WO2019134562A1 - 背光源及其制作方法、显示装置 - Google Patents

背光源及其制作方法、显示装置 Download PDF

Info

Publication number
WO2019134562A1
WO2019134562A1 PCT/CN2018/123573 CN2018123573W WO2019134562A1 WO 2019134562 A1 WO2019134562 A1 WO 2019134562A1 CN 2018123573 W CN2018123573 W CN 2018123573W WO 2019134562 A1 WO2019134562 A1 WO 2019134562A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
emitting device
backlight
light guide
Prior art date
Application number
PCT/CN2018/123573
Other languages
English (en)
French (fr)
Inventor
王维
谭纪风
孟宪东
赵文卿
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/474,574 priority Critical patent/US11860400B2/en
Priority to EP18889972.8A priority patent/EP3736620A4/en
Publication of WO2019134562A1 publication Critical patent/WO2019134562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present disclosure relates to a backlight, a method of fabricating the same, and a display device.
  • the liquid crystal display device includes a backlight and a liquid crystal panel, wherein the liquid crystal panel itself does not emit light, and a backlight is required to provide a light source, so that the liquid crystal panel displays an image.
  • the side-in type backlight has the characteristics of being light and thin, so it is widely used in liquid crystal display devices.
  • the present disclosure provides a backlight, a method of fabricating the same, and a display device.
  • the present disclosure provides a backlight, the backlight comprising:
  • a light emitting device on a side of a thickness direction of the light guide plate, wherein the light emitting device is configured to emit light that is directed toward an interior of the light guide plate;
  • An optical element on a side of the light emitting device that emits light the optical element being configured to convert light emitted by the light emitting device into a parallel light beam propagating in total internal reflection of the light guide plate.
  • the light guide plate includes at least one coupling grating on a surface of at least one side in a thickness direction
  • Each of the coupling gratings is configured to convert the incident parallel light beam into an outgoing light beam at a ratio of light intensity corresponding to a position at which the coupled grating is located, the outgoing light beam being in a direction away from the light guide plate A collimated beam of light.
  • the light-emitting side surface of the light guide plate includes at least one transmission type coupling grating, and the surface of the light guide plate on a side away from the light-emitting side includes at least one reflective coupling grating.
  • Each of the coupling gratings is configured to convert the incident parallel light beam into an outgoing light beam at a ratio of light intensity corresponding to a position at which the coupled grating is located, the outgoing light beam being in a direction away from the light guide plate A collimated beam of light.
  • the surface of the light guide plate includes a plurality of coupling gratings, and the ratio of the light intensity corresponding to the coupling grating is positively related to a distance between the coupling grating and the optical element.
  • Each of the coupling gratings is configured to convert the incident parallel light beam into an outgoing light beam at a ratio of light intensity corresponding to a position at which the coupled grating is located, the outgoing light beam being in a direction away from the light guide plate A collimated beam of light.
  • the holographic microstructure has polarization dependence.
  • the light guide plate is provided with a filling layer on both sides in the thickness direction, and the material refractive index of the light guide plate is greater than the material refractive index of the filling layer.
  • the light guide plate and the filling layer are both formed of a transparent material.
  • the light emitting device is disposed at an edge of the light guide plate, and the light guide plate is disposed on at least one side of the thickness direction with a light absorbing layer, where the light absorbing layer is located at the light emitting device At the edge of the light guide plate.
  • the light guide plate has a first side and a second side in a thickness direction
  • the light emitting device is disposed on a surface of the first side of the light guide plate
  • the optical element is disposed at On the surface of the second side of the light guide plate, the light emitting device and the optical element are opposed to each other.
  • the present disclosure further provides a method for fabricating a backlight, the method comprising:
  • a light emitting device is formed on a surface of the first side in a thickness direction of the light guide plate, the light emitting device for emitting light that is directed toward the inside of the light guide plate;
  • An optical element is formed on a surface of the second side in a thickness direction of the light guide plate, the optical element and the light emitting device being opposed to each other, the optical element being configured to convert light emitted by the light emitting device into A parallel beam of light propagating in the total reflection of the light guide plate.
  • the present disclosure provides a display device comprising a backlight of any of the above.
  • the display device includes a plurality of sub-pixels, and the light guide plate is provided with at least one coupling grating on a surface of at least one side in a thickness direction, and the backlights respectively pass different
  • the coupled grating provides a collimated beam of light for the different sub-pixels.
  • the display device further includes a liquid crystal layer and a light conversion layer which are sequentially stacked in a direction away from the backlight;
  • the light conversion layer includes a light-transmitting region and a light-shielding region in each of the sub-pixels, and the collimated light beam provided by the backlight for any sub-pixel is directed to the light-shielding region in the sub-pixel .
  • the liquid crystal layer is configured to deflect the collimated beam to a light-transmitting region in a sub-pixel in which it is located at a bright state bias voltage.
  • the light emitting device is a blue light emitting device
  • the light conversion layer includes the light transmitting region of red, the light transmitting region of blue, and the transparent region of green.
  • the light conversion layer includes a first photoluminescent material that converts blue light into red light in the red light transmissive region.
  • the light conversion layer includes a second photoluminescent material that converts blue light into green light in the green light transmissive region.
  • the display device further includes a grating layer, a liquid crystal layer and a light conversion layer which are sequentially stacked in a direction away from the backlight;
  • the light conversion layer includes a first region and a second region in each of the sub-pixels, and the collimated light beam provided by the backlight for any sub-pixel is directed to the first of the sub-pixels One area;
  • the grating layer includes a deflection grating in each of the sub-pixels, each of the deflection gratings being configured to deflect the collimated beam to point to the second region in a sub-pixel in which it is located;
  • the first area and the second area are respectively one of a light shielding area and a light transmission area.
  • a surface of the deflection grating is in contact with the liquid crystal layer, and the liquid crystal layer is configured to have an edge refractive index at a dark state bias voltage and a material forming material of the grating layer.
  • the refractive index is the same, and the edge refractive index is the refractive index of the liquid crystal molecules close to the grating layer for the collimated beam.
  • the light emitting device is a blue light emitting device
  • the light conversion layer includes the light transmitting region of red, the light transmitting region of blue, and the transparent region of green.
  • the light conversion layer includes a first photoluminescent material that converts blue light into red light in the red light transmissive region.
  • the light conversion layer includes a second photoluminescent material that converts blue light into green light in the green light transmissive region.
  • the display device further includes a buffer layer, a transistor device layer, a planarization layer, and an opposite substrate.
  • the buffer layer, the transistor device layer, the liquid crystal layer, the planarization layer, the light conversion layer, and the opposite substrate are sequentially stacked in a direction away from the backlight.
  • FIG. 1 is a schematic structural view of a backlight of an embodiment of the present disclosure
  • FIGS. 2 and 3 are schematic structural views of a modulation grating model in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a principle of designing an optical component in an embodiment of the present disclosure.
  • FIG. 5 is a schematic flow chart of steps of a method for fabricating a backlight provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a backlight according to still another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a backlight according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a display device according to still another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a three-dimensional structure of a display device according to an embodiment of the present disclosure.
  • the light-emitting device is disposed on the side of the light guide plate, and the light is coupled from the side to the light guide plate, and is uniformly emitted from the light-emitting surface of the light guide plate through a lens or a prism.
  • an excessively thin light guide plate makes it difficult for the light emitting device to be attached on the side or to reduce the luminance of the light, and the necessary optical auxiliary structure and support structure also increase the backlight.
  • the thickness makes the thickness of the backlight difficult to reduce, and cannot meet the application requirements of the thin and light liquid crystal display device.
  • the backlight includes a light guide plate 101, a light emitting device 102, and an optical element 103, and further includes a filling layer 104, a light absorbing layer 105, and a coupling grating 106.
  • the light guide plate 101 is horizontally placed in FIG. 1, and the upper side and the lower side in FIG. 1 are both sides in the thickness direction thereof, respectively. It should be understood that the position shown in FIG. 1 is at one edge of the light guide plate 101, and the structure of the remaining portion of the light guide plate 101 can be inferred from the structure shown in FIG.
  • the light emitting device 102 is disposed at an edge of the upper side of the light guide plate 101, and the light emitting side of the light emitting device 102 faces downward, that is, toward the inside of the light guide plate 101.
  • the light emitting device 102 is a light emitting diode (LED) chip that is embossed or bonded at the edge of the upper surface of the light guide plate 101.
  • the light emitting device 102 is a thin film light emitting device formed at an edge of the upper surface of the light guide plate 101. Taking this as an example, the light emitting device 102 can emit light that is incident on the inside of the light guide plate 101.
  • the optical component herein refers to a structure capable of realizing a certain optical function in a backlight, and may be, for example, a surface structure that realizes optical function by having a surface topography, a holographic microstructure (optical implementation based on holography) Functional microstructures, or structures consisting of prisms or lenses.
  • the optical element 103 is disposed on the light exiting side of the light emitting device 102 (where the optical element 103 is on the side where the light emitting device 102 emits light), and the relative position between the optical element 103 and the light emitting device 102 is fixed.
  • the light emitting device 102 is a point light source and the emitted light is conical
  • the optical element 103 can be disposed in accordance with a pattern that is emitted when the light emitted from the light emitting device 102 is irradiated onto the lower surface of the light guide plate 101.
  • the shape of the optical element 103 is a circular or elliptical shape centered on the axis of the cone (the cone represented by the light emitted by the point source), and is capable of receiving all of the light emitted by the light emitting device 102 toward the lower surface of the light panel 101.
  • the distance between the light emitting device 102 and the optical element 103 is the thickness h of the light guide plate 101, and the light emitting device 102 and the optical element 103 are opposed to each other along the propagation direction of the light, so that the relative relationship between the optical element 103 and the light emitting device 102 The position is fixed.
  • the arrangement area of the optical element 103 can be extended to the extent that it can receive light more than the actual illumination range, thus helping to avoid the microstructure at the edge or at the edge. The lack of reliability affects the light energy utilization of the optical element 103.
  • the light emitting device 102 is a linear light source and the emitted light is pyramid-shaped.
  • the optical element 103 can also be disposed in a pattern that is emitted when the light emitted by the light emitting device 102 is irradiated onto the lower surface of the light guide plate 101.
  • Shape, position and size For example, the shape of the optical element 103 is a rectangle whose longitudinal direction coincides with the extending direction of the linear light source, and the optical element 103 can receive all the light emitted by the light emitting device 102 toward the lower surface of the light plate 101.
  • the distance between the light emitting device 102 and the optical element 103 is the thickness h of the light guide plate 101, and the light emitting device 102 and the optical element 103 are opposed to each other along the propagation direction of the light, so that the relative relationship between the optical element 103 and the light emitting device 102 The position is fixed.
  • the optical element 103 is configured to reflect the light emitted by the light emitting device 102 into a parallel light beam that is totally reflected and propagated in the light guide plate 101, and an angle between the propagation direction of the parallel light beam and the light guide plate 101 is a predetermined propagation angle ⁇ .
  • the optical element 103 is a surface pattern having a minute configuration formed by, for example, embossing or etching the lower surface of the light guide plate 101, and is designed in advance for the wavefront of the light emitting device 102 to emit light.
  • the optical element 103 can convert the wavefront (approximate Lambertian distribution) from which the LED chip exits into a waveguide mode (approximately collimated) that propagates in the light-guide plate 101 in a particular total reflection.
  • the phase modulation distribution of the optical element 103 can be expressed as a power of the xy coordinate: x 0 + y 0 + A 10 x + A 01 y + A 20 x 2 + A 02 y 2 + A 11 xy + A 30 x 3 + A 03 y 3 +A 21 x 2 y+A 12 xy 2 +..., wherein the xy coordinate system is located on the plane of the optical element 103, and the origin is at the center of the optical element 103, A 10 , A 01 , A 11 , ..., etc. Are the coefficients of each power.
  • the above simulation algorithm may be, for example, a scalar theory, an angular spectrum theory, an RCWA-strictly coupled wave analysis algorithm, an FDTD-time domain finite difference algorithm, a FEM-finite element algorithm, etc.
  • the above value optimization algorithm may be, for example, a genetic algorithm, a simulated annealing algorithm, Bee colony algorithm, etc.
  • the values of the coefficients of the powers can be calculated by the above method. .
  • the optical element 103 can reflect the light emitted by the light emitting device 102 into a parallel light beam having a preset propagation angle ⁇ inside the light guide plate 101, and thus the optical element 103 can be parabolically reflective with the focus at the light emitting device 102. Equivalent or approximately equivalent.
  • the above-described modulation grating model may have the form shown in FIG. 2 or FIG. 3 in each grating period.
  • 2 shows a grating structure formed by sequentially arranging a plurality of contour protrusions, wherein the width of the protrusions and the spacing between adjacent protrusions can be modulated, and optical structures having different functions can be obtained according to different modulation modes.
  • Fig. 2 shows a grating structure formed by closely arranging a plurality of equal-width steps, and the height of each step can be modulated, and optical structures having different functions can be obtained according to different modulation methods.
  • the modulatable parameters in each grating period can be calculated and modulated according to the above-mentioned design manner based on the modulation grating model shown in FIG. 2 or FIG. 3, for example, to obtain the light emitted by the light-emitting device 102 into
  • a grating structure of a parallel beam having a predetermined propagation angle ⁇ is provided as an optical element 103 on the light guide plate 101.
  • the optical element 103 has a polarization-dependent conversion of the light emitted by the light emitting device 102 such that the parallel beam converted by the optical element 103 has a determined polarization state.
  • the optical element 103 can have a strong response to light of a certain polarization state, and the diffraction efficiency is high, so that the wavefront of the light emitted from the light-emitting device 102 can be efficiently converted into a specific total reflection in the light guide plate 101.
  • the waveguide mode in which the form propagates; at the same time, the optical element 103 has a low diffraction efficiency for light of other polarization states, and substantially has no effect as described above, and most of the light is transmitted through the lower surface or the upper surface of the light guide plate 101.
  • a light absorbing layer may be disposed on at least one side of the light guide plate 101 in the thickness direction, for example, at the edge of the light emitting device 102 on the upper and lower sides of the light guide plate 101 as shown in FIG.
  • the light absorbing layer 105 is disposed such that light rays that are not converted into parallel beams having a predetermined propagation angle ⁇ are absorbed by the light absorbing layer 105.
  • the light absorbing layer 105 may cover the light emitting device 102 and the optical element 103 and may extend a predetermined distance along the direction of propagation of the parallel beams to ensure a light absorbing effect.
  • the manner in which the light absorbing layer is disposed may not be limited to the above manner.
  • the ratio of the conversion effects of the two polarized lights can be used as the main optimization objective function to achieve the above-described polarization dependent effect.
  • the refractive index modulation distribution in the optical component 103 can be designed in the form of a subregional grating, ie, in the radial direction (or lateral or longitudinal direction of the optical component 103). For example, in the left-right direction in FIG. 4, it is divided into a plurality of regions (which may be equally divided or unequal, and exemplified in FIG. 4).
  • n 1 is the refractive index of the material of the light guide plate 101
  • ⁇ 0 is the incident angle of the light (the area and the light emitting device 102 can be The relative position between them is determined)
  • m is the diffraction order
  • is the wavelength of the light.
  • the diffraction intensity of the zero-order and/or first-order diffraction of the grating is relatively large, and the diffraction intensity of the high-order diffraction order is much smaller than the former two. As shown in FIG.
  • the ratio of the thickness h of the light guide plate 101 to the diameter of the circular light emitting device 102 may be set to be larger than 5, and a circular shape may be provided.
  • the ratio of the diameter (or outer diameter) of the optical element 103 to the diameter (or outer diameter) of the circular light-emitting device 102 is greater than three, thereby ensuring the optical coupling efficiency that the optical element 103 can achieve. It can be understood that the more the number of regions into which the optical element 103 is divided, the denser the light, the smaller the divergence angle of the light received by the light-emitting device 102 on each of the optical elements 103, and the light obtained for the design. The coupling efficiency is greater.
  • the optical element 103 functions to convert the light emitted by the light emitting device 102 into a parallel light beam that is totally reflected and propagated in the light guide plate 101, the grating structure is required to have a high diffraction efficiency at a large diffraction angle.
  • the diffraction angle is such that the corresponding diffracted wave satisfies the total reflection condition in the light guide plate).
  • the total reflection angle of the medium and air interface with a refractive index of 1.5 is about 40 degrees.
  • the grating period can be limited to the range of 1-2 um. Inside. Among them, the selection of the diffraction order can be calculated by the above grating equation.
  • FIG. 5 is a schematic flow chart of steps of a method for fabricating a backlight provided by an embodiment of the present disclosure. Referring to Figure 5, in the method:
  • step S1 a light emitting device is formed on the surface of the first side in the thickness direction of the light guide plate.
  • the light emitting device is configured to emit light that is directed toward the inside of the light guide plate.
  • a light emitting diode chip may be formed as the light emitting device 102 at the upper surface edge of the light guide plate 101 by embossing or attaching.
  • a thin film light-emitting device can be formed as a light-emitting device 102 at a surface edge of the upper surface of the light guide plate 101 by a semiconductor fabrication process.
  • the manner in which the light emitting device is formed may not be limited to the above examples.
  • step S2 an optical element is formed on the surface of the second side in the thickness direction of the light guide plate.
  • the optical element and the light emitting device are opposed to each other, the optical element being configured to convert light emitted by the light emitting device into a parallel light beam propagating in the total reflection of the light guide plate.
  • the optical element 103 may be formed by an etching process performed on the surface of the light guide plate 101, for example, depositing a photoresist on the lower surface of the light guide plate 101, and then using the design and the
  • the grating structure corresponds to the mask of the pattern to expose the photoresist, and then the photoresist of the region to be etched is removed by development, and the material for forming the light guide plate 101 is used.
  • Corresponding etchant etches the surface of the light guide plate 101 in the region to be etched, and removes the remaining photoresist to complete the fabrication of the optical component 103 on the surface of the light guide plate 101.
  • the optical element 103 may be formed by a micro-nano process performed on a dielectric layer, wherein the dielectric layer is disposed on a surface of the light guide plate 101, for example, deposited or attached on a lower surface of the light guide plate 101.
  • the layer dielectric film is formed into a designed grating structure on the surface of the dielectric film by a micro-nano process after aligning the disposed regions of the optical element 103 to complete the fabrication of the optical element 103.
  • the optical element 103 described above is generated by a nanoimprint process, including: preparing a template of the optical element 103, and embossing the surface of the light-coated board coated with the embossing paste using a template to generate desired optics. Element 103.
  • a high-folding embossing adhesive (or a material having a larger refractive index difference between the embossing adhesive and the embossing adhesive) may be used to obtain a higher diffraction efficiency.
  • a parallel light beam having a predetermined propagation angle ⁇ propagates inside the light guide plate 101 in the form of total reflection.
  • the filling layer 104 may be disposed on both sides of the light guide plate 101 in the thickness direction as shown in FIG. 1, wherein the material refractive index of the light guiding plate 101 needs to be larger than the material refractive index of the filling layer 104, and The total reflection condition needs to be satisfied between the preset propagation angle ⁇ , the material refractive index of the light guide plate 101, and the material refractive index of the filling layer 104.
  • the light emitting device 102 in FIG. 1 is disposed on the side of the filling layer 104 away from the light guide plate 101, so that the total reflection condition in the coverage area of the light absorbing layer 105 can be satisfied.
  • the light emitting device 102 in FIG. 1 is in contact with the upper surface of the light guide plate 101, that is, the light emitting device 102 is disposed on the side of the filling layer 104 close to the light guide plate 101, which is more advantageous for controlling the light emitting device 102 and the optical element 103.
  • the optical element 103 is disposed near the light absorbing layer 105.
  • One side of the light guide plate so that light is not blocked by the light absorbing layer 105.
  • the light guide plate 101 is provided with coupling gratings 106 on both sides in the thickness direction, and the coupling grating 106 is configured to convert the incident parallel light beam into a light intensity ratio corresponding to the position of the coupling grating 106.
  • the light beam is a collimated light beam propagating in a direction away from the light guide plate 101, and an angle between a propagation direction of the outgoing light beam and the light guide plate 101 is a preset exit angle.
  • the light intensity ratio in the case of reflection may be the reflectance
  • the light intensity ratio in the case of transmission may be the transmittance. As shown in FIG.
  • the parallel beam propagates in a total reflection manner between the upper and lower surfaces of the light guide plate 101 at a predetermined propagation angle ⁇ , and the coupling grating 106 can reflect or transmit the incident parallel beam to be perpendicular to
  • the outgoing light beam of the light guide plate 101 (for example, a plurality of upward pointing arrows in FIG. 1 , the above-mentioned preset exit angle is 90°), and the light intensity of all the outgoing light beams is emitted from the backlight.
  • the surface is evenly distributed, for example, such that the outgoing beams reaching the upper surface of the light guide plate 101 have the same light intensity.
  • the intensity of the parallel beam propagating in the light guide plate 101 in this case is gradually reduced, and thus the intensity of the parallel beams incident on the different coupling gratings 106 is different.
  • the coupling grating 106 not only has the function of converting the parallel beam portion into the required outgoing beam, but also has a corresponding value depending on the position.
  • the at least one coupling grating 106 includes a plurality of coupling gratings 106 (the number of coupling gratings 106 is plural), and the ratio of the light intensity corresponding to the coupling grating 106 is positively correlated with the coupling grating 106 and The distance between the optical elements 103.
  • the light intensity ratio corresponding to the coupling grating 106 gradually increases.
  • the ratio of the intensity of the one hundred coupling gratings 106 arranged in sequence along the propagation path of the parallel beams should be 1/100, 1/99, 1/98, ..., 1.
  • each of the coupling gratings 106 converts the incident parallel beam into an outgoing beam and a parallel beam that continues to propagate, wherein the incident angle, the incident light intensity, the reflection angle, the reflected light intensity, the refraction angle, and the refracted light intensity have Expected value. Accordingly, the grating structure of each of the coupling gratings 106 having the desired optical characteristics can be obtained in advance according to, for example, the design of any one of the optical elements 103 described above, and then in accordance with the fabrication manner of any of the optical elements 103 described above in the light guide plate 101. A coupling grating 106 is fabricated on the surface.
  • the coupling grating 106 may have a grating structure as shown in FIG. 2 or FIG. 3, or may have a grating structure of a common grating having only one valley and one ridge in each grating period, and may not only Limited to this.
  • the ratio of the light intensity corresponding to each of the coupling gratings 106 can also be set with reference to the principle of the polarizer.
  • the design of the coupling grating 106 can also be performed in such a manner that the outgoing beam is a collimated beam (a parallel propagating beam having a divergence angle less than a certain threshold).
  • the coupling grating 106 is disposed at a location where light is required to exit from the backlight, the arrangement of the coupling grating 106 can be performed in the light exit region of the backlight. It should be understood that when the backlight includes the light absorbing layer 105, the light absorbing layer 105 should be disposed outside the light exiting area of the backlight. In addition, since the coupling grating 106 can only function when there is a parallel beam incident, the coupling grating 106 should be disposed in the irradiation region, which refers to the total reflection of the parallel beam in the light guide plate 101.
  • the projection of the irradiation region in the plane of the light guide plate 101 can be covered with the entire light exiting region of the backlight to ensure the light intensity of the outgoing beam is in the backlight. Evenly distributed on the illuminating surface.
  • the material for forming the light guide plate 101 may be, for example, a transparent material such as glass or resin, and the refractive index may be in the range of 1.5 to 2.0, and a material having a refractive index of 1.7 to 1.8 or 1.8 may be specifically selected.
  • the material for forming the filling layer 104 may be, for example, a resin material having a refractive index of 1.2 to 1.4, and a material having a refractive index of 1.2 or 1.2 to 1.3 may be specifically selected.
  • the backlight can have a good transparency so that it can be applied to a transparent display device.
  • FIG. 6 is a schematic structural diagram of a backlight according to still another embodiment of the present disclosure. 6 and FIG. 1, it can be seen that all of the coupling gratings 106 are disposed on the upper side of the light guide plate 101 in the backlight shown in FIG. 6, and the set value of the preset propagation angle ⁇ is slightly increased. At this time, in order to satisfy the total reflection condition, the requirement that the material refractive index of the light guide plate 101 is sufficiently large and the material refractive index of the filling layer 104 to be sufficiently small are required to be relatively strict. However, it can be seen that since the coupling gratings 106 are all disposed as transmissive gratings and are all on the upper surface of the light guide plate, the backlight shown in FIG. 6 has the design difficulty and the manufacturing process difficulty of the coupling grating 106. Declined.
  • the light emitting device 102 and the optical element 103 are both disposed in such a manner that the light guide plate 101 has the first side and the second side in the thickness direction.
  • the light emitting device 102 is disposed on a surface of the first side of the light guide plate 101
  • the optical element 103 is disposed on a surface of the second side of the light guide plate 102
  • the light emitting device 102 and the optical element 103 are opposed to each other.
  • the desired distance between the light emitting device 102 and the optical element 103 can be provided by the thickness of the light guide plate 101, contributing to a reduction in the overall thickness of the backlight.
  • the light emitting device 102 may also be disposed inside the light guide plate 101, such as at the bottom of the groove provided on the upper surface of the light guide plate 101. As such, precise control of the desired distance can be achieved when the desired distance between the light emitting device 102 and the optical element 103 is less than the thickness of the light guide plate 101.
  • FIG. 7 is a schematic structural diagram of a backlight according to still another embodiment of the present disclosure. 7 and FIG. 6 , on the basis of the backlight shown in FIG. 6 , the light absorbing layer disposed on the lower surface of the light guide plate 101 is removed, and the light emitting device 102 and the optical element 103 are both disposed on the light guide plate 101 .
  • the light emitting device 102 can be fixed on the surface of the side of the filling layer 104 away from the light guide plate 101 by a mechanical structure such as a bracket or a casing, so that the relative positional relationship between the light emitting device 102 and the optical element 103 can be set.
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display device includes a backlight 10, and a buffer layer 20, a transistor device layer 30, a liquid crystal layer 40, a planarization layer 50, a light conversion layer 60, and sequentially disposed in a direction away from the backlight 10.
  • the counter substrate 70 is opposed.
  • the backlight 10 may have the structure of the backlight 10 of any of the above.
  • the display device includes a plurality of sub-pixels Px (the specific number is determined according to application requirements), and the backlight 10 is capable of providing collimated beams for different sub-pixels Px through different coupling gratings 106, that is, the backlight 10 is each Each of the sub-pixels Px provides a separate collimated beam.
  • the arrangement manner (size, shape, positional relationship, etc.) of the coupling grating 106 disposed on the upper surface of the light guide plate 101 corresponds to the arrangement of the sub-pixels Px of the display device, so that the backlight 10 passes through different coupling gratings.
  • each of the coupling gratings 106 of the backlight 10 is aligned with the one sub-pixel Px in the thickness direction of the display device, so that each of the collimated beams that are emitted by the coupling grating 106 and not yet incident on the buffer layer 20 are directed to correspond.
  • Subpixel Px For example, the sub-pixels Px in the display area in FIG. 8 have exactly the same arrangement as the coupling gratings 106 in the light-emitting area, and each of the outgoing light beams of the backlight 10 is vertically incident into the corresponding sub-pixel Px.
  • a separate collimated beam can be provided for each sub-pixel Px based on the relationship between the backlight 10 and the sub-pixel Px, and the collimated beam can be provided.
  • the backlight 10 There is no light emitted from the backlight 10, so that the proportion of the light emitted by the backlight by the sub-pixel Px can be increased, which helps to improve the utilization of the light energy provided by the light-emitting device and helps to enhance the display.
  • the display brightness of the device reduces its power consumption.
  • the light conversion layer 60 in the display device includes a light transmitting area CF and a light blocking area BM, and the collimated light beams provided by the backlight 10 for any of the sub-pixels Px are directed to the light in the sub-pixel Px.
  • the collimated beam is deflected toward the light-transmitting region CF of the light-converting layer 60 as shown in FIG. So that it can exit through the light-transmitting region CF, so that the sub-pixel Px presents a bright state.
  • the collimated beam When the liquid crystal layer 40 corresponding to the sub-pixel Px is in the electric field formed by the dark state bias voltage, the collimated beam will not be deflected, and the collimated beam will be incident on the light-shielding region BM of the light conversion layer 60 and be Its absorption causes the sub-pixel Px to assume a dark state. If the collimated beam directly hits the light-shielding region BM when the liquid crystal layer 40 is not applied with an electric field, the display device will display a dark state display of the entire surface without applying power, which will contribute to the improvement of contrast.
  • the collimated beam may also be diverged by the optical structure between the source 10 and the ray conversion layer 60 (converted from a relatively small divergence beam to a relatively large divergence beam) such that the divergence is accurate.
  • the straight light beam passes through the light-transmitting region CF around the light-shielding region BM to make the sub-pixel Px appear bright, and can also be used to switch between the bright state and the dark state of the sub-pixel Px.
  • the light emitting device in the backlight 10 is a light emitting device of monochromatic light, on the basis of which the display device can realize monochrome display or multicolor display.
  • the light conversion layer 60 is a low haze scattering film layer in the light transmitting region CF, whereby the color of the sub-pixel Px when the light state is present, that is, the color of the light emitting device, and the light emitting direction is not limited to the propagation of the light beam. to. It can be seen that the display device can realize monochrome display.
  • the light converting layer 60 within the light transmissive region CF comprises a photoluminescent material.
  • the light emitting device in the backlight 10 is a blue light emitting device
  • the light conversion layer 60 includes a red light transmitting region CF, a blue light transmitting region CF, and a green light transmitting region CF, and a red light transmitting region CF.
  • the light conversion layer 60 includes a first photoluminescent material that converts blue light into red light
  • the green light transmissive area CF inner light conversion layer 60 includes a second photoluminescent material that converts blue light into green light.
  • the sub-pixel Px can present red, blue or green color according to the material type in the light-transmitting region when presenting the bright state, whereby the color display of the display device can be realized in an appropriate arrangement.
  • the light-transmitting region CF shown in FIG. 8 may be a red light-transmitting region, a blue light-transmitting region, a green light-transmitting region, a red light-transmitting region, and a blue light-transmitting region from left to right.
  • the arrangement of the green light-transmissive areas is arranged.
  • the design of the coupling grating 106 can be adjusted for the difference between the conversion efficiencies of each color to achieve an equilibrium of the exiting light intensity between the different colors (ie, the coupling grating 106 is configured to be based on the corresponding sub-pixel type The difference is that the outgoing beams of different light intensities are provided).
  • the light intensity of the collimated light beam provided for the blue sub-pixel can be appropriately reduced on the basis of the above examples, and the light intensity of the collimated light beam provided for the red sub-pixel and the green sub-pixel can be appropriately raised.
  • the transistor device layer 30 includes a grating layer 301 whose surface is in contact with the liquid crystal layer 40.
  • the collimated beam is directed to the light-shielding region BM of the light conversion layer in each of the sub-pixels Px, and the grating layer 301 includes a deflection grating disposed in each of the sub-pixels Px, the deflection grating being configured to direct the transmitted collimated beam
  • the light transmitting region CF of the light conversion layer 60 is deflected.
  • the collimated beam is directed within each sub-pixel Px to the light transmissive region CF of the ray conversion layer
  • the grating layer 301 includes a deflection grating disposed within each sub-pixel Px, the deflection grating being configured to The transmitted collimated beam is deflected toward the light blocking region BM of the light conversion layer 60. It should be understood that, according to the positional relationship between the center of the light-transmitting region CF in each sub-pixel Px and the center of the deflection grating, the refraction angle of the transmitted beam expected by the deflection grating in each sub-pixel Px can be determined.
  • each of the deflected grating structures having the desired optical characteristics can be obtained in advance according to, for example, the design of any of the optical elements described above, and then according to any of the above opticals.
  • the fabrication of the device produces a deflection grating on the upper surface of the transistor device layer 30 to form the desired structure of the grating layer 301.
  • the deflection grating may have a grating structure as shown in FIG. 2 or FIG. 3, or may have a grating structure of a common grating having only one valley and one ridge in each grating period, and may not be limited to this.
  • the liquid crystal layer 40 can be configured such that the edge refractive index at the dark state bias voltage is the same as the material refractive index of the grating layer 301.
  • the edge refractive index refers to a refractive index of liquid crystal molecules close to the grating layer 301 with respect to the collimated light beam.
  • a liquid crystal mode in which liquid crystal molecules are rotated in a plane of light deflection is selected or a blue phase liquid crystal is used such that the liquid crystal layer 40 is in an electric field formed by a dark state bias voltage, liquid crystal molecules close to the grating layer 301 pass.
  • Polarization occurs in the plane of deflection of the light, and the refractive index of the light in the wavelength band of the collimated beam in the thickness direction of the display device is equal to the refractive index of the material forming the grating layer 301.
  • the refractive index of the two sides of the deflection grating is the same, so that the light does not deflect when passing through the interface of the deflection grating, that is, the deflection grating is lost.
  • the effect of changing the propagation direction of the collimated beam is such that the collimated beam continues to propagate along the original propagation direction and is absorbed after reaching the pointed opaque region BM, so that the sub-pixel Px assumes a dark state.
  • the liquid crystal layer 40 is in an electric field formed by a bright bias voltage (such as no power)
  • the liquid crystal molecules can be in a disorderly uniform state without any influence on the deflection grating, so that the collimated beam After being transmitted through the deflection grating, the light is deflected toward the light transmitting region CF, so that the sub-pixel Px is in a bright state.
  • the state of the liquid crystal molecules in the liquid crystal layer 40 is also between the above two conditions, so that the bright state and the dark state can be displayed according to the difference of the bias voltage.
  • Other gray levels between states Thereby, the control of the display gray scale of each sub-pixel Px can be realized by changing the applied bias voltage.
  • the backlight described above is employed in the display device that realizes the liquid crystal display mode described above, the backlight in the display device that realizes the liquid crystal display mode may not be limited to the form described above.
  • any backlight capable of providing a collimated beam directed to the first region for each sub-pixel Px can be used to implement the display device of the above liquid crystal display mode, which can be controlled by different bias voltages.
  • the degree to which the straight beam is deflected toward the second region thereby achieving control of the display gray scale of each sub-pixel Px.
  • the first region and the second region are respectively one of the light shielding region BM and the light transmitting region CF of the light conversion layer 60.
  • the display device is fabricated from a first substrate and a second substrate by a liquid crystal forming process.
  • the first substrate is obtained by sequentially forming the buffer layer 20 and the transistor device layer 30 on the light-emitting side of the backlight 10
  • the second substrate is sequentially formed on the backlight side of the opposite substrate 70 by the light-converting layer 60 and the planarization layer 50.
  • the buffer layer 20 may be formed of a material such as transparent insulating resin, silicon oxide, silicon nitride, or the like, and has a refractive index of, for example, 1.2-1.4.
  • the main function is to provide a flat surface for forming the transistor device layer 30. prepare for.
  • the transistor device layer 30 may include, for example, a gate conductive layer, a gate insulating layer, an active layer, a source/drain conductive layer, a passivation layer, a transparent conductive layer (for example, a pattern including a pixel electrode formed of an indium tin oxide material), and a flat
  • a gate conductive layer for example, a gate conductive layer, a gate insulating layer, an active layer, a source/drain conductive layer, a passivation layer, a transparent conductive layer (for example, a pattern including a pixel electrode formed of an indium tin oxide material), and a flat
  • the structure and the like can be realized by referring to the array substrate in any of the display devices of the prior art to the extent possible.
  • the grating layer 301 may be formed, for example, on the surface of the planarization layer of the transistor device layer 30, or may be disposed, for example, on the interface of two adjacent layers in the transistor device layer 30.
  • the material for forming the counter substrate 70 is, for example, a transparent material such as glass or a transparent resin, and the refractive index may be, for example, 1.5 to 2.0.
  • the light conversion layer 60 may, for example, include a structure of a black matrix layer and a color light conversion layer, and may be implemented to the extent possible within the range of the color filter substrate in the display device of any of the prior art.
  • the planarization layer 50 may be formed using a material such as a transparent insulating resin, silicon oxide, silicon nitride, or the like, and may have a refractive index of, for example, 1.2 to 1.4.
  • FIG. 9 is a schematic structural diagram of a display device according to still another embodiment of the present disclosure.
  • the display device shown in FIG. 9 removes the arrangement of the grating layer 301 and the deflection grating, and the sub-pixel Px is set to have a central position corresponding to the position of the coupling grating 106, and is formed in the liquid crystal layer 40.
  • the liquid crystal lens realizes control of the display gray scale of each sub-pixel Px.
  • the light-shielding region BM in the sub-pixel Px is disposed at the center of the sub-pixel Px, and the light-transmitting region CF is disposed around the light-shielding region BM.
  • a liquid crystal lens for example, an equivalent convex lens formed by deflection of liquid crystal molecules
  • the collimated beam is transmitted as divergent light, and part of the divergent light is transmitted through the transparent region CF to realize a bright state display of the sub-pixel Px.
  • the liquid crystal layer 40 When the liquid crystal layer 40 is not energized or is in an electric field formed by a dark state bias voltage, the liquid crystal layer 40 does not have the function of aligning the straight beam for divergence, and the collimated beam continues to propagate along the original propagation direction, and After reaching the light-shielding area BM pointed to, it is absorbed, so that the sub-pixel Px assumes a dark state.
  • the light emitting device in the backlight 10 is a light emitting device of monochromatic light, on the basis of which the display device can realize monochrome display or multicolor display.
  • the light conversion layer 60 is a low haze scattering film layer in the light transmitting region CF, whereby the color of the sub-pixel Px when the light state is present, that is, the color of the light emitting device, and the light emitting direction is not limited to the propagation of the light beam. to. It can be seen that the display device can realize monochrome display.
  • the light converting layer 60 within the light transmissive region CF comprises a photoluminescent material.
  • the light emitting device in the backlight 10 is a blue light emitting device
  • the light conversion layer 60 includes a red light transmitting region CF, a blue light transmitting region CF, and a green light transmitting region CF, and a red light transmitting region CF.
  • the light conversion layer 60 includes a first photoluminescent material that converts blue light into red light
  • the green light transmissive area CF inner light conversion layer 60 includes a second photoluminescent material that converts blue light into green light.
  • the sub-pixel Px can present red, blue or green color according to the material type in the light-transmitting region when presenting the bright state, whereby the color display of the display device can be realized in an appropriate arrangement.
  • the light-transmitting region CF of each sub-pixel Px shown in FIG. 9 may be a red light-transmitting region, a blue light-transmitting region, a green light-transmitting region, a red light-transmitting region, and a blue color from left to right.
  • the light transmissive area and the green transparent area are regularly arranged.
  • the design of the coupling grating 106 can be adjusted for the difference between the conversion efficiencies of each color to achieve an equilibrium of the exiting light intensity between the different colors (ie, the coupling grating 106 is configured to be based on the corresponding sub-pixel type The difference is that the outgoing beams of different light intensities are provided).
  • the light intensity of the collimated light beam provided for the blue sub-pixel can be appropriately reduced on the basis of the above examples, and the light intensity of the collimated light beam provided for the red sub-pixel and the green sub-pixel can be appropriately raised.
  • each n sub-pixels Px in any of the above display devices constitute one pixel unit (n is a positive integer).
  • each sub-pixel Px corresponds to one pixel in the display screen, and thus each pixel unit in the display device is composed of one sub-pixel Px.
  • one pixel in the display screen corresponds to three sub-pixels that are successively arranged and have different colors, and thus each pixel in the display device
  • the unit is composed of one red sub-pixel, one blue sub-pixel, and one green sub-pixel arranged in series.
  • the display device of the present disclosure may be any display product, component such as a display panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • FIG. 10 is a schematic diagram of a three-dimensional structure of a display device according to an embodiment of the present disclosure.
  • the display device includes sub-pixels Px arranged in rows and columns in the display area.
  • the display device may include a backlight of any of the above, or may have an internal structure of any of the above display devices.
  • the display device can have a smaller thickness based on the lighter and thinner characteristics of the included backlight.
  • the display device can realize the arrangement of no microstructure (for example, the deflection grating and the coupling grating) at the pixel opening, avoiding the problem of conflict between the transparent region and the display region in the transparent display device, and contributing to transparency.
  • the high transmittance of the display device can also eliminate the arrangement of the polarizer or the metal polarization grid, thereby greatly increasing the display transmittance.
  • the display device Based on the integrated design of the backlight and the array substrate, the accurate alignment of the coupled grating and the sub-pixels is facilitated, and the internal optical path is not affected by the alignment error when the box is formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种背光源(10)及其制作方法、显示装置。背光源(10)包括:导光板(101);发光器件(102),发光器件(102)在导光板(101)的厚度方向上的一侧,发光器件(102)用于发出射向导光板(101)的内部的光线;光学元件(103),光学元件(103)在发光器件(102)的发出光线的一侧,光学元件(103)被构造为将发光器件(102)发出的光线转换为在导光板(101)内全反射传播的平行光束。发光器件(102)和光学元件(103)可以在导光板(101)的厚度方向上将发光器件(102)发出的光线转化为平行光束,因而可以在导光板(101)很薄的情况下按照需求将光线耦入导光板(101)内部,有助于减少背光源(10)和相关产品的厚度。

Description

背光源及其制作方法、显示装置
本公开要求于2018年01月03日提交、申请号为201810004725.6、发明名称为“背光源和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种背光源及其制作方法、显示装置。
背景技术
液晶显示设备包括背光源和液晶面板,其中液晶面板本身并不发光,需要由背光源来提供光源,使得液晶面板显示图像。相比于传统的直下式背光源,侧入式背光源具有较为轻薄的特点,因此被广泛应用在液晶显示设备中。
发明内容
本公开提供一种背光源及其制作方法、显示装置。
第一方面,本公开提供一种背光源,所述背光源包括:
导光板;
发光器件,所述发光器件在所述导光板的厚度方向上的一侧,所述发光器件用于发出射向所述导光板的内部的光线;
光学元件,所述光学元件在所述发光器件的发出光线的一侧,所述光学元件被构造为将所述发光器件发出的光线转换为在所述导光板的内全反射传播的平行光束。
在一种可能的实现方式中,所述导光板在厚度方向上的至少一侧的表面上包括至少一个耦合光栅,
每个所述耦合光栅均被构造为将入射的所述平行光束按照与所述耦合光栅所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板的方向传播的准直光束。
在一种可能的实现方式中,所述导光板的出光侧的表面上包括至少一个透射型的耦合光栅,所述导光板的远离出光侧的一侧的表面上包括至少一个反射型的耦合光栅,
每个所述耦合光栅均被构造为将入射的所述平行光束按照与所述耦合光栅所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板的方向传播的准直光束。
在一种可能的实现方式中,所述导光板的表面上包括多个耦合光栅,所述耦合光栅对应的所述光强比率正相关于所述耦合光栅与所述光学元件之间的距离,
每个所述耦合光栅均被构造为将入射的所述平行光束按照与所述耦合光栅所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板的方向传播的准直光束。
在一种可能的实现方式中,其中所述光学元件为全息微结构,所述全息微结构具有偏振依赖性。
在一种可能的实现方式中,所述导光板在厚度方向上的两侧均设置有填充层,所述导光板的材料折射率大于所述填充层的材料折射率。
在一种可能的实现方式中,所述导光板和所述填充层均由透明材料形成。
在一种可能的实现方式中,所述发光器件在所述导光板的边缘处,所述导光板在厚度方向上的至少一侧设置有吸光层,所述吸光层位于所述发光器件所在的所述导光板的边缘处。
在一种可能的实现方式中,所述导光板在厚度方向上具有第一侧和第二侧,所述发光器件设置在所述导光板的第一侧的表面上,所述光学元件设置在所述导光板的第二侧的表面上,所述发光器件与所述光学元件彼此相对。
第二方面,本公开还提供一种背光源的制作方法,所述方法包括:
在导光板的厚度方向上的第一侧的表面上形成发光器件,所述发光器件用于发出射向所述导光板的内部的光线;
在所述导光板的厚度方向上的第二侧的表面上形成光学元件,所述光学元件与所述发光器件彼此相对,所述光学元件被构造为将所述发光器件发出的光线转换为在所述导光板的内全反射传播的平行光束。
第三方面,本公开提供一种显示装置,所述显示装置包括上述任意一种的 背光源。
在一种可能的实现方式中,所述显示装置包括多个子像素,所述导光板在厚度方向上的至少一侧的表面上设置有至少一个耦合光栅,所述背光源分别通过不同的所述耦合光栅为不同的所述子像素提供准直光束。
在一种可能的实现方式中,所述显示装置还包括在远离所述背光源的方向上依次层叠的液晶层和光线转换层;其中,
所述光线转换层在每个所述子像素中均包括透光区域和遮光区域,所述背光源为任一子像素所提供的所述准直光束均指向该子像素中的所述遮光区域。
在一种可能的实现方式中,所述液晶层被构造为在亮态偏置电压下将所述准直光束偏转为指向所在的子像素中的所述透光区域。
在一种可能的实现方式中,所述发光器件为蓝光发光器件,所述光线转换层包括红色的所述透光区域、蓝色的所述透光区域和绿色的所述透光区域,
所述光线转换层在红色的所述透光区域内包括将蓝光转换为红光的第一光致发光材料,
所述光线转换层在绿色的所述透光区域内包括将蓝光转换为绿光的第二光致发光材料。
在一种可能的实现方式中,显示装置还包括在远离所述背光源的方向上依次层叠的光栅层、液晶层和光线转换层;其中,
所述光线转换层在每个所述子像素中均包括第一区域和第二区域,所述背光源为任一子像素所提供的所述准直光束均指向该子像素中的所述第一区域;
所述光栅层在每个所述子像素中均包括偏转光栅,每个所述偏转光栅均被构造为将所述准直光束偏转为指向所在的子像素中的所述第二区域;
其中,所述第一区域和所述第二区域分别是遮光区域和透光区域中的一个。
在一种可能的实现方式中,所述偏转光栅的表面与所述液晶层相接触,所述液晶层被构造为在暗态偏置电压下的边缘折射率与所述光栅层的形成材料的折射率相同,所述边缘折射率为靠近所述光栅层的液晶分子对于所述准直光束的折射率。
在一种可能的实现方式中,所述发光器件为蓝光发光器件,所述光线转换层包括红色的所述透光区域、蓝色的所述透光区域和绿色的所述透光区域,
所述光线转换层在红色的所述透光区域内包括将蓝光转换为红光的第一光 致发光材料,
所述光线转换层在绿色的所述透光区域内包括将蓝光转换为绿光的第二光致发光材料。
在一种可能的实现方式中,所述显示装置还包括缓冲层、晶体管器件层、平坦化层和对置基板,
所述缓冲层、所述晶体管器件层、所述液晶层、所述平坦化层、所述光线转换层和所述对置基板在远离所述背光源的方向上依次层叠。
附图说明
图1是本公开一个实施例的背光源的结构示意图;
图2和图3分别是本公开实施例中的一种调制光栅模型的结构示意图;
图4是本公开实施例中一种设计光学元件的原理示意图;
图5是本公开一个实施例提供的背光源的制作方法的步骤流程示意图;
图6是本公开又一实施例的背光源的结构示意图;
图7是本公开又一实施例的背光源的结构示意图;
图8是本公开一个实施例的显示装置的结构示意图;
图9是本公开又一实施例的显示装置的结构示意图;
图10是本公开一个实施例的显示装置的三维结构示意图。
具体实施方式
为使本公开的原理和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
对于典型的侧入式背光源,其发光器件设置在导光板的侧面,光线从侧面 耦入导光板,并通过透镜或棱镜从导光板的出光面均匀出射。可以注意到,在这样的侧入式背光源中,过薄的导光板会使发光器件难以在侧面贴合或者使发光亮度降低,同时必要的光学辅助结构和支撑结构也会增大背光源的厚度,使得背光源的厚度难以降低,不能满足轻薄液晶显示设备的应用需求。
图1是本公开一个实施例的背光源的结构示意图。参见图1,该背光源包括导光板101、发光器件102和光学元件103,还包括填充层104、吸光层105和耦合光栅106。可以看出,导光板101在图1中水平放置,而图1中的上侧和下侧分别是其厚度方向上的两侧。应理解的是,图1示出的位置是导光板101的一个边缘处,导光板101的其余部分的结构可以根据图1所示出的结构推知。
发光器件102设置在导光板101上侧的边缘处,且发光器件102的出光侧朝下,即朝向导光板101的内部。在一个示例中,发光器件102是压印或贴合在导光板101上表面边缘处的发光二极管(LED)芯片。在又一示例中,发光器件102是在导光板101上表面边缘处制作形成的薄膜发光器件。以此为例,发光器件102可以发出射向导光板101的内部的光线。
需要说明的是,本文中的光学元件指的是背光源中能够实现一定光学功能的结构,可以例如是通过所具有的表面形貌实现光学功能的表面结构、全息微结构(基于全息术实现光学功能的微结构),或者由棱镜或透镜组成的结构。图1中,光学元件103设置在发光器件102的出光侧(此时光学元件103在发光器件102发出光线的一侧),并且光学元件103与发光器件102之间的相对位置固定。在一个示例中,发光器件102为点状光源且发出的光呈圆锥状,此时可以按照发光器件102发出的光在照射到导光板101下表面上时所呈现的图形来设置光学元件103的形状、位置和大小。例如,光学元件103的形状为中心位于圆锥(上述点状光源发出的光所呈现的圆锥)的轴线上的圆形或椭圆形,并能够接收发光器件102向导光板101下表面发射的全部光线。如此,发光器件102与光学元件103之间的距离为导光板101的厚度h,并且沿着光线的传播方向发光器件102与光学元件103彼此相对,从而光学元件103与发光器件102之间的相对位置得以固定。在又一示例中,可以在此基础上将光学元件103的设置区域向四周拓展使其能接收光线的范围大于光线实际照射的范围,如此有助于避免边缘处制作工艺上或边缘处微结构的可靠性上的不足影响光学元件103的光能利用率。在又一示例中,发光器件102为线状光源且发出的光线呈棱锥状, 此时同样可以按照发光器件102发出的光线在照射到导光板101下表面时所呈现的图形设置光学元件103的形状、位置和大小。例如,光学元件103的形状为矩形,该矩形的长边方向与线状光源的延伸方向一致,且光学元件103能够接收发光器件102向导光板101下表面发射的全部光线。如此,发光器件102与光学元件103之间的距离为导光板101的厚度h,并且沿着光线的传播方向发光器件102与光学元件103彼此相对,从而光学元件103与发光器件102之间的相对位置得以固定。
光学元件103被构造为将发光器件102发出的光线反射为在导光板101内全反射传播的平行光束,该平行光束的传播方向与导光板101之间的夹角为预设的传播角度θ。在一个示例中,光学元件103是例如通过对导光板101的下表面进行浮雕或刻蚀而形成的具有微小构造的表面图案,预先针对于发光器件102发出光线的波前设计得到。例如,可以基于光线的波长、光线的偏振态、两侧介质的折射率以及不同位置处的入射角和所需要的反射角,通过仿真算法结合数值优化算法,在调制光栅模型的基础上计算得到所需要的光学元件103的各项参数。在一个示例中,光学元件103可以将LED芯片出光的波前(近似朗伯分布)转换为在导光板101中以特定全反射形式进行传播的波导模式(近似准直)。光学元件103的位相调制分布可以表示为x-y坐标的幂次形式:x 0+y 0+A 10x+A 01y+A 20x 2+A 02y 2+A 11xy+A 30x 3+A 03y 3+A 21x 2y+A 12xy 2+…,其中x-y坐标系位于光学元件103所在平面,原点位于光学元件103的中心,A 10、A 01、A 11、...等均为各幂次的系数。上述仿真算法可以例如是标量理论、角谱理论、RCWA-严格耦合波分析算法、FDTD-时域有限差分算法、FEM-有限元算法等,上述值优化算法可以例如是遗传算法、模拟退火算法、蜂群算法等。根据特定应用场景下光线的波长、光线的偏振态、两侧介质的折射率以及不同位置处的入射角和所需要的反射角等必要信息,可以通过上述方式计算得到各幂次的系数的数值。可理解的是,光学元件103可将发光器件102发出的光线反射为在导光板101内部具有预设传播角度θ的平行光束,因此光学元件103可与焦点位于发光器件102处的抛物型反射面等效或近似等效。
在一个示例中,上述调制光栅模型在每个光栅周期内可以具有如图2或图3所示出的形式。图2示出了由多个等高凸起依次排列形成的光栅结构,其中凸起的宽度和相邻凸起之间的间距可以被调制,按照不同的调制方式可以得到具 有不同功能的光学结构。图2示出了由多个等宽台阶紧密排列形成的光栅结构,而每个台阶的高度可以被调制,按照不同的调制方式可以得到具有不同功能的光学结构。结合到这里,可以例如以图2或图3所示出的调制光栅模型为基础,按照上述设计方式计算调制每个光栅周期内的可调制参数,以得到能将发光器件102发出的光线转化为具有预设传播角度θ的平行光束的光栅结构,以作为光学元件103设置在导光板101上。
在一个示例中,光学元件103对发光器件102发出的光线的转换具有偏振依赖性(polarization-dependent),如此可以使由光学元件103转换得到的平行光束具有确定的偏振态。例如,光学元件103可以对某种偏振态的光线的响应很强,衍射效率很高,从而可以高效地将发光器件102发出的该类光线的波前转换为在导光板101中以特定全反射形式进行传播的波导模式;同时,光学元件103对其他偏振态的光线的衍射效率很低,基本没有如上所述效果,这些光线大部分会在导光板101的下表面或上表面透射出去。另外,为了避免杂光影响出光,可以在导光板101在厚度方向上的至少一侧设置吸光层,例如图1中所示的那样在导光板101的上下两侧的发光器件102所在的边缘处设置吸光层105,来使得未被转化为具有预设传播角度θ的平行光束的光线被吸光层105吸收。在一种实现方式中,吸光层105可以遮盖发光器件102和光学元件103,并可以沿着平行光束的传播方向延伸预定距离,以保障吸光效果。当然,吸光层的设置方式可以不仅限于以上方式。此外,在如上所述的设计过程中,在使用优化算法的阶段中,可以使用两种偏振光的转换效果的比值作为主要的优化目标函数,以达到上述偏振依赖的效果。
一种光学元件的设计方式示例如图4所示,参见图4,光学元件103中的折射率调制分布可以按照分区域光栅的形式进行设计,即在光学元件103的径向(或横向或纵向,例如图4中的左右方向),将其分成多个区域(可以等分或非等分,图4中以等分为例)分别进行设计。例如,在将光学元件103分成的区域数量足够多足够密集时,可以近似认为发光器件102照射到该区域内的光线是平行光束,由此可以将该区域内的光学元件103按照例如普通反射光栅的设计方式进行设计,例如根据反射波的光栅方程n 1sinα-n 1sinα 0=mλ/P(m=0,±1,±2,…)计算光栅周期P。该光栅方程中,n 1是导光板101的材料折射率,α是预设传播角度θ的余角(α+θ=90°),α 0是光线的入射角(可由区域与发光 器件102之间的相对位置确定),m为衍射级次,λ是光线的波长。一般情况下,光栅的零级和/或一级衍射的衍射强度比较大,高阶的衍射级次的衍射强度远小于前两者。如图4所示,在一个示例中,可以设置导光板101的厚度h与圆形的发光器件102的直径(例如图4中所示出的长度l)之比大于5,并可以设置圆形的光学元件103的直径(或外径)与圆形的发光器件102的直径(或外径)之比大于3,由此保障光学元件103所能取得的光耦合效率。可以理解,将光学元件103分成的区域数量越多越密集,在光学元件103的每一份上所接收到的发光器件102的光线的发散角就会越小,针对其进行设计所得到的光耦合效率就越大。
需要说明的是,由于光学元件103的作用是将发光器件102发出的光线转换成在导光板101内全反射传播的平行光束,因此需要光栅结构在较大的衍射角上具有较高的衍射效率(该衍射角须使得相应的衍射波满足导光板中的全反射条件)。比如,折射率为1.5的介质和空气界面的全反射角约为40度。为保证每个光栅周期内有足够多的可以对入射光波产生有效调制的折射率分布方式可以选择,并使需要优化的衍射级次不会太高,可以将光栅周期限制在1-2um的范围内。其中,衍射级次的选择可以通过上述光栅方程计算得到。
图5是本公开一个实施例提供的背光源的制作方法的步骤流程示意图。参见图5,所述方法中:
在步骤S1中,在导光板的厚度方向上的第一侧的表面上形成发光器件。
其中,所述发光器件用于发出射向所述导光板的内部的光线。在一个示例中,参见图1,可以采用压印或贴附的方式在在导光板101上表面边缘处形成发光二极管芯片,作为所述发光器件102。在又一示例中,参见图1,可以采用半导体制作工艺在在导光板101上表面边缘处制作形成薄膜发光器件,作为所述发光器件102。当然,发光器件的形成方式可以不仅限于上述示例。
在步骤S2中,在所述导光板的厚度方向上的第二侧的表面上形成光学元件。
其中,所述光学元件与所述发光器件彼此相对,所述光学元件被构造为将所述发光器件发出的光线转换为在所述导光板的内全反射传播的平行光束。在一个示例中,上述光学元件103可以通过在导光板101的表面上进行的刻蚀工艺形成,例如:在导光板101的下表面上沉积一层光阻(Photoresist),然后使用具有与设计得到的光栅结构(例如形如图2所示的光栅结构)相对应的图形 的掩膜板对光阻进行曝光,然后通过显影去除待刻蚀区域的光阻,再使用与导光板101的形成材料相对应的刻蚀剂对待刻蚀区域内的导光板101表面进行刻蚀,去除剩余的光刻胶后完成导光板101表面的光学元件103的制作。在又一示例中,上述光学元件103可以通过在介质层上进行的微纳工艺形成,其中介质层设置在导光板101的表面上,例如:在导光板101的下表面上沉积或贴附一层介质薄膜,在对准光学元件103的设置区域后通过微纳工艺在介质薄膜表面上制作设计得到的光栅结构,以完成光学元件103的制作。在又一示例中,上述光学元件103通过纳米压印工艺生成,包括:制备光学元件103的模板,并使用模板对涂覆有压印胶的导光板表面进行压印,从而生成所期望的光学元件103。在此过程中,可以选用高折压印胶(或通过材料的选取使压印胶与压印胶之下的材料折射率差较大),以获取较高的衍射效率。
在一个示例中,具有预设传播角度θ的平行光束以全反射的形式在导光板101的内部传播。为满足全反射条件,可以如图1所示的那样在导光板101在厚度方向上的两侧均设置填充层104,其中导光板101的材料折射率需要大于填充层104的材料折射率,并且预设传播角度θ、导光板101的材料折射率以及填充层104的材料折射率之间需要满足全反射条件。需要说明的是,图1中吸光层105设置在填充层104远离导光板101的一侧,从而可使吸光层105的覆盖区内的全反射条件得以满足。而且,图1中的发光器件102与导光板101的上表面相贴合,即发光器件102设置在填充层104靠近导光板101的一侧,如此更有利于控制发光器件102与光学元件103之间的距离的精度。此外,图1中的光学元件103设置在填充层104靠近导光板101的一侧,如此更有利于控制发光器件102与光学元件103之间的距离的精度;光学元件103设置在吸光层105靠近导光板的一侧,以使光线不会被吸光层105遮挡。
图1中,导光板101在厚度方向上的两侧均设置有耦合光栅106,该耦合光栅106被构造为将入射的平行光束按照与耦合光栅106的所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板101的方向传播的准直光束,所述出射光束的传播方向与导光板101之间的夹角为预设的出射角度。其中,反射情形下的光强比率可以是反射率,透射情形下的光强比率可以是透射率。如图1所示,在一个示例中,平行光束以预设传播角度θ在导光板101上下表面之间以全反射方式传播,而耦合光栅106则可以将入射的平行 光束反射或透射为垂直于导光板101的出射光束(例如图1中若干个向上指的多个箭头所示,此时上述预设的出射角度为90°),并且所有的出射光束的光强在所述背光源的出光面上均匀分布,比如使得到达导光板101的上表面处的出射光束均具有相同的光强。可理解的是,在此情况下在导光板101内全反射传播的平行光束的光强是逐渐减小的,因此入射到不同耦合光栅106的平行光束的光强存在差别。而为了使出射光束均具有相同的光强,耦合光栅106不仅要具有将上述平行光束部分转换为所需要的出射光束的功能,而且光强比率还要根据所处位置具有相应的数值。在一个示例中,所述至少一个耦合光栅106包括多个耦合光栅106(耦合光栅106的数量为多个),所述耦合光栅106对应的所述光强比率正相关于所述耦合光栅106与所述光学元件103之间的距离。例如,沿着所述平行光束在导光板101内部的传播路径,耦合光栅106所对应的光强比率逐渐增大。在一个示例中,为使一个平行光束的能量平均分给一百个出射光束,沿着平行光束的传播路径依次排列的一百个耦合光栅106所对应的光强比率应依次为1/100、1/99、1/98、…、1。
可以理解的是,每个耦合光栅106都会将入射的平行光束转换为出射光束和继续传播的平行光束,其中入射角、入射光强、反射角、反射光强、折射角、折射光强均具有预期值。据此,可以按照例如上述任意一种光学元件103的设计方式预先得到每一种具有预期光学特性的耦合光栅106的光栅结构,然后按照上述任意一种光学元件103的制作方式在导光板101的表面上制作耦合光栅106。可理解的是,耦合光栅106可以具有形如图2或图3所示出的光栅结构,也可以具有在每个光栅周期内仅有一个谷和一个脊的普通光栅的光栅结构,并可以不仅限于此。在平行光束具有预设的偏振态时,还可以参照偏光片的原理设置每个耦合光栅106所对应的光强比率。依照应用需求的不同,还可以按照使出射光束为准直光束(发散角小于一定阈值的平行传播的光束)的方式进行耦合光栅106的设计。
还可以理解的是,由于耦合光栅106设置在需要有光线从背光源中出射的位置处,因此可以将在背光源的出光区域内进行耦合光栅106的设置。应理解的是,在背光源包括吸光层105时,吸光层105应当设置在背光源的出光区域之外。此外,由于耦合光栅106只有在有平行光束入射时才能发挥作用,因此耦合光栅106应当设置在辐照区域内,所述辐照区域指的是所述平行光束在导 光板101内全反射传播时在导光板101的表面上所经过的区域,例如图1中所示出的有耦合光栅106分布的导光板101的表面区域。通过平行光束的光束宽度和预设传播角度θ的设计,可以使辐照区域在导光板101所在平面内的投影布满背光源的整个出光区域,以保证出射光束的光强在所述背光源的出光面上均匀分布。
在一个示例中,导光板101的形成材料可以例如是玻璃或树脂等透明材料,折射率可以处于1.5-2.0的范围内,并可以具体选取折射率为1.7-1.8或1.8的材料。填充层104的形成材料可以例如是折射率为1.2-1.4的树脂材料,并可以具体选取折射率为1.2或1.2-1.3的材料。在导光板101和填充层104均由透明材料形成的情况下,背光源可以具有很好的透明度,从而可以应用于透明显示器件当中。
图6是本公开又一实施例的背光源的结构示意图。对比图6与图1后可知,图6所示的背光源中将全部的耦合光栅106均设置在了导光板101的上侧,且预设传播角度θ的设定数值略有增大。此时,为满足全反射条件,导光板101的材料折射率需足够大的要求和填充层104的材料折射率需足够小的要求变得相对严格一些。然而可以看出的是,由于将耦合光栅106全部设置为透射式光栅且均在导光板的上表面上,因此图6所示的背光源在耦合光栅106的设计难度和制作工艺难度上都有所下降。
可以看出,图1所示的背光源和图6所示的背光源中,发光器件102和光学元件103均按照下述方式设置:导光板101在厚度方向上具有第一侧和第二侧,发光器件102设置在导光板101的第一侧的表面上,光学元件103设置在导光板102的第二侧的表面上,且发光器件102与所述光学元件103彼此相对。如此,可以由导光板101的厚度提供发光器件102与光学元件103之间所期望的距离,有助于背光源整体厚度的降低。在一种变形示例中,还可以将发光器件102设置导光板101的内部,比如设置在导光板101上表面的凹槽底部。如此,可以在发光器件102与光学元件103之间所期望的距离小于导光板101厚度时实现所期望的距离的精确控制。
图7是本公开又一实施例的背光源的结构示意图。对比图7与图6后可知,在图6所示的背光源的基础上,去除了导光板101下表面上设置的吸光层,并将发光器件102和光学元件103均设置在了导光板101的下侧。如此,可以通 过例如支架或外壳一类的机械结构将发光器件102固定在填充层104远离导光板101的一侧的表面上,从而发光器件102和光学元件103之间的相对位置关系的设置可以在完成对导光板101表面结构的制作之后进行,容易进行后继的调整和修理,从而解决受工艺精度限制而产品良率无法保证的问题。
图8是本公开一个实施例的显示装置的结构示意图。参见图8,所述显示装置包括背光源10,以及在远离所述背光源10的方向上依次设置的缓冲层20、晶体管器件层30、液晶层40、平坦化层50、光线转换层60和对置基板70。
该背光源10可以具有上述任意一种的背光源10的结构。如图8所示,显示装置包括多个子像素Px(具体数量依照应用需求确定),而背光源10能够通过不同的耦合光栅106为不同的子像素Px提供准直光束,即背光源10为每个子像素Px各自提供单独的准直光束。在一个示例中,导光板101上表面上设置的耦合光栅106的设置方式(大小、形状、位置关系等)与显示装置的子像素Px的排列方式相对应,使得背光源10通过不同的耦合光栅106分别为显示装置的每个子像素Px提供单独的准直光束。此时,背光源10的每个耦合光栅106各自与一个子像素Px在显示装置的厚度方向上对齐,使得每一由耦合光栅106出射、还未入射到缓冲层20的准直光束均指向对应的子像素Px。例如,图8中的显示区域内的子像素Px与出光区域内的耦合光栅106具有完全相同的排列方式,背光源10的每个出射光束都各自垂直入射到所对应的子像素Px中。可以理解的是,相对于整面均匀出光的面光源式的背光源而言,可以基于背光源10与子像素Px之间设置关系为每个子像素Px提供单独的准直光束,而准直光束之间没有背光源10发出的光线出射,因而能够使背光源出射的光线中被子像素Px所利用的比例提高,有助于提升发光器件所提供的光能的利用率,并有助于提升显示装置的显示亮度,降低其使用功耗。
如图8所示,显示装置中的光线转换层60包括透光区域CF和遮光区域BM,而由背光源10为任一子像素Px提供的准直光束内均指向该子像素Px中的光线转换层60的遮光区域BM。在一个示例中,在与子像素Px对应的液晶层40处于亮态偏置电压所形成电场中时,准直光束会如图8中所示的那样向光线转换层60的透光区域CF偏转,从而可以穿过透光区域CF后出射,使得该子像素Px呈现亮态。而在与子像素Px对应的液晶层40处于暗态偏置电压所形成电场中时,准直光束将会不发生偏转,此时准直光束会射向光线转换层60的遮光区 域BM并被其吸收,使得该子像素Px呈现暗态。如果液晶层40在不外加电场时准直光束会直接射向遮光区域BM,那么显示装置就会在不加电的情况下呈现整面的暗态显示,如此将有助于对比度的提升。在一个示例中,准直光束还可以被位于光源10与光线转换层60之间的光学结构发散(由发散角相对较小的光束转变为发散角相对较大的光束),使得被发散的准直光束透过遮光区域BM周围的透光区域CF而使子像素Px呈现亮态,同样可以用于实现子像素Px的亮态与暗态之间的切换。
在一个示例中,背光源10中的发光器件为单色光的发光器件,在此基础上显示装置可以实现单色显示或者多色显示。在一个示例中,光线转换层60在透光区域CF中为低雾度散射膜层,由此子像素Px在呈现亮态时的颜色即发光器件的颜色,且出光方向不仅限于光束的传播反向。可以看出,显示装置可以实现单色显示。在又一示例中,透光区域CF内的光线转换层60包括光致发光材料。例如,背光源10中的发光器件为蓝光发光器件,而光线转换层60包括红色的透光区域CF、蓝色的透光区域CF和绿色的透光区域CF,红色的透光区域CF内的光线转换层60包括将蓝光转换为红光的第一光致发光材料,而绿色的透光区域CF内光线转换层60包括将蓝光转换为绿光的第二光致发光材料。如此,子像素Px在呈现亮态时可以根据透光区域内材料种类而呈现红色、蓝色或绿色,由此在适当的排列方式下可以实现显示装置的彩色显示。例如,图8中所示出的透光区域CF可以从左至右按照红色的透光区域、蓝色的透光区域、绿色的透光区域、红色的透光区域、蓝色的透光区域、绿色的透光区域的规律进行排列。此外,可以针对于每种颜色的转换效率之间的差别,调整耦合光栅106的设计方式,来使不同颜色之间的出射光强达到平衡(即耦合光栅106被构造为根据所对应子像素类型的不同提供不同光强的出射光束)。例如,可以在上述示例的基础上适当降低为蓝色子像素提供的准直光束的光强,并适当提升为红色子像素和绿色子像素提供的准直光束的光强。
如图8所示,晶体管器件层30包括光栅层301,光栅层301的表面与液晶层40相接触。准直光束在每个子像素Px内均指向所述光线转换层的遮光区域BM,而光栅层301包括在每个子像素Px内设置的偏转光栅,该偏转光栅被构造为将透射的准直光束向光线转换层60的透光区域CF偏转。在又一示例中,准直光束在每个子像素Px内指向所述光线转换层的透光区域CF,而光栅层301 包括在每个子像素Px内设置的偏转光栅,该偏转光栅被构造为将透射的准直光束向光线转换层60的遮光区域BM偏转。应理解的是,根据每个子像素Px内透光区域CF的中心与偏转光栅的中心之间的位置关系,可以确定该每个子像素Px内偏转光栅所预期的透射光束的折射角,而在准直光束的波长、偏振态、光束宽度已知的情况下,可以按照例如上述任意一种光学元件的设计方式预先得到每一种具有预期光学特性的偏转的光栅结构,然后按照上述任意一种光学元件的制作方式在晶体管器件层30的上表面制作偏转光栅,以形成所期望的光栅层301的结构。可理解的是,偏转光栅可以具有形如图2或图3所示出的光栅结构,也可以具有在每个光栅周期内仅有一个谷和一个脊的普通光栅的光栅结构,并可以不仅限于此。
在此基础之上,可将液晶层40构造为在暗态偏置电压下的边缘折射率与光栅层301的材料折射率相同。其中,所述边缘折射率指的是靠近光栅层301的液晶分子对于所述准直光束的折射率。在一个示例中,选择液晶分子在光线偏折平面内进行旋转的液晶模式或使用蓝相液晶,使得液晶层40处于暗态偏置电压所形成的电场中时,靠近光栅层301的液晶分子通过在光线的偏折平面内发生极化,而在显示装置的厚度方向上对于准直光束所在波段内的光线的折射率等于光栅层301的形成材料的折射率。在这样的液晶分子填充在偏转光栅所具有的凸起结构之间时,偏转光栅的界面两侧的折射率相同,因此光线在经过偏转光栅的界面时不会发生偏折,即偏转光栅失去了改变准直光束的传播方向的作用,使得准直光束继续沿着原来的传播方向传播,并在到达所指向的遮光区域BM后被吸收,使得子像素Px呈现暗态。而可以理解的是,在液晶层40处于亮态偏置电压所形成的电场(比如不加电)中时,液晶分子可以是杂乱无章的均匀状态,而不对偏转光栅造成任何影响,使得准直光束会在透过偏转光栅后向透光区域CF偏转,使得子像素Px呈现亮态。而在亮态偏置电压与暗态偏置电压之间,液晶层40中液晶分子的状态也会介于上述两种情况之间,因此可以根据偏置电压的不同显示介于亮态与暗态之间的其他灰阶。由此,可以通过改变所施加的偏置电压,实现每个子像素Px的显示灰阶的控制。
应理解的是,虽然实现上述液晶显示模式的显示装置中采用了前文所述的背光源,但实现液晶显示模式的显示装置中的背光源可以不仅限于前文所述的形式。在可能的范围内,任意一种能够为每个子像素Px提供指向第一区域的准 直光束的背光源均可以用于实现上述液晶显示模式的显示装置,此时可以通过不同偏置电压控制准直光束向第二区域偏转的程度,从而实现每个子像素Px的显示灰阶的控制。其中,第一区域和第二区域分别是光线转换层60的遮光区域BM和透光区域CF中的一个。
在一个示例中,显示装置由第一基板和第二基板通过液晶成盒工艺制作得到。其中,第一基板通过在背光源10的出光侧依次制作缓冲层20和晶体管器件层30而得到,第二基板通过在对置基板70的背光侧依次制作光线转换层60和平坦化层50而得到。其中,缓冲层20可以采用例如透明绝缘树脂、氧化硅、氮化硅等材料形成,所具有的折射率可以例如是1.2-1.4,主要作用是提供一个平坦的表面来为晶体管器件层30的形成做准备。晶体管器件层30可以例如包括栅极导电层、栅绝缘层、有源层、源漏导电层、钝化层、透明导电层(例如包括由铟锡氧化物材料形成的像素电极的图形)和平坦化层等结构,并可以在可能的范围内参照现有技术中任一种显示装置中的阵列基板来实现。上述光栅层301可以例如在晶体管器件层30的平坦化层的表面上制作形成,也可以例如在晶体管器件层30中相邻两层的界面上进行设置。对置基板70的形成材料例如是玻璃或透明树脂等透明材料,折射率可以例如是1.5-2.0。光线转换层60可以例如包括黑矩阵层和彩色光线转换层的结构,并可以在可能的范围内参照现有技术中任一种显示装置中的彩膜基板来实现。平坦化层50可以采用例如透明绝缘树脂、氧化硅、氮化硅等材料形成,所具有的折射率可以例如是1.2-1.4。
图9是本公开又一实施例的显示装置的结构示意图。对照图8可以看出,图9所示的显示装置去除了光栅层301和偏转光栅的设置,子像素Px被设置为中心位置与耦合光栅106的位置相对应,并采用液晶层40中形成的液晶透镜实现对每个子像素Px的显示灰阶的控制。其中,子像素Px内的遮光区域BM被设置在子像素Px的中央,而透光区域CF被设置在遮光区域BM的周围。在液晶层40处于亮态偏置电压所形成的电场中时,液晶层40中形成用于将来自耦合光栅106的准直光束发散的液晶透镜(例如由液晶分子偏转所形成的等效凸透镜),从而准直光束透射为发散光,部分发散光透过透光区域CF实现子像素Px的亮态显示。而在液晶层40不加电或处于暗态偏置电压所形成的电场中时,液晶层40不具有对准直光束进行发散的作用,准直光束继续沿着原来的传播方向传播,并在到达所指向的遮光区域BM后被吸收,使得子像素Px呈现暗态。
在一个示例中,背光源10中的发光器件为单色光的发光器件,在此基础上显示装置可以实现单色显示或者多色显示。在一个示例中,光线转换层60在透光区域CF中为低雾度散射膜层,由此子像素Px在呈现亮态时的颜色即发光器件的颜色,且出光方向不仅限于光束的传播反向。可以看出,显示装置可以实现单色显示。在又一示例中,透光区域CF内的光线转换层60包括光致发光材料。例如,背光源10中的发光器件为蓝光发光器件,而光线转换层60包括红色的透光区域CF、蓝色的透光区域CF和绿色的透光区域CF,红色的透光区域CF内的光线转换层60包括将蓝光转换为红光的第一光致发光材料,而绿色的透光区域CF内光线转换层60包括将蓝光转换为绿光的第二光致发光材料。如此,子像素Px在呈现亮态时可以根据透光区域内材料种类而呈现红色、蓝色或绿色,由此在适当的排列方式下可以实现显示装置的彩色显示。例如,图9中所示出各子像素Px的透光区域CF可以从左至右按照红色的透光区域、蓝色的透光区域、绿色的透光区域、红色的透光区域、蓝色的透光区域、绿色的透光区域的规律进行排列。此外,可以针对于每种颜色的转换效率之间的差别,调整耦合光栅106的设计方式,来使不同颜色之间的出射光强达到平衡(即耦合光栅106被构造为根据所对应子像素类型的不同提供不同光强的出射光束)。例如,可以在上述示例的基础上适当降低为蓝色子像素提供的准直光束的光强,并适当提升为红色子像素和绿色子像素提供的准直光束的光强。
在一个示例中,上述任意一种显示装置中的每n个子像素Px组成一个像素单元(n为正整数)。例如,在实现单色显示的显示装置中,每个子像素Px都对应显示画面中的一个像素点,因而该显示装置中每个像素单元由一个子像素Px组成。又如,在上述实现红色、蓝色和绿色三种颜色的彩色显示的显示装置中,显示画面中的一个像素点对应连续排列而颜色各不相同三个子像素,因而该显示装置中每个像素单元由连续排列的一个红色子像素、一个蓝色子像素和一个绿色子像素组成。
需要说明的是,本公开的显示装置可以为:显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。作为一种示例,图10是本公开一个实施例提供的显示装置的三维结构示意图。参见图10,显示装置在显示区域内包括行列设置的子像素Px,该显示装置可以包括上述任意一种的背光源,也可以具有上述任意一种显示装置的内 部结构。基于所包含的背光源更轻薄的特点,该显示装置可以具有更小的厚度。基于具有的内部结构,该显示装置可以实现像素开口处无微结构(例如偏转光栅、耦合光栅)的设置,避免透明显示装置中透明区域和显示区域之间存在冲突的问题,有助于实现透明显示装置的高透过率。基于具有的内部结构,该显示装置还可以省去偏光片或金属偏振线栅的设置,因而可以大幅提升显示透过率。基于背光源与阵列基板的一体化设计,有助于实现耦合光栅和子像素的精准对位,而不会因成盒时的对位误差而影响内部光路。
以上所述仅为本公开的示例性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开所附权利要求限定的保护范围之内。

Claims (19)

  1. 一种背光源,包括:
    导光板;
    发光器件,所述发光器件在所述导光板的厚度方向上的一侧,所述发光器件用于发出射向所述导光板的内部的光线;
    光学元件,所述光学元件在所述发光器件的发出光线的一侧,所述光学元件被构造为将所述发光器件发出的光线转换为在所述导光板的内全反射传播的平行光束。
  2. 根据权利要求1所述的背光源,其中所述导光板的表面上包括至少一个耦合光栅,
    每个所述耦合光栅均被构造为将入射的所述平行光束按照与所述耦合光栅所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板的方向传播的准直光束。
  3. 根据权利要求1所述的背光源,其中所述导光板的出光侧的表面上包括至少一个透射型的耦合光栅,所述导光板的远离出光侧的一侧的表面上包括至少一个反射型的耦合光栅,
    每个所述耦合光栅均被构造为将入射的所述平行光束按照与所述耦合光栅所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板的方向传播的准直光束。
  4. 根据权利要求2所述的背光源,其中所述导光板的表面上包括多个耦合光栅,所述耦合光栅对应的所述光强比率正相关于所述耦合光栅与所述光学元件之间的距离,
    每个所述耦合光栅均被构造为将入射的所述平行光束按照与所述耦合光栅所在位置相对应的光强比率转换为出射光束,所述出射光束为沿着远离所述导光板的方向传播的准直光束。
  5. 根据权利要求1所述的背光源,其中所述光学元件为全息微结构,所述全息微结构具有偏振依赖性。
  6. 根据权利要求1所述的背光源,其中所述导光板在厚度方向上的两侧均设置有填充层,所述导光板的材料折射率大于所述填充层的材料折射率。
  7. 根据权利要求6所述的背光源,其中所述导光板和所述填充层均由透明材料形成。
  8. 根据权利要求1所述的背光源,其中所述发光器件在所述导光板的边缘处,所述导光板在厚度方向上的至少一侧设置有吸光层,所述吸光层位于所述发光器件所在的所述导光板的边缘处。
  9. 根据权利要求1所述的背光源,其中所述导光板在厚度方向上具有第一侧和第二侧,所述发光器件设置在所述导光板的第一侧的表面上,所述光学元件设置在所述导光板的第二侧的表面上,所述发光器件与所述光学元件彼此相对。
  10. 一种背光源的制作方法,包括:
    在导光板的厚度方向上的第一侧的表面上形成发光器件,所述发光器件用于发出射向所述导光板的内部的光线;
    在所述导光板的厚度方向上的第二侧的表面上形成光学元件,所述光学元件与所述发光器件彼此相对,所述光学元件被构造为将所述发光器件发出的光线转换为在所述导光板的内全反射传播的平行光束。
  11. 一种显示装置,所述显示装置包括如权利要求1至9中任一项所述的背光源。
  12. 根据权利要求11所述的显示装置,所述显示装置包括多个子像素,所述背光源分别为每个所述子像素提供准直光束。
  13. 根据权利要求12所述的显示装置,所述显示装置还包括在远离所述背光源的方向上依次层叠的液晶层和光线转换层;其中,
    所述光线转换层在每个所述子像素中均包括透光区域和遮光区域,所述背光源为任一子像素所提供的所述准直光束均指向该子像素中的所述遮光区域。
  14. 根据权利要求13所述的显示装置,其中所述液晶层被构造为在亮态偏置电压下将所述准直光束偏转为指向所在的子像素中的所述透光区域。
  15. 根据权利要求13或14所述的显示装置,其中所述发光器件为蓝光发光器件,所述光线转换层包括红色的所述透光区域、蓝色的所述透光区域和绿色的所述透光区域,
    所述光线转换层在红色的所述透光区域内包括将蓝光转换为红光的第一光致发光材料,
    所述光线转换层在绿色的所述透光区域内包括将蓝光转换为绿光的第二光致发光材料。
  16. 根据权利要求12所述的显示装置,所述显示装置还包括在远离所述背光源的方向上依次层叠的光栅层、液晶层和光线转换层;其中,
    所述光线转换层在每个所述子像素中均包括第一区域和第二区域,所述背光源为任一子像素所提供的所述准直光束均指向该子像素中的所述第一区域;
    所述光栅层在每个所述子像素中均包括偏转光栅,每个所述偏转光栅均被构造为将所述准直光束偏转为指向所在的子像素中的所述第二区域;
    其中,所述第一区域和所述第二区域分别是遮光区域和透光区域中的一个。
  17. 根据权利要求15所述的显示装置,其中所述偏转光栅的表面与所述液晶层相接触,所述液晶层被构造为在暗态偏置电压下的边缘折射率与所述光栅层的形成材料的折射率相同,所述边缘折射率为靠近所述光栅层的液晶分子对于所述准直光束的折射率。
  18. 根据权利要求16或17所述的显示装置,其中所述发光器件为蓝光发光器件,所述光线转换层包括红色的所述透光区域、蓝色的所述透光区域和绿色的所述透光区域,
    所述光线转换层在红色的所述透光区域内包括将蓝光转换为红光的第一光致发光材料,
    所述光线转换层在绿色的所述透光区域内包括将蓝光转换为绿光的第二光致发光材料。
  19. 根据权利要求13至18中任一项所述的显示装置,所述显示装置还包括缓冲层、晶体管器件层、平坦化层和对置基板,
    所述缓冲层、所述晶体管器件层、所述液晶层、所述平坦化层、所述光线转换层和所述对置基板在远离所述背光源的方向上依次层叠。
PCT/CN2018/123573 2018-01-03 2018-12-25 背光源及其制作方法、显示装置 WO2019134562A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/474,574 US11860400B2 (en) 2018-01-03 2018-12-25 Backlight component, method for manufacturing backlight component, and display device
EP18889972.8A EP3736620A4 (en) 2018-01-03 2018-12-25 BACKLIGHT SOURCE, METHOD OF MANUFACTURING THEREOF, AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810004725.6A CN109991775B (zh) 2018-01-03 2018-01-03 背光源和显示装置
CN201810004725.6 2018-01-03

Publications (1)

Publication Number Publication Date
WO2019134562A1 true WO2019134562A1 (zh) 2019-07-11

Family

ID=67128408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123573 WO2019134562A1 (zh) 2018-01-03 2018-12-25 背光源及其制作方法、显示装置

Country Status (4)

Country Link
US (1) US11860400B2 (zh)
EP (1) EP3736620A4 (zh)
CN (1) CN109991775B (zh)
WO (1) WO2019134562A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989961B2 (en) * 2018-12-06 2021-04-27 Lg Display Co., Ltd. Backlight unit and display device
CN112684629B (zh) * 2019-10-17 2023-05-23 京东方科技集团股份有限公司 显示模组及其制造方法、显示装置
CN113569597A (zh) * 2020-04-29 2021-10-29 华为技术有限公司 物体纹路的采集装置及终端设备
US20220163919A1 (en) * 2020-11-23 2022-05-26 GM Global Technology Operations LLC Micromirror pixel design to eliminate intensity artifacts in holographic displays

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549938A (zh) * 2001-07-13 2004-11-24 柔斯芒特公司 集成透明衬底及衍射光学组件
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN106292052A (zh) * 2016-10-24 2017-01-04 京东方科技集团股份有限公司 一种显示面板和装置
CN106468801A (zh) * 2015-08-20 2017-03-01 三星电子株式会社 背光单元以及包括该背光单元的显示装置
US20170090089A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Back light unit for holographic display
CN107111059A (zh) * 2015-01-10 2017-08-29 镭亚股份有限公司 光栅耦合光导

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329463B (zh) * 2007-06-18 2011-04-20 奇美电子股份有限公司 显示装置和液晶显示面板
JP5991053B2 (ja) * 2011-10-04 2016-09-14 ソニー株式会社 表示装置および照明装置
US20150192725A1 (en) * 2012-08-13 2015-07-09 Bayer Materialscience Ag Light guide comprising decoupling elements
KR101731141B1 (ko) 2013-12-31 2017-04-28 엘지디스플레이 주식회사 평판 표시장치용 박막형 백 라이트 유닛
KR20160084005A (ko) * 2015-01-02 2016-07-13 삼성디스플레이 주식회사 액정 디스플레이 장치
CN205229629U (zh) * 2015-12-10 2016-05-11 乐视致新电子科技(天津)有限公司 一种背光模组、显示模组及显示设备
CN206096694U (zh) * 2016-10-24 2017-04-12 京东方科技集团股份有限公司 一种显示面板和装置
WO2018105545A1 (ja) * 2016-12-05 2018-06-14 Dic株式会社 液晶表示素子
CN106773218B (zh) * 2017-01-22 2018-07-20 京东方科技集团股份有限公司 显示装置
CN107167925A (zh) 2017-06-08 2017-09-15 东南大学 一种全息光栅背光结构的场序三维显示器
CN107479128A (zh) 2017-09-21 2017-12-15 京东方科技集团股份有限公司 背光模组和显示装置
CN107450211B (zh) * 2017-09-29 2021-04-16 京东方科技集团股份有限公司 灰阶控制结构及其方法、液晶显示面板、显示装置
CN107450234A (zh) * 2017-10-10 2017-12-08 京东方科技集团股份有限公司 显示基板、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549938A (zh) * 2001-07-13 2004-11-24 柔斯芒特公司 集成透明衬底及衍射光学组件
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN107111059A (zh) * 2015-01-10 2017-08-29 镭亚股份有限公司 光栅耦合光导
CN106468801A (zh) * 2015-08-20 2017-03-01 三星电子株式会社 背光单元以及包括该背光单元的显示装置
US20170090089A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Back light unit for holographic display
CN106292052A (zh) * 2016-10-24 2017-01-04 京东方科技集团股份有限公司 一种显示面板和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3736620A4 *

Also Published As

Publication number Publication date
CN109991775B (zh) 2020-06-30
CN109991775A (zh) 2019-07-09
US20220011497A1 (en) 2022-01-13
US11860400B2 (en) 2024-01-02
EP3736620A4 (en) 2021-08-25
EP3736620A1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
CN109061948B (zh) 光学基板和显示装置
WO2019134562A1 (zh) 背光源及其制作方法、显示装置
US10330844B1 (en) Backlight unit and display device
US11487057B2 (en) Optical substrate and display device
US11537004B2 (en) Transparent display substrate and transparent display device
CN108646338B (zh) 一种背光模组及显示装置
US11860382B2 (en) Optical lens structure, method for manufacturing the same, and display apparatus
US10768481B2 (en) Direct type backlight and method of manufacturing the same, and display device
US10866453B2 (en) Display panel and method for fabricating the same, display device and display method
US11150398B2 (en) Edge-lit type backlight module and display device
US11391877B2 (en) Backlight source and manufacturing method thereof, and display device
US10908343B2 (en) Light source assembly and display device
WO2018153069A1 (zh) 光学膜材和彩膜基板及其制作方法、显示装置
KR20020025894A (ko) 반사판, 반사형 액정 표시 장치 및 그 제조 방법, 광학부재, 표시 장치, 조명 장치, 표시판 및 파동 부재
CN109765721B (zh) 一种前置光源模组、显示装置、显示方法及制作方法
US20160178965A1 (en) Display device and manufacturing method of the same
JP2004199006A (ja) 集光基板及びこれを用いた表示装置並びにその製造方法
WO2021174976A1 (zh) 显示面板和显示装置
CN105929591B (zh) 量子点显示基板及其制造方法和量子点显示装置
JP7320080B2 (ja) スクリーン指紋コンポーネント及び端末機器
CN109856861B (zh) 一种显示面板、显示装置,以及显示面板的驱动方法
JP5254583B2 (ja) 配光装置およびこれを用いたバックライト装置
WO2021103000A1 (zh) 光开关及其控制方法、显示装置
JPH06347785A (ja) 光導波部材及び光導波部材を用いた液晶表示装置
RU2533741C2 (ru) Система боковой подсветки жидкокристаллических дисплеев (варианты)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889972

Country of ref document: EP

Effective date: 20200803