WO2020063376A1 - 显示器件及其控制方法 - Google Patents

显示器件及其控制方法 Download PDF

Info

Publication number
WO2020063376A1
WO2020063376A1 PCT/CN2019/105891 CN2019105891W WO2020063376A1 WO 2020063376 A1 WO2020063376 A1 WO 2020063376A1 CN 2019105891 W CN2019105891 W CN 2019105891W WO 2020063376 A1 WO2020063376 A1 WO 2020063376A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
refractive index
layer
display device
Prior art date
Application number
PCT/CN2019/105891
Other languages
English (en)
French (fr)
Inventor
谭纪风
王维
孟宪东
孟宪芹
高健
赵文卿
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/644,708 priority Critical patent/US11187844B2/en
Publication of WO2020063376A1 publication Critical patent/WO2020063376A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a control method thereof.
  • a liquid crystal display device needs to be provided with upper and lower polarizers on a liquid crystal display panel to achieve grayscale display.
  • the polarizer due to the existence of the polarizer, the problem of low light transmittance may be caused, especially for transparent display devices, which may greatly affect transparency and brightness.
  • a light guide plate the light guide plate includes a light incident side, and a bottom surface and a light exit surface disposed opposite to each other;
  • the light extraction structure is disposed on the light exit surface or the bottom surface side of the light guide plate, and is configured to make the light that is totally reflected and propagated in the light guide plate emerges from the light exit surface of the light guide plate at a predetermined angle;
  • a first low refractive index layer covering a light exit surface of the light guide plate, and a refractive index of the light guide plate is greater than a refractive index of the first low refractive index layer
  • a liquid crystal dimming layer includes a liquid crystal layer and a driving electrode for driving deflection of liquid crystal molecules in the liquid crystal layer, and the liquid crystal dimming layer is disposed on a side of the first low refractive index layer away from the light emitting surface;
  • a second low refractive index layer is disposed on a side of the liquid crystal dimming layer remote from the first low refractive index layer, and the refractive indexes of the first low refractive index layer and the second low refractive index layer Both are smaller than the initial refractive index of the liquid crystal dimming layer.
  • an initial refractive index of the liquid crystal dimming layer is a refractive index of the liquid crystal dimming layer when a reference voltage is applied to the driving electrode.
  • the reference voltage is 0 volts.
  • the display device includes a plurality of pixel regions distributed in an array, and each of the pixel regions includes a plurality of sub-pixel regions;
  • the driving electrode includes: a first electrode, the first electrode including a plurality of first sub-electrodes disposed in one-to-one correspondence with the sub-pixel region; and a second electrode disposed opposite to the first electrode;
  • the second electrode is an entire electrode corresponding to a plurality of the first sub-electrodes; or, the second electrode includes a plurality of second sub-electrodes, and each of the second sub-electrodes and at least one The first sub-electrode is correspondingly arranged.
  • the display device includes a plurality of pixel regions distributed in an array, and each of the pixel regions includes a plurality of sub-pixel regions;
  • the light extraction structure includes a plurality of light extraction gratings distributed in an array, The light grating is set corresponding to a sub-pixel area.
  • the liquid crystal dimming layer further includes:
  • a first alignment layer disposed on a side of the liquid crystal layer near the first low refractive index layer
  • a second alignment layer disposed on a side of the liquid crystal layer near the second low refractive index layer.
  • the display device includes a base substrate disposed on a side of the liquid crystal layer remote from the light guide plate, wherein the base substrate is made of a low refractive index material to form the second low Refractive index layer
  • the display device further includes a base substrate separately disposed on a side of the second low-refractive index layer remote from the liquid crystal dimming layer.
  • the display device further includes:
  • the light source is disposed on a light incident side of the light guide plate, and is configured to emit light into the light guide plate.
  • the light source includes:
  • a first light source component disposed on a light incident side of the light guide plate, the first light source component including a plurality of monochromatic light sources for emitting a plurality of monochromatic light of different colors;
  • a first dimming component disposed between the first light source component and a light incident side of the light guide plate;
  • the monochromatic light sources corresponding to the monochromatic light of different colors among the plurality of monochromatic light sources are in different positions or have different exiting light angles, so that the monochromatic lights of different colors are differently predicted by the first dimming component in different ways.
  • the light is emitted at an angle into the light guide plate for total reflection transmission, and is emitted from the light exit surface of the light guide plate at the same exit angle by the light extraction structure.
  • the first dimming component includes a first reflective surface
  • the first reflective surface includes a reflective plane and / or a reflective paraboloid
  • the first reflective surface is disposed facing the light emitting surface of the light source component
  • the first reflecting surface has a first preset shape, and the first preset shape can inject different colors of monochromatic light from the light emitted by the first light source component into the light guide plate at different preset angles. It is transmitted by total reflection and is emitted from the light exit surface of the light guide plate at the same exit angle by the light extraction structure.
  • Optional also includes:
  • the light source control unit is connected to the light source, and is configured to drive the monochrome light sources corresponding to different colors of monochromatic light in the light source in a time-sharing manner, and the driving voltages on the monochrome light sources corresponding to different colors of monochromatic light are the same. So that the brightness of the monochromatic light of each color is the same;
  • a liquid crystal dimming layer control unit is connected to the driving electrode, and is configured to drive the driving electrode in a time-sharing manner, and controls the driving electrodes corresponding to different sub-pixel regions in each pixel region to be applied at different time periods. Different voltages.
  • the display device further includes:
  • the liquid crystal dimming layer control unit is connected to the driving electrode and is used to drive the driving electrode in a time-sharing manner, and the voltage applied to the driving electrode corresponding to each sub-pixel region in different time periods is the same;
  • the light source control unit is connected to the light source, and is configured to drive the monochrome light sources corresponding to different colors of monochromatic light in the light source in a time-sharing manner, and The driving voltage is different.
  • the light source includes:
  • a second light source component provided on the light incident side of the light guide plate for emitting white light; and a second light adjustment provided between the second light source component and the light incident side of the light guide plate Component, the second dimming component is configured to inject white light emitted by the second light source component into the light guide plate for total reflection and propagation, and is removed from the light guide plate at different angles by the light extraction structure. Multiple monochromatic lights with different colors separated by the light emitting surface;
  • the display device includes a plurality of pixel regions distributed in an array, each of the pixel regions includes a plurality of sub-pixel regions, and a plurality of monochromatic lights respectively enter the plurality of sub-pixel regions in a one-to-one correspondence;
  • the driving electrodes include A plurality of first sub-electrodes corresponding to each of the pixel regions, wherein each of the first sub-electrodes includes a plurality of grid-like electrodes; the same pixel region corresponds to the first sub-electrodes of different sub-pixel regions The arrangement period of the grid electrodes in the sub-electrodes is different.
  • the second dimming component includes a second reflective surface
  • the second reflective surface includes a reflective plane and / or a reflective paraboloid
  • the second reflective surface is disposed facing the light emitting surface of the second light source component
  • the second reflecting surface has a second preset shape, and the second preset shape enables white light emitted by the second light source component to enter the light guide plate for total reflection propagation.
  • the display device further includes:
  • the liquid crystal dimming layer control unit is connected to the driving electrodes and is used to control a driving voltage on the driving electrodes corresponding to different sub-pixel regions in each pixel region.
  • the plurality of monochromatic lights include red light, green light, and blue light
  • the plurality of sub-pixel areas in each of the pixel regions include a red light sub-pixel area corresponding to the red light setting, corresponding to the red light
  • the arrangement period of the plurality of grid-shaped electrodes in the green photo sub-pixel region corresponding to the blue light and the blue photo sub-pixel region corresponding to the blue light is greater than that in the green photo sub-pixel region.
  • the arrangement period of the grid-shaped electrodes, the arrangement period of the plurality of grid-shaped electrodes in the green photo sub-pixel region is larger than the arrangement period of the plurality of grid-shaped electrodes in the blue photo sub-pixel region.
  • the display device is a transparent display device without a polarizer and a light shielding layer.
  • a method for controlling a display device which is applied to the display device as described above, the method includes:
  • a first voltage is applied to the driving electrode to control the liquid crystal dimming layer to have an initial refractive index, so that light emitted from the first low refractive index layer is totally reflected and propagated in the liquid crystal dimming layer, so
  • the first voltage is a reference voltage
  • the application of a second voltage to the driving electrode adjusts a deflection direction of liquid crystal molecules in the liquid crystal dimming layer, so that light emitted from the first low refractive index layer passes through the light After the liquid crystal dimming layer is deflected, the light emitted from the side of the second low-refractive index layer far from the liquid crystal dimming layer specifically includes:
  • the second voltage is applied to the driving electrode to adjust a deflection direction of liquid crystal molecules in the liquid crystal dimming layer, so that light emitted from the first low refractive index layer passes through the light source.
  • the light emitted from the side of the second low refractive index layer far from the liquid crystal dimming layer specifically includes:
  • Monochromatic light sources corresponding to different colors of monochromatic light in the light source are driven in a time-sharing manner, and driving voltages on the monochromatic light sources corresponding to different colors of monochromatic light are different to adjust subpixels corresponding to different colors of light The deflection direction of the liquid crystal molecules in the region.
  • the emission from the side of the second low-refractive index layer far from the liquid crystal dimming layer specifically includes:
  • the driving voltages on the driving electrodes corresponding to different sub-pixel regions in each pixel region are controlled to adjust the deflection directions of the liquid crystal molecules in different sub-pixel regions in each pixel region.
  • FIG. 1 is a schematic structural diagram of a display device provided in an exemplary embodiment of the present disclosure in a dark state displayed;
  • FIG. 2 is a schematic structural diagram of a display device provided in another exemplary embodiment of the present disclosure when the display device is in a dark state;
  • FIG. 3 is a schematic structural diagram of a display device provided in an exemplary embodiment of the present disclosure in a grayscale state
  • FIG. 4 is a schematic diagram of a light path of a total reflection light in a light guide plate in a display device according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a light path of a total reflection light in a liquid crystal dimming layer in a display device according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of FIG. 4 showing the formation of a liquid crystal grating in a grayscale display in a display device provided by an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a display device provided in an exemplary embodiment of the present disclosure when implementing color display, wherein only a light source, a light guide plate, a light extraction structure, and a first low refractive index layer are illustrated in the figure;
  • FIG. 8 is a timing control diagram of an embodiment of an electrical signal applied to the light source and the liquid crystal dimming layer when the display device provided by the present disclosure implements color display;
  • FIG. 9 shows a timing control diagram of another embodiment of an electrical signal applied to the light source and the liquid crystal dimming layer when the display device provided by the present disclosure implements color display;
  • FIG. 10 is a schematic structural diagram of an exemplary embodiment of a grayscale state when a display device provided by the present disclosure is applied to a directional display;
  • FIG. 10 is a schematic structural diagram of an exemplary embodiment of a grayscale state when a display device provided by the present disclosure is applied to a directional display;
  • FIG. 11 is a schematic diagram of a periodic arrangement of grid electrodes arranged in different sub-regions on the driving electrodes in FIG. 10.
  • an embodiment of the present disclosure provides a display device and a control method thereof, without the need to provide a polarizer, and improving the polarizer in the related technology. Effect on the transmittance of display devices.
  • a display device provided in an embodiment of the present disclosure includes:
  • a light guide plate 100 including a light incident side, and a bottom surface and a light exit surface disposed opposite to each other;
  • the light extraction structure 200 is disposed on the light exit surface or the bottom side of the light guide plate 100, and is configured to make the totally reflected light in the light guide plate 100 exit from the light exit surface of the light guide plate at a predetermined angle (that is, from the light guide plate). Take out);
  • the first low refractive index layer 300 covers the light exit surface of the light guide plate 100, and the refractive index of the light guide plate 100 is greater than the refractive index of the first low refractive index layer 300;
  • the liquid crystal dimming layer 400 includes a liquid crystal layer 401 and a driving electrode 402 for driving the liquid crystal molecules in the liquid crystal layer 401 to deflect.
  • the liquid crystal dimming layer is disposed on the first low refractive index layer 300 away from the light. Side of face
  • the second low refractive index layer 500 is disposed on a side of the liquid crystal dimming layer 400 far from the first low refractive index layer 300, and the first low refractive index layer 300 and the second low refractive index layer The refractive index of the layer 500 is less than the initial refractive index of the liquid crystal dimming layer 400.
  • the display device may not separately provide a base substrate of the array substrate, and the light guide plate 100 is used as the base substrate to adjust the liquid crystal light.
  • the layer 400 is directly disposed on the first low-refractive index layer 300, and the second low-refractive index layer 500 is disposed on a side of the liquid crystal dimming layer 400 remote from the light guide plate 100, so that the Liquid crystal dimming layer 400, said first low The emissivity layer 300 and the second low refractive index layer 500 cooperate to form another optical waveguide.
  • a reference voltage first voltage
  • the liquid crystal dimming layer has an initial refractive index.
  • the refractive index of the first low refractive index layer 300 and the second low refractive index layer 500 is smaller than the refractive index of the liquid crystal dimming layer 400.
  • the first low refractive index layer is in the liquid crystal.
  • Total reflection transmission is possible in the light control layer 400 (the upper and lower interfaces of the total reflection of light are the surface of the first low refractive index layer 300 near the liquid crystal layer and the second low refractive index layer, respectively 500 near the surface of the liquid crystal layer), at this time, no light is emitted from the liquid crystal dimming layer 400 to achieve a dark state of the display (the dark state displayed by the display device means that no light is emitted from the display (The display surface of the device is emitted); when a second voltage is applied to the driving electrode 402 in the liquid crystal dimming layer 400, the liquid crystal grating formed by the liquid crystal layer 401 is emitted from the first low refractive index layer to the The light of the liquid crystal dimming layer is deflected, thereby destroying the liquid crystal dimming The condition of total reflection of light in the layer, so that light is emitted from the side of the second low-refractive index layer
  • Gray scale the gray scale displayed by the display device means that light is emitted from the display surface of the display device, and the amount of light emitted is different, and the gray scale is different
  • the electrical signal applied to the driving electrodes of the liquid crystal molecules can be adjusted by
  • the shape of the liquid crystal grating is controlled to change the diffraction efficiency of the liquid crystal grating to incident light, thereby changing the amount of light emitted from the second low-refractive index layer to achieve an arbitrary gray scale display between L0 and L255.
  • the display device provided by the present disclosure can realize the dark state of the display through total reflection without the need for a polarizer, and the gray scale of the display can be controlled by applying a change in voltage to the driving electrode, thereby improving the related technology.
  • the influence of the polarizer on the light transmittance of the display device can realize the dark state of the display through total reflection without the need for a polarizer, and the gray scale of the display can be controlled by applying a change in voltage to the driving electrode, thereby improving the related technology.
  • the light guide plate is an edge-type light guide plate
  • the light exit surface provides a surface light source for the display device
  • the light entrance side is one between the bottom surface and the light exit surface. The side of the light guide.
  • the initial refractive index of the liquid crystal dimming layer is the refractive index of the liquid crystal dimming layer when a reference voltage is applied to the driving electrode.
  • the reference voltage may be a preset driving voltage, for example, the reference voltage is 0v, that is, when the driving electrode is not powered, the liquid crystal is not deflected at this time, and the liquid crystal dimming layer is in an initial state and has an initial refractive index;
  • a certain voltage to the drive electrode (the specific voltage value can be set according to the actual use situation), that is, when the liquid crystal has a certain deflection angle, as the initial state of the liquid crystal, and use the The refractive index of the liquid crystal layer is taken as the initial refractive index.
  • the light extraction structure causes the light rays that are totally reflected and propagated in the light guide plate to exit from the light exit surface of the light guide plate at a predetermined angle.
  • the meaning of the preset angle is that the light
  • the extraction structure 200 can diffract the light incident thereon at a certain diffraction angle, and the diffraction angle is related to the incident angle of the light and the wavelength of the light.
  • a display device is also proposed in the related art.
  • a light extraction grating is provided on the light exit surface side of the light guide plate, and the light transmitted by the total reflection in the light guide plate is taken out and incident on the liquid crystal dimming.
  • a light-shielding layer needs to be provided on the color film substrate of the liquid crystal dimming layer.
  • An opening area arranged in an array is arranged on the light-shielding layer.
  • a color filter is arranged at the opening area. When no voltage is applied, the liquid crystal molecules are not deflected, and the light extracted by the light extraction grating is incident on the light-shielding area of the light-shielding layer.
  • the liquid crystal molecules are driven.
  • the liquid crystal molecules are periodically arranged to form a liquid crystal grating.
  • the light taken out from the light extraction grating is incident on the opening area on the light-shielding layer, displaying L255 gray scale.
  • the electrical signals applied to the driving electrodes of the liquid crystal molecules can achieve different diffraction efficiency of the liquid crystal grating to the incident light, thereby realizing Arbitrary gray scale display between L0-L255.
  • This liquid crystal display device structure requires a black light-shielding layer to block incident light to achieve a dark state, which will greatly reduce the aperture ratio of the display device.
  • a color filter due to the presence of a color filter, light diffracted by the liquid crystal grating It cannot completely emit from the opening area, which also limits the light efficiency of the overall device.
  • the display device provided by the embodiments of the present disclosure does not need to provide a light shielding layer, and can realize a dark state of the display by means of total reflection, thereby improving the influence of the light shielding layer on the aperture ratio and light transmittance of the display device.
  • a liquid crystal display device generally includes a color filter substrate, an array substrate, and a liquid crystal layer between the two substrates.
  • the color filter substrate further includes a base substrate and an upper alignment layer disposed on the base substrate.
  • the array substrate includes a base substrate and a thin film transistor, a pixel electrode, a common electrode (the common electrode may also be provided on a color filter substrate), a gate line, a data line, a lower alignment film, and the like disposed on the base substrate.
  • the liquid crystal dimming layer 400 may include various structural film layers other than the base substrate of the color filter substrate, the color filter of the color filter substrate, the black matrix of the color filter substrate, and the base substrate of the array substrate.
  • the liquid crystal dimming layer 400 may include a liquid crystal layer 401 and a driving electrode 402, and may further include a liquid crystal layer disposed close to the liquid crystal layer.
  • a display device structure such as a thin film transistor, a gate line, and a data line.
  • the insulating layer 406, the thin film transistor, the gate line, and the data line may be disposed on a side of the liquid crystal layer remote from the second low refractive index layer.
  • the display device includes a plurality of pixel regions distributed in an array, and each of the pixel regions includes a plurality of sub-pixel regions.
  • the driving electrode 402 may include:
  • a first electrode including a plurality of first sub-electrodes 4021 provided in one-to-one correspondence with the sub-pixel regions;
  • the second electrode 4022 is an entire electrode corresponding to a plurality of the first sub-electrodes 4021;
  • the second electrode 4022 includes a plurality of second sub-electrodes, and each of the second sub-electrodes is disposed corresponding to at least one of the first sub-electrodes.
  • the first electrode is a pixel electrode
  • the second electrode is a common electrode
  • the first electrode may be disposed on a side of the liquid crystal dimming layer remote from the second low refractive index layer
  • the second electrode may be disposed on the liquid crystal dimming layer remote from the first
  • One side of the low-refractive index layer is disposed on a side of the liquid crystal dimming layer close to the first low-refractive index layer.
  • the liquid crystal dimming layer may further include an insulating layer 406 between the first electrode and the second electrode. .
  • the light extraction structure includes a plurality of light extraction gratings distributed in an array, and each of the light extraction gratings is disposed corresponding to a sub-pixel region.
  • the light extraction structure is implemented by a light extraction grating.
  • the light extraction gratings are distributed in an array and are arranged one by one in each sub-pixel region so that light is emitted from the light guide plate at a position corresponding to each sub-pixel region. Light enters the liquid crystal dimming layer.
  • the display device of the present disclosure may be a display panel or the entire display device including the display panel.
  • first low-refractive index layer and the second low-refractive index layer may both be made of organic or inorganic transparent low-refractive index materials, for example, organic siloxane or inorganic silicon oxide may be used for production.
  • the display device includes a base substrate disposed on a side of the liquid crystal layer 401 remote from the light guide plate 100, wherein
  • the base substrate may be directly made of a low refractive index material to form the second low refractive index layer 500.
  • the base substrate may be made of an organic or inorganic transparent low refractive index material, for example, It can be made by organosiloxane or inorganic silicon oxide;
  • the display device includes both the second low-refractive index layer 500 and a second light-refractive index layer separately disposed on the second low-refractive index layer 500.
  • the base substrate 600 on the side of the low refractive index layer 500 far from the liquid crystal dimming layer 400.
  • the display device further includes a light source 700, and the light source 700 is disposed on a light incident side of the light guide plate 100. For emitting light into the light guide plate 100.
  • the light source 700 is a collimated light source, and is configured to emit the collimated light into the light guide plate 100 at a predetermined angle to perform total reflection propagation in the light guide plate 100.
  • the light source 700 uses a collimated light source. Compared with other types of light sources, the light provided is collimated light, and the incident angle of the light incident to the light guide plate 100 is the same, and the critical angle of total reflection in the light guide plate 100 and the light incident The angle is related, and the diffraction angle of the light extracted from the light extraction structure 200 is related to the incident angle of the total reflection light incident on the light extraction structure 200. Therefore, the use of collimated light is more conducive to the light coupling into the incident light guide plate 100. Determination of parameters such as angle, total reflection angle in the light guide plate 100, and diffraction angle of the light extraction structure 200.
  • the following uses the light source 700 as a collimated light source as an example to describe the display device provided by the embodiments of the present disclosure in more detail in principle.
  • FIG. 4 is a schematic diagram showing the principle of the light emitted by the light source 700 being emitted into the light guide plate 100 for total reflection propagation. As shown in FIG. 4, the total reflection critical angle ⁇ ′ in the light guide plate 100 satisfies the following relationship:
  • n1 represents the refractive index of the light guide plate 100
  • n2 represents the refractive index of the first low refractive index layer 300
  • ⁇ ′ represents a critical angle for total reflection of light in the light guide plate 100.
  • the light extraction structure 200 may use a plurality of light extraction gratings arranged in an array, wherein a grating period P of the light extraction grating and a diffraction angle of an m-order diffraction wave of the light extraction grating.
  • ⁇ 1 the wavelength ⁇ of the incident light, and the angle of incidence ⁇ satisfy the following relationship:
  • N 0, ⁇ 1, ⁇ 2 ... ⁇ N, and N is a positive integer.
  • the period P of the grating can be calculated according to the incident angle ⁇ , the wavelength ⁇ of the incident light, and the diffraction angle ⁇ 1 of the light extraction structure 200.
  • the light extraction grating is a transmission grating and is disposed on the light exit surface of the light guide plate.
  • the first low-refractive index layer can also function as a flat layer.
  • m is the diffraction order of the light extraction grating
  • m is 1 (that is, the diffraction order of the light extraction grating is 1 order)
  • a part of the total reflected light will be transmitted
  • the light extraction grating is taken out of the light guide plate
  • the other A part of the reflected light R0 that is not taken out by the light extraction grating continues to propagate in the light guide plate at a total reflection angle.
  • the light extraction grating may also be a reflection type grating, which is disposed on the bottom surface of the light guide plate.
  • the liquid crystal dimming layer 400 constitutes an optical waveguide (hereinafter referred to as a liquid crystal dimming layer light) between the first low refractive index layer 300 and the second low refractive index layer 500. (Waveguide), so that the light extracted from the light extraction structure 200 can be totally reflected in the liquid crystal dimming layer optical waveguide. Therefore, the conditions that the liquid crystal dimming layer optical waveguide needs to meet are:
  • the light extraction structure 200 taken out from the optical diffraction angle ⁇ 1 is larger than the total reflection critical angle ⁇ "of the liquid crystal light control layer of the optical waveguide, the refractive index of the liquid crystal light control layer 400 is n4, the first low-refractive The refractive index of the refractive index layer 300 is n2, and the refractive index of the second low refractive index layer 500 is n3, then,
  • the diffraction angle ⁇ 1 of the light extracted from the light extraction structure 200 is:
  • the diffraction angle ⁇ 1 of the light extracted from the light extraction structure 200 is:
  • the structure 200 is taken out of the light.
  • the extracted diffracted light is totally reflected in the liquid crystal dimming layer 400, so that the refractive index n4 of the liquid crystal dimming layer 400 must be greater than the refractive index n2 of the first low refractive index layer 300 and the second low refractive index.
  • the refractive index n3 of the index layer 500 and the diffraction angle ⁇ 1 of the light extracted by the light extraction structure 200 satisfy the following conditions:
  • the diffraction angle ⁇ 1 of the light extracted from the light extraction structure 200 is:
  • the diffraction angle ⁇ 1 of the light extracted from the light extraction structure 200 is:
  • the refractive index n4 of the liquid crystal dimming layer 400 can be calculated through simulation experiments.
  • the refractive index n4 is that the liquid crystal dimming layer 400 includes a liquid crystal layer, a driving electrode, a first alignment layer, and a second alignment layer.
  • the equivalent refractive index of the multilayer structure is that the liquid crystal dimming layer 400 includes a liquid crystal layer, a driving electrode, a first alignment layer, and a second alignment layer.
  • the liquid crystal layer 401 forms a phase shape distribution of a liquid crystal grating, and changes.
  • the propagation direction and angle of light thereby destroying the total reflection of the light in the optical waveguide of the liquid crystal dimming layer, and scattering the light out to achieve the grayscale state of the display.
  • liquid crystal modulation The liquid crystal grating formed by the light layer 400 can change the light propagation direction and emit light from the second low refractive index layer 500, and the angle of light emission depends on the morphology of the formed liquid crystal grating, that is, depends on the The electrical signals applied to the driving electrodes 402 are described.
  • the specific structure of the driving electrode 402 in the liquid crystal dimming layer 400 may be various. Taking the electrode form shown in FIG. 6 as an example, the driving electrode 402 shown in FIG. 6 is an ADS mode electrode. The two electrodes 4022 are arranged in one piece.
  • the first electrode includes first sub-electrodes 4021 arranged in an array.
  • One of the first sub-electrodes 4021 includes a plurality of grid electrodes.
  • one first sub-electrode 4021 may be formed in 2 A liquid crystal grating structure. In this way, the period pitch of the formed liquid crystal grating will be relatively small, and the diffraction efficiency will be obvious. In practical applications, a liquid crystal grating structure may also be formed for the plurality of first sub-electrodes 4021.
  • a color filter is provided on a color filter substrate of a liquid crystal display device to implement color display. Due to the presence of the color filter, it is very large for display devices, especially for transparent display devices. The degree affects the light transmittance and brightness of the display device.
  • a color display can be realized by a time-sharing driving method without the need to provide a color filter. The following describes two exemplary embodiments of the display device provided by the present disclosure.
  • FIG. 7 is a schematic structural diagram of an exemplary embodiment of a display device capable of achieving color display according to the present disclosure, wherein only a light source, a light guide plate, a light extraction structure, and a first low refractive index layer are illustrated in the figure. The structure of the liquid crystal dimming layer and the second low refractive index layer is not illustrated.
  • the light source 700 includes:
  • the first light source part 701 includes a plurality of monochromatic light sources 701a for emitting a plurality of monochromatic lights of different colors. Monochromatic light of different colors can be mixed into white light; and a first dimming component 702 disposed between the first light source component 701 and the light-incident side of the light guide plate 100;
  • the monochromatic light sources 701a corresponding to the monochromatic light of different colors in the light source 701a are at different positions or have different exiting light angles, so that the monochromatic lights of different colors are emitted by the first dimming component 702 to different preset angles to
  • the light guide plate 100 performs total reflection transmission, and is emitted from the light exit surface of the light guide plate by the light extraction structure 200 at the same exit angle.
  • the light source 700 uses a plurality of monochromatic light sources 701a to provide display color information to a display device.
  • the function of the first dimming component 702 is to adjust the position of each monochromatic light source 701a.
  • the emitted light is such that the light emitted by each of the monochromatic light sources 701a is coupled into the light guide plate 100 for total reflection propagation, wherein, optionally, the first dimming component 702 can convert each of the monochromatic light sources.
  • the light from the light source 701a is adjusted to collimated light, and collimated light of each color is incident into the light guide plate 100 at different predetermined angles to ensure that the incident angle of the collimated light of each color when entering the light extraction structure 200 is the same.
  • the diffraction angles of the light rays extracted by the light extraction structure 200 of each color are the same, and the total reflection propagation can be performed in the liquid crystal dimming layer 400.
  • the diffraction angle of the light extraction structure 200 is related to the wavelength of the light and the incident angle of the light incident on the light extraction structure 200, the positions of the monochromatic light sources 701a of different colors can be reasonably designed or different.
  • the light emitting angle of the monochromatic light source 701a of the color is reasonably designed so that the monochromatic light of different colors is coupled into the light guide plate 100 by the first dimming component 702 at different preset angles for total reflection transmission, and
  • the light extraction structure 200 is diffracted and extracted at the same exit angle.
  • the monochromatic light source 701a may be an LED lamp
  • the first dimming member 702 includes a first reflecting surface
  • the first reflecting surface is disposed facing a light emitting surface of the light source component
  • the first reflecting surface has a first preset shape, and the first preset shape can inject different colors of monochromatic light into the light guide plate at different preset angles from the light emitted by the first light source component. Total reflection transmission is performed, and the light extraction structure emits light from the light exit surface of the light guide plate at the same exit angle.
  • the first reflecting surface may be one of a reflecting plane and a reflecting parabola, or may include both a reflecting plane and a reflecting parabola (for example, as shown in FIG. 7).
  • the first reflecting surface has a first preset shape. , Its specific shape parameters, such as: the specific setting position of the reflection plane, the reflection parabolic surface, the inclination angle of the reflection plane, and the curvature of the reflection paraboloid, etc., can be obtained through reasonable debugging, as long as the first light source component is finally satisfied Monochromatic light of different colors in the emitted light beams is incident into the light guide plate at different preset angles for total reflection transmission, and may be emitted from the light guide surface of the light guide plate at the same exit angle by the light extraction structure.
  • the first dimming component may be a reflective lampshade, and high-angle light emitted from the LED lamp passes through the reflection lampshade and enters the light guide plate 100, and propagates in the light guide plate 100 at a total reflection propagation angle ⁇ .
  • the structure of the first dimming component 702 is not limited to this.
  • the display device further includes:
  • the light source control unit is connected to the light source 700 and is configured to drive the monochrome light source 701a corresponding to different colors of monochromatic light in the light source 700 in a time-sharing manner.
  • the driving voltage is the same, so that the brightness of the monochromatic light of each color is the same;
  • the liquid crystal dimming layer control unit is connected to the driving electrode 402 for driving the driving electrode 402 in a time-sharing manner, and controlling the driving electrodes 402 corresponding to different sub-pixel regions in each pixel region at different times. Different voltages are applied to the segments.
  • the light source 700 provides monochromatic light of multiple colors, and the light source 700 is driven by the light source control unit in a time-sharing manner.
  • the light source 700 provides red (R) and green light. (G), blue (B) three-color light as an example, in one frame time, the driving time of the red light source, the green light source and the blue light source respectively takes 1/3 of the time, and the red light source, the green light source and the blue light are controlled
  • the brightness of the light sources is the same; and the liquid crystal dimming layer control unit drives the driving electrode 402 in a time-sharing manner, and controls the gray scale of the display by controlling electrical signals applied to the driving electrodes 402 corresponding to different sub-pixel regions. Specifically, as shown in FIG.
  • the driving electrode 402 can apply an electrical signal through a data line (Data).
  • Data data line
  • the gate line (Gate) is fully opened, and the data line (Data) is within 1 frame time.
  • different applied signals are used to control different applied voltages on the driving electrode 402, so that during the time period when different color light is emitted, the appearance of the liquid crystal grating is different, Different diffraction efficiency to control With the color grayscale display.
  • the light source 700 includes:
  • the first light source part 701 includes a plurality of monochromatic light sources 701a for emitting a plurality of monochromatic lights of different colors. Monochromatic light of different colors can be mixed into white light; and a first dimming component 702 disposed between the first light source component 701 and the light-incident side of the light guide plate 100;
  • the monochromatic light sources 701a corresponding to the monochromatic light of different colors in the light source 701a are at different positions or have different exiting light angles, so that the monochromatic lights of different colors are emitted by the first dimming component 702 to different preset angles to
  • the light guide plate 100 performs total reflection transmission, and is emitted from the light exit surface of the light guide plate by the light extraction structure 200 at the same exit angle.
  • the light source 700 uses a plurality of monochrome light sources 701a to provide display color information for a display device.
  • the first dimming component 702 functions to adjust the light emitted by each of the monochrome light sources 701a.
  • the first dimming component 702 can transmit each of the monochromatic light sources 701a
  • the light is adjusted to collimated light, and the collimated light of each color is incident into the light guide plate 100 at different predetermined angles to ensure that the incident angle of the collimated light of each color when entering the light extraction structure 200 is the same, thereby ensuring
  • the light diffraction angles of the lights of different colors taken through the light extraction structure 200 are the same, and total reflection can be propagated in the liquid crystal dimming layer 400, wherein the positions of the monochromatic light sources 701a of different colors can be performed.
  • the monochromatic light source 701a may be an LED lamp
  • the first dimming member 702 includes a first reflecting surface
  • the first reflecting surface is disposed facing a light emitting surface of the light source component
  • the first reflecting surface has a first preset shape, and the first preset shape can inject different colors of monochromatic light from the light emitted from the light source component into the light guide plate at different preset angles for full-scale Reflected and transmitted by the light extraction structure from the light exit surface of the light guide plate at the same exit angle.
  • the first reflecting surface may be one of a reflecting plane and a reflecting parabola, or may include both a reflecting plane and a reflecting parabola (for example, as shown in FIG. 7).
  • the first reflecting surface has a first preset shape. , Its specific shape parameters, such as: the specific setting position of the reflection plane, the reflection parabolic surface, the inclination angle of the reflection plane, and the curvature of the reflection paraboloid, etc., can be obtained through reasonable debugging, as long as the first light source component is finally satisfied Monochromatic light of different colors in the emitted light beams is incident into the light guide plate at different preset angles for total reflection transmission, and may be emitted from the light guide surface of the light guide plate at the same exit angle by the light extraction structure.
  • the first dimming component may be a reflective lampshade. Large-angle light emitted by the LED lamp passes through the reflection lampshade and enters the light guide plate 100, and propagates in the light guide plate 100 at a total reflection angle ⁇ .
  • the structure of the first dimming component 702 is not limited to this.
  • the display device further includes:
  • the liquid crystal dimming layer control unit is connected to the driving electrode 402 for driving the driving electrode 402 in a time-sharing manner, and the voltage applied to the driving electrode 402 corresponding to each sub-pixel region in different time periods is the same;
  • the light source control unit is connected to the light source 700 for driving the monochrome light source 701a corresponding to different colors of monochromatic light in the light source 700 in a time-sharing manner, and the monochrome corresponding to different colors of monochromatic light.
  • the driving voltages on the light sources 701a are different.
  • the light source 700 provides a plurality of colors of monochromatic light, and the light source 700 is driven by the light source control unit in a time-sharing manner.
  • the light source 700 provides red (R)
  • R red
  • the driving time of the red light source, green light source and blue light source occupies 1/3 of the time in one frame time.
  • Applying different voltages makes the brightness of different colors of light different, and the liquid crystal dimming layer control unit drives the driving electrode 402 in a time-sharing manner, and is applied on the driving electrodes 402 corresponding to the sub-pixel regions in different time periods.
  • the electrical signals are the same (as shown in Figure 9, Gate and Data are fully open), the driving electrode 402 only functions as a switch (that is, no voltage is applied in the dark state, the liquid crystal is not deflected, and voltage is applied in the grayscale state To control the liquid crystal deflection), so that the gray scale of the display is controlled by controlling the brightness of the monochromatic light sources 701a of each color to be different.
  • the display devices provided in the above two exemplary embodiments by designing a multi-color monochromatic light source 701a and a time-sharing control method, can implement color display without setting a color filter, which greatly improves the display device. Light transmittance and brightness.
  • the display device may also implement directional color display, and is applied to a near-eye display device.
  • a near-eye display device the position of the display screen and the human eye is fixed, and the display device The angle of light output from each sub-pixel to the human eye is also fixed, and for a fixed pixel, because the position of the RGB sub-pixel is different, the light-emitting angle of the RGB sub-pixel should be different.
  • the light source 700 includes: a second light source component 703 provided on the light incident side of the light guide plate 100 and configured to emit white light; and, A second dimming component 704 between the second light source component 703 and the light incident side of the light guide plate 100; the second dimming component 704 is configured to use the white light emitted by the second light source component 703 Is coupled into the light guide plate 100 for total reflection propagation, and is emitted from the light exit surface of the light guide plate at different angles by the light extraction structure 200; Light is incident on multiple sub-pixel regions one-to-one respectively;
  • the driving electrode includes a plurality of first sub-electrodes 4021 provided in one-to-one correspondence with the sub-pixel regions, wherein each of the first sub-electrodes 4021 includes a plurality of gate electrodes 4020; The arrangement period of the gate electrode 4020 in the first sub-electrode is different in different sub-pixels.
  • the second light source component 703 may include a white light source, and the second light adjustment component 704 is configured to emit white light emitted by the white light source into the light guide plate 100 at a predetermined angle for total reflection and propagation.
  • the second dimming component 704 adjusts the white light emitted by the white light source to collimated light, and emits the light into the light guide plate 100 for total reflection and propagation.
  • the white light source may be an LED light.
  • a second reflecting surface, the second reflecting surface is disposed facing the light emitting surface of the second light source component, and the second reflecting surface has a second preset shape, and the second preset shape enables the second light source
  • the white light emitted by the component is incident into the light guide plate for total reflection propagation.
  • the second reflecting surface may be one of a reflecting plane and a reflecting parabola, or may include both a reflecting plane and a reflecting parabola (for example, as shown in FIG. 10), and the second reflecting surface has a second preset shape.
  • Its specific shape parameters such as: the reflection plane, the specific setting position of the reflection parabola, the inclination angle of the reflection plane, and the curvature of the reflection parabola, etc. can be obtained through reasonable debugging, as long as the eventual satisfaction of the second light source component
  • the emitted white light can be incident on the light guide plate for total reflection propagation.
  • the second dimming component may use a reflective mask, but it is not limited to this; white light emitted from a white light source is emitted into the light guide plate 100 for total reflection.
  • the diffraction angles are different, so white light is taken out by the light extraction structure 200 as multiple monochromatic lights of different colors at different diffraction angles; the first sub-electrodes of the first electrode in the driving electrode 402 are distributed in an array, and One-to-one correspondence is set in each sub-pixel area.
  • There are multiple sub-pixel areas in each pixel area (as shown in Figure 10, one pixel area includes three sub-pixel areas: R, G, and B).
  • the colored light has different diffraction angles and will be incident on different sub-pixel regions one by one.
  • the diffraction angles of the monochromatic light of different colors are still larger than the total reflection critical angle of the liquid crystal dimming layer 400. Therefore, when a first voltage (ie, a reference voltage) is applied to the driving electrode 402, each color light is totally reflected in the liquid crystal dimming layer 400, and no light is far from the liquid crystal dimming layer away from the first light. Refractive index layer It emits on one side to realize the dark state of the display.
  • a second voltage is applied to the driving electrode 402 the arrangement period of the grid electrode 4020 in the sub-pixel area is different in each pixel area, so that Corresponding to the sub-pixel regions where different colors of monochromatic light enter, different liquid crystal grating periods will be formed. Different sub-pixel regions will have different diffraction efficiencies, so that different colors of monochromatic light will be emitted to the human eye at different exit angles. To achieve directional color display.
  • the display device further includes:
  • a liquid crystal dimming layer control unit is connected to the driving electrode 402 and is used to control a driving voltage on the driving electrode 402 corresponding to a different sub-pixel region in each pixel region.
  • the plurality of monochromatic lights include red light, green light, and blue light
  • the plurality of sub-pixel regions in each of the pixel regions include The red light sub-pixel area R provided by the red light, the green light sub-pixel area G corresponding to the green light setting, and the blue light sub-pixel area B corresponding to the blue light setting, wherein a plurality of The arrangement period of the plurality of grid electrodes 4020 is larger than the arrangement period of the plurality of grid electrodes 4020 in the green photo sub-pixel region G.
  • the arrangement period of the plurality of grid electrodes 4020 in the green photo sub-pixel region G is greater than The arrangement period of the plurality of gate electrodes 4020 in the blue photo sub-pixel region B.
  • liquid crystal dimming layer control unit and the light source control unit may be implemented by a separate controller or a controller in a display device.
  • Another aspect of the embodiments of the present disclosure provides a method for controlling a display device, the method including:
  • a first voltage is applied to the driving electrode to control the liquid crystal dimming layer to have an initial refractive index, so that light emitted from the first low refractive index layer is totally reflected and propagated in the liquid crystal dimming layer, so
  • the first voltage is a reference voltage
  • the liquid crystal dimming layer when a reference voltage (first voltage) is applied to the driving electrode, the liquid crystal dimming layer has an initial refractive index. At this time, the refraction of the first low refractive index layer and the second low refractive index layer The rate is lower than the initial refractive index of the liquid crystal dimming layer, so that light emitted from the first low refractive index layer can be totally reflected and propagated in the liquid crystal dimming layer, so that no light is emitted from the liquid crystal dimming layer.
  • the dark state of the display is that no light is emitted from the display surface of the display device
  • the liquid crystal grating formed by the liquid crystal layer
  • the light emitted from the first low-refractive index layer to the liquid crystal dimming layer is diffracted and emitted to realize the gray scale of the display
  • the gray scale of the display refers to the light emitted from the display surface and the amount of light emitted is different, the gray Different levels
  • the liquid crystal grating can achieve different diffraction efficiency of incident light, thereby achieving arbitrary grayscale display between L0-L255.
  • the display device and the control method provided by the present disclosure can realize the dark state of the display by means of total reflection without the need for a polarizer, and the gray scale of the display can be achieved by applying a voltage change to the driving electrode, which improves the correlation.
  • the influence of the polarizer on the light transmittance of the display device is improved.
  • the application of a second voltage to the driving electrode adjusts a deflection direction of liquid crystal molecules in the liquid crystal dimming layer, so that light emitted from the first low refractive index layer passes through the light After the liquid crystal dimming layer is deflected, the light emitted from the side of the second low-refractive index layer far from the liquid crystal dimming layer specifically includes:
  • the monochromatic light sources 701a corresponding to different colors of monochromatic light in the light source 700 are driven in a time-division manner, and the driving voltages on the monochromatic light sources 701a corresponding to different colors of monochromatic light are the same, so that the Same brightness
  • the light source 700 provides monochromatic light of multiple colors, and the light source 700 is driven by the light source control unit in a time-sharing manner.
  • the light source 700 provides red (R) and green light. (G), blue (B) three-color light as an example, in one frame time, the driving time of the red light source, the green light source and the blue light source respectively takes 1/3 of the time, and the red light source, the green light source and the blue light are controlled
  • the brightness of the light sources is the same; and the liquid crystal dimming layer control unit drives the driving electrode 402 in a time-sharing manner, and controls the gray scale of the display by controlling electrical signals applied to the driving electrodes 402 corresponding to different sub-pixel regions. Specifically, as shown in FIG.
  • the driving electrode 402 can apply an electrical signal through a data line (Data).
  • Data data line
  • the gate line (Gate) is fully opened, and the data line (Data) is within 1 frame time.
  • different applied signals are used to control different applied voltages on the driving electrode 402, so that during the time period when different color light is emitted, the appearance of the liquid crystal grating is different, Different diffraction efficiency to control With the color grayscale display.
  • the second voltage is applied to the driving electrode, and a deflection direction of liquid crystal molecules in the liquid crystal dimming layer is adjusted so that the first low refractive index layer emits light.
  • the light emitted from the side of the second low refractive index layer far from the liquid crystal dimming layer specifically includes:
  • Monochromatic light sources 701a corresponding to different colors of monochromatic light in the light source 700 are driven in a time-sharing manner, and driving voltages on the monochromatic light sources 701a corresponding to different colors of monochromatic light are different to adjust the corresponding colors of different colors of light
  • the deflection direction of the liquid crystal molecules in the sub-pixel region of the pixel further controls the gray scale of monochromatic light of different colors.
  • the light source 700 provides a plurality of colors of monochromatic light, and the light source 700 is driven by the light source control unit in a time-sharing manner.
  • the light source 700 provides red (R)
  • R red
  • the driving time of the red light source, green light source and blue light source occupies 1/3 of the time in one frame time.
  • Applying different voltages makes the brightness of different colors of light different, and the liquid crystal dimming layer control unit drives the driving electrode 402 in a time-sharing manner, and is applied on the driving electrodes 402 corresponding to the sub-pixel regions in different time periods.
  • the electrical signals are the same (as shown in Figure 9, Gate and Data are fully open), the driving electrode 402 only functions as a switch (that is, no voltage is applied in the dark state, the liquid crystal is not deflected, and voltage is applied in the grayscale state To control the liquid crystal deflection), so that the gray scale of the display is controlled by controlling the brightness of the monochromatic light sources 701a of each color to be different.
  • the application of a second voltage to the driving electrode adjusts a deflection direction of liquid crystal molecules in the liquid crystal dimming layer, so that light emitted from the first low refractive index layer passes through the light After the liquid crystal dimming layer is deflected, the light emitted from the side of the second low-refractive index layer far from the liquid crystal dimming layer specifically includes:
  • the driving voltages on the driving electrodes corresponding to different sub-pixel regions in each pixel region are controlled to adjust the deflection directions of the liquid crystal molecules in the different sub-pixel regions in each pixel region to control the gray levels of different color light displays.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示器件及其控制方法,显示器件包括:导光板(100),包括入光侧、以及相背设置的底面和出光面;光取出结构(200),设置于导光板(100)的出光面或底面一侧,使导光板(100)内进行全反射传播的光线从导光板(100)的出光面以预定角度出射;第一低折射率层(300),覆盖于导光板(100)的出光面,导光板(100)的折射率大于第一低折射率层(300)的折射率;液晶调光层(400),包括液晶层(401)及用于驱动液晶层(401)中液晶分子偏转的驱动电极(402),液晶调光层(400)设置于第一低折射率层(300)远离出光面的一侧;第二低折射率层(500),设置于液晶调光层(400)的远离第一低折射率层(300)的一侧,且第一低折射率层(300)和第二低折射率层(500)的折射率均小于液晶调光层(400)的初始折射率。

Description

显示器件及其控制方法
相关申请的交叉引用
本申请主张在2018年9月30日在中国提交的中国专利申请号No.201811161266.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示器件及其控制方法。
背景技术
相关技术中液晶显示器件需要在液晶显示面板上分别设置上、下偏光片来实现显示的灰阶。然而,由于偏光片的存在,会导致存在透光率低的问题,尤其对于透明显示器件来说,会很大程度上影响透明度和亮度。
发明内容
本公开实施例中提供了一种显示器件,包括:
导光板,所述导光板包括入光侧、以及相背设置的底面和出光面;
光取出结构,设置于所述导光板的出光面或底面一侧,用于使所述导光板内进行全反射传播的光线从所述导光板的出光面以预定角度出射;
第一低折射率层,覆盖于所述导光板的出光面,所述导光板的折射率大于所述第一低折射率层的折射率;
液晶调光层,包括液晶层及用于驱动所述液晶层中液晶分子偏转的驱动电极,所述液晶调光层设置于所述第一低折射率层远离所述出光面的一侧;
第二低折射率层,设置于所述液晶调光层的远离所述第一低折射率层的一侧,且所述第一低折射率层和所述第二低折射率层的折射率均小于所述液晶调光层的初始折射率。
可选的,所述液晶调光层的初始折射率为向所述驱动电极施加参考电压时所述液晶调光层的折射率。
可选的,所述参考电压为0伏。
可选的,所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子像素区域;
所述驱动电极包括:第一电极,所述第一电极包括与所述子像素区域一一对应设置的多个第一子电极;及,与所述第一电极相对设置的第二电极;
其中,所述第二电极为对应于多个所述第一子电极的整块电极;或者,所述第二电极包括多个第二子电极,每一所述第二子电极与至少一个所述第一子电极对应设置。
可选的,所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子像素区域;所述光取出结构包括呈阵列分布的多个取光光栅,每一所述取光光栅对应一子像素区域设置。
可选的,所述液晶调光层还包括:
设置于所述液晶层的靠近所述第一低折射率层的一侧的第一取向层;
以及,设置于所述液晶层的靠近所述第二低折射率层的一侧的第二取向层。
可选的,所述显示器件包括设置于所述液晶层的远离所述导光板的一侧的衬底基板,其中所述衬底基板采用低折射率材料制成,以形成所述第二低折射率层;
或者,所述显示器件还包括一单独设置于所述第二低折射率层的远离所述液晶调光层的一侧的衬底基板。
可选的,所述显示器件还包括:
光源,设置于所述导光板的入光侧,用于将光线出射至所述导光板内。
可选的,所述光源包括:
设置于所述导光板的入光侧一侧的第一光源部件,所述第一光源部件包括用于发出多种不同颜色单色光的多个单色光源;
以及,设置于所述第一光源部件与所述导光板的入光侧之间的第一调光部件;
其中,多个所述单色光源中不同颜色单色光所对应的单色光源处于不同位置或者具有不同的出射光角度,以使不同颜色单色光被所述第一调光部件以不同预设角度出射至所述导光板内进行全反射传输,并被所述光取出结构 以相同的出射角度从所述导光板的出光面出射。
可选的,所述第一调光部件包括第一反射面,所述第一反射面包括反射平面和/或反射抛物面,所述第一反射面面向所述光源部件的出光面设置,且所述第一反射面具有第一预设形状,所述第一预设形状能够将所述第一光源部件所出射的光线中不同颜色单色光以不同预设角度入射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射。
可选的,还包括:
光源控制单元,与所述光源连接,用于分时驱动所述光源中不同颜色单色光所对应的单色光源,且不同颜色单色光所对应的所述单色光源上的驱动电压相同,以使各颜色单色光的亮度相同;
以及,液晶调光层控制单元,与所述驱动电极连接,用于分时驱动所述驱动电极,并控制每一像素区内不同子像素区域所对应的所述驱动电极在不同时间段上施加不同电压。
可选的,所述显示器件还包括:
液晶调光层控制单元,与所述驱动电极连接,用于分时驱动所述驱动电极,且在不同时间段上各子像素区域所对应的所述驱动电极上所施加电压相同;
以及,光源控制单元,与所述光源连接,用于分时驱动所述光源中的不同颜色单色光所对应的单色光源,且不同颜色单色光所对应的所述单色光源上的驱动电压不同。
可选的,所述光源包括:
设置于所述导光板的入光侧一侧的、用于发白光的第二光源部件;及,设置于所述第二光源部件与所述导光板的入光侧之间的第二调光部件,所述第二调光部件用于将所述第二光源部件所发出的白光入射至所述导光板内进行全反射传播,并被所述光取出结构以不同角度从所述导光板的出光面出射,以分光为不同颜色的多个单色光;
所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子像素区域,多个单色光分别一一对应地入射至多个子像素区域;所述驱动电 极包括与所述子像素区域一一对应设置的多个第一子电极,其中每一所述第一子电极包括多个栅状电极;同一所述像素区内,对应于不同所述子像素区域的所述第一子电极内的栅状电极的排布周期不同。
可选的,所述第二调光部件包括第二反射面,所述第二反射面包括反射平面和/或反射抛物面,所述第二反射面面向所述第二光源部件的出光面设置,且所述第二反射面具有第二预设形状,所述第二预设形状能够所述第二光源部件所发出的白光入射至所述导光板内进行全反射传播。
可选的,所述显示器件还包括:
液晶调光层控制单元,与所述驱动电极连接,用于控制每一像素区内不同子像素区域所对应的所述驱动电极上的驱动电压。
可选的,所述多个单色光包括红光、绿光和蓝光,每一所述像素区内的多个子像素区域包括对应于所述红光设置的红光子像素区域、对应于所述绿光设置的绿光子像素区域、对应于所述蓝光设置的蓝光子像素区域,其中所述红光子像素区域内的多个栅状电极的排布周期大于所述绿光子像素区域内的多个栅状电极的排布周期,所述绿光子像素区域内的多个栅状电极的排布周期大于所述蓝光子像素区域内的多个栅状电极的排布周期。
可选的,所述显示器件为不含偏光片和遮光层的透明显示器件。
一种显示器件的控制方法,应用于如上所述的显示器件,所述方法包括:
向所述驱动电极上施加第一电压,控制所述液晶调光层具有初始折射率,以使从所述第一低折射率层出射的光线在所述液晶调光层中全反射传播,所述第一电压为参考电压;
向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射。
进一步的,所述方法中,所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
分时驱动所述光源中不同颜色单色光所对应的单色光源,且不同颜色单 色光所对应的所述单色光源上的驱动电压相同,以使各颜色单色光的亮度相同;
分时驱动所述驱动电极,且在不同时间段上控制每一像素区内不同子像素区域所对应的所述驱动电极上施加不同电压,以调节不同颜色单色光所对应的子像素区域内的液晶分子的偏转方向。
可选的,所述方法中,所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
分时驱动所述驱动电极,且在不同时间段上各子像素区域所对应的所述驱动电极上所施加电压相同;
分时驱动所述光源中的不同颜色单色光所对应的单色光源,且不同颜色单色光所对应的所述单色光源上的驱动电压不同,以调节不同颜色光所对应的子像素区域的液晶分子的偏转方向。
可选的,所述方法中,
所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
控制每一像素区域内不同子像素区域所对应的所述驱动电极上的驱动电压,以调节每一像素区域内不同子像素区域的液晶分子的偏转方向。
附图说明
图1表示本公开一种示例性的实施例中所提供的显示器件在显示的暗态时的结构示意图;
图2表示本公开另一种示例性的实施例中所提供的显示器件在显示的暗态时的结构示意图;
图3表示本公开一种示例性的实施例中所提供的显示器件在灰阶态时的结构示意图;
图4表示本公开一种示例性的实施例所提供的显示器件中在导光板中全 反射光线的光路示意图;
图5表示本公开一种示例性的实施例所提供的显示器件中在液晶调光层中全反射光线的光路示意图;
图6表示图4表示本公开一种示例性的实施例所提供的显示器件中在灰阶显示时形成液晶光栅的示意图;
图7表示本公开一种示例性的实施例中所提供的显示器件实现彩色显示时的结构示意图,其中图中仅示意出了光源、导光板、光取出结构及第一低折射率层;
图8表示本公开所提供的显示器件在实现彩色显示时,在所述光源和所述液晶调光层所施加的电信号的一种实施例的时序控制图;
图9表示本公开所提供的显示器件在实现彩色显示时,在所述光源和所述液晶调光层所施加的电信号的另一种实施例的时序控制图;
图10表示本公开所提供的显示器件应用于指向性显示时在灰阶态的一种示例性实施例的结构示意图;
图11表示图10中驱动电极上不同子区域所设置的栅状电极周期排布示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
针对相关技术中液晶显示器件需要设置偏光片,而影响显示器件透光率的技术问题,本公开实施例中提供了一种显示器件及其控制方法,无需设置偏光片,改善相关技术中偏光片对显示器件透光率的影响。
如图1至图3及图10所示,本公开实施例中提供的显示器件包括:
导光板100,所述导光板100包括入光侧、以及相背设置的底面和出光面;
光取出结构200,设置于所述导光板100的出光面或底面一侧,用于使所述导光板100内的全反射光线从所述导光板的出光面以预定角度出射(即从导光板内取出);
第一低折射率层300,覆盖于所述导光板100的出光面,所述导光板100的折射率大于所述第一低折射率层300的折射率;
液晶调光层400,包括液晶层401及用于驱动所述液晶层401中液晶分子偏转的驱动电极402,所述液晶调光层设置于所述第一低折射率层300的远离所述出光面的一侧;
第二低折射率层500,设置于所述液晶调光层400的远离所述第一低折射率层300的一侧,且所述第一低折射率层300和所述第二低折射率层500的折射率均小于所述液晶调光层400的初始折射率。
上述方案中,通过在所述导光板100的出光面一侧设置所述第一低折射率层300,且所述第一低折射率层300的折射率小于所述导光板100的折射率,使得所述导光板100与所述第一低折射率层300形成一个光波导,光源入射至所述导光板100内的光线,可在所述导光板100内进行全反射传播;并且,通过在所述导光板100的底面或者出光面一侧设置光取出结构200,以使得所述导光板100内进行全反射传播的光线从所述导光板的出光面出射至所述液晶调光层(即所述光取出结构200将导光板内的光线取出);此外,所述显示器件内可不单独设置阵列基板的衬底基板,而将所述导光板100作为衬底基板,将所述液晶调光层400直接设置于所述第一低折射率层300上,并在所述液晶调光层400的远离所述导光板100的一侧设置所述第二低折射率层500,以使得所述液晶调光层400、所述第一低折射率层300及所述第二低折射率层500配合,而形成另一光波导,当向驱动电极上施加参考电压(第一电压)时,液晶调光层具有初始折射率,此时,所述第一低折射率层300、所述第二低折射率层500的折射率小于所述液晶调光层400的折射率,这样,从所述第一低折射率层出射的光线在液晶调光层400内可进行全反射传播(光线全反射的上、下界面分别为所述第一低折射率层300的靠近所述液晶层的一侧的表面和所述第二低折射率层500的靠近所述液晶层的一侧的表面),此时,没有光线从所述液晶调光层400内出射,实现显示的暗态(显示 器件显示的暗态也就是指,无光线从显示器件的显示面出射);当向所述液晶调光层400内的驱动电极402上施加第二电压时,液晶层401形成的液晶光栅,使得从所述第一低折射率层出射至所述液晶调光层的光线偏折,而破坏所述液晶调光层内光线的全反射条件,以使得光线从所述第二低折射率层500的远离所述液晶调光层的一面出射(图3中A表示一个子像素区域对应的区域),实现显示的灰阶(显示器件显示的灰阶是指,有光线从显示器件的显示面出射,且出光量不同,灰阶不同),且通过调节向液晶分子的驱动电极上所施加的电信号,即可控制液晶光栅的形貌变化,而改变液晶光栅对入射光线的衍射效率,从而改变从所述第二低折射率层出射光线的出光量,实现L0-L255之间的任意灰阶显示。
由此可见,本公开提供的显示器件,无需设置偏光片,可通过全反射的方式实现显示的暗态,且通过向驱动电极上施加电压的变化可控制显示的灰阶,从而改善相关技术中由于设置偏光片对显示器件透光率的影响。
需要说明的是,上述方案中,所述导光板为侧入式导光板,所述出光面为该显示器件提供面光源,所述入光侧为所述底面与所述出光面之间的一个导光板的侧面。
此外,还需要说明的是,上述方案中,所述液晶调光层的初始折射率为向所述驱动电极施加参考电压时所述液晶调光层的折射率。所述参考电压可以是预设好的驱动电压,例如,参考电压为0v,即,驱动电极不加电时,液晶此时无偏转,所述液晶调光层为初始状态,具有初始折射率;某些特殊的情况下,也可以是在驱动电极上施加一定电压(具体电压值可以根据实际使用情况设定)时,即液晶有一定偏转角的情况,作为液晶初始状态,并以此时的液晶层的折射率作为初始折射率。
此外,上述方案中,所述光取出结构使所述导光板内进行全反射传播的光线从所述导光板的出光面以预定角度出射,所述预设角度所指的含义是,所述光取出结构200可将入射至其上的光线以一定的衍射角度衍射出射,该衍射角度与光线的入射角和光线波长相关。
此外,还需要说明的是,相关技术中还提出一种显示器件,通过在导光板的出光面一侧设置取光光栅,将导光板内进行全反射传播的光线取出,并 入射至液晶调光层内,其中液晶调光层的彩膜基板上需设置遮光层,遮光层上设置阵列排布的开口区域,开口区域处设置彩色滤光片,在液晶调光层内液晶分子的驱动电极上不施加电压时,液晶分子不偏转,取光光栅所取出的光线入射至遮光层的遮光区域,此时,光线被遮光层吸收,没有显示的光线出射,此时为暗态;液晶分子的驱动电极上施加一定电压信号时,液晶分子则呈现周期性排列,形成液晶光栅,利用液晶光栅的衍射,从取光光栅所取出的光线入射至遮光层上的开口区域,显示L255灰阶,通过控制给液晶分子的驱动电极上所施加的电信号,即可实现液晶光栅对入射光线的衍射效率不同,从而实现L0-L255之间的任意灰阶显示。这种液晶显示器件结构,需要使用黑色遮光层将入射的光线进行遮挡来实现暗态,这样将大大降低该显示器件的开口率;此外,由于彩色滤光片的存在,被液晶光栅衍射的光线并不能从开口区域处完全出射,这也限制了整体器件的光效,在应用到透明显示时,以上两个问题将会在很大程度上影响透明度和亮度。
而本公开实施例所提供的显示器件,无需设置遮光层,可通过全反射的方式实现显示的暗态,从而可以改善由于遮光层存在,而对显示器件开口率及透光率的影响。
此外,还需要说明的是,相关技术中液晶显示器件通常包括彩膜基板、阵列基板及两基板之间的液晶层,彩膜基板又包括衬底基板及设置于衬底基板上的上取向层等,阵列基板又包括衬底基板及设置于衬底基板上的薄膜晶体管、像素电极、公共电极(公共电极也可设置于彩膜基板上)、栅线、数据线及下取向膜等。
所述液晶调光层400可以包括除彩膜基板的衬底基板、彩膜基板的彩色滤光片、彩膜基板的黑矩阵、以及阵列基板的衬底基板之外的各种结构膜层。例如,如图1至图3所示,本公开实施例中提供的显示器件中,所述液晶调光层400可以包括液晶层401和驱动电极402,还可以包括设置于所述液晶层的靠近所述第一低折射率层的一侧的第一取向层404和设置于所述液晶层的靠近所述第二低折射率层的一侧的第二取向层403;以及,绝缘层406、薄膜晶体管、栅线、数据线等显示器件结构,绝缘层406、薄膜晶体管、栅线和数据线可设置在所述液晶层的远离所述第二低折射率层的一侧。
此外,在本公开实施例提供的显示器件中,所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子像素区域。示例性的,所述驱动电极402可以包括:
第一电极,所述第一电极包括与所述子像素区域一一对应设置的多个第一子电极4021;
及,与所述第一电极相对设置的第二电极4022;
其中,所述第二电极4022为对应于多个所述第一子电极4021的整块电极;
或者,所述第二电极4022包括多个第二子电极,每一所述第二子电极与至少一个所述第一子电极对应设置。
例如,所述第一电极为像素电极,所述第二电极为公共电极。
其中,所述第一电极可以设置于所述液晶调光层的远离所述第二低折射率层的一侧,所述第二电极可以设置于所述液晶调光层的远离所述第一低折射率层的一侧或者设置于所述液晶调光层的靠近所述第一低折射率层的一侧。
如图1所示,所述第一电极和所述第二电极设置于液晶调光层的同一侧时,所述液晶调光层还可以包括第一电极与第二电极之间的绝缘层406。
此外,在本公开所提供的实施例中,所述光取出结构包括呈阵列分布的多个取光光栅,每一所述取光光栅对应一子像素区域设置。
采用上述方案,所述光取出结构采用取光光栅来实现,取光光栅呈阵列分布,并一一对应地设置在各子像素区域,以使得光线从各子像素区域对应的位置从导光板出射的光线入射至液晶调光层。
还需要说明的是,本公开的显示器件可以是显示面板,还可以是包括显示面板在内的整个显示装置。
此外,所述第一低折射率层和第二低折射率层均可选用有机或无机透明的低折射率材料来制作,例如,可选用有机硅氧烷或者无机氧化硅来制作形成。
在本公开所提供的一种示例性的实施例中,如图1所示,所述显示器件包括设置于所述液晶层401的远离所述导光板100的一侧的衬底基板,其中所述衬底基板可直接采用低折射率材料制成,以形成所述第二低折射率层500, 此时,所述衬底基板可选用有机或无机透明的低折射率材料来制作,例如,可选用有机硅氧烷或者无机氧化硅来制作形成;
或者,在本公开所提供的另一种示例性的实施例中,如图2所示,所述显示器件既包括所述第二低折射率层500,还包括一单独设置于所述第二低折射率层500的远离所述液晶调光层400的一侧的衬底基板600。
此外,在本公开所提供的一种示例性的实施例中,如图1至图3所示,所述显示器件还包括光源700,所述光源700设置于所述导光板100的入光侧,用于将光线出射至所述导光板100内。
可选的,所述光源700为准直光源,用于将准直光线以预定角度出射至所述导光板100内,以在导光板100内进行全反射传播。
所述光源700采用准直光源,相较于其他类型光源来说,提供的光线为准直光,其入射至导光板100的入射角度一致,而导光板100内的全反射临界角与光线入射角度相关,且从所述光取出结构200取出的光线衍射角与全反射光线入射至所述光取出结构200的入射角相关,因此,采用准直光线更利于光线耦合入射导光板100内的入射角度、导光板100内全反射角度及光取出结构200的衍射角度等参数的确定。
为了便于理解,以下就以所述光源700为准直光源为例,来对本公开实施例提供的显示器件进行更为详细的原理性说明。
图4所示为光源700所出射的光线出射至导光板100内进行全反射传播的原理示意图。如图4所示,导光板100内的全反射临界角θ'满足以下关系:
n1 sinθ'=n2      (I)
Figure PCTCN2019105891-appb-000001
式中,n1表示导光板100的折射率;
n2表示第一低折射率层300的折射率;
θ'表示导光板100内光线的全反射临界角。
由于光源700所出射的光线在所述导光板100内进行全反射传播,因此,由以上公式(I)和公式(II)可知,导光板100内的全反射传播的光线入射至所述光取出结构200时的入射角θ需满足以下公式:
Figure PCTCN2019105891-appb-000002
此外,需要说明的是,在上述方案中,所述光取出结构200可以采用阵列式排列的多个取光光栅,其中取光光栅的光栅周期P、取光光栅的m级衍射波的衍射角θ1、入射光的波长λ以及入射角θ之间满足以下关系:
sinθ–sinθ1=mλ/P     (IV)
其中,m=0,±1,±2……±N,N为正整数。
由上述公式(IV)可知,可根据入射角θ、入射光的波长λ及所述光取出结构200的衍射角θ1,即可计算出光栅的周期P。
在一种示例性的实施例中,取光光栅为透射式光栅,设置于所述导光板的出光面,此时,所述第一低折射率层还可起到平坦层的作用,且示例性的,m为取光光栅的衍射级次,m取1(即,取光光栅的衍射次级为1级),全反射光线中一部分会透射,被取光光栅从导光板内取出,另一部分未被取光光栅取出的反射光线R0则继续以全反射角度在导光板内传播。在其他实施例中,取光光栅还可以选用反射式光栅,设置于导光板的底面。
此外,如图5所示,所述液晶调光层400在所述第一低折射率层300、所述第二低折射率层500之间,构成一个光波导(以下称液晶调光层光波导),使得从所述光取出结构200所取出的光线能够在该液晶调光层光波导内进行全反射,因此,该液晶调光层光波导所需要满足的条件是:
从所述光取出结构200所取出的光线的衍射角θ 1大于该液晶调光层光波导的全反射临界角θ”,设所述液晶调光层400的折射率为n4,第一低折射率层300的折射率为n2,第二低折射率层500的折射率为n3,则,
当所述第二低折射率层500的折射率n3<n2时,
n4 sinθ”=n3      (V)
Figure PCTCN2019105891-appb-000003
那么,从所述光取出结构200所取出的光线的衍射角θ1为:
Figure PCTCN2019105891-appb-000004
此外,当所述第二低折射率层500的折射率n3>n2时,
则,从所述光取出结构200所取出的光线的衍射角θ1为:
Figure PCTCN2019105891-appb-000005
由此可见,在本公开实施例所提供的显示器件中,要实现显示的暗态,在所述驱动电极402上施加参考电压时(例如,不施加电压时),从所述光取出结构200所取出的衍射光线在所述液晶调光层400内进行全反射,则,需 满足所述液晶调光层400的折射率n4大于第一低折射率层300的折射率n2和第二低折射率层500的折射率n3,且光取出结构200所取出的光线衍射角θ1满足以下条件:
当所述第二低折射率层500的折射率n3<n2时,
则,从所述光取出结构200所取出的光线的衍射角θ1为:
Figure PCTCN2019105891-appb-000006
当所述第二低折射率层500的折射率n3>n2时,
则,从所述光取出结构200所取出的光线的衍射角θ1为:
Figure PCTCN2019105891-appb-000007
其中,所述液晶调光层400的折射率n4可通过模拟实验计算而得,该折射率n4为所述液晶调光层400中包括液晶层、驱动电极、第一取向层和第二取向层等在内的多层结构的等效折射率。
此外,需要说明的是,如图3所示,当所述液晶调光层400中所述驱动电极402上施加第二电压时,所述液晶层401即形成液晶光栅的相位形态分布,而改变光线的传播方向和传播角度,从而破坏光线在该液晶调光层光波导内的全反射,而将光线打散出射,实现显示的灰阶态,应当理解的是,此时,所述液晶调光层400所形成的液晶光栅,可改变光线传播方向,将光线从所述第二低折射率层500出射,且光线出射角度取决于所形成的液晶光栅的形貌,也就是,取决于所述驱动电极402上所施加的电信号。
其中,所述液晶调光层400中所述驱动电极402的具体结构可以有多种,以图6所示的电极形式为例,图6中所示的驱动电极402为ADS模式电极,其第二电极4022呈整块设置,第一电极包括呈阵列设置的第一子电极4021,其中一个第一子电极4021包括多个栅状电极,示例性的,一个第一子电极4021内可形成2个液晶光栅结构,这样,所形成的液晶光栅的周期尺寸(pitch)会比较小,衍射效率明显。在实际应用中,也可以为多个第一子电极4021形成一个液晶光栅结构。
此外,在相关技术中,在液晶显示器件的彩膜基板上设置彩色滤光片来实现彩色显示,由于彩色滤光片的存在,对显示器件,尤其是对于透明显示器件来说,会很大程度影响显示器件的光透过率及亮度。针对上述问题,在本公开所提供的显示器件中,可通过分时驱动方式,无需设置彩色滤光片,而实现彩色显示。以下说明本公开所提供的显示器件的两种示例性的实施例。
图7所示为本公开提供的可实现彩色显示的显示器件的一种示例性的实施例的结构示意图,其中图中仅示意出了光源、导光板、光取出结构及第一低折射率层,而未示意出所述液晶调光层、第二低折射率层等结构。如图7所示,在一种示例性的实施例中,所述光源700包括:
设置于所述导光板100的入光侧一侧的第一光源部件701,所述第一光源部件701包括用于发出多种不同颜色单色光的多个单色光源701a,所述多种不同颜色单色光能够混光为白光;以及,设置于所述第一光源部件701与所述导光板100的入光侧之间的第一调光部件702;其中,多个所述单色光源701a中不同颜色单色光所对应的单色光源701a处于不同位置上或者具有不同的出射光角度,以使不同颜色单色光被所述第一调光部件702以不同预设角度出射至所述导光板100内进行全反射传输,并被所述光取出结构200以相同的出射角度从所述导光板的出光面出射。
在上述示例性的实施例中,所述光源700采用多个单色光源701a,为显示器件提供显示颜色信息,所述第一调光部件702的作用是,调整各所述单色光源701a所出射的光线,以使得各所述单色光源701a出射的光线耦合入所述导光板100内进行全反射传播,其中,可选的,所述第一调光部件702能够将各所述单色光源701a的光线调整为准直光,并将各颜色的准直光以不同预定角度入射导光板100内,以保证各颜色的准直光入射至所述光取出结构200时的入射角相同,进而保证各颜色光经所述光取出结构200所取出的光线衍射角相同,进而能够在所述液晶调光层400内均能进行全反射传播。其中,由于光取出结构200的衍射角度与光线的波长、及光线入射至所述光取出结构200的入射角度相关,因此,可以通过将不同颜色的单色光源701a的位置进行合理设计或者将不同颜色的单色光源701a的出光角度进行合理设计,来使得不同颜色单色光被所述第一调光部件702以不同预设角度耦合入所述导光板100内进行全反射传输,并被所述光取出结构200以相同的出射角度衍射取出。
此外,如图7所示,所述单色光源701a可采用LED灯,所述第一调光部件702包括第一反射面,所述第一反射面面向所述光源部件的出光面设置,且所述第一反射面具有第一预设形状,所述第一预设形状能够将所述第一光 源部件所出射的光线中不同颜色单色光以不同预设角度入射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射。
其中,所述第一反射面可以采用反射平面、反射抛物面中的一种,或者既包括反射平面又包括反射抛物面(例如,图7所示),所述第一反射面具有第一预设形状,其具体的形状参数,例如:反射平面、反射抛物面的具体设置位置、反射平面的倾斜角度和反射抛物面的曲率等,可经过合理调试来获得,只要最终满足能够将所述第一光源部件所出射的光线中不同颜色单色光以不同预设角度入射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射即可。
例如,所述第一调光部件可采用反射灯罩,LED灯出射的大角度光线经过所述反射灯罩的收拢进入导光板100中,以全反射的传播角度θ在导光板100中传播。当然可以理解的是,在实际应用中,所述第一调光部件702的结构不限于此。
在上述示例性的实施例中,所述显示器件还包括:
光源控制单元,与所述光源700连接,用于分时驱动所述光源700中不同颜色单色光所对应的单色光源701a,且不同颜色单色光所对应的所述单色光源701a上的驱动电压相同,以使各颜色单色光的亮度相同;
以及,液晶调光层控制单元,与所述驱动电极402连接,用于分时驱动所述驱动电极402,并控制每一像素区内不同子像素区域所对应的所述驱动电极402在不同时间段上施加不同电压。
在上述方案中,所述光源700提供多种颜色的单色光,并通过光源控制单元来分时驱动所述光源700,如图8所示,以所述光源700提供红(R)、绿(G)、蓝(B)三色光为例,在1帧时间内,红光光源、绿光光源和蓝光光源驱动时间分别占用1/3的时间,且控制红光光源、绿光光源和蓝光光源的亮度相同;而所述液晶调光层控制单元则分时驱动所述驱动电极402,通过控制不同子像素区域所对应的所述驱动电极402上施加的电信号来控制显示的灰阶,具体地,如图8所示,所述驱动电极402可通过数据线(Data)施加电信号,在1帧时间内,栅线(Gate)全打开,而数据线(Data)在1帧时间 内,对应于不同颜色时间段,所施加信号不同,以控制所述驱动电极402上施加电压不同,从而使得在出射不同颜色光的时间段,液晶光栅的形貌不同,液晶光栅对不同颜色光的衍射效率不同,从而控制不同颜色显示的灰阶。如图8所示为白光显示的示意图,此时数据线(data)信号强度比例大约为R:G:B=3:6:1。
在本公开的另一种示例性的实施例中,如图7所示,所述光源700包括:
设置于所述导光板100的入光侧一侧的第一光源部件701,所述第一光源部件701包括用于发出多种不同颜色单色光的多个单色光源701a,所述多种不同颜色单色光能够混光为白光;以及,设置于所述第一光源部件701与所述导光板100的入光侧之间的第一调光部件702;其中,多个所述单色光源701a中不同颜色单色光所对应的单色光源701a处于不同位置上或者具有不同的出射光角度,以使不同颜色单色光被所述第一调光部件702以不同预设角度出射至所述导光板100内进行全反射传输,并被所述光取出结构200以相同的出射角度从所述导光板的出光面出射。
在上述示例性的实施例中,所述光源700采用多个单色光源701a,为显示器件提供显示颜色信息,所述第一调光部件702作用是调整各所述单色光源701a所出射的光线,以使得各所述单色光源701a出射的光线出射至所述导光板100内进行全反射传播,其中,可选的,所述第一调光部件702能够将各所述单色光源701a的光线调整为准直光,并将各颜色的准直光以不同预定角度入射导光板100内,以保证各颜色的准直光入射至所述光取出结构200时的入射角相同,进而保证各颜色光经所述光取出结构200所取出的光衍射角相同,而在所述液晶调光层400内均能进行全反射传播,其中,可以通过将不同颜色的单色光源701a的位置进行合理设计或者将不同颜色的单色光源701a的出光角度进行合理设计,来使得不同颜色单色光被所述第一调光部件702以不同预设角度耦合入所述导光板100内进行全反射传输,并被所述光取出结构200以相同的出射角度取出。
此外,如图7所示,所述单色光源701a可采用LED灯,所述第一调光部件702包括第一反射面,所述第一反射面面向所述光源部件的出光面设置,且所述第一反射面具有第一预设形状,所述第一预设形状能够将所述光源部 件所出射的光线中不同颜色单色光以不同预设角度入射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射。
其中,所述第一反射面可以采用反射平面、反射抛物面中的一种,或者既包括反射平面又包括反射抛物面(例如,图7所示),所述第一反射面具有第一预设形状,其具体的形状参数,例如:反射平面、反射抛物面的具体设置位置、反射平面的倾斜角度和反射抛物面的曲率等,可经过合理调试来获得,只要最终满足能够将所述第一光源部件所出射的光线中不同颜色单色光以不同预设角度入射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射即可。
例如,所述第一调光部件可采用反射灯罩,LED灯出射的大角度光线经过所述反射灯罩的收拢进入导光板100中,以全反射的角度θ在导光板100中传播。当然可以理解的是,在实际应用中,所述第一调光部件702的结构不限于此。
在上述示例性的实施例中,所述显示器件还包括:
液晶调光层控制单元,与所述驱动电极402连接,用于分时驱动所述驱动电极402,且在不同时间段上各子像素区域所对应的所述驱动电极402上所施加电压相同;
以及,光源控制单元,与所述光源700连接,用于分时驱动所述光源700中的不同颜色单色光所对应的单色光源701a,且不同颜色单色光所对应的所述单色光源701a上的驱动电压不同。
在上述方案中,所述光源700提供多种颜色的单色光,并通过所述光源控制单元来分时驱动所述光源700,如图9所示,以所述光源700提供红(R)、绿(G)、蓝(B)三色光为例,在1帧时间内,红光光源、绿光光源和蓝光光源驱动时间分别占用1/3的时间,通过给各颜色单色光源701a上施加不同的电压,使得不同颜色光的亮度不同,而所述液晶调光层控制单元分时驱动所述驱动电极402,在不同时间段各子像素区域所对应的所述驱动电极402上所施加的电信号相同(如图9所示,Gate和Data全打开),所述驱动电极402仅起到开关的作用(即,暗态时不施加电压,控制液晶不偏转,灰阶态时施加 电压,控制液晶偏转),从而,通过控制各颜色单色光源701a的亮度不同,来控制显示的灰阶。
以上两种示例性的实施例中提供的显示器件,通过设计多颜色的单色光源701a,搭配分时驱动的控制方式,可以无需设置彩色滤光片,实现彩色显示,大大提高了显示器件的光透过率和亮度。
此外,在本公开所提供的另一示例性的实施例中,该显示器件还可以实现指向性彩色显示,应用于近眼显示器件,对于近眼显示器件,显示屏与人眼的位置固定,显示器件上的各子像素到人眼的出光角度也是固定的,而对于固定的一个像素来说,由于RGB子像素的位置不同,所以RGB子像素的出光角度应该不一样。
如图10所示,在本示例性的实施例中,所述光源700包括:设置于所述导光板100的入光侧一侧的、用于发白光的第二光源部件703;及,设置于所述第二光源部件703与所述导光板100的入光侧之间的第二调光部件704,所述第二调光部件704用于将所述第二光源部件703所发出的白光耦合入所述导光板100内进行全反射传播,并被所述光取出结构200以不同角度从所述导光板的出光面出射,以分光为不同颜色的多个单色光,多个单色光分别一一对应地入射至多个子像素区域;
所述驱动电极包括与所述子像素区域一一对应设置的多个第一子电极4021,其中每一所述第一子电极4021包括多个栅状电极4020;同一所述像素区内,对应于不同所述子像素的所述第一子电极内的栅状电极4020的排布周期不同。
上述方案,所述第二光源部件703可包括白光光源,所述第二调光部件704用于将所述白光光源发出的白光以预定角度出射至导光板100内进行全反射传播,可选的,该第二调光部件704将所述白光光源出射的白光调整为准直光,出射至导光板100内进行全反射传播;该白光光源可选用LED灯,所述第二调光部件704具有第二反射面,所述第二反射面面向所述第二光源部件的出光面设置,且所述第二反射面具有第二预设形状,所述第二预设形状能够所述第二光源部件所发出的白光入射至所述导光板内进行全反射传播。
其中,所述第二反射面可以采用反射平面、反射抛物面中的一种,或者 既包括反射平面又包括反射抛物面(例如,图10所示),所述第二反射面具有第二预设形状,其具体的形状参数,例如:反射平面、反射抛物面的具体设置位置、反射平面的倾斜角度和反射抛物面的曲率等,可经过合理调试来获得,只要最终满足能够使得所述第二光源部件所发出的白光入射至所述导光板内进行全反射传播即可。例如,所述第二调光部件可采用反射光罩,但并不以此为限;白光光源出射的白光出射至导光板100内进行全反射,由于所述光取出结构200对不同颜色的光的衍射角不同,因此,白光被所述光取出结构200以不同衍射角度取出为不同颜色的多个单色光;所述驱动电极402中第一电极的第一子电极被呈阵列分布,并一一对应地设置在各子像素区域,每一像素区内的子像素区域有多个(如图10中所示一个像素区内包括R、G、B三个子像素区域),由于不同颜色单色光的衍射角度不同,会分别一一对应地入射至不同的子像素区域处,但是,此时不同颜色单色光的衍射角度仍均大于所述液晶调光层400的全反射临界角,因此,在所述驱动电极402上施加第一电压(即,参考电压)时,各颜色光均在所述液晶调光层400内进行全反射,无光线从液晶调光层的远离所述第一折射率层的一侧出射,实现显示的暗态;而当所述驱动电极402上施加第二电压时,由于每一像素区内的不同所述子像素区域内的栅状电极4020的排布周期不同,从而对应不同颜色的单色光所入射的子像素区域,会形成不同的液晶光栅周期,不同子像素区域会具有不同的衍射效率,从而不同颜色的单色光会以不同的出射角度出射至人眼,实现指向性彩色显示。
此外,在本实施例中,所述显示器件还包括:
液晶调光层控制单元,与所述驱动电极402连接,用于控制每一像素区内不同子像素区域所对应的所述驱动电极402上的驱动电压。
采用上述方案,通过同一像素区内不同子像素区域内的驱动电极402上施加不同电压,控制不同颜色单色光对应的子像素区域内液晶偏转方向,即,不同子像素区域形成的液晶光栅的形貌,达到不同衍射效率的目的,进而控制显示的灰阶。
此外,在本实施例中,如图10和图11所示,所述多个单色光包括红光、绿光和蓝光,每一所述像素区内的所述多个子像素区域包括对应于所述红光 设置的红光子像素区域R、对应于所述绿光设置的绿光子像素区域G、对应于所述蓝光设置的蓝光子像素区域B,其中所述红光子像素区域R内的多个栅状电极4020的排布周期大于所述绿光子像素区域G内的多个栅状电极4020的排布周期,所述绿光子像素区域G内的多个栅状电极4020的排布周期大于所述蓝光子像素区域B内的多个栅状电极4020的排布周期。
需要说明的是,上述方案为彩色显示时,各单色光对应的子像素区域内的栅状电极的排布周期。
在一些实施例中,上述液晶调光层控制单元和光源控制单元可以通过单独的控制器或显示装置中的控制器实现。
此外,本公开实施例另一方面还提供了一种显示器件的控制方法,所述方法包括:
向所述驱动电极上施加第一电压,控制所述液晶调光层具有初始折射率,以使从所述第一低折射率层出射的光线在所述液晶调光层中全反射传播,所述第一电压为参考电压;
向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射。
上述方案中,当向驱动电极上施加参考电压(第一电压)时,液晶调光层具有初始折射率,此时,所述第一低折射率层、所述第二低折射率层的折射率小于所述液晶调光层的初始折射率,使得从所述第一低折射率层出射的光线在液晶调光层内可进行全反射传播,从而没有光线从所述液晶调光层内出射,实现显示的暗态(显示的暗态也就是,无光线从显示器件的显示面出射);当向所述液晶调光层内的驱动电极上施加第二电压时,液晶层形成的液晶光栅,将从所述第一低折射率层出射至所述液晶调光层的光线衍射出射,实现显示的灰阶(显示的灰阶是指,有光线从显示面出射,且出光量不同,灰阶不同),通过控制给液晶分子的驱动电极上所施加的电信号,即可实现液晶光栅对入射光线的衍射效率不同,从而实现L0-L255之间的任意灰阶显示。
由此可见,本公开提供的显示器件及其控制方法,无需设置偏光片,可通过全反射的方式实现显示的暗态,且通过向驱动电极上施加电压变化可实 现显示的灰阶,改善相关技术中由于设置偏光片对显示器件透光率的影响。
进一步的,所述方法中,所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
分时驱动所述光源700中不同颜色单色光所对应的单色光源701a,且不同颜色单色光所对应的所述单色光源701a上的驱动电压相同,以使各颜色单色光的亮度相同;
分时驱动所述驱动电极402,且在不同时间段上控制每一像素区内不同子像素区域所对应的所述驱动电极402上施加不同电压,以调节不同颜色单色光所对应的子像素区域内的液晶分子的偏转方向,进而控制不同颜色单色光显示的灰阶。
在上述方案中,所述光源700提供多种颜色的单色光,并通过光源控制单元来分时驱动所述光源700,如图8所示,以所述光源700提供红(R)、绿(G)、蓝(B)三色光为例,在1帧时间内,红光光源、绿光光源和蓝光光源驱动时间分别占用1/3的时间,且控制红光光源、绿光光源和蓝光光源的亮度相同;而所述液晶调光层控制单元则分时驱动所述驱动电极402,通过控制不同子像素区域所对应的所述驱动电极402上施加的电信号来控制显示的灰阶,具体地,如图8所示,所述驱动电极402可通过数据线(Data)施加电信号,在1帧时间内,栅线(Gate)全打开,而数据线(Data)在1帧时间内,对应于不同颜色时间段,所施加信号不同,以控制所述驱动电极402上施加电压不同,从而使得在出射不同颜色光的时间段,液晶光栅的形貌不同,液晶光栅对不同颜色光的衍射效率不同,从而控制不同颜色显示的灰阶。如图8所示为白光显示的示意图,此时数据线(data)信号强度比例大约为R:G:B=3:6:1。
进一步的,所述方法中,所述方法中,所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
分时驱动所述驱动电极402,且在不同时间段上各子像素区域所对应的所述驱动电极402上所施加电压相同;
分时驱动所述光源700中的不同颜色单色光所对应的单色光源701a,且不同颜色单色光所对应的所述单色光源701a上的驱动电压不同,以调节不同颜色光所对应的子像素区域的液晶分子的偏转方向,进而控制不同颜色单色光显示的灰阶。
在上述方案中,所述光源700提供多种颜色的单色光,并通过所述光源控制单元来分时驱动所述光源700,如图9所示,以所述光源700提供红(R)、绿(G)、蓝(B)三色光为例,在1帧时间内,红光光源、绿光光源和蓝光光源驱动时间分别占用1/3的时间,通过给各颜色单色光源701a上施加不同的电压,使得不同颜色光的亮度不同,而所述液晶调光层控制单元分时驱动所述驱动电极402,在不同时间段各子像素区域所对应的所述驱动电极402上所施加的电信号相同(如图9所示,Gate和Data全打开),所述驱动电极402仅起到开关的作用(即,暗态时不施加电压,控制液晶不偏转,灰阶态时施加电压,控制液晶偏转),从而,通过控制各颜色单色光源701a的亮度不同,来控制显示的灰阶。
进一步的,所述方法中,所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
控制每一像素区内不同子像素区域所对应的所述驱动电极上的驱动电压,以调节每一像素区内不同子像素区域的液晶分子的偏转方向,以控制不同颜色光显示的灰阶。
采用上述方案,通过同一像素区内不同子像素区域内的驱动电极402上施加不同电压,控制不同颜色单色光对应的子像素区域内液晶偏转方向,即,不同子像素区域形成的液晶光栅的形貌,达到不同衍射效率的目的,进而控制显示的灰阶。
以上所述仅是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进 和替换,这些改进和替换也应视为本公开的保护范围。

Claims (20)

  1. 一种显示器件,包括:
    导光板,所述导光板包括入光侧、以及相背设置的底面和出光面;
    光取出结构,设置于所述导光板的出光面或底面一侧,用于使所述导光板内进行全反射传播的光线从所述导光板的出光面以预定角度出射;
    第一低折射率层,覆盖于所述导光板的出光面,所述导光板的折射率大于所述第一低折射率层的折射率;
    液晶调光层,包括液晶层及用于驱动所述液晶层中液晶分子偏转的驱动电极,所述液晶调光层设置于所述第一低折射率层远离所述出光面的一侧;
    第二低折射率层,设置于所述液晶调光层的远离所述第一低折射率层的一侧,且所述第一低折射率层和所述第二低折射率层的折射率均小于所述液晶调光层的初始折射率。
  2. 根据权利要求1所述的显示器件,其中,
    所述液晶调光层的初始折射率为向所述驱动电极施加参考电压时所述液晶调光层的折射率。
  3. 根据权利要求2所述的显示器件,其中,
    所述液晶调光层的初始折射率为向所述驱动电极施加的参考电压为0v时所述液晶调光层的折射率。
  4. 根据权利要求1所述的显示器件,其中,
    所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子像素区域;
    所述驱动电极包括:第一电极,所述第一电极包括与所述子像素区域一一对应设置的多个第一子电极;及,与所述第一电极相对设置的第二电极;
    其中,所述第二电极为对应于多个所述第一子电极的整块电极;或者,所述第二电极包括多个第二子电极,每一所述第二子电极与至少一个所述第一子电极对应设置。
  5. 根据权利要求1所述的显示器件,其中,
    所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子 像素区域;所述光取出结构包括呈阵列分布的多个取光光栅,每一所述取光光栅对应一子像素区域设置。
  6. 根据权利要求1所述的显示器件,其中,
    所述液晶调光层还包括:
    设置于所述液晶层的靠近所述第一低折射率层的一侧的第一取向层;
    以及,设置于所述液晶层的靠近所述第二低折射率层的一侧的第二取向层。
  7. 根据权利要求1所述的显示器件,其中,
    所述显示器件包括设置于所述液晶层的远离所述导光板的一侧的衬底基板,其中所述衬底基板采用低折射率材料制成,以形成所述第二低折射率层;
    或者,所述显示器件还包括一单独设置于所述第二低折射率层的远离所述液晶调光层的一侧的衬底基板。
  8. 根据权利要求1所述的显示器件,其中,所述显示器件还包括:
    光源,设置于所述导光板的入光侧,用于将光线出射至所述导光板内。
  9. 根据权利要求8所述的显示器件,其中,所述光源包括:
    设置于所述导光板的入光侧一侧的第一光源部件,所述第一光源部件包括用于发出多种不同颜色单色光的多个单色光源;
    以及,设置于所述第一光源部件与所述导光板的入光侧之间的第一调光部件;
    其中,多个所述单色光源中不同颜色单色光所对应的单色光源处于不同位置或者具有不同的出射光角度,以使不同颜色单色光被所述第一调光部件以不同预设角度出射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射。
  10. 根据权利要求9所述的显示器件,其中,
    所述第一调光部件包括第一反射面,所述第一反射面包括反射平面和/或反射抛物面,所述第一反射面面向所述光源部件的出光面设置,且所述第一反射面具有第一预设形状,所述第一预设形状能够将所述第一光源部件所出射的光线中不同颜色单色光以不同预设角度入射至所述导光板内进行全反射传输,并被所述光取出结构以相同的出射角度从所述导光板的出光面出射。
  11. 根据权利要求8所述的显示器件,还包括:
    光源控制单元,与所述光源连接,用于分时驱动所述光源中不同颜色单色光所对应的单色光源,且不同颜色单色光所对应的所述单色光源上的驱动电压相同,以使各颜色单色光的亮度相同;
    以及,液晶调光层控制单元,与所述驱动电极连接,用于分时驱动所述驱动电极,并控制每一像素区内不同子像素区域所对应的所述驱动电极在不同时间段上施加不同电压。
  12. 根据权利要求8所述的显示器件,其中,
    所述显示器件还包括:
    液晶调光层控制单元,与所述驱动电极连接,用于分时驱动所述驱动电极,且在不同时间段上各子像素区域所对应的所述驱动电极上所施加电压相同;
    以及,光源控制单元,与所述光源连接,用于分时驱动所述光源中的不同颜色单色光所对应的单色光源,且不同颜色单色光所对应的所述单色光源上的驱动电压不同。
  13. 根据权利要求8所述的显示器件,其中,
    所述光源包括:
    设置于所述导光板的入光侧一侧的、用于发白光的第二光源部件;及,设置于所述第二光源部件与所述导光板的入光侧之间的第二调光部件,所述第二调光部件用于将所述第二光源部件所发出的白光入射至所述导光板内进行全反射传播,并被所述光取出结构以不同角度从所述导光板的出光面出射,以分光为不同颜色的多个单色光;
    所述显示器件包括阵列分布的多个像素区,每一所述像素区包括多个子像素区域,多个单色光分别一一对应地入射至多个子像素区域;所述驱动电极包括与所述子像素区域一一对应设置的多个第一子电极,其中每一所述第一子电极包括多个栅状电极;同一所述像素区内,对应于不同所述子像素区域的所述第一子电极内的栅状电极的排布周期不同。
  14. 根据权利要求13所述的显示器件,其中,
    所述第二调光部件包括第二反射面,所述第二反射面包括反射平面和/或 反射抛物面,所述第二反射面面向所述第二光源部件的出光面设置,且所述第二反射面具有第二预设形状,所述第二预设形状能够所述第二光源部件所发出的白光入射至所述导光板内进行全反射传播。
  15. 根据权利要求13所述的显示器件,其中,
    所述显示器件还包括:
    液晶调光层控制单元,与所述驱动电极连接,用于控制每一像素区内不同子像素区域所对应的所述驱动电极上的驱动电压。
  16. 根据权利要求13所述的显示器件,其中,
    所述多个单色光包括红光、绿光和蓝光,每一所述像素区内的多个子像素区域包括对应于所述红光设置的红光子像素区域、对应于所述绿光设置的绿光子像素区域、对应于所述蓝光设置的蓝光子像素区域,其中所述红光子像素区域内的多个栅状电极的排布周期大于所述绿光子像素区域内的多个栅状电极的排布周期,所述绿光子像素区域内的多个栅状电极的排布周期大于所述蓝光子像素区域内的多个栅状电极的排布周期。
  17. 根据权利要求1所述的显示器件,其中,所述显示器件为不含偏光片和遮光层的透明显示器件。
  18. 根据权利要求1所述的显示器件,其中,所述光取出结构包括设置于所述导光板的底面的反射式光栅。
  19. 一种显示器件的控制方法,应用于如权利要求1至18任一项所述的显示器件,所述方法包括:
    向所述驱动电极上施加第一电压,控制所述液晶调光层具有初始折射率,以使从所述第一低折射率层出射的光线在所述液晶调光层中全反射传播,所述第一电压为参考电压;
    向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射。
  20. 一种显示器件的控制方法,应用于如权利要求11所述的显示器件,所述方法包括:
    向所述驱动电极上施加第一电压,控制所述液晶调光层具有初始折射率, 以使从所述第一低折射率层出射的光线在所述液晶调光层中全反射传播,所述第一电压为参考电压;
    向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射;
    其中,所述向所述驱动电极施加第二电压,调节所述液晶调光层中液晶分子的偏转方向,以使所述第一低折射率层出射的光线经所述液晶调光层偏折后,从所述第二低折射率层的远离所述液晶调光层的一面出射,具体包括:
    分时驱动所述光源中不同颜色单色光所对应的单色光源,且不同颜色单色光所对应的所述单色光源上的驱动电压相同,以使各颜色单色光的亮度相同;
    分时驱动所述驱动电极,且在不同时间段上控制每一像素区内不同子像素区域所对应的所述驱动电极上施加不同电压,以调节不同颜色单色光所对应的子像素区域内的液晶分子的偏转方向。
PCT/CN2019/105891 2018-09-30 2019-09-16 显示器件及其控制方法 WO2020063376A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/644,708 US11187844B2 (en) 2018-09-30 2019-09-16 Display device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811161266.9A CN109239965B (zh) 2018-09-30 2018-09-30 一种显示器件及其控制方法
CN201811161266.9 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063376A1 true WO2020063376A1 (zh) 2020-04-02

Family

ID=65054880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105891 WO2020063376A1 (zh) 2018-09-30 2019-09-16 显示器件及其控制方法

Country Status (3)

Country Link
US (1) US11187844B2 (zh)
CN (1) CN109239965B (zh)
WO (1) WO2020063376A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239965B (zh) * 2018-09-30 2021-11-23 京东方科技集团股份有限公司 一种显示器件及其控制方法
CN111812894B (zh) * 2019-04-10 2023-07-28 京东方科技集团股份有限公司 透明显示面板、显示装置及其控制方法
CN111830755B (zh) * 2019-04-16 2023-08-15 京东方科技集团股份有限公司 反射式液晶显示面板、显示装置及其控制方法
CN110187536B (zh) * 2019-05-28 2021-11-30 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法
CN110262035A (zh) * 2019-06-18 2019-09-20 京东方科技集团股份有限公司 基于电润湿微液滴的显示器件和显示面板
CN110286525B (zh) * 2019-07-29 2021-11-16 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN110596808B (zh) * 2019-09-20 2021-01-15 京东方科技集团股份有限公司 背光模组、显示装置
CN111240091B (zh) 2020-02-24 2021-10-29 京东方科技集团股份有限公司 透明显示装置及其制作方法
CN115336241B (zh) * 2020-04-03 2024-04-09 三菱电机株式会社 照明装置以及图像扫描仪
CN111708220A (zh) 2020-06-23 2020-09-25 武汉华星光电技术有限公司 背光源、显示基板及显示装置
US11852816B1 (en) * 2020-07-13 2023-12-26 Apple Inc. Optical systems with resolution-enhancing spectral shifting
CN115331549A (zh) * 2022-08-01 2022-11-11 武汉华星光电半导体显示技术有限公司 柔性显示面板和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598661A (zh) * 2003-09-17 2005-03-23 乐金电子(沈阳)有限公司 利用全息图样板液晶的平板显示装置
US20050253987A1 (en) * 2004-05-17 2005-11-17 Eastman Kodak Company Reflectance-matching layer for cholesteric display having dye layer and reflective conductors
CN101852942A (zh) * 2009-04-02 2010-10-06 北京京东方光电科技有限公司 全反射式液晶显示器
CN105974672A (zh) * 2016-07-27 2016-09-28 京东方科技集团股份有限公司 一种显示装置
CN106908996A (zh) * 2017-03-29 2017-06-30 京东方科技集团股份有限公司 一种反射件、发光组件、灯条、背光模组及显示模组
CN108333835A (zh) * 2017-09-29 2018-07-27 京东方科技集团股份有限公司 侧入式背光模组、显示装置
CN109239965A (zh) * 2018-09-30 2019-01-18 京东方科技集团股份有限公司 一种显示器件及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506088B1 (ko) * 2003-01-14 2005-08-03 삼성전자주식회사 액정표시장치
KR100476563B1 (ko) * 2003-06-02 2005-03-18 삼성전기주식회사 디스플레이용 라이트 유닛
JP2012234725A (ja) * 2011-05-02 2012-11-29 Sony Corp 表示装置および照明装置
JP5745979B2 (ja) * 2011-09-16 2015-07-08 三菱電機株式会社 マルチプルビュー液晶表示装置
JP2016071259A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 光変調器および画像表示装置
KR102335719B1 (ko) * 2015-09-05 2021-12-06 레이아 인코포레이티드 시간-다중화된 백라이트 및 이를 사용한 멀티뷰 디스플레이
EP3688370A4 (en) * 2017-09-27 2021-04-28 LEIA Inc. MULTI-COLOR STATIC MULTI-VIEW DISPLAY DEVICE AND ASSOCIATED PROCESS
CN108051936B (zh) * 2018-01-03 2021-02-12 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置及其驱动方法
JP2019191230A (ja) * 2018-04-19 2019-10-31 株式会社ジャパンディスプレイ 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598661A (zh) * 2003-09-17 2005-03-23 乐金电子(沈阳)有限公司 利用全息图样板液晶的平板显示装置
US20050253987A1 (en) * 2004-05-17 2005-11-17 Eastman Kodak Company Reflectance-matching layer for cholesteric display having dye layer and reflective conductors
CN101852942A (zh) * 2009-04-02 2010-10-06 北京京东方光电科技有限公司 全反射式液晶显示器
CN105974672A (zh) * 2016-07-27 2016-09-28 京东方科技集团股份有限公司 一种显示装置
CN106908996A (zh) * 2017-03-29 2017-06-30 京东方科技集团股份有限公司 一种反射件、发光组件、灯条、背光模组及显示模组
CN108333835A (zh) * 2017-09-29 2018-07-27 京东方科技集团股份有限公司 侧入式背光模组、显示装置
CN109239965A (zh) * 2018-09-30 2019-01-18 京东方科技集团股份有限公司 一种显示器件及其控制方法

Also Published As

Publication number Publication date
US11187844B2 (en) 2021-11-30
CN109239965B (zh) 2021-11-23
CN109239965A (zh) 2019-01-18
US20210018674A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020063376A1 (zh) 显示器件及其控制方法
CN108319070B (zh) 一种显示装置及其显示方法
CN108572482B (zh) 一种背光模组、显示装置及其驱动方法
EP3339920B1 (en) Photoluminescence device and display panel including the same
CN107817629B (zh) 一种液晶显示装置
US11099425B2 (en) Collimation backlight source, display device and driving method thereof
US10833294B2 (en) Display panel and display device
CN107918233B (zh) 一种显示装置
WO2018072508A1 (zh) 显示装置及其显示方法
WO2020063231A1 (zh) 液晶显示面板、显示装置及其工作方法
WO2020151434A1 (zh) 显示面板及其驱动方法和显示系统
CN207882620U (zh) 显示装置
KR20070079649A (ko) 백라이트 어셈블리 및 이를 갖는 표시 장치
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
WO2018166154A1 (zh) 一种光源器件及显示装置
WO2021018219A1 (zh) 显示面板和显示装置
CN110646989B (zh) 显示面板、显示装置及其控制方法
WO2013163878A1 (zh) 调光装置及显示器
CN108663858B (zh) 背光模组、显示装置及其驱动方法
WO2019134562A1 (zh) 背光源及其制作方法、显示装置
CN109143665A (zh) 一种显示面板及显示装置
JP2007232966A (ja) 表示装置
CN110737138B (zh) 一种显示面板、显示装置及其控制方法
CN109856861A (zh) 一种显示面板、显示装置,以及显示面板的驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864982

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19864982

Country of ref document: EP

Kind code of ref document: A1