be achieved by controlling the electric field between the first electrode 11 and the second electrode 12
  • the refractive index of the layer 202, and the angle of incidence of light is adjusted by the shape of the surface of the light modulating layer 201 in contact with the refractive index adjustment layer 202, so that the light incident on the light modulating structure 20 passes through the light modulating structure 20 or is The amount of light reflected by the light modulation structure 20 is adjusted, so that the display panel 01 displays images with different gray levels.
  • the light emitted by the light source 60 can be transmitted to the dimming layer 201 in the display panel 01 through the half mirror 62 and the reflecting mirror 63 described above.
  • the light source 60 and the display surface of the display panel 01 are arranged alternately, both the side where the base substrate 100 is located and the side where the cover 101 is located in the display panel 01 can display.
  • the above-mentioned display system further includes a lens 64.
  • the lens 64 and the display panel 01 are located on both sides of the light path of the above-mentioned light source 60, and the lens 64 corresponds to the position of the display panel 01. .
  • the above-mentioned lens 64 can converge the image displayed on the display panel 01 to a position to be viewed.
  • the above-mentioned display panel 01 further includes the above-mentioned color filter layer 61.
  • the color filter layer 61 is located on the side of the first electrode 11 away from the second electrode 12, and the color filter layer 61 covers the light modulation structure 20 of the display panel 01.
  • the function and technical effect of the color filter layer 61 are the same as those described above, and will not be repeated here.
  • the foregoing light source 60 may be an LED (Light Emitting Diode, LED) or a laser. This disclosure does not limit this.
  • the display system further includes a processor 70.
  • the processor 70 is electrically connected to the display panel 01, and the processor 70 is configured to output a display signal corresponding to the display image to the display panel 01.
  • the above-mentioned display image may be a 2D image.
  • the display panel 01 in the display system can display the above-mentioned 2D image.
  • the above-mentioned displayed image may be a holographic interference fringe image.
  • the light from the light source 60 is irradiated on the display panel 01 to be able to reproduce the holographic image, thereby realizing holographic display.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种显示面板(01)。显示面板(01)包括多个亚像素(10),多个亚像素(10)中的至少一个亚像素(10)包括:第一电极(11),设置于第一电极(11)一侧的光调制结构(20),以及,设置于光调制结构(20)的远离第一电极(11)一侧的第二电极(12)。其中,光调制结构(20)包括折射率调节层(202)和调光层(201)。折射率调节层(202)的折射率能够在第一电极(11)和第二电极(12)之间的电场作用下发生变化。调光层(201)位于折射率调节层(202)与第一电极(11)之间,并且调光层(201)与折射率调节层(202)相接触,调光层(201)与折射率调节层(202)相接触的表面(A)的至少一部分为曲面。

Description

显示面板及其驱动方法和显示系统
本申请要求于2019年01月21日提交的、申请号为201920093060.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及显示面板及其驱动方法和显示系统。
背景技术
显示技术领域,通过控制液晶分子的偏转,可以实现显示,并且可以对显示画面的灰阶进行控制。以全息显示为例,现有的全息显示装置中,采用液晶空间光调制器可以对全息干涉图像进行加载。
发明内容
一方面,提供一种显示面板。所述显示面板包括多个亚像素,所述多个亚像素中的至少一个亚像素包括:第一电极,设置于第一电极一侧的光调制结构,以及,设置于光调制结构的远离第一电极一侧的第二电极。其中,所述光调制结构包括折射率调节层和调光层。折射率调节层的折射率能够在第一电极和第二电极之间的电场作用下发生变化。调光层位于折射率调节层与第一电极之间,并且调光层与折射率调节层相接触,调光层与折射率调节层相接触的表面的至少一部分为曲面。
在一些实施例中,调光层包括多个凸起。所述多个凸起分布于第一电极的靠近折射率调节层一侧的表面上;所述多个凸起中的至少一个凸起与折射率调节层相接触的表面为曲面。
在一些实施例中,所述多个凸起呈阵列式排列,且所述多个凸起的外形尺寸相同。
在一些实施例中,所述多个凸起呈矩阵形式排列,且所述多个凸起的外形尺寸相同。
在一些实施例中,所述多个凸起中的至少一个凸起与折射率调节层相接触的表面为半球面。
在一些实施例中,构成折射率调节层的材料包括电光晶体材料。
在一些实施例中,所述多个亚像素中的每个亚像素均包括第一电极、光调制结构和第二电极;所述多个亚像素所包括的所有第二电极连接为一整层。
在一些实施例中,所述显示面板还包括:衬底基板;以及,位于所 述衬底基板上的多条栅线和多条数据线。所述多条栅线和所述多条数据线纵横交叉界定出用于容纳所述多个亚像素的多个亚像素区域。
在一些实施例中,显示面板还包括设置于所述多个亚像素区域中的每个亚像素区域内的晶体管,晶体管的栅极与所述多条栅线中对应的栅线电连接,晶体管的第一极与所述多条数据线中对应的数据线电连接,晶体管的第二极与其所在的亚像素区域内的第一电极电连接。
在一些实施例中,所述显示面板还包括黑矩阵。所述黑矩阵位于第二电极的远离第一电极一侧;其中,黑矩阵覆盖晶体管的至少一部分;和/或,黑矩阵覆盖所述多条栅线的至少一部分及所述多条数据线的至少一部分。
在一些实施例中,所述显示面板还包括供电电极,供电电极与第二电极电连接,供电电极配置为向第二电极提供公共电压。
在一些实施例中,所述显示面板还包括彩色滤光层。彩色滤光层设置于第二电极的远离第一电极的一侧;或者,彩色滤光层设置于第一电极的远离第二电极的一侧。彩色滤光层覆盖显示面板中的光调制结构。
另一方面,提供一种应用于如上述任一实施例所述的显示面板的驱动方法,该驱动方法包括:向第一电极输入像素电压,同时向第二电极输入公共电压,通过在第一电极和第二电极之间的电场作用下,控制折射率调节层的折射率发生变化,以使得显示面板中对应的亚像素实现不同的灰阶显示。
在一些实施例中,在电场的方向由第一电极指向第二电极,且公共电压不变的情况下,折射率调节层的折射率随像素电压的增大而减小;在电场的方向由第二电极指向第一电极,且公共电压不变的情况下,折射率调节层的折射率随像素电压的增大而增大。
又一方面,提供一种显示系统。所述显示系统包括:如权利要求1~12中任一项所述的显示面板;以及光源,该光源配置为向显示面板提供照明光束。
在一些实施例中,光源设置于显示面板的一侧,并且光源的出光面与显示面板的显示面平行。
在一些实施例中,光源位于第一电极的远离第二电极的一侧。
在一些实施例中,光源设置于显示面板的一侧,并且光源的出光面所在的平面与显示面板的显示面所在的平面相交。显示系统还包括:设置于光源出光路径上的半透半反镜和反射镜,半透半反镜位于反射镜和光 源之间。半透半反镜配置为透过光源出射的光线,以使光线射向反射镜,以及将经所述反射镜反射的光线反射至显示面板。
在一些实施例中,半透半反镜位于第一电极的远离第二电极的一侧;显示系统还包括透镜,透镜设置于半透半反镜的远离显示面板的一侧。
在一些实施例中,显示系统包括处理器,处理器与显示面板电连接。处理器配置为向显示面板输出对应于显示图像的显示信号。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例提供的一种显示面板的多个亚像素区域的一种划分示意图;
图2为根据本公开一些实施例提供的一种显示面板的局部结构图;
图3为图2中调光层的一种光线传播示意图;
图4a为图2中调光层的另一种光线传播示意图;
图4b为图2中调光层的再一种光线传播示意图;
图4c为图2中调光层的又一种光线传播示意图;
图5为根据本公开一些实施例提供的一种全息干涉图像示意图;
图6为图2中光调制结构的结构图;
图7为根据本公开一些实施例提供的一种显示面板的亚像素的另一种划分示意图;
图8为根据本公开一些实施例提供的一种显示面板的结构图;
图9a为图8所示的显示面板的一种显示方式示意图;
图9b为图8所示的显示面板的另一种显示方式示意图;
图9c为图8所示的显示面板的再一种显示方式示意图;
图10为根据本公开一些实施例提供的一种显示系统的结构图;
图11为根据本公开一些实施例提供的另一种显示系统的结构图;
图12为根据本公开一些实施例提供的再一种显示系统的结构图;
图13为根据本公开一些实施例提供的又一种显示系统的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
相关技术中,全息显示装置采用液晶空间光调制器对全息干涉图像进行加载。然而,液晶空间光调制器中的液晶分子很容易出现极化,这导致全息显示装置的显示画质容易受到影响,从而会降低全息显示装置的显示效果。
本公开一些实施例提供了一种显示面板01,如图1所示,该显示面板01具有用于容纳多个亚像素(sub pixel)的多个亚像素区域P。示例性地,多个亚像素区域P可以由显示面板01中纵横交叉的多条栅线和多条数据线界定出,每个亚像素区域P用于容纳一个亚像素。
如图2所示,上述显示面板01还包括多个亚像素10,多个亚像素10中的至少一个亚像素10包括第一电极11,设置于第一电极11一侧的光调制结构20,以及设置于光调制结构20的远离第一电极11一侧的第 二电极12。
需要说明的是,在本公开的一些实施例中,上述多个亚像素10中的每个亚像素包括第一电极、光调制结构和第二电极,也就是说,显示面板10可以包括多个第二电极12,每个第二电极12位于一个亚像素10中,且该第二电极12覆盖与其位于同一亚像素10中的光调制结构20。此时,在显示过程中,多个位于不同亚像素10中的第二电极12施加的电压可以相同,也可以不同。
在本公开的另一些实施例中,上述多个亚像素10中的每个亚像素包括第一电极、光调制结构和第二电极,而且多个亚像素所包括的所有第二电极连接为一整层。此时,多个亚像素所包括的光调制结构20可以共用一个第二电极层(第二电极层由多个第二电极12连接为一整层),也就是说,在此情况下,该第二电极层能够覆盖显示面板01中的所有光调制结构20。
示例性地,上述第一电极11称为像素电极,第二电极12称为公共电极。构成上述第一电极11和第二电极12的材料可以为透明导电材料。例如,氧化铟锡(Indium Tin Oxide,ITO)或氧化铟锌(Indium Zinc Oxide,IZO)中的至少一种。
在上述一些实施例中,如图2所示,光调制结构20包括调光层201和折射率调节层202。
折射率调节层202位于第一电极11和第二电极12之间。在此情况下,折射率调节层202的折射率能够在第一电极11和第二电极12之间的电场作用下,其折射率发生变化。即,当向第一电极11和第二电极12施加电压时,第一电极10和第二电极12之间产生电场,在该电场的作用下,上述折射率调节层202的折射率可以跟随该电场大小及方向的变化而变化。
示例性地,构成上述折射率调节层202的材料包括电光晶体材料。在外电场的作用下,该电光晶体材料的折射率可以发生变化。
在此基础上,参见图2,上述调光层201与折射率调节层202相接触的表面A的至少一部分为曲面,这样可以调节光线在调光层201与折射率调节层202接触的表面A的入射角θ。
如图3所示,调光层201与折射率调节层202相接触的表面A的至少一部分为曲面,在此情况下,入射至调光层201与折射率调节层202接触表面A不同位置的光线,由于表面法线的方向不同,因此光线的入 射角θ 1和θ 2也不同。
综上所述,本公开一些实施例提供的显示面板01中,具有光调制结构20,该光调制结构20包括相接触的调光层201和折射率调节层202。其中,折射率调节层202的折射率可以跟随第一电极11和第二电极12之间电场的变化而变化。而光线在调光层201与折射率调节层202相接触的表面A的全反射角α与折射率调节层202的折射率相关。这样一来,通过改变第一电极11和第二电极12的电场,可以达到调节光线在调光层201与折射率调节层202相接触的表面A的全反射角α的目的。
示例性地,调光层201的折射率为n 1;在第一电极11和第二电极12之间的电场作用下,折射率调节层202的折射率为n 2。在此情况下,上述全反射角α为:
Figure PCTCN2019127128-appb-000001
在此基础上,由于调光层201与折射率调节层202相接触的表面A的至少一部分为曲面,该调光层201可以对入射至调光层和折射率调节层接触面A的光线的入射角θ进行调节。
在此情况下,当上述全反射角α具有最小值时,光线在调光层201与折射率调节层202相接触的表面A各处的入射角,例如图3中的入射角θ 1和θ 2可以大于上述全反射角α,此时,入射至光调制结构20的光线如图4a所示,全部被反射。此处,需要说明的是,在第一电极11和第二电极12之间的电场作用下,折射率调节层202的折射率n 2可以趋近于0,因此,上述全反射角α的最小值也可以趋近于0度。
当通过改变第一电极11和第二电极12之间的电场,增大折射率调节层202的折射率n 2,从而增大上述全反射角α时,可以使入射角θ 1>α;入射角θ 2<α。此时,如图4b所示,以入射角θ 1入射至上述表面A的光线在调光层201内发生全反射,而以入射角θ 2入射至上述表面A的光线能够透过调光层201入射至折射率调节层202。
当通过改变第一电极11和第二电极12之间的电场,继续增大折射率调节层202的折射率n 2,从而继续增大上述全反射角α时,可以使入射角θ 1以及入射角θ 2均小于α。此时,如图4c所示,以入射角θ 1入射至上述表面A的光线,以及以入射角θ 2入射至上述表面A的光线均能够透过调光层201入射至折射率调节层202。此处,需要说明的是,当折射率调节层202的折射率n 2增大至与调光层201的折射率为n 1相等 时,上述全反射角α可以达到最大值,为90度。
由上述可知,在第一电极11、第二电极12以及光调制结构20的作用下,可以对入射至光调制结构20的光线中,穿过该光调制结构20或被光调制结构20反射的光线的量进行调整,从而可以使得显示面板01显示不同灰阶的图像。
在此情况下,上述显示面板01可以用于加载具有不同灰度的全息干涉条纹,比如图5所示的全息干涉条纹。这样,使得采用上述显示面板01的显示装置可以显示全息图像,此时,显示装置无需通过具有液晶分子的液晶空间光调制器对全息干涉条纹进行加载,因此可以避免由于液晶分子的极化,而导致的显示画质降低的问题。
调光层201的结构形式有多种,以下结合附图以及一些示例对调光层201的结构进行详细的说明。
如图6所示,在一些实施例中,调光层201包括多个凸起2010。上述多个凸起2010分布于第一电极11的靠近折射率调节层202一侧的表面上。
此外,如图2所示,凸起2010与折射率调节层202相接触的表面A为曲面。在此情况下,由于调光层201包括多个凸起2010,通过该多个凸起2010可以增加调光层201与折射率调节层202相接触的表面A的面积,并使得入射光在每个凸起2010与折射率调节层202相接触的表面发生上述反射和/或透射现象,从而提高光调制结构20出射光线的出光效率和均匀性。
本公开对制作由多个凸起2010构成的调光层201的方法不做限定。例如可以采用喷墨打印的方法在第一电极11靠近第二电极12的表面上制作上述多个凸起2010。
在此基础上,示例性地,上述多个凸起2010呈阵列式(比如矩阵形式)排列,且任意两个凸起2010的外形尺寸相同。这样一来,可以简化调光层201的制作工艺,无需额外调整制作参数,以制作出不同规格的凸起2010。此外,多个呈矩阵形式排列的凸起2010能够使得光调制结构20出射的光线的更加均匀。
示例性地,每个上述凸起与折射率调节层202相接触的表面为半球面。这样可以增加入射至调光层201的光线在每个凸起2010位置的出光量。
此外,为了向每个亚像素中的第一电极11进行充电,在一些实施例 中,如图7和图8所示,显示面板01还包括衬底基板100,以及位于该衬底基板100上的横纵交叉的多条栅线(gate line,GL)和多条数据线(data line,DL)。其中,该多条栅线GL和所述数据线DL交叉界定出上述多个亚像素区域P。
本示例中,上述显示面板01还包括位于每个亚像素区域P内的晶体管T,该晶体管的栅极(g)与栅线GL电连接,晶体管的第一极(例如源极s)与数据线DL电连接,晶体管的第二极(例如漏极d)与第一电极11电连接。
示例性地,如图8所示,晶体管T的栅极g表面覆盖有栅极绝缘层102,该栅极绝缘层与晶体管T的源极s和漏极d之间具有有源层103。晶体管T的源极s和漏极d的表面覆盖有第一绝缘层104,折射率调节层202与第二电极12之间设置有第二绝缘层105。第一电极11、调光层201以及折射率调节层202位于第一绝缘层104和第二绝缘层105之间。
在此情况下,当向一行栅线GL输入栅极扫描信号将其选通后,该被选通的栅线GL能够将与其电连接的晶体管T导通,然后数据线DL上的数据电压Vdata能够通过导通的晶体管T传输至与该晶体管T电连接的第一电极11上,从而对该第一电极11进行充电。
此外,为了向第二电极12供电,示例性地,上述显示面板01如图8所示,还包括设置于每个亚像素10内的供电电极30。该供电电极30通过设置于绝缘层上的过孔与第二电极12电连接。上述供电电极30用于向第二电极12提供公共电压。
在此基础上,为了简化制作工艺,示例性地,上述供电电极30可以与晶体管T的栅极g同层同材料。这样一来,可以通过一次构图工艺同时完成供电电极30和晶体管栅极g的制作。
在此情况下,通过向供电电极30提供电压,从而可以通过该供电电极30向第二电极12进行充电。
需要说明的是,在本公开的一些实施例中,构图工艺,可指包括光刻工艺,或,包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺。光刻工艺,是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。可根据本公开中所形成的结构选择相应的构图工艺。其中,本公开一些实施例中的一次构图工艺,是以通过一次掩膜曝光工艺形成不同的曝光区域,然后对不同的曝光区域进行多次刻蚀、灰化等去除工艺最终得到预期图 案为例进行的说明。
此外,上述显示面板01还包括覆盖第二电极12的盖板101。构成该盖板101的材料可以为透明玻璃,或者透明树脂材料。
基于此,为了避免外界光线闯过透明的盖板101照射到晶体管T的有源层103,从而对该晶体管T的性能产生不良的影响。示例性地,如图8所示,上述显示面板01还包括设置于盖板101靠近衬底基板100一侧,且位于第二电极12背离第一电极11的一侧的黑矩阵40。
上述黑矩阵40至少可以覆盖晶体管T的一部分。例如,黑矩阵40在衬底基板100上的正投影可以覆盖晶体管T的有源层区域在衬底基板100上的至少部分正投影。此外,为了对显示面板01上不发光的区域进行遮挡,减少金属线的反光或其他光电效应引起的不良,示例性地,黑矩阵40还可以覆盖多条栅线GL的至少一部分和多条数据线DL的至少一部分。
在一些实施例中,在显示面板01中设置有多个亚像素10的显示区域的边缘,还设置封框胶50,通过封框胶50可以将显示区域和非显示区域进行隔离。
在一些实施例中,参见图10和图11,在显示面板01中还设置有彩色滤光层61。例如,如图10所示,彩色滤光层61设置于第二电极12的远离第一电极11的一侧;又例如,如图11所示,彩色滤光层61设置于第一电极11的远离第二电极12的一侧。
彩色滤光层61覆盖显示面板01中的光调制结构,这样对经光调制结构透射或者反射的光线进行过滤,从而实现显示不同颜色,例如红色、蓝色或绿色等。
本公开一些实施例还提供了一种应用于上述任一实施例的显示面板01的驱动方法,该驱动方法包括:向第一电极11输入像素电压,同时向第二电极12输入公共电压,通过在第一电极11和第二电极12之间的电场作用下,控制折射率调节层202的折射率发生变化,以使得显示面板01中对应的亚像素实现不同的灰阶显示。
示例性地,在电场的方向由第一电极11指向第二电极12,且公共电压不变的情况下,折射率调节层202的折射率随像素电压的增大而减小;在电场的方向由第二电极12指向第一电极11,且公共电压不变的情况下,折射率调节层202的折射率随像素电压的增大而增大。
下面以图8所示的显示面板01为例,对显示面板01的部分显示方 式进行说明。
显示方式一:
在本显示方式中,向第一电极11和第二电极12分别施加电压,例如,向第一电极11施加的电压为+8V,第二电极12施加的电压为0V。此时假设折射率调节层202的折射率n 2具有最小值,则由上述公式(1)可知,光线在调光层201与折射率调节层202相接触的表面A的全反射角α具有最小值。可以理解,此处全反射角α的值可以趋近于零。
在此情况下,如图9a所示,可以使得光源入射至调光层201的光线,在上述表面A的入射角均大于上述全反射角α,这样一来,所有入射光线在调光层201与折射率调节层202相接触的表面A处被全反射,从而使得调光层201无光线出射至折射率调节层202。
基于此,当显示面板01中以衬底基板100所在的一侧为显示侧时,光源提供的光线,全部从衬底基板100一侧出射,此时显示面板01显示的灰阶值最大。
或者,当显示面板01中以与该衬底基板100相对设置的盖板101所在的一侧为显示侧时,光源提供的光线由于均被反射,所以没有光线从盖板101一侧出射,此时显示面板01显示的灰阶值最小,呈暗态。
显示方式二:
在本显示方式中,向第一电极11和第二电极12分别施加电压,例如,向第一电极11施加的电压为-8V,第二电极12施加的电压为0V。此时假设折射率调节层202的折射率n 2增大至与调光层201的折射率n 1相同,则由上述公式(1)可知,光线在调光层201与折射率调节层202相接触的表面A的全反射角α具有最大值。可以理解,此处全反射角α的值可以为90度。
在此情况下,如图9b所示,可以使得光源入射至调光层201的光线,在上述表面A的入射角均小于上述全反射角α,这样一来,所有入射光线均能够通过调光层201入射至折射率调节层202。
基于此,当显示面板01中以衬底基板100所在的一侧为显示侧时,光源提供的光线,由于全部透过调光层201,因此没有光线从衬底基板100一侧出射,此时显示面板01显示的灰阶值最小,呈暗态。
或者,当显示面板01中以盖板101所在的一侧为显示侧时,光源提供的光线,由于全部透过调光层201,因此会全部从盖板101一侧出射,此时显示面板01显示的灰阶值最大。
显示方式三:
在本显示方式中,向第一电极11和第二电极12分别施加电压,例如,向第一电极11施加的电压为-8V至+8V,第二电极12施加的电压为0V。此时假设折射率调节层202的折射率n 2位于上述最小n 2值和上述n 1值之间,则由上述公式(1)可知,光线在调光层201与折射率调节层202相接触的表面A的全反射角α位于上述最小α值和最大α值之间。
在此情况下,如图9c所示,可以使得光源入射至调光层201的光线中,一部分光线在上述表面A的入射角大于上述全反射角α,而发生全反射;另一部分光线在上述表面A的入射角小于上述全反射角α,而透过上述调光层201入射至折射率调节层202。
基于此,光源提供的光线中一部分由衬底基板100所在的一侧出射,一部分光线由盖板101所在的一侧出射。因此无论显示面板01的显示侧位于衬底基板100所在的一侧,还是盖板101所在的一侧,显示面板01显示图像的灰阶值为位于最大灰阶值和最小灰阶值之间的中间灰阶值。
由上述显示方式可知,显示面板01中衬底基板100所在的一侧,以及盖板101所在的一侧均能够进行图像显示,因此本公开一些实施例提供的显示面板01能够实现双面显示。
本公开一些实施例还提供一种显示系统,参见图10,该显示系统02包括如上所述的任意一种显示面板01,以及光源60,光源60配置为向显示面板01提供照明光束。本示例中的显示系统02具有与前述任一实施例提供的显示面板01相同的技术效果,此处不再赘述。
上述显示系统02可以实现反射式显示和透射式显示,以下对上述两种显示方式进行详细的说明。
参见图10,当上述显示系统02实现透射式显示时,该显示系统02包括上述光源60。示例性地,光源60位于显示面板01的一侧,例如光源60位于第一电极11的远离第二电极12的一侧。此外,上述光源60的出光面与显示面板01的显示面平行。
需要说明的是,上述显示面板01的显示面是指,该显示面板01显示画面的一面。对于透射式显示系统而言,显示面板01的显示面为该显示面板01的盖板101所在的一侧对应的平面。
在此情况下,光源60发出的光线,能够穿过第一电极11入射至调光层201与折射率调节层202相接触的表面A。
同上所述,当所有光线在该表面A的入射角θ均大于全反射角α时,所有光线在上述表面A发生全反射,因此没有光线透过折射率调节层202和第二电极12,并由盖板101出射。此时,该显示面板01呈暗态。
当所有光线在该表面A的入射角θ均小于全反射角α时,所有光线透过折射率调节层202和第二电极12,并由盖板101出射。此时,该显示面板01显示的灰阶值最高。
当部分光线在该表面A的入射角θ大于全反射角α,同时部分光线在该表面A的入射角θ小于全反射角α时,入射角θ较大(比如图4b中的θ 1)的光线在上述表面A发生全反射,入射角θ较小(比如图4b中的θ 2)的光线透过折射率调节层202和第二电极12,并由盖板101出射。此时,该显示面板01显示中间灰阶。
在此基础上,为了实现彩色显示,对上述实现透射式显示的显示面板01而言,该显示面板01还包括如上所述的彩色滤光层61。
示例性地,此时上述彩色滤光层61位于第二电极12的远离第一电极11的一侧,且上述彩色滤光层61覆盖显示面板01的光调制结构20。在此情况下,由光调制结构20出射的光线在沿朝向盖板101的方向传输时,能够透过上述彩色滤光层61,从而在该彩色滤光层61的滤色作用下,使得亚像素10发出彩色的光线,例如蓝色、红色或者绿色的光线。
基于此,每个亚像素10中的彩色滤光层61能够透过的光线的波长不同。这样使得位于同一像素(pixel)中的多个亚像素10,可以分别发出不同颜色的光,例如红光、绿光和蓝光等。
参见图11,当上述显示系统02实现反射式显示时,该显示系统02包括上述光源60,以及半透半反镜62和反射镜63。
光源60设置于显示面板01的一侧。例如,如图11所示,光源设置于靠近显示面板01的盖板101一侧;又例如,如图12所示,光源设置于靠近显示面板01的衬底基板100一侧。而且光源60的出光面所在的平面与显示面板01的显示面所在的平面相交。
需要说明的是,对于能够实现反射式显示的显示面板01而言,显示面板01的显示面可以是该显示面板01中衬底基板100所在的一侧对应的平面,也可以是盖板101所在的一侧对应的平面。此时,由上述可知,由于光源60的出光面所在的平面与显示面板01的显示面所在的平面相交,光源60不会遮挡其所在一侧的显示面板01的显示面,因此该显示面板01可以实现双面显示,也就是说,人眼既可以在靠近衬底基板100 一侧观看到显示图像,也可以在靠近盖板101一侧观看到显示图像。
此外,需要说明的是,上述光源60的出光面对应的平面,指的是出光面沿出光方向的正投影为平面,示例性地,该出光面也可以为曲面;同样的,显示面板01的显示面对应的平面,指的是显示面沿用户观看方向的正投影为平面,示例性地,该显示面也可以是曲面。
示例性地,参见图12,半透半反镜62和反射镜63设置于光源60的出光路径上,而且半透半反镜62位于反射镜63和光源60之间,显示面板01的第一电极11背离第二电极12的一侧靠近半透半反镜62。这使得光源60出射的光线能够射向半透半反镜62,并经半透半反镜62透射后射向反射镜63,然后光线被反射镜63反射至半透半反镜62,再由半透半反镜62将经反射镜63反射的光线反射至显示面板01。
本示例中,参见图12,由于显示面板01的第一电极11背离第二电极12的一侧靠近半透半反镜62,因此可以使得光源60发出的光线,先入射至光调制结构20中的调光层201。此处,需要说明的是,无论光线先入射到调光层201,还是先入射到折射率调节层202,都可以通过控制第一电极11和第二电极12之间的电场实现调节折射率调节层202的折射率,并通过调光层201与折射率调节层202接触的表面的形状调节光线的入射角,从而对入射至光调制结构20的光线中,穿过该光调制结构20或被光调制结构20反射的光线的量进行调整,使得显示面板01显示不同灰阶的图像。
在此情况下,通过上述半透半反镜62和反射镜63,可以将光源60发出的光线传递至显示面板01中的调光层201。在此情况下,由于光源60与显示面板01的显示面交错设置,从而使得显示面板01中衬底基板100所在的一侧,以及盖板101所在的一侧均可以进行显示。
在一些实施例中,参见图11和图12,上述显示系统还包括透镜64,该透镜64和显示面板01位于上述光源60出光路径的两侧,且该透镜64与显示面板01的位置相对应。在此情况下,上述透镜64可以将显示面板01显示的画面汇聚至需要观看的位置。
在此基础上,为了实现彩色显示,示例性地,上述显示面板01还包括如上所述的彩色滤光层61。此时,该彩色滤光层61位于第一电极11的远离离第二电极12的一侧,且该彩色滤光层61覆盖显示面板01的光调制结构20。该彩色滤光层61的作用和技术效果同上所述,此处不再赘述。
示例性地,上述光源60可以为LED(Light Emitting Diode,LED),或者激光。本公开对此不做限定。
此外,对于上述透射式或反射式显示系统而言,如图12所示,该显示系统还包括处理器70。该处理器70与显示面板01电连接,并且该处理器70配置为向显示面板01输出对应于显示图像的显示信号。
在本公开的一些实施例中,上述显示图像可以为2D图像,此时,该显示系统中的显示面板01能够对上述2D图像进行显示。
或者,在本公开的另一些实施例中,上述显示图像可以为全息干涉条纹图像。当显示面板01显示上述全息干涉条纹图像后,光源60的光线照射到该显示面板01上,能够对全息图像进行再现,从而实现全息显示。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示面板,包括多个亚像素,所述多个亚像素中的至少一个亚像素包括:
    第一电极;
    设置于所述第一电极一侧的光调制结构;以及,
    设置于所述光调制结构的远离所述第一电极一侧的第二电极;
    其中,所述光调制结构包括:
    折射率调节层,所述折射率调节层的折射率能够在所述第一电极和所述第二电极之间的电场作用下发生变化;
    调光层,所述调光层位于所述折射率调节层与所述第一电极之间,并且所述调光层与所述折射率调节层相接触,所述调光层与所述折射率调节层相接触的表面的至少一部分为曲面。
  2. 根据权利要求1所述的显示面板,其中,所述调光层包括:
    多个凸起,所述多个凸起分布于所述第一电极的靠近所述折射率调节层一侧的表面上;
    所述多个凸起中的至少一个凸起与所述折射率调节层相接触的表面为曲面。
  3. 根据权利要求2所述的显示面板,其中,所述多个凸起呈阵列式排列,且所述多个凸起的外形尺寸相同。
  4. 根据权利要求2所述的显示面板,其中,所述多个凸起呈矩阵形式排列,且所述多个凸起的外形尺寸相同。
  5. 根据权利要求2~4中任一项所述的显示面板,其中,所述多个凸起中的至少一个凸起与所述折射率调节层相接触的表面为半球面。
  6. 根据权利要求1~5中任一项所述的显示面板,其中,构成所述折射率调节层的材料包括电光晶体材料。
  7. 根据权利要求1~6中任一项所述的显示面板,其中,所述多个亚像素中的每个亚像素均包括所述第一电极、所述光调制结构和所述第二电极;所述多个亚像素所包括的所有第二电极连接为一整层。
  8. 根据权利要求1~7中任一项所述的显示面板,其中,所述显示面板还包括:
    衬底基板;以及,
    位于所述衬底基板上的多条栅线和多条数据线,所述多条栅线和所述多条数据线纵横交叉界定出用于容纳所述多个亚像素的多个亚像素区域。
  9. 根据权利要求8所述的显示面板,其中,所述显示面板还包括:
    设置于所述多个亚像素区域中的每个亚像素区域内的晶体管,所述晶体管的栅极与所述多条栅线中对应的栅线电连接,所述晶体管的第一极与所述多条数据线中对应的数据线电连接,所述晶体管的第二极与其所在的亚像素区域内的所述第一电极电连接。
  10. 根据权利要求9所述的显示面板,其中,所述显示面板还包括:
    黑矩阵,所述黑矩阵位于所述第二电极的远离所述第一电极一侧;
    其中,所述黑矩阵覆盖所述晶体管的至少一部分;和/或,所述黑矩阵覆盖所述多条栅线的至少一部分及所述多条数据线的至少一部分。
  11. 根据权利要求1~10中任一项所述的显示面板,其中,所述显示面板还包括:
    供电电极,所述供电电极与所述第二电极电连接,所述供电电极配置为向所述第二电极提供公共电压。
  12. 根据权利要求1~11所述的显示面板,其中,所述显示面板还包括:
    彩色滤光层,所述彩色滤光层设置于所述第二电极的远离所述第一电极的一侧;或者,所述彩色滤光层设置于所述第一电极的远离所述第二电极的一侧;
    所述彩色滤光层覆盖所述显示面板中的光调制结构。
  13. 一种应用于如权利要求1~12中任一项所述的显示面板的驱动方法,包括:
    向所述第一电极输入像素电压,同时向所述第二电极输入公共电压,通过在所述第一电极和所述第二电极之间的电场作用下,控制所述折射率调节层的折射率发生变化,以使得所述显示面板中对应的亚像素实现不同的灰阶显示。
  14. 根据权利要求13所述的驱动方法,其中,在所述电场的方向由所述第一电极指向所述第二电极,且所述公共电压不变的情况下,所述折射率调节层的折射率随所述像素电压的增大而减小;
    在所述电场的方向由所述第二电极指向所述第一电极,且所述公共电压不变的情况下,所述折射率调节层的折射率随所述像素电压的增大而增大。
  15. 一种显示系统,包括:
    如权利要求1~12中任一项所述的显示面板;
    光源,所述光源配置为向所述显示面板提供照明光束。
  16. 根据权利要求15所述的显示系统,其中,所述光源设置于所述显示面板的一侧,并且所述光源的出光面与所述显示面板的显示面平行。
  17. 根据权利要求16所述的显示系统,其中,所述光源位于所述第一电极的远离所述第二电极的一侧。
  18. 根据权利要求15所述的显示系统,其中,所述光源设置于所述显示面板的一侧,并且所述光源的出光面所在的平面与所述显示面板的显示面所在的平面相交;
    所述显示系统还包括:
    设置于所述光源出光路径上的半透半反镜和反射镜,所述半透半反镜位于所述反射镜和所述光源之间;
    所述半透半反镜配置为透过所述光源出射的光线,以使光线射向所述反射镜,以及将经所述反射镜反射的光线反射至所述显示面板。
  19. 根据权利要求18所述的显示系统,其中,所述半透半反镜位于所述第一电极的远离所述第二电极的一侧;
    所述显示系统还包括:
    透镜,所述透镜设置于所述半透半反镜的远离所述显示面板的一侧。
  20. 根据权利要求15~19中任一项所述的显示系统,所述显示系统包括处理器,所述处理器与所述显示面板电连接;
    所述处理器配置为向所述显示面板输出对应于显示图像的显示信号。
PCT/CN2019/127128 2019-01-21 2019-12-20 显示面板及其驱动方法和显示系统 WO2020151434A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/980,169 US11244639B2 (en) 2019-01-21 2019-12-20 Display panel and driving method thereof, and display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920093060.0U CN209148998U (zh) 2019-01-21 2019-01-21 显示面板及显示系统
CN201920093060.0 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020151434A1 true WO2020151434A1 (zh) 2020-07-30

Family

ID=67291664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127128 WO2020151434A1 (zh) 2019-01-21 2019-12-20 显示面板及其驱动方法和显示系统

Country Status (3)

Country Link
US (1) US11244639B2 (zh)
CN (1) CN209148998U (zh)
WO (1) WO2020151434A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112817477A (zh) * 2021-01-21 2021-05-18 京东方科技集团股份有限公司 一种触控基板和显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209148998U (zh) 2019-01-21 2019-07-23 京东方科技集团股份有限公司 显示面板及显示系统
CN110739338B (zh) * 2019-10-24 2022-11-29 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板
US11562702B2 (en) * 2020-03-31 2023-01-24 Sharp Kabushiki Kaisha Dimming unit, and liquid crystal display device
CN113126351B (zh) * 2021-04-16 2023-04-11 福州京东方光电科技有限公司 一种显示模组及其驱动方法、显示装置
CN113380146B (zh) * 2021-06-08 2023-07-21 京东方科技集团股份有限公司 双面显示面板以及双面显示装置
CN114464758B (zh) * 2022-02-10 2024-03-15 京东方科技集团股份有限公司 显示面板及显示装置
CN115079463B (zh) * 2022-06-30 2023-10-20 京东方科技集团股份有限公司 一种液晶显示面板、液晶显示装置和制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395928A (zh) * 2006-03-03 2009-03-25 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
JP2016040569A (ja) * 2014-08-12 2016-03-24 大日本印刷株式会社 立体視表示装置、低反射層付液晶レンズセル、低反射層付センサー基板
CN205809496U (zh) * 2016-07-18 2016-12-14 京东方科技集团股份有限公司 显示面板和显示装置
CN106405950A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 显示面板及其制作方法和显示设备
CN106483670A (zh) * 2015-08-31 2017-03-08 乐金显示有限公司 偏振控制面板及其制造方法和使用其的立体显示装置
CN209148998U (zh) * 2019-01-21 2019-07-23 京东方科技集团股份有限公司 显示面板及显示系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087351B2 (en) * 2004-09-29 2006-08-08 Eastman Kodak Company Antistatic layer for electrically modulated display
CN101681034A (zh) * 2008-04-03 2010-03-24 松下电器产业株式会社 信息显示装置
JP2010002504A (ja) * 2008-06-18 2010-01-07 Toshiba Mobile Display Co Ltd 液晶表示装置
KR101834586B1 (ko) * 2010-08-27 2018-03-05 소니 주식회사 배향 필름 및 그 제조 방법, 위상차 필름 및 그 제조 방법, 및 표시 장치
US9008472B2 (en) * 2012-08-24 2015-04-14 Shenzhen China Star Optoelectronics Technology Co., Ltd Light guide plate and manufacturing method thereof
CN103018931A (zh) * 2012-12-13 2013-04-03 京东方科技集团股份有限公司 光学装置及显示装置
CN103091768A (zh) * 2013-02-07 2013-05-08 京东方科技集团股份有限公司 一种防静电导光板及其制作方法
CN205809490U (zh) * 2016-06-13 2016-12-14 厦门光莆显示技术有限公司 一种背光胶框结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395928A (zh) * 2006-03-03 2009-03-25 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
JP2016040569A (ja) * 2014-08-12 2016-03-24 大日本印刷株式会社 立体視表示装置、低反射層付液晶レンズセル、低反射層付センサー基板
CN106483670A (zh) * 2015-08-31 2017-03-08 乐金显示有限公司 偏振控制面板及其制造方法和使用其的立体显示装置
CN205809496U (zh) * 2016-07-18 2016-12-14 京东方科技集团股份有限公司 显示面板和显示装置
CN106405950A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 显示面板及其制作方法和显示设备
CN209148998U (zh) * 2019-01-21 2019-07-23 京东方科技集团股份有限公司 显示面板及显示系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112817477A (zh) * 2021-01-21 2021-05-18 京东方科技集团股份有限公司 一种触控基板和显示装置
CN112817477B (zh) * 2021-01-21 2024-03-15 京东方科技集团股份有限公司 一种触控基板和显示装置

Also Published As

Publication number Publication date
US11244639B2 (en) 2022-02-08
US20210012723A1 (en) 2021-01-14
CN209148998U (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2020151434A1 (zh) 显示面板及其驱动方法和显示系统
US10564488B2 (en) Display panel, display device and control method thereof
US11793049B2 (en) Display apparatus and method of manufacturing the same
CN107817629B (zh) 一种液晶显示装置
US10754186B2 (en) Display device and display method
TWI491957B (zh) 液晶顯示用之對向基板及液晶顯示裝置
WO2020063376A1 (zh) 显示器件及其控制方法
JP2005173037A (ja) 液晶表示装置及びその製造方法
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
CN102681164B (zh) 调光装置及显示器
CN106652960B (zh) 显示面板、显示装置及其控制方法
CN106526993A (zh) 一种液晶显示器及其驱动方法
JP2012103695A (ja) ディスプレイ装置
KR101244772B1 (ko) 반사투과형 액정표시장치 및 그 제조방법
CN111158188A (zh) 一种显示面板及显示装置
US10831059B2 (en) Display panel, display apparatus and method of controlling the same
US20100026941A1 (en) Electro-optical device and manufacturing method of electro-optical device
CN106847208A (zh) 一种液晶显示器及其驱动方法
JP2006330602A (ja) 液晶表示装置およびその製造方法
CN103309077A (zh) 液晶显示器
WO2020211625A1 (zh) 显示装置及其显示方法
JP2000338476A (ja) 反射型液晶表示装置用カラーフィルター基板
JPH0212224A (ja) 液晶表示装置
JP2008233137A (ja) 液晶表示装置
JP4032661B2 (ja) 液晶装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912052

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19912052

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19912052

Country of ref document: EP

Kind code of ref document: A1