WO2018105545A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
WO2018105545A1
WO2018105545A1 PCT/JP2017/043431 JP2017043431W WO2018105545A1 WO 2018105545 A1 WO2018105545 A1 WO 2018105545A1 JP 2017043431 W JP2017043431 W JP 2017043431W WO 2018105545 A1 WO2018105545 A1 WO 2018105545A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
group
mass
liquid crystal
layer
Prior art date
Application number
PCT/JP2017/043431
Other languages
English (en)
French (fr)
Inventor
英彦 山口
小川 真治
崇之 三木
穣 田淵
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201780070888.8A priority Critical patent/CN109964170A/zh
Priority to JP2018554983A priority patent/JPWO2018105545A1/ja
Priority to US16/465,323 priority patent/US20190391418A1/en
Publication of WO2018105545A1 publication Critical patent/WO2018105545A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • C09K2019/0411Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems containing a chlorofluoro-benzene, e.g. 2-chloro-3-fluoro-phenylene-1,4-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a liquid crystal display element.
  • TFT thin film transistor
  • MIM metal insulator metal
  • VA vertical alignment: vertical alignment
  • IPS In Plane Switching: in-plane switching
  • IPS improved FFS Frringe Field Switching: fringe field switching
  • the liquid crystal display element is not a self-luminous type, a light source for emitting light is essential, and a white light source having an emission spectrum in a color reproduction region required for a display is used.
  • a light source a cold cathode tube, a white LED (light emitting diode), or the like is used. From the viewpoint of light emission efficiency, at present, the white LED is mainly used. LEDs cannot currently cover the entire visible light range from 380 nm to 750 nm with a single element, and several forms are known for obtaining white light.
  • white light is obtained by the combination of 1) blue LED and yellow phosphor.
  • liquid crystal display elements use color filters in combination with liquid crystal elements to realize color display, so it is difficult to improve color reproducibility even if the light source section is improved. It has been necessary to increase the color purity by increasing the pigment concentration in the color filter or by increasing the color film thickness. However, in this case, there is a problem in that the transmittance decreases and the amount of light must be increased, resulting in an increase in power consumption.
  • Quantum dots are composed of semiconductor microcrystals with a particle size of several nanometers to several tens of nanometers. The energy levels are discrete due to the confinement effect of electron-hole pairs, and the energy band gap increases as the particle diameter decreases. is doing. By applying this property and controlling the particle diameter to make the band gap uniform, a light source with a small half-value width of the emission spectrum can be obtained.
  • a liquid crystal display element with improved color reproducibility can be configured by using quantum dots as a constituent member of a backlight.
  • quantum dots See Patent Document 2 and Non-Patent Document 1.
  • these display elements can achieve both high luminous efficiency and color reproducibility.
  • quantum dots which are examples of light-emitting nanocrystals
  • a short light source is used to cause excitation of the quantum dots. Since a visible light source with a wavelength or ultraviolet light is required, the light transmitted through the liquid crystal layer is mainly in a short wavelength region, unlike the case of using conventional white light.
  • short-wavelength visible light or ultraviolet light used as a light source for light emission from a light-emitting nanocrystal is a high-energy light beam
  • a liquid crystal layer that functions as an optical switch has a length of these high-energy lights. It must be able to withstand time exposure.
  • the liquid crystal material itself is decomposed when the liquid crystal layer is exposed to a high-energy light beam such as short-wavelength visible light or ultraviolet light.
  • An object of the present invention is to provide a liquid crystal display element capable of suppressing or preventing deterioration of a liquid crystal layer due to the above.
  • the present inventors have used a liquid crystal layer containing a specific liquid crystal compound in a liquid crystal display element using light emitting nanocrystals such as quantum dots as a color filter.
  • the inventors have found that the above problems can be solved and have completed the present invention.
  • the liquid crystal display element of the present invention is not easily deteriorated by high-energy light such as short-wavelength visible light or ultraviolet light, and maintains the color reproduction region for a long time.
  • the liquid crystal display element of the present invention is excellent in transmittance and maintains the color reproduction region for a long time.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing an example of a light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • It is the schematic diagram which showed the pixel part of the liquid crystal display element of this invention with the equivalent circuit.
  • It is a schematic diagram which shows an example of the shape of the pixel electrode of this invention.
  • FIG. 15 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 2 cut along the line III-III in FIG. 13 or FIG. It is sectional drawing which cut
  • FIG. 5 is an enlarged plan view of a region surrounded by an II line of an electrode layer 3 including a thin film transistor formed on a substrate in FIGS. 3 and 4. It is sectional drawing which cut
  • FIG. 20 is a schematic diagram illustrating an example of the light conversion layer 6.
  • FIG. 21 is a schematic diagram illustrating an example of the light conversion layer 6.
  • FIG. 22 is a schematic diagram illustrating an example of the light conversion layer 6. It is a figure which shows the emission spectrum of a quantum dot.
  • a pair of substrates provided with a first substrate and a second substrate facing each other, a liquid crystal layer sandwiched between the first substrate and the second substrate, and the first substrate
  • a pixel electrode provided on at least one of the first substrate and the second substrate, a common electrode provided on at least one of the first substrate and the second substrate, a light source unit including a light emitting element, and a red color ( R), green (G), and blue (B) three primary color pixels, and any of red (R), green (G), and blue (B) depending on light from the light source unit incident on at least one of the three primary colors
  • a light conversion layer containing a light-emitting nanocrystal having a light emission spectrum The liquid crystal layer has the general formula (i)
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • n represents 0 or 1
  • a liquid crystal display element comprising the liquid crystal composition.
  • a highly reliable liquid crystal display element having a liquid crystal layer capable of withstanding long-time exposure to high-energy light rays such as short-wavelength visible light and ultraviolet light used for a light source by configuring the liquid crystal layer as a characteristic configuration Can provide.
  • the light emitting element is preferably a light emitting element that emits ultraviolet or visible light.
  • FIG. 1 is a perspective view showing the whole of an example of a liquid crystal display element used in the present embodiment, and for the sake of explanation, the constituent elements are shown separately.
  • the liquid crystal display element 1000 includes a backlight unit 100 and a liquid crystal panel 10.
  • the backlight unit 100 includes a light source unit 101 having a light emitting element L, and a light guide unit 102 serving as a light guide plate (not shown) or a light diffusion plate (not shown).
  • a light source unit 101 including a plurality of light emitting elements L is disposed on one side surface of the light guide unit 102. If necessary, the light source unit 101 including the plurality of light emitting elements L is not only provided on one side surface of the liquid crystal panel 10 (one side surface of the light guide unit 102) but also on the other side surface side (opposite side surfaces) of the liquid crystal panel 10.
  • the light source unit 101 including a plurality of light emitting elements L may surround three sides of the light guide unit 102 or the entire periphery of the light guide unit 102 so as to surround the light guide unit 102. As such, it may be provided on four side surfaces.
  • the light guide unit 102 may include a light diffusion plate (not shown) instead of the light guide plate as necessary.
  • the first (transparent insulating) substrate 2 is provided with a polarizing layer 1 on one surface and an electrode layer 3 on the other surface.
  • a second (transparent insulating) substrate 7 is disposed so as to face the first substrate 2 with the liquid crystal layer 5 interposed therebetween, and a light conversion layer (so-called color layer) 6 and a polarized light are disposed on the substrate 7.
  • the layers 8 are provided in this order.
  • the light conversion layer (color layer) 6 includes three primary color pixels of red (R), green (G), and blue (B), and pixels of at least one of the three primary colors are emitted from the light source unit. It contains light-emitting nanocrystals having an emission spectrum in any of red (R), green (G), and blue (B) by incident light.
  • FIG. 1 shows a mode in which a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but another embodiment (for example, 3 and 4), the pixel electrode may be provided on the first substrate 2 and the common electrode 3 ′ may be provided on the second substrate 7.
  • FIG. 1 a light conversion layer 6 is provided between the second substrate 7 and the liquid crystal layer 5.
  • FIG. 11 may be a so-called color filter on array (COA).
  • the light conversion layer 6 may be provided between the electrode layer 3 and the liquid crystal layer 5, or the electrode layer 3 and the first A light conversion layer 6 may be provided between the substrate 2 and the substrate 2.
  • an overcoat layer (not shown) may be provided so as to cover the light conversion layer 6 to prevent a substance contained in the light conversion layer from flowing out to the liquid crystal layer.
  • the liquid crystal display element 1000 shown in FIG. 2 is a view showing an embodiment in which an alignment layer 4 is further provided in the liquid crystal panel 10 of FIG.
  • the polarizing layer 1 is provided on one surface of the first (transparent insulating) substrate 2, and the electrode layer 3 is provided on the other surface.
  • an alignment layer 4 is formed on the electrode layer 3.
  • a light conversion layer 6 containing nanocrystals for light emission is provided on a second (transparent insulating) substrate 7 so as to face the first substrate 2 with the liquid crystal layer 5 interposed therebetween.
  • a polarizing layer 8 is provided on the first substrate 2 side of the light conversion layer 6, and an alignment layer 4 is further provided on the first substrate 2 side of the polarizing layer 8.
  • a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but another embodiment (for example, FIG. 3 and FIG. 4). ),
  • the pixel electrode 3 may be provided on the first substrate 2, and the common electrode may be provided on the second substrate 7.
  • the alignment layer 4 can align liquid crystal molecules in the liquid crystal composition in a predetermined direction with respect to the substrates 2 and 7 when no voltage is applied.
  • FIG. 2 shows an example in which the liquid crystal layer 5 is sandwiched between the pair of alignment layers 4, the alignment layer 4 may be provided only on one side of the first substrate 2 or the second substrate.
  • the light conversion layer 6 is provided between the second substrate 7 and the alignment layer 4. As in the case of FIG. 1, similar to the so-called color filter on array (COA) type.
  • the light conversion layer 6 may be provided on the first substrate 2 side.
  • the alignment layer 4 is provided on the first substrate 2 side and the second substrate 7 side so as to be in contact with the liquid crystal layer 5, but only one of them may be provided.
  • the liquid crystal panel 10 includes the first polarizing layer 1, the first substrate 2, the electrode layer 3, the liquid crystal layer 5, the second polarizing layer 8, and the light conversion layer 6. And the second substrate 7 are sequentially laminated, or the first polarizing layer 1, the first substrate 2, the electrode layer 3, the alignment layer 4, and a liquid crystal layer containing a liquid crystal composition 5, the alignment layer 4, the second polarizing layer 8, the light conversion layer 6, and the second substrate 7 are preferably laminated in sequence.
  • the light emitted from the light emitting element L passes through the light guide 102 (for example, via a light guide plate or a light diffusion plate) and enters the surface of the liquid crystal panel 10. Since the light incident on the liquid crystal panel 10 is polarized in a specific direction by the first polarizing layer 1, the orientation direction of the liquid crystal molecules of the liquid crystal layer 5 can be controlled by driving the electrode layer 3. The light whose polarization direction has been changed by the liquid crystal layer 5 serving as an optical shutter is blocked by the second polarizing layer 8 or polarized in a specific direction, and then enters the light conversion layer 6.
  • the light incident on the light conversion layer 6 is absorbed by the light-emitting nanocrystals and converted into an emission spectrum into one of red (R), green (G), and blue (B).
  • red (R), green (G), and blue (B) can be displayed.
  • the shape of the light guide portion 102 (particularly, the light guide plate) is a flat plate having a side surface whose thickness gradually decreases from the side surface on which the light emitted from the light emitting element L is incident toward the opposing surface (side surface). Is preferable because it is easy to make light incident on the liquid crystal panel 10 because the line light can be converted into surface light (which will be described later as an embodiment).
  • FIG. 3 shows an example of the entire liquid crystal display element having a so-called direct-type backlight structure in which the backlight unit 100 has a plurality of light emitting elements L arranged in a plane with respect to the flat light guide 102. It is a perspective view. In addition, for convenience of explanation, each component is illustrated separately.
  • the light from the light emitting element L is surface light, and therefore the shape of the light guide 102 need not be tapered unlike FIGS.
  • a liquid crystal panel 10 in FIG. 3 includes a first substrate 2 having a first electrode layer 3 (for example, a pixel electrode) on one surface and a first polarizing layer 1 on the other surface;
  • the second substrate 7 having the electrode layer 3 ′ (for example, a common electrode), and the liquid crystal layer 5 sandwiched between the first substrate 2 and the second substrate 7 are provided.
  • a light conversion layer 6 is provided between the second substrate 7 and the second electrode layer 3 ′, and a second electrode layer 3 ′ on the light conversion layer 6 is disposed on the second electrode layer 3 ′ side.
  • the polarizing layer 8 is provided.
  • the liquid crystal display element 1000 includes the backlight unit 100, the first polarizing plate 1, the first substrate 2, and an electrode layer including a thin film transistor (or a thin film transistor layer or a pixel electrode). ) 3, a layer 5 containing a liquid crystal composition, a second electrode layer 3 ′, a second polarizing plate 8, a light conversion layer 6, and a second substrate 7 are sequentially laminated. Become.
  • the liquid crystal display element 1000 shown in FIG. 4 is a view showing an embodiment in which an alignment layer 4 is further provided in the liquid crystal panel 10 of FIG. That is, the liquid crystal panel 10 in FIG. 4 includes a first substrate 2 having a first electrode layer 3 (for example, a pixel electrode) on one surface and a first polarizing layer 1 on the other surface; A liquid crystal composition (or liquid crystal layer 5) sandwiched between a second substrate 7 having a second electrode layer 3 ′ (for example, a common electrode) and the first substrate 2 and the second substrate 7. Between the first substrate 2 and the liquid crystal layer 5 so as to be in contact with the liquid crystal layer 5, and between the second substrate 7 and the liquid crystal layer 5. An alignment layer 4 provided in contact with the liquid crystal layer 5. In addition, a light conversion layer 6 is provided between the second substrate 7 and the second electrode layer 3 ′, and a second electrode layer 3 ′ on the light conversion layer 6 is disposed on the second electrode layer 3 ′ side. The polarizing layer 8 is provided.
  • a first electrode layer 3
  • the liquid crystal display element 1000 includes a backlight unit 100, a first polarizing plate 1, a first substrate 2, and an electrode layer (or a thin film transistor layer) 3 including a thin film transistor.
  • the light emitted from the light emitting element L passes through the light guide 102 (through the light diffusion plate or the light diffusion plate) and enters the surface of the liquid crystal panel 10.
  • the light incident on the liquid crystal panel 10 is polarized in a specific direction by the first polarizing layer 1 and then polarized in the liquid crystal layer 5 by driving the first electrode layer 3 and the second electrode layer 3 ′.
  • the light whose direction is changed is blocked by the second polarizing layer 8 or polarized in a specific direction, and then enters the light conversion layer 6.
  • the light incident on the light conversion layer 6 is absorbed by the light emitting nanocrystals and converted into an emission spectrum into any one of red (R), green (G), and blue (B).
  • red (R), green (G), and blue (B) can be displayed.
  • a light diffusing plate is provided between the liquid crystal panel 10 and the light guide unit 102 as the light guide unit 102 (described as an embodiment below).
  • 5 to 11 are schematic views of cross-sectional views of the liquid crystal display device in which a portion of the liquid crystal panel 10 is cut to show the configuration of the liquid crystal panel used in the present embodiment. It is the schematic which shows the lamination mode of a liquid crystal layer. 5 to 11, for convenience of description of the positional relationship among the polarizing layer, the light conversion layer, and the liquid crystal layer, the electrode layer 3 (including the TFT), the electrode layer 3 ′, and the electrode layer 3 ′ shown in FIGS.
  • the alignment layer 4 and the like are omitted schematically.
  • a substrate on the backlight unit (light source) side and a laminate laminated on the substrate are array substrate (A-SUB), and the array substrate and liquid crystal layer 5 are connected to the liquid crystal layer 5.
  • a substrate opposed to the substrate and a stacked body stacked on the substrate are referred to as a counter substrate (O-SUB).
  • the configurations and preferred embodiments of the array substrate (A-SUB) and the counter substrate (O-SUB) will be described in detail in the description of the electrode structure in FIGS. 5 to 11 show an example in which TFTs are formed on the array substrate side, the array substrate and the counter substrate may be interchanged.
  • the light conversion layer 6 is provided on the counter substrate (O-SUB), and the light conversion layer 6 and the second polarizing layer 8 include a pair of substrates (the first substrate 2 and the second substrate 2). In this embodiment, a so-called in-cell polarizing layer is provided between the second substrates 7).
  • the light conversion layer 6 in the present invention includes the three primary color pixels of red (R), green (G), and blue (B), and plays the same role as a so-called color filter.
  • the light conversion layer 6 includes, for example, a red (R) pixel portion (red color layer portion) including a light conversion pixel layer (NC-Red) including a red light emitting nanocrystal, and a green (
  • the pixel portion (green color layer portion) of R) includes a light conversion pixel layer (NC-Green) containing nanocrystals for green light emission, and the blue (R) pixel portion (blue color layer portion)
  • An optical conversion pixel layer (NC-Blue) including a blue light emitting nanocrystal is provided.
  • An example of such a single layer type light conversion layer 6 is shown in FIG.
  • the blue light emitted from the blue LED can be used as blue. Therefore, when the light from the light source is blue light, the light conversion pixel layer (NC-Blue) is omitted from the light conversion pixel layers (NC-Red, NC-Green, NC-Blue) of the respective colors.
  • the backlight may be used as it is.
  • the color layer displaying blue can be constituted by a transparent material or a color material layer (so-called blue color filter) containing a blue color material. Therefore, in FIGS. 5 and 22, since the blue light emitting nanocrystal can be an arbitrary component, the blue light emitting nanocrystal is indicated by a one-dot broken line.
  • the red color layer in the light conversion layer 6 contains the red light emitting nanocrystal NC that emits red light by absorbing light (for example, blue light) emitted from the light source unit, and has a green color.
  • red light emitting nanocrystal NC that emits red light by absorbing light (for example, blue light) emitted from the light source unit, and has a green color.
  • the example which contains the nanocrystal NC for green light emission which absorbs the light (for example, blue light) which a light source part emits in a layer and emits green light is described, it is not limited to this.
  • the light emitting nanocrystal NC absorbs light (for example, blue light) emitted from the light source part and emits blue light, and absorbs light (for example, blue light) emitted from the light source part. It is represented by at least one selected from the group consisting of a green light emitting nanocrystal NC that emits green light and a red light emitting nanocrystal NC that emits red light by absorbing light (for example, blue light) emitted from the light source unit.
  • the light emitting unit emits blue light by absorbing light emitted from the light source part (for example, blue light) NC, and the green light emitting nano crystal that emits green light by absorbing light emitted from the light source part (for example, blue light).
  • the light conversion layer according to the present invention particularly preferably includes a layer containing nanocrystals for red light emission (NC-Red) and a layer containing nanocrystals for green light emission (NC-Green).
  • a black matrix may be provided for the purpose of preventing color mixing between the color layers.
  • a color layer containing a blue color material (so-called “blue”) between the light conversion layer 6 and the second polarizing layer 8 according to the type of light source used (blue LED as a light emitting element). It is preferable to provide a color filter “) between them in order to prevent the intrusion of unnecessary light from the outside and suppress deterioration in image quality.
  • a structure in which such a blue color filter is arranged is shown in FIG.
  • the embodiment shown in FIG. 5 is applied to a VA type liquid crystal display element, in the counter substrate side O-SUB, between the liquid crystal 5 and the second polarizing layer 8 or between the second polarizing layer 8 and the light conversion layer. 6 is provided with an electrode layer 3 ′ (common electrode), and the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
  • the pixel electrode and the common electrode are preferably formed on the first base 2.
  • the light conversion layer 6 is provided on the counter substrate (O-SUB), and the light conversion layer 6 includes a pair of substrates (first substrate 2 and second substrate 7). ) Is provided outside. Therefore, a support substrate 9 that supports the second polarizing layer 8 and the light conversion layer 6 is provided.
  • the support substrate 9 is preferably a transparent substrate.
  • the red (R) pixel portion is a light conversion pixel layer (NC-Red) containing red light emitting nanocrystals, as in the embodiment of FIG.
  • the green (R) pixel portion includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal, and the blue (R) pixel portion (blue color)
  • the layer portion includes a light conversion pixel layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
  • the preferred form of the red (R) pixel portion, the green (G) pixel portion, and the blue (B) pixel portion in the light conversion layer 8 in FIG. 6 is the same as the embodiment shown in FIG. It is omitted here.
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 on the counter substrate side O-SUB, and
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Further, in FIG. 6, when the liquid crystal display element is an FFS type or an IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first substrate 2.
  • the light conversion layer 6 is provided on the counter substrate side O-SUB, and the light conversion layer 6 and the second polarizing layer 8 are formed of a pair of substrates (the first substrate 2 and the second substrate 2). And an in-cell polarizing plate provided between the substrates 7), and in each of the red and green color layer portions constituting the light conversion layer 6, the red color layer portion is a red light emitting nano-layer.
  • a light conversion pixel layer (NC-Red) containing crystals and a color material layer (so-called red color filter) (CF-Red) containing a red color material are stacked, and the green color
  • the layer part is composed of a light conversion pixel layer (NC-Green) containing nanocrystals for green light emission that emits green light and a color material layer (so-called green color filter) (CF-Green) containing a green color material. It has a two-layer structure.
  • the two-layer structure of such a color layer transmits the remaining excitation light when all of the incident light (light from the light source, preferably blue light) cannot be converted by the light conversion pixel layer containing nanocrystals.
  • a color filter (CFL) and a color material layer of each color are laminated.
  • the second polarizing layer 8 and the light conversion layer 6 having a red color layer, a green color layer, and a blue color layer are provided as a backlight. It is provided on the substrate side O-SUB opposite to the unit (light source) side substrate A-SUB.
  • the second polarizing layer 8 includes an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7).
  • the embodiment in FIG. 7 is a form in which the light conversion layer 6 in FIG. 5 is laminated in two layers.
  • the light conversion layer 6 has a red color layer portion, a green color layer portion, and a blue color layer portion, and the red (R) pixel portion (red color layer portion) is red.
  • a light conversion pixel layer (NC-Red) including a light emitting nanocrystal and a color material layer (CF-Red) including a red color material are configured as a two-layer structure.
  • the green (R) pixel portion (green color layer portion) includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a color material layer (CF-Green) including a green color material. Configured as a layered structure. In this case, in FIG.
  • the green color layer portion includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a yellow color material in order to perform color correction in consideration of transmission of excitation light. It may be combined with a color material layer (CF-Yellow) containing The blue (R) pixel portion (blue color layer portion) is composed of a color layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
  • NC-Green light conversion pixel layer
  • CF-Yellow color material layer
  • the blue (R) pixel portion blue color layer portion
  • NC-Blue is composed of a color layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
  • a light conversion pixel layer including a red light emitting nanocrystal, a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal, and a blue light emitting nanocrystal in the light conversion layer 6 in FIG.
  • a preferable form of the color layer (NC-Blue) to be included is the same as that of the embodiment shown in FIG. In FIG. 7, the red color layer portion, the green color layer portion, and the blue color layer portion are shown as being in contact with each other, but in order to prevent color mixing, a light shielding layer is provided between them.
  • a black matrix may be arranged.
  • a color material layer containing a blue color material between the light conversion layer 6 and the second polarizing layer 8 in FIG. Is preferably provided between them in order to prevent intrusion of unnecessary light from the outside and suppress deterioration in image quality.
  • a layer structure having such a two-layer light conversion layer 6 and a blue color filter as essential components is the structure shown in FIG.
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 on the opposite substrate side O-SUB,
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the pixel electrode and the common electrode are formed on the first substrate 2.
  • an alignment layer 4 is formed on a surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Preferably it is.
  • the embodiment of FIG. 8 is a mode in which the second polarizing layer 8 includes an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7). It has a two-layer light conversion layer 6 in which a layer containing nanocrystals and a color filter are laminated. Specifically, the light conversion layer 6 includes a red (R) pixel portion (red color layer portion) of a layer (NCL) including a light emitting nanocrystal and a color material layer including a red color material.
  • the green (R) pixel portion (green color layer portion) is composed of a two-layer structure of a layer (NC) containing a light emitting nanocrystal and a color material layer containing a green color material.
  • the blue (R) pixel portion (blue color layer portion) has a two-layer structure of a layer (NC) containing nanocrystals for light emission and a color material layer containing a blue color material.
  • the light-emitting nanocrystal in the layer including the light-emitting nanocrystal NC absorbs incident light (light from the light source, preferably blue light) and emits blue light, and incident light (from the light source). Of light emission, preferably blue light) and emits green light, and green light emission nanocrystals that emit incident light (light from a light source, preferably blue light) and emit red light. It is preferable that 1 type or 2 types selected from a group are included. In the present embodiment, a black matrix may be provided for the purpose of preventing color mixing between the color layers.
  • a blue or yellow color filter is provided on one side so as to be adjacent to the liquid crystal layer side of the light conversion layer 6 from the viewpoint that unnecessary light can be prevented from entering and image quality deterioration can be suppressed.
  • a structure in which such a blue or yellow color filter is arranged can be shown in FIG.
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 in the counter substrate side O-SUB.
  • the electrode layer 3 (pixel electrode) is provided on the first display substrate SUB1.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
  • the liquid crystal display element is an FFS type or IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first display substrate SUB1.
  • light using a high energy light source such as short wavelength visible light or ultraviolet light is converted into light through a liquid crystal layer and a polarizing layer functioning as an optical switch.
  • the light-emitting nanocrystal contained in the layer absorbs the light, and the absorbed light is converted into light of a specific wavelength by the light-emitting nanocrystal to emit light, thereby displaying a color.
  • the light conversion layer 6 is provided on the array substrate side (A-SUB) side, and the second polarizing layer 8 is provided outside the second substrate 7,
  • the first polarizing layer 1 is a color filter on array type liquid crystal panel including an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7).
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second substrate 7 on the opposite substrate side O-SUB, and
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the pixel electrode 3 is formed between the first substrate 2 and the light conversion layer 6, between the first polarizing layer 1 and the light conversion layer 6, or between the first polarizing layer 1 and the liquid crystal layer 5. It is preferable that
  • an alignment layer 4 is formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
  • the pixel electrode and the common electrode are arranged on the first substrate 2, for example, between the first substrate 2 and the light conversion layer 6, It is preferably formed between the one polarizing layer 1 and the light conversion layer 6 or between the first polarizing layer 1 and the liquid crystal layer 5.
  • a blue color filter is provided between the light conversion layer 6 and the first substrate 2 so as to prevent unnecessary light from entering and suppress deterioration in image quality.
  • the incident light is blue light
  • the color layer for displaying blue does not have to use a nanocrystal for blue light emission.
  • a color layer containing a transparent resin or a blue color material (so-called blue color filter). ) Or the like.
  • the light conversion layer 6 is provided on the array substrate (A-SUB) side on the backlight unit (light source) side, and the first polarizing layer 1 and the second polarizing layer 8 are a pair. It is the form provided in the outer side between the board
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second substrate 7 on the opposite substrate side O-SUB, and
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • a common electrode 3 ′ is preferably formed between the first substrate 2 and the liquid crystal layer 5.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). 11, when the liquid crystal display element is an FFS type or an IPS type, the pixel electrode and the common electrode are arranged on the first substrate 2, for example, between the first substrate 2 and the liquid crystal layer 5.
  • a common electrode is formed.
  • the color layer for displaying blue does not have to use a blue light emitting nanocrystal.
  • the light conversion layer 6 shown in FIGS. 5 to 9 is placed on the substrate side O ⁇ facing the substrate A-SUB on the backlight unit (light source) side.
  • the structure provided on the SUB side is preferable in that the effect of the present invention that the deterioration of the liquid crystal layer due to irradiation with high-energy rays can be suppressed or prevented is significantly exhibited.
  • the constituent elements of the pixel portion include a light-emitting nanocrystal as an essential component, and have an affinity for the resin component and, if necessary, the light-emitting nanocrystal. Molecules, known additives, and other coloring materials. Further, as described above, it is preferable from the viewpoint of contrast that the boundary portion of each pixel layer has a black matrix.
  • the light conversion layer according to the present invention contains light-emitting nanocrystals.
  • the term “nanocrystal” preferably refers to a particle having at least one length of 100 nm or less.
  • the shape of the nanocrystal may have any geometric shape and may be symmetric or asymmetric. Specific examples of the shape of the nanocrystal include an elongated shape, a rod shape, a circle shape (spherical shape), an ellipse shape, a pyramid shape, a disk shape, a branch shape, a net shape, or any irregular shape.
  • the nanocrystals are preferably quantum dots or quantum rods.
  • the light-emitting nanocrystal preferably has a core including at least one first semiconductor material and a shell that covers the core and includes a second semiconductor material that is the same as or different from the core.
  • the light-emitting nanocrystal includes at least a core including the first semiconductor material and a shell including the second semiconductor material, and the first semiconductor material and the second semiconductor material may be the same or different. Further, the core and / or the shell may contain a third semiconductor material other than the first semiconductor and / or the second semiconductor. In addition, what is necessary is just to coat
  • the light-emitting nanocrystal further includes a core including at least one first semiconductor material, a first shell covering the core and including a second semiconductor material that is the same as or different from the core, and It is preferable to have a second shell that covers the first shell and includes a third semiconductor material that is the same as or different from the first shell.
  • the nanocrystal for light emission according to the present invention has a form having a core containing a first semiconductor material and a shell covering the core and containing the same second semiconductor material as the core, that is, one type or two
  • core-only structure also referred to as core structure
  • core structure also referred to as core structure
  • the light-emitting nanocrystal according to the present invention preferably includes three forms of a core structure, a core / shell structure, and a core / shell / shell structure.
  • the core has two or more kinds of semiconductors.
  • a mixed crystal containing a material may be used (for example, CdSe + CdS, CIS + ZnS, etc.).
  • the shell may also be a mixed crystal containing two or more semiconductor materials.
  • a molecule having an affinity for the light emitting nanocrystal may be in contact with the light emitting nanocrystal.
  • the above-mentioned molecules having affinity are low molecules and polymers having a functional group having affinity for the nanocrystals for light emission, and the functional group having affinity is not particularly limited. And a group containing one element selected from the group consisting of oxygen, sulfur and phosphorus. Examples include organic sulfur groups, organic phosphate groups pyrrolidone groups, pyridine groups, amino groups, amide groups, isocyanate groups, carbonyl groups, and hydroxyl groups.
  • the semiconductor material according to the present invention is one selected from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors, and I-II-IV-VI group semiconductors. Or it is preferable that they are 2 or more types.
  • Preferable examples of the first semiconductor material, the first semiconductor material, and the third semiconductor material according to the present invention are the same as the semiconductor materials described above.
  • the semiconductor material according to the present invention includes CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTTe, HgSeS, HgSeS, HgSe CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe AlSb, InN, InP, InAs, InSb, GaNP, GANAS, GaNSb, GaP s, GaPSb, AlNP, AlNA
  • the light emitting nanocrystal according to the present invention is at least selected from the group consisting of a red light emitting nanocrystal that emits red light, a green light emitting nanocrystal that emits green light, and a blue light emitting nanocrystal that emits blue light. It preferably contains one kind of nanocrystal.
  • the emission color of a light-emitting nanocrystal depends on the particle size according to the Schrodinger wave equation of the well-type potential model, but also depends on the energy gap of the light-emitting nanocrystal. The emission color is selected by adjusting the crystal and its particle size.
  • the upper limit of the wavelength peak of the fluorescence spectrum of the red light emitting nanocrystal emitting red light is 665 nm, 663 nm, 660 nm, 658 nm, 655 nm, 653 nm, 651 nm, 650 nm, 647 nm, 645 nm, 643 nm, 640 nm, 637 nm, 635 nm. 632 nm or 630 nm
  • the lower limit of the wavelength peak is preferably 628 nm, 625 nm, 623 nm, 620 nm, 615 nm, 610 nm, 607 nm or 605 nm.
  • the upper limit of the wavelength peak of the fluorescence spectrum of the green light emitting nanocrystal emitting green light is 560 nm, 557 nm, 555 nm, 550 nm, 547 nm, 545 nm, 543 nm, 540 nm, 537 nm, 535 nm, 532 nm or 530 nm.
  • the lower limit of the wavelength peak is preferably 528 nm, 525 nm, 523 nm, 520 nm, 515 nm, 510 nm, 507 nm, 505 nm, 503 nm or 500 nm.
  • the upper limit of the wavelength peak of the fluorescence spectrum of the blue light emitting nanocrystal emitting blue light is 480 nm, 477 nm, 475 nm, 470 nm, 467 nm, 465 nm, 463 nm, 460 nm, 457 nm, 455 nm, 452 nm or 450 nm.
  • the lower limit of the wavelength peak is 450 nm, 445 nm, 440 nm, 435 nm, 430 nm, 428 nm, 425 nm, 422 nm or 420 nm.
  • the semiconductor material used for the red light emitting nanocrystal emitting red light has a peak wavelength of light emission in the range of 635 nm ⁇ 30 nm.
  • the semiconductor material used for the green light emitting nanocrystal that emits green light preferably has a light emission peak wavelength in the range of 530 nm ⁇ 30 nm, and is used for the blue light emitting nanocrystal that emits blue light.
  • the semiconductor material to be used preferably has a light emission peak wavelength in the range of 450 nm ⁇ 30 nm.
  • the lower limit of the fluorescence quantum yield of the luminescent nanocrystal according to the present invention is preferably in the order of 40% or more, 30% or more, 20% or more, 10% or more.
  • the upper limit of the half-value width of the fluorescence spectrum of the luminescent nanocrystal according to the present invention is preferably in the order of 60 nm or less, 55 nm or less, 50 nm or less, and 45 nm or less.
  • the upper limit of the particle diameter (primary particle) of the red light emitting nanocrystal according to the present invention is preferably in the order of 50 nm or less, 40 nm or less, 30 nm or less, and 20 nm or less.
  • the upper limit value of the peak wavelength of the nanocrystal for red light emission according to the present invention is 665 nm, and the lower limit value is 605 nm, and the compound and its particle size are selected so as to match this peak wavelength.
  • the upper limit value of the peak wavelength of the green light emitting nanocrystal is 560 nm
  • the lower limit value is 500 nm
  • the upper limit value of the peak wavelength of the blue light emitting nanocrystal is 420 nm
  • the lower limit value is 480 nm. Select the compound and its particle size.
  • the liquid crystal display element according to the present invention includes at least one pixel.
  • the color constituting the pixel is obtained by three adjacent pixels, and each pixel is red (for example, CdSe light-emitting nanocrystal, CdSe rod-shaped light-emitting nanocrystal, and rod-shaped light-emitting device having a core-shell structure)
  • red for example, CdSe light-emitting nanocrystal, CdSe rod-shaped light-emitting nanocrystal, and rod-shaped light-emitting device having a core-shell structure
  • the shell portion is CdS
  • the inner core portion is ZnSe
  • the core shell the core shell.
  • nanocrystals for light emission, light-emitting nanocrystal having a core-shell structure, the shell portion is ZnSe, the inner core portion is ZnS, and the rod-shaped light-emitting nanocrystal having a core-shell structure
  • a use nanocrystals comprises a core portion inside of the shell portion is a ZnSe is ZnS, light emitting nanocrystals CdS, different nanocrystals that emit in the CdS rod light emitting nanocrystals).
  • Other colors for example, yellow
  • the average particle diameter (primary particles) of the luminescent nanocrystal according to the present invention can be measured by TEM observation.
  • examples of the method for measuring the average particle size of nanocrystals include a light scattering method, a sedimentation type particle size measurement method using a solvent, and a method of actually observing particles with an electron microscope and measuring the average particle size.
  • any number of crystals are directly observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and the length of the nanocrystals for light emission is reduced by projection two-dimensional images.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • a method is preferred in which the particle diameters are calculated from the diameter ratio and the average is obtained. Therefore, in the present invention, the average particle diameter is calculated by applying the above method.
  • the primary particle of the light emitting nanocrystal is a single crystal having a size of several to several tens of nanometers or a crystallite close thereto, and the size and shape of the primary particle of the light emitting nanocrystal is the primary particle. It is considered that it depends on the chemical composition, structure, manufacturing method and manufacturing conditions.
  • the nanocrystal for light emission preferably has an organic ligand on the surface thereof from the viewpoint of dispersion stability.
  • the organic ligand may be coordinated to the surface of the luminescent nanocrystal, for example.
  • the surface of the luminescent nanocrystal may be passivated by the organic ligand.
  • the nanocrystal for light emission may have a polymer dispersing agent on the surface.
  • the organic ligand is removed from the light-emitting nanocrystal having the organic ligand, and the polymer dispersant is bonded to the surface of the light-emitting nanocrystal by exchanging the organic ligand and the polymer dispersant. You may let me.
  • a polymer dispersant is preferably blended with the light-emitting nanocrystals in which the organic ligand is coordinated.
  • Examples of the organic ligand include low molecules and polymers having a functional group having affinity for the nanocrystal particles for light emission, and the functional group having affinity is not particularly limited, but nitrogen, oxygen, A group containing one element selected from the group consisting of sulfur and phosphorus is preferable.
  • Examples thereof include an organic sulfur group, an organic phosphate group pyrrolidone group, a pyridine group, an amino group, an amide group, an isocyanate group, a carbonyl group, and a hydroxyl group.
  • TOP trioctylphosphine
  • TOPO trioctylphosphine oxide
  • oleic acid oleylamine
  • octylamine trioctylamine
  • hexadecylamine octanethiol
  • dodecanethiol hexylphosphonic acid (HPA)
  • HPA hexylphosphonic acid
  • TDPA phosphonic acid
  • OPA octylphosphinic acid
  • organic ligands include aliphatic hydrocarbons having an ethylene oxide chain and / or a propylene oxide chain as an affinity group from the viewpoint that the dispersibility and luminescence intensity of the luminescent nanocrystal particles become even better. It is preferable.
  • the preferred organic ligand may be, for example, an organic ligand represented by the following general formula (1).
  • p represents an integer of 0 to 50
  • q represents an integer of 0 to 50.
  • at least one of p and q is preferably 1 or more, and both p and q are more preferably 1 or more.
  • the nanocrystals for light emission those dispersed in a colloidal form in an organic solvent can be used.
  • the surface of the light-emitting nanocrystal in a dispersed state in the organic solvent is preferably passivated with the above-mentioned organic ligand.
  • the organic solvent include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol acetate, or a mixture thereof.
  • the light conversion layer (or the ink composition for preparing the light conversion layer) according to the present invention preferably contains a polymer dispersant.
  • the polymer dispersant can uniformly disperse the light scattering particles in the ink.
  • the light conversion layer in the present invention preferably contains a polymer dispersant that moderately disperses and stabilizes the light-emitting nanocrystal particles in addition to the light-emitting nanocrystal particles described above.
  • the polymer dispersant is a polymer compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for the light scattering particles, and the function of dispersing the light scattering particles.
  • the polymer dispersant is adsorbed to the light-scattering particles through a functional group having an affinity for the light-scattering particles, and electrostatic and / or steric repulsion between the polymer dispersants.
  • Light scattering particles are dispersed in the ink composition.
  • the polymer dispersant is preferably bonded to the surface of the light-scattering particle and adsorbed to the light-scattering particle, but may be bonded to the surface of the light-emitting nanocrystal and adsorbed to the light-emitting nanoparticle. It may be free in the ink composition.
  • Examples of functional groups having affinity for light scattering particles include acidic functional groups, basic functional groups, and nonionic functional groups.
  • the acidic functional group has a dissociable proton and may be neutralized with a base such as amine or hydroxide ion, and the basic functional group is neutralized with an acid such as organic acid or inorganic acid. May be.
  • Examples of the acidic functional group include a carboxyl group (—COOH), a sulfo group (—SO 3 H), a sulfuric acid group (—OSO 3 H), a phosphonic acid group (—PO (OH) 3 ), and a phosphoric acid group (—OPO ( OH) 3 ), phosphinic acid groups (—PO (OH) —), mercapto groups (—SH), and the like.
  • Examples of basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
  • Nonionic functional groups include hydroxy groups, ether groups, thioether groups, sulfinyl groups (—SO—), sulfonyl groups (—SO 2 —), carbonyl groups, formyl groups, ester groups, carbonate groups, amide groups, Examples include carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group, and phosphine sulfide group.
  • the acidic functional group As the basic functional group, a carboxyl group, a sulfo group, a phosphonic acid group and a phosphoric acid group are preferably used, and an amino group is preferably used. Among these, a carboxyl group, a phosphonic acid group, and an amino group are more preferably used, and most preferably an amino group is used.
  • the polymer dispersant having an acidic functional group has an acid value.
  • the acid value of the polymer dispersant having an acidic functional group is preferably 1 to 150 mgKOH / g in terms of solid content. When the acid value is 1 or more, sufficient dispersibility of the light-scattering particles can be easily obtained, and when the acid value is 150 or less, the storage stability of the pixel portion (cured product of the ink composition) is hardly lowered. .
  • the polymer dispersant having a basic functional group has an amine value.
  • the amine value of the polymer dispersant having a basic functional group is preferably 1 to 200 mgKOH / g in terms of solid content. When the amine value is 1 or more, sufficient dispersibility of the light-scattering particles can be easily obtained, and when the amine value is 200 or less, the storage stability of the pixel portion (cured product of the ink composition) is hardly lowered. .
  • the polymer dispersant may be a single monomer polymer (homopolymer), or may be a copolymer of multiple types of monomers.
  • the polymer dispersant may be any of a random copolymer, a block copolymer, or a graft copolymer.
  • the polymer dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer.
  • Polymer dispersants include, for example, acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, polyethylamines and other polyamines, epoxy resins, polyimides, etc. It may be.
  • the commercially available products can also be used as the polymer dispersant.
  • the commercially available products include Ajinomoto Fine Techno Co., Ltd.'s ADISPER PB series, BYK's DISPERBYK series and BYK- series, BASF's Efka series. Etc. can be used.
  • the light conversion layer according to the present invention (or the ink composition for preparing the light conversion layer) preferably contains a resin component that functions as a binder in the cured product.
  • the resin component according to the present invention is preferably a curable resin, and the curable resin is preferably a thermosetting resin or a UV curable resin.
  • the thermosetting resin has a curable group, and examples of the curable group include an epoxy group, an oxetane group, an isocyanate group, an amino group, a carboxyl group, and a methylol group. From the viewpoint of excellent heat resistance and storage stability, and from the viewpoint of excellent adhesion to a light shielding part (for example, a black matrix) and a substrate, an epoxy group is preferable.
  • the thermosetting resin may have one type of curable group or may have two or more types of curable groups.
  • the thermosetting resin may be a polymer (homopolymer) of a single monomer, or may be a copolymer (copolymer) of a plurality of types of monomers. Further, the thermosetting resin may be any of a random copolymer, a block copolymer, or a graft copolymer.
  • thermosetting resin a compound having two or more thermosetting functional groups in one molecule is used, and it is usually used in combination with a curing agent.
  • the catalyst curing accelerator
  • the ink composition may contain a thermosetting component including a thermosetting resin (and a curing agent and a curing accelerator used as necessary).
  • a polymer having no polymerization reactivity per se may be further used.
  • an epoxy resin having two or more epoxy groups in one molecule may be used as a compound having two or more thermosetting functional groups in one molecule.
  • “Epoxy resin” includes both monomeric epoxy resins and polymeric epoxy resins.
  • the number of epoxy groups in one molecule of the polyfunctional epoxy resin is preferably 2 to 50, and more preferably 2 to 20.
  • the epoxy group may be a structure having an oxirane ring structure, and may be a glycidyl group, an oxyethylene group, an epoxycyclohexyl group, or the like.
  • an epoxy resin the well-known polyvalent epoxy resin which can be hardened
  • Such epoxy resins are widely disclosed in, for example, published by Masaki Shinbo, “Epoxy Resin Handbook” published by Nikkan Kogyo Shimbun (1987), and these can be used.
  • the epoxy group is replenished in the ink composition (inkjet ink) to increase the concentration of epoxy reactive sites and increase the crosslinking density. it can.
  • thermosetting resin any known and commonly used ones that can be dissolved or dispersed in the organic solvent described above can be used.
  • the thermosetting resin may be insoluble in alkali from the viewpoint of easily obtaining a color filter pixel portion having excellent reliability.
  • the thermosetting resin is alkali-insoluble means that the amount of the thermosetting resin dissolved in a 1% by mass potassium hydroxide aqueous solution at 25 ° C. is 30% by mass or less based on the total mass of the thermosetting resin. Means that.
  • the dissolution amount of the thermosetting resin is preferably 10% by mass or less, and more preferably 3% by mass or less.
  • the weight-average molecular weight of the thermosetting resin is such that an appropriate viscosity is easily obtained as an ink-jet ink, the ink composition has good curability, and the solvent resistance of the pixel portion (cured product of the ink composition). From the viewpoint of improving the wear resistance, it may be 750 or more, 1000 or more, or 2000 or more. From the viewpoint of obtaining an appropriate viscosity as an inkjet ink, it may be 500000 or less, 300000 or less, or 200000 or less. However, the molecular weight after crosslinking is not limited to this.
  • the content of the thermosetting resin is the viewpoint that an appropriate viscosity is easily obtained as an inkjet ink, the viewpoint that the curability of the ink composition is good, and the solvent resistance of the pixel portion (cured product of the ink composition). From the viewpoint of improving the wear resistance, it may be 10% by mass or more, 15% by mass or more, or 20% by mass or more, based on the mass of the nonvolatile content of the ink composition.
  • the content of the thermosetting resin may be 90% by mass or less based on the mass of the nonvolatile content of the ink composition from the viewpoint that the thickness of the pixel portion does not become too thick for the light conversion function. It may be not more than mass%, may be not more than 70 mass%, may be not more than 60 mass%, and may be not more than 50 mass%.
  • the UV curable resin is preferably a resin obtained by polymerizing a photo radical polymerizable compound or a photo cationic polymerizable compound that is polymerized by light irradiation, and may be a photo polymerizable monomer or oligomer. These are used together with a photopolymerization initiator.
  • the photoradical polymerizable compound is preferably used with a photoradical polymerization initiator, and the photocationic polymerizable compound is preferably used with a photocationic polymerization initiator.
  • the ink composition for the light conversion layer according to the present invention may contain a photopolymerizable component including a photopolymerizable compound and a photopolymerization initiator, and the photoradical polymerizable compound and the photoradical polymerization initiator are included.
  • May contain a photo-radically polymerizable component and may contain a photo-cation polymerizable component containing a photo-cation polymerizable compound and a photo-cation polymerization initiator.
  • a photo radical polymerizable compound and a photo cationic polymerizable compound may be used in combination, or a compound having a photo radical polymerizable property and a photo cationic polymerizable property may be used.
  • a photo radical polymerization initiator, a photo cationic polymerization initiator, May be used in combination.
  • a photopolymerizable compound may be used individually by 1 type, and may use 2 or more types together.
  • a (meth) acrylate compound may be mentioned.
  • the (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group or a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups. It is preferable to use a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate in combination from the viewpoint of suppressing a decrease in smoothness due to curing shrinkage during the production of the color filter.
  • (meth) acrylate means “acrylate” and “methacrylate” corresponding thereto. The same applies to the expression “(meth) acryloyl”.
  • photocationically polymerizable compound examples include epoxy compounds, oxetane compounds, vinyl ether compounds, and the like.
  • the photopolymerizable compound in the present embodiment the photopolymerizable compounds described in paragraphs 0042 to 0049 of JP2013-182215A can be used.
  • the above-described photopolymerizable compound may be a polymerizable functional group. It is more preferable to use a bifunctional or higher polyfunctional photopolymerizable compound having two or more groups in one molecule as an essential component because durability (strength, heat resistance, etc.) of the cured product can be further improved.
  • the photopolymerizable compound may be insoluble in alkali from the viewpoint of easily obtaining a color filter pixel portion having excellent reliability.
  • the photopolymerizable compound is alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25 ° C. is 30 based on the total mass of the photopolymerizable compound. It means that it is below mass%.
  • the dissolution amount of the photopolymerizable compound is preferably 10% by mass or less, and more preferably 3% by mass or less.
  • the content of the photopolymerizable compound is selected from the viewpoints of improving the curability of the ink composition and improving the solvent resistance and wear resistance of the pixel portion (cured product of the ink composition). Based on the mass of the nonvolatile content, it may be 10% by mass or more, 15% by mass or more, or 20% by mass or more.
  • the content of the photopolymerizable compound may be 90% by mass or less and 80% by mass or less based on the mass of the nonvolatile content of the ink composition from the viewpoint of obtaining more excellent optical properties (leakage light). It may be 70% by mass or less, 60% by mass or less, or 50% by mass or less.
  • the photopolymerizable compound has a crosslinkable group from the viewpoint of excellent stability of the pixel portion (cured product of the ink composition) (for example, it can suppress deterioration over time and is excellent in high-temperature storage stability and wet heat storage stability). You may do it.
  • the crosslinkable group is a functional group that reacts with other crosslinkable groups by heat or active energy rays (for example, ultraviolet rays), such as an epoxy group, an oxetane group, a vinyl group, an acryloyl group, an acryloyloxy group, and a vinyl ether group. Is mentioned.
  • photoradical polymerization initiator a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • the content of the photopolymerization initiator may be 0.1 parts by mass or more and 0.5 parts by mass or more with respect to 100 parts by mass of the photopolymerizable compound from the viewpoint of curability of the ink composition. It may be 1 part by mass or more.
  • the content of the photopolymerization initiator may be 40 parts by mass or less and 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound from the viewpoint of temporal stability of the pixel part (cured product of the ink composition). Or 20 parts by mass or less.
  • thermoplastic resins include urethane resins, acrylic resins, polyamide resins, polyimide resins, and styrene maleic acid resins. Examples thereof include resins and styrene maleic anhydride resins.
  • the ink composition for preparing the light conversion layer according to the present invention may use a known organic solvent, such as ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether. Diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, diethyl succinate, all-diacetate at 1,4-butane, glyceryl triacetate and the like.
  • a known organic solvent such as ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether. Diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, dieth
  • the light conversion layer according to the present invention in addition to the curable resin, the polymer dispersant, and the light-emitting nanocrystal particles, Known additives may be included.
  • a color filter pixel portion (hereinafter also simply referred to as “pixel portion”) is formed from an ink composition using light emitting nanocrystals, light from the light source leaks from the pixel portion without being absorbed by the light emitting nanocrystals. Sometimes. Since such leakage light reduces the color reproducibility of the pixel portion, when the pixel portion is used as the light conversion layer, it is preferable to reduce the leakage light as much as possible.
  • the light scattering particles are preferably used in order to prevent leakage light from the pixel portion.
  • the light scattering particles are, for example, optically inactive inorganic fine particles. The light scattering particles can scatter light from the light source irradiated to the color filter pixel portion.
  • Examples of the material constituting the light scattering particles include simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate, Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; magnesium carbonate, Metal carbonates such as barium carbonate, bismuth subcarbonate and calcium carbonate; metal hydroxides such as aluminum hydroxide; complex oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, Binitrite And metal salts of the mass, and the like.
  • simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rh
  • the light-scattering particles preferably include at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate, and silica, from the viewpoint of being more effective in reducing leakage light. More preferably, it contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate.
  • the shape of the light scattering particles may be spherical, filamentous, indefinite or the like.
  • the light scattering particles it is possible to use particles having less directivity as the particle shape (for example, spherical, tetrahedral, etc. particles), thereby improving the uniformity, fluidity and light scattering of the ink composition. It is preferable in that it can be improved.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 0.05 ⁇ m or more, or 0.2 ⁇ m or more, from the viewpoint of being excellent in the effect of reducing leakage light. It may be 0.3 ⁇ m or more.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 1.0 ⁇ m or less, 0.6 ⁇ m or less, from the viewpoint of excellent ejection stability. It may be 4 ⁇ m or less.
  • the average particle diameter (volume average diameter) of the light scattering particles in the ink composition is 0.05 to 1.0 ⁇ m, 0.05 to 0.6 ⁇ m, 0.05 to 0.4 ⁇ m, 0.2 to 1.
  • the average particle diameter (volume average diameter) of the light-scattering particles used may be 50 nm or more and 1000 nm or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles is obtained by measuring with a dynamic light scattering nanotrack particle size distribution meter and calculating the volume average diameter.
  • the average particle diameter (volume average diameter) of the light-scattering particles used is obtained by measuring the particle diameter of each particle with, for example, a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
  • the content of the light-scattering particles may be 0.1% by mass or more based on the non-volatile content of the ink composition, and may be 1% by mass or more from the viewpoint of being excellent in the effect of reducing leakage light. Alternatively, it may be 5% by mass or more, 7% by mass or more, 10% by mass or more, or 12% by mass or more.
  • the content of the light-scattering particles may be 60% by mass or less and 50% by mass based on the mass of the non-volatile content of the ink composition from the viewpoint of being excellent in the effect of reducing leakage light and excellent in ejection stability. Or 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, or 15% by mass. It may be the following. In this embodiment, since the ink composition contains a polymer dispersant, the light scattering particles can be favorably dispersed even when the content of the light scattering particles is within the above range.
  • the mass ratio of the content of the light-scattering particles to the content of the light-emitting nanocrystals is 0.1 to 5.0.
  • the mass ratio (light scattering particles / light emitting nanocrystals) may be 0.2 or more, or 0.5 or more, from the viewpoint of better leakage light reduction effect.
  • the mass ratio (light-scattering particles / light-emitting nanocrystal) may be 2.0 or less or 1.5 or less from the viewpoint of better leakage light reduction effect.
  • the mass ratios (light scattering particles / light emitting nanocrystals) are 0.1 to 2.0, 0.1 to 1.5, 0.2 to 5.0, 0.2 to 2.0, 0.2.
  • leakage light reduction by light-scattering particles is based on the following mechanism. That is, when no light-scattering particles are present, it is considered that the backlight light only passes almost straight through the pixel portion and is less likely to be absorbed by the light-emitting nanocrystal.
  • the backlight light is scattered in all directions in the pixel portion, and the light emitting nanocrystal can receive the same, so that the same Even if the backlight is used, it is considered that the amount of light absorption in the pixel portion increases. As a result, it is considered that leakage light can be prevented by such a mechanism.
  • the light conversion layer in the present invention preferably contains a resin component that moderately disperses and stabilizes the light-emitting nanocrystals according to the production process, in addition to the light-emitting nanocrystals described above.
  • Such a resin component is preferably a polymer of a photopolymerizable compound and alkali-developable in terms of producing the light conversion layer by a photolithography method.
  • Bifunctional monomers such as 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, 3-methylpentanediol diacrylate, etc.
  • thermoplastic resins may be used in combination with these polymers.
  • examples of the thermoplastic resins include urethane resins, acrylic resins, polyamide resins, polyimide resins, and styrene maleic acid resins. And styrene maleic anhydride resin.
  • a polymerization initiator in addition to the transparent resin and the luminescent nanocrystal, a polymerization initiator, a catalyst, alumina, silica, titanium oxide beads, a scattering agent such as zeolite or zirconia, Known additives may be included.
  • the light conversion layer according to the present invention includes three-color pixel portions of red (R), green (G), and blue (B), and may include a color material as necessary.
  • a color material for example, a diketopyrrolopyrrole pigment and / or an anionic red organic dye in the red (R) pixel portion, and a copper halide phthalocyanine pigment, phthalocyanine-based in the green (G) pixel portion.
  • the preferred colorant optionally added together with the luminescent nanocrystals in the red color layer according to the present invention preferably contains a diketopyrrolopyrrole pigment and / or an anionic red organic dye.
  • a diketopyrrolopyrrole pigment include C.I. I. One or more selected from Pigment Red 254, 255, 264, 272, Orange 71 and 73 are preferred, and one or more selected from Red 254, 255, 264 and 272 Is more preferred, and C.I. I. Pigment Red 254 is particularly preferable.
  • Specific examples of the anionic red organic dye include C.I. I. One or more selected from Solvent Red 124, Acid Red 52 and 289 are preferred. I. Solvent Red 124 is particularly preferred.
  • Preferred colorants optionally added together with the light emitting nanocrystals in the green color layer according to the present invention are metal halide phthalocyanine pigments, phthalocyanine green dyes and mixtures of phthalocyanine blue dyes and azo yellow organic dyes. It is preferable to contain at least one selected from the group consisting of Examples of the metal halide phthalocyanine pigment include the following two groups of metal halide phthalocyanine pigments.
  • (First group) It has a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal, and phthalocyanine
  • a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal
  • phthalocyanine A halogenated metal phthalocyanine pigment in which 8 to 16 halogen atoms per molecule are bonded to the benzene ring of the phthalocyanine molecule.
  • the central metal When the central metal is trivalent, the central metal contains one halogen atom, hydroxyl group Or when a sulfonic acid group (—SO 3 H) is bonded and the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogens which may be the same or different.
  • a halogenated metal phthalocyanine pigment to which any one of an atom, a hydroxyl group and a sulfonic acid group is bonded.
  • Halogen having molecules as structural units and each central metal of these structural units bonded through a divalent atomic group selected from the group consisting of oxygen atom, sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —)
  • a pigment comprising a metal halide phthalocyanine dimer.
  • all the halogen atoms bonded to the benzene ring may be the same or different. Different halogen atoms may be bonded to one benzene ring.
  • the halogenated metal phthalocyanine pigment used in the present invention in which 9 to 15 bromine atoms out of 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule is yellowish. It exhibits a bright green color and is optimal for use in the green pixel portion of the color filter.
  • the metal halide phthalocyanine pigment used in the present invention is insoluble or hardly soluble in water or an organic solvent.
  • the halogenated metal phthalocyanine pigment used in the present invention includes both a pigment that has not been subjected to a finishing treatment described later (also referred to as a crude pigment) and a pigment that has been subjected to a finishing treatment.
  • halogenated metal phthalocyanine pigments belonging to the first group and the second group can be represented by the following general formula (PIG-1).
  • the halogenated metal phthalocyanine pigment belonging to the first group is as follows in the general formula (PIG-1).
  • X 1 to X 16 each represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the four X atoms bonded to one benzene ring may be the same or different.
  • 8 to 16 are chlorine, bromine or iodine atoms.
  • M represents a central metal.
  • a pigment having a total of less than 8 chlorine atoms, bromine atoms and iodine atoms out of 16 X 1 to X 16 is blue.
  • Y bonded to the central metal M is a monovalent atomic group selected from the group consisting of a halogen atom of any one of fluorine, chlorine, bromine or iodine, an oxygen atom, a hydroxyl group and a sulfonic acid group, and m is bonded to the central metal M. Represents the number of Y to be represented, and is an integer of 0-2.
  • m The value of m is determined by the valence of the central metal M.
  • One of the groups is attached to the central metal.
  • the central metal M is divalent like Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, Y does not exist.
  • the halogenated metal phthalocyanine pigment belonging to the second group is as follows in the general formula (PIG-1).
  • X 1 to X 16 are as defined above, and the central metal M represents a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, m represents 1. Y represents the following atomic group.
  • the central metal M has the same definition as described above, and X 17 to X 32 have the same definition as X 1 to X 16 in the general formula (PIG-1).
  • A represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —).
  • M in the general formula (PIG-1) and M in the atomic group Y are bonded via the divalent atomic group A.
  • the halogenated metal phthalocyanine pigment belonging to the second group is a halogenated metal phthalocyanine dimer in which two molecules of metal halide phthalocyanine are structural units and these are bonded via the divalent atomic group.
  • metal halide phthalocyanine pigment represented by the general formula (PIG-1) include the following (1) to (4).
  • Mainly divalent metals selected from the group consisting of Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, such as halogenated tin phthalocyanine pigment, halogenated nickel phthalocyanine pigment, and halogenated zinc phthalocyanine pigment.
  • a halogenated metal phthalocyanine pigment which is a metal and has 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
  • chlorinated brominated zinc phthalocyanine pigments include C.I. I. Pigment Green 58, which is particularly preferable.
  • a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, such as a halogenated chloroaluminum phthalocyanine, has one halogen atom, hydroxyl group or sulfonic acid as the central metal.
  • a halogenated metal phthalocyanine pigment having any of the groups and having 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
  • a central metal is a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine. 8 to 16 halogen atoms bonded to four benzene rings per one phthalocyanine molecule, having one oxygen atom or two halogen atoms which may be the same or different, a hydroxyl group or a sulfonic acid group Halogenated metal phthalocyanine pigment.
  • a halogenated ⁇ -oxo-aluminum phthalocyanine dimer and a halogenated ⁇ -thio-aluminum phthalocyanine dimer.
  • the valence metal is the central metal
  • the halogenated metal phthalocyanine is composed of two molecules of 8-16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Each central metal of these structural units is an oxygen atom.
  • a pigment comprising a metal halide phthalocyanine dimer bonded through a divalent atomic group selected from the group consisting of sulfur atom, sulfinyl and sulfonyl.
  • C.I. in the green color layer I. Solvent Blue 67 and C.I. I. A mixture with Solvent Yellow 162, or C.I. I.
  • Pigment Green 7 and / or 36 are optionally contained.
  • the preferred colorant optionally added together with the light emitting nanocrystals in the blue color layer according to the present invention preferably contains an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye.
  • the ⁇ -type copper phthalocyanine pigment is C.I. I. Pigment Blue 15: 6.
  • Specific examples of the cationic blue organic dye include C.I. I. Solvent Blue 2, 3, 4, 5, 6, 7, 23, 43, 72, 124, C.I. I. Basic Blue 7 and 26 are preferred, and C.I. I. Solvent Blue 7 and Basic Blue 7 are more preferable, and C.I. I. Solvent Blue 7 is particularly preferable.
  • C.I. I. Pigment Blue 1 C.I. I. Pigment Violet 23, C.I. I. Basic Blue 7, C.I. I. Basic Violet 10, C.I. I. Acid Blue 1, 90, 83, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Direct Blue 86.
  • the light conversion layer according to the present invention includes a yellow (Y) pixel portion (yellow color layer), C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. It is also preferable to contain at least one yellow organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33, 162.
  • the upper limit of the content of the light-emitting nanocrystals with respect to the transparent resin is preferably 80 parts by mass, 70 parts by mass, 60 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the transparent resin.
  • the minimum of content of the nanocrystal for light emission 1.0 mass part, 3.0 mass part, 5.0 mass part, and 10.0 mass parts are preferable with respect to 100 mass parts of transparent resin.
  • the above content represents the total amount.
  • the light conversion layer according to the present invention is preferably a laminate in which a layer (NC) containing nanocrystals for light emission and a color filter (CF) are laminated (for example, FIG. 19). More specifically, the light conversion layer preferably has a red color layer R, a green color layer G, and a blue color layer B.
  • the red (R) pixel portion R includes a layer (NC) including a red light emitting nanocrystal and a color material layer (CF-Red) including a red color material.
  • the green (R) pixel portion includes a layer (NC) including a green light emitting nanocrystal and a color material layer (CF-Green) including a green color material or a yellow color material. It is preferably composed of a color material layer (yellow color layer).
  • the blue (R) pixel portion includes a color material layer containing a blue color material (CF-Blue color layer containing layer) and / or a transparent resin layer, and optionally emitting blue light. And a layer (NC) containing nanocrystals for use.
  • the color filter is preferably formed using the above color material.
  • diketopyrrolopyrrole pigment and / or anionic red organic dye in red (R) color filter copper halide phthalocyanine pigment, phthalocyanine green dye, phthalocyanine blue dye in green (G) color filter
  • R red
  • G green
  • at least one selected from the group consisting of a mixture of an azo-based yellow organic dye contains an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye in a blue (B) color filter.
  • the color filter may contain the above-described transparent resin, a photocurable compound described later, a dispersant, and the like, if necessary, and a color filter manufacturing method can be formed by a known photolithography method or the like.
  • the light conversion layer can be formed by a conventionally known method.
  • a typical method for forming the pixel portion is a photolithography method, which is provided with a light-curable nanocrystal-containing photocurable composition to be described later and a transparent matrix black matrix for a conventional color filter. After applying to the surface on the side, heating and drying (pre-baking), pattern exposure is performed by irradiating ultraviolet rays through a photomask to cure the photocurable compound at the location corresponding to the pixel portion, and then unexposed In this method, the portion is developed with a developing solution, the non-pixel portion is removed, and the pixel portion is fixed to the transparent substrate. In this method, a pixel portion composed of a cured colored film of a light-emitting nanocrystal-containing photocurable composition is formed on a transparent substrate.
  • a photocurable composition to be described later is prepared for each of other color pixels such as a red (R) pixel, a green (G) pixel, a blue (B) pixel, and a yellow (Y) pixel as necessary, By repeating these operations, a light conversion layer having colored pixel portions of red (R) pixels, green (G) pixels, blue (B) pixels, and yellow (Y) pixels at a predetermined position can be manufactured.
  • Examples of a method for applying a light-emitting nanocrystal-containing photocurable composition to be described later on a transparent substrate such as glass include a spin coating method, a roll coating method, and an inkjet method.
  • the drying conditions of the coating film of the light-emitting nanocrystal-containing photocurable composition applied to the transparent substrate vary depending on the type of each component, the blending ratio, etc., but usually at 50 to 150 ° C. for about 1 to 15 minutes. is there.
  • light used for photocuring of the light-emitting nanocrystal-containing photocurable composition it is preferable to use ultraviolet rays or visible light in a wavelength range of 200 to 500 nm. Various light sources that emit light in this wavelength range can be used.
  • Examples of the developing method include a liquid filling method, a dipping method, and a spray method.
  • the transparent substrate on which the necessary color pixel portion is formed is washed with water and dried.
  • the color filter thus obtained is subjected to a heat treatment (post-baking) at 90 to 280 ° C. for a predetermined time by a heating device such as a hot plate or an oven, thereby removing volatile components in the colored coating film and simultaneously emitting light.
  • the unreacted photocurable compound remaining in the cured colored film of the photocurable composition containing the nanocrystals for use is thermally cured to complete the light conversion layer.
  • the color material and resin for the light conversion layer of the present invention together with the nanocrystal for light emission of the present invention, the voltage holding ratio (VHR) of the liquid crystal layer is lowered, the blue light or ultraviolet light is deteriorated, and the ion density (ID) It is possible to provide a liquid crystal display device that prevents display defects such as white spots, alignment unevenness, and burn-in.
  • a dispersion for forming the pixel portion of the light conversion layer is prepared, and then a photocurable compound and A method of forming a light-emitting nanocrystal-containing photocurable composition containing a light-emitting nanocrystal by adding a thermoplastic resin, a photopolymerization initiator, or the like as necessary is common.
  • organic solvent used here examples include aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
  • aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
  • Acetate solvents such as diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propionate solvents such as ethoxyethyl propionate, alcohol solvents such as methanol and ethanol, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl Ether, diethylene glycol dimethyl ether Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, N, N-dimethylformamide, ⁇ -butyrolactam, N-methyl-2-pyrrolidone, aniline And nitrogen compound solvents such as pyridine, lactone solvents such as ⁇ -butyrolactone, and carbamate esters such as a 48:52 mixture of
  • Dispersants used here include, for example, Big Chemie's Dispersic 130, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 170, Dispersic 171, Dispersic 174, Dispersic 180, Dispersic 182, Dispersic 183, Dispersic 184, Dispersic 185, Dispersic 2000, Dispersic 2001, Dispersic 2020, Dispersic 2050, Dispersic 2070, Dispersic 2096, Dispersic 2150, Dispersic LPN21116, Dispersic LPN6919 Efka EFKA 46, EFKA 47, EFKA 452, EFKA LP4008, EFKA 009, Efka LP4010, Efka LP4050, LP4055, Efka400, Efka401, Evka402, Efka403, Efka450, Efka451, Efka453, Evka4540, Efka4550, EfkaLP4560, Efka120, Efka150, Evka
  • rosin such as acrylic resin, urethane resin, alkyd resin, wood rosin, gum rosin, tall oil rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, modified rosin such as maleated rosin, Rosin derivatives such as rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin modified phenol
  • a synthetic resin that is liquid and water-insoluble at room temperature can be contained. Addition of these dispersants and resins also contributes to reduction of flocculation, improvement of pigment dispersion stability, and improvement of viscosity characteristics of the dispersion.
  • organic pigment derivatives such as phthalimidomethyl derivatives, sulfonic acid derivatives, N- (dialkylamino) methyl derivatives, N- (dialkylaminoalkyl) sulfonic acid amide derivatives, etc. You can also. Of course, two or more of these derivatives can be used in combination.
  • thermoplastic resin used in the preparation of the light-emitting nanocrystal-containing photocurable composition examples include urethane resins, acrylic resins, polyamide resins, polyimide resins, styrene maleic acid resins, and styrene maleic anhydride resins. Examples thereof include resins.
  • Examples of the photocurable compound containing nanocrystals for light emission include 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, 3 -Bifunctional monomers such as methylpentanediol diacrylate, trimethylol propaton triacrylate, pentaerythritol triacrylate, tris [2- (meth) acryloyloxyethyl) isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol penta Polyfunctional monomers with relatively low molecular weight such as acrylate, polyester acrylate, polyurethane acrylate, polyether acrylate, etc. Large multifunctional monomers comparatively molecular weight and the like.
  • photopolymerization initiator examples include acetophenone, benzophenone, benzyldimethylketanol, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′ -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like.
  • photopolymerization initiators include, for example, “Irgacure (trade name) -184”, “Irgacure (trade name) -369”, “Darocur (trade name) -1173” manufactured by BASF, “Lucirin- "TPO”, Nippon Kayaku Co., Ltd. "Kayacure (trade name) DETX”, “Kayacure (trade name) OA”, Stofer “Bicure 10", “Bicure 55", Akzo "Trigonal PI”, Sand “Sandray 1000" manufactured by Upjohn, “Deep” manufactured by Upjohn, and “Biimidazole” manufactured by Kurokin Kasei.
  • a known and commonly used photosensitizer can be used in combination with the photopolymerization initiator.
  • the photosensitizer include amines, ureas, compounds having a sulfur atom, compounds having a phosphorus atom, compounds having a chlorine atom, nitriles or other compounds having a nitrogen atom. These can be used alone or in combination of two or more.
  • the blending ratio of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 30% with respect to the compound having a photopolymerizable or photocurable functional group on a mass basis. If it is less than 0.1%, the photosensitivity at the time of photocuring tends to decrease, and if it exceeds 30%, crystals of the photopolymerization initiator are precipitated when the pigment-dispersed resist coating film is dried. May cause deterioration of film properties.
  • the materials as described above on a mass basis, 300 to 100,000 parts of an organic solvent and 1 to 500 parts of an affinity molecule or dispersant per 100 parts of the light-emitting nanocrystal of the present invention.
  • the dye / pigment solution can be obtained by stirring and dispersing so as to be uniform.
  • an organic solvent is further added, and the light-curable nanocrystal-containing photocurable composition for forming a pixel portion by stirring and dispersing so as to be uniform can be obtained.
  • the developer a known and commonly used organic solvent or alkaline aqueous solution can be used.
  • the photocurable composition contains a thermoplastic resin or a photocurable compound, and at least one of them has an acid value and exhibits alkali solubility
  • the color filter can be washed with an alkaline aqueous solution. It is effective for forming the pixel portion.
  • the manufacturing method of the colored pixel portion of the R pixel, the G pixel, the B pixel, and the Y pixel by the photolithography method has been described in detail.
  • the pixel portion prepared by using the nanocrystal-containing composition for light emission of the present invention Forming each color pixel portion by other electrodeposition method, transfer method, micellar electrolysis method, PVED (Photovoltaic Electrodeposition) method, ink jet method, reversal printing method, thermosetting method, etc. to produce a light conversion layer Also good.
  • the method for producing an ink composition includes, for example, a first step of preparing a dispersion of light scattering particles containing light scattering particles and a polymer dispersant, a dispersion of light scattering particles, and a light-emitting nanoparticle. A second step of mixing the crystal particles.
  • the dispersion of light scattering particles may further contain a thermosetting resin, and in the second step, a thermosetting resin may be further mixed. According to this method, the light scattering particles can be sufficiently dispersed. Therefore, an ink composition that can reduce leakage light in the pixel portion can be easily obtained.
  • the dispersion of light-scattering particles is performed by mixing the light-scattering particles, a polymer dispersant, and optionally a thermosetting resin, and performing a dispersion treatment. May be prepared.
  • the mixing and dispersing treatment may be performed using a dispersing device such as a bead mill, a paint conditioner, a planetary stirrer or the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of good dispersibility of the light scattering particles and easy adjustment of the average particle diameter of the light scattering particles to a desired range.
  • the method for producing an ink composition may further include a step of preparing a dispersion of luminescent nanocrystal particles containing the luminescent nanocrystal particles and a thermosetting resin before the second step. Good.
  • the dispersion of light scattering particles and the dispersion of luminescent nanocrystal particles are mixed. According to this method, the luminescent nanocrystal particles can be sufficiently dispersed. Therefore, an ink composition that can reduce leakage light in the pixel portion can be easily obtained.
  • step of preparing a dispersion of luminescent nanocrystal particles mixing and dispersion of the luminescent nanocrystal particles and the thermosetting resin are performed using the same dispersing device as the step of preparing the dispersion of light scattering particles. Processing may be performed.
  • the ink composition of the present embodiment is used as an ink composition for an ink jet system, it is preferably applied to a piezo jet ink jet recording apparatus using a mechanical ejection mechanism using a piezoelectric element.
  • the ink composition is not instantaneously exposed to high temperatures during ejection, the luminescent nanocrystal particles are not easily altered, and the light emission characteristics as expected by the color filter pixel part (light conversion layer) Is easier to obtain.
  • the light conversion layer according to the present invention is, for example, formed in a pattern of a black matrix that is a light-shielding part on a base material, and then in the pixel part formation region partitioned by the light-shielding part on the base material. It can be produced by a method in which an ink composition (inkjet ink) is selectively attached by an inkjet method and the ink composition is cured by irradiation with active energy rays or heating.
  • an ink composition inkjet ink
  • the method for forming the light-shielding part is to form a metal thin film such as chromium or a resin composition thin film containing light-shielding particles in a region that becomes a boundary between a plurality of pixel parts on one side of the substrate, A method of patterning this thin film is exemplified.
  • the metal thin film can be formed by, for example, a sputtering method, a vacuum deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed by, for example, a method such as coating or printing. Examples of the patterning method include a photolithography method.
  • Examples of the ink jet system include a bubble jet (registered trademark) system using an electrothermal transducer as an energy generating element, a piezo jet system using a piezoelectric element, and the like.
  • the ink composition When the ink composition is cured by irradiation with active energy rays (for example, ultraviolet rays), for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like may be used.
  • active energy rays for example, ultraviolet rays
  • the wavelength of the irradiated light may be, for example, 200 nm or more and 440 nm or less.
  • the exposure amount may be, for example, 10 mJ / cm 2 or more and may be 4000 mJ / cm 2 or less.
  • the heating temperature may be, for example, 110 ° C. or higher and 250 ° C. or lower.
  • the heating time may be, for example, 10 minutes or more and 120 minutes or less.
  • materials such as compounds and resins used in the inkjet method may be used in photolithography methods, and conversely, materials such as compounds and resins used in the photolithography methods are ink jet methods. It goes without saying that it may be used in the law.
  • the present invention is not limited to the above embodiment.
  • LCD panel Next, the structure of the liquid crystal panel in the liquid crystal display element according to the present invention will be described.
  • FIG. 12 is a schematic diagram showing a structural diagram of the electrode layer 3 of the liquid crystal display unit, and is a schematic diagram showing an electrode part of the liquid crystal panel 10 in an equivalent circuit.
  • FIGS. 13 and 14 show examples of the shape of the pixel electrode. It is a schematic diagram, and is a schematic diagram showing an electrode structure of an FFS type liquid crystal display element as an example of the present embodiment.
  • FIG. 16 is a schematic diagram showing a cross section of a liquid crystal panel of an FFS type liquid crystal display element.
  • FIG. 15 is a schematic diagram showing an electrode structure of an IPS liquid crystal display element as an example of the present embodiment.
  • FIG. 17 is a schematic view showing a cross section of a liquid crystal panel of an IPS liquid crystal display element. Further, FIG. 18 is a schematic diagram showing an electrode structure of a VA liquid crystal display element as an example of the present embodiment.
  • FIG. 19 is a schematic view showing a cross section of a liquid crystal panel of a VA liquid crystal display element. As shown in FIGS. 1 to 4, a liquid crystal display element is driven by providing a backlight unit as illumination means for illuminating the liquid crystal panel 10 from the side surface or the back surface.
  • the electrode layers 3, 3 'according to the present invention include one or more common electrodes and / or one or more pixel electrodes.
  • the pixel electrode is disposed on the common electrode via an insulating layer (eg, silicon nitride (SiN)).
  • the pixel electrode is shared with the pixel electrode.
  • the electrode is disposed opposite to the liquid crystal layer 5.
  • the pixel electrode is arranged for each display pixel, and a slit-shaped opening is formed.
  • the common electrode and the pixel electrode are transparent electrodes formed of, for example, ITO (Indium Tin Oxide), and the electrode layer 3 has a gate bus line GBL (extending along a row in which a plurality of display pixels are arranged in the display unit. GBL1, GBL2,... GBLm), a source bus line SBL (SBL1, SBL2,... SBLm) extending along a column in which a plurality of display pixels are arranged, and a vicinity of a position where the gate bus line and the source bus line intersect.
  • a thin film transistor is provided as a pixel switch.
  • the gate electrode of the thin film transistor is electrically connected to the corresponding gate bus line GBL, and the source electrode of the thin film transistor is electrically connected to the corresponding signal line SBL. Further, the drain electrode of the thin film transistor is electrically connected to the corresponding pixel electrode.
  • the electrode layer 3 includes a gate driver and a source driver as driving means for driving a plurality of display pixels, and the gate driver and the source driver are arranged around the liquid crystal display unit.
  • the plurality of gate bus lines are electrically connected to the output terminal of the gate driver, and the plurality of source bus lines are electrically connected to the output terminal of the source driver.
  • the gate driver sequentially applies an ON voltage to the plurality of gate bus lines, and supplies the ON voltage to the gate electrode of the thin film transistor electrically connected to the selected gate bus line. Conduction is established between the source and drain electrodes of the thin film transistor in which the ON voltage is supplied to the gate electrode.
  • the source driver supplies an output signal corresponding to each of the plurality of source bus lines. The signal supplied to the source bus line is applied to the corresponding pixel electrode through a thin film transistor in which the source and drain electrodes are electrically connected.
  • the operations of the gate driver and the source driver are controlled by a display processing unit (also referred to as a control circuit) arranged outside the liquid crystal display element.
  • the display processing unit according to the present invention may have a low frequency driving function and an intermittent driving function for reducing driving power in addition to normal driving, and an LSI for driving a gate bus line of a TFT liquid crystal panel.
  • the operation of the gate driver and the operation of the source driver which is an LSI for driving the source bus line of the TFT liquid crystal panel are controlled.
  • the common voltage V COM is supplied to the common electrode to control the operation of the backlight unit.
  • the display processing unit according to the present invention includes a local dimming unit that divides the entire display screen into a plurality of sections and adjusts the intensity of the backlight light according to the brightness of the image displayed in each section. Also good.
  • FIG. 13 is a diagram showing a comb-shaped pixel electrode as an example of the shape of the pixel electrode, and is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIGS. It is.
  • the electrode layer 3 including thin film transistors formed on the surface of the first substrate 2 includes a plurality of gate bus lines 26 for supplying scanning signals and a plurality of gate bus lines 26 for supplying display signals.
  • the source bus lines 25 are arranged in a matrix so as to cross each other.
  • a unit pixel of the liquid crystal display device is formed by a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25, and a pixel electrode 21 and a common electrode 22 are formed in the unit pixel. ing.
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of the intersection where the gate bus line 26 and the source bus line 25 intersect each other.
  • the thin film transistor is connected to the pixel electrode 21 as a switch element that supplies a display signal to the pixel electrode 21.
  • a common line 29 is provided in parallel with the gate bus line 26.
  • the common line 29 is connected to the common electrode 22 in order to supply a common signal to the common electrode 22.
  • a common electrode 22 is formed on the back surface of the pixel electrode 21 through an insulating layer 18 (not shown).
  • the horizontal component of the shortest separation path between the adjacent common electrode and the pixel electrode is shorter than the shortest separation distance (cell gap) between the alignment layers (or substrates).
  • the surface of the pixel electrode is preferably covered with a protective insulating film and an alignment layer.
  • the component in the horizontal direction with respect to the substrate may be provided in an area surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25. Good.
  • FIG. 14 is a modification of FIG. 13 and shows a slit pixel electrode as an example of the shape of the pixel electrode.
  • a substantially rectangular flat plate electrode is cut out with a triangular cutout at the center and both ends of the flat plate, and the other portions are cut out in a substantially rectangular frame shape.
  • the shape is hollowed out at the part.
  • the shape of the notch is not particularly limited, and a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram can be used.
  • 13 and 14 show only a pair of gate bus lines 26 and a pair of source bus lines 25 in one pixel.
  • FIG. 16 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 2 taken along the line III-III in FIG. 13 or FIG.
  • a first substrate 2 having an alignment layer 4 and an electrode layer 3 including a thin film transistor (TFT) formed on one surface and a first polarizing layer 1 formed on the other surface; an alignment layer 4;
  • the polarizing substrate 8 and the second substrate 7 on which the light conversion layer 6 is formed on one surface are spaced apart from each other so that the alignment layers face each other at a predetermined interval G.
  • the first substrate 2 and the second substrate 7 is filled with a liquid crystal layer 5 containing a liquid crystal composition.
  • the alignment layers 4 are stacked in this order.
  • FIG. 16 shows an example in which two layers of the passivation film 18 and the flat film 33 are separately provided, a flattening film having both the functions of the passivation film 18 and the flat film 33 may be provided.
  • FIG. 16 shows an example in which the alignment layer 4 is provided. However, as shown in FIG. 1, the alignment layer 4 may not be formed.
  • the light conversion layer 6 has red (R), green (G), and blue (G) light incident on the light source unit incident on at least one of the three primary color pixels of red (R), green (G), and blue (B).
  • B) contains a light-emitting nanocrystal (not shown) having an emission spectrum. The light conversion layer 6 will be described below with reference to FIGS.
  • FIG. 20 shows an example of an enlarged schematic diagram of the light conversion layer 6 according to the present invention.
  • the light conversion layer 6 includes a red color layer R, a green color layer G, and a blue color layer B.
  • the red (R) pixel portion R includes a light conversion pixel layer (NC-Red) including red light emitting nanocrystals and a color material layer including a blue or yellow color material (so-called yellow color filter). Or a blue color filter).
  • the green (G) pixel portion G (green color layer G) includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a color material layer (so-called yellow color filter) including a blue or yellow color material. Or a blue color filter).
  • the blue (B) pixel portion B includes a light conversion pixel layer (or transparent resin layer) that optionally contains blue light-emitting nanocrystals and a color material layer (so-called “blue” or “yellow” color material). Yellow color filter or blue color filter). Therefore, the light conversion layer 6 has a color layer (so-called color filter) CFL 2 containing a color material on the light source side with respect to a nanocrystal layer NCL including a red color layer, a green color layer, and a blue color layer. A layer is provided. Further, in order to prevent color mixture between the red color layer, the green color layer, and the blue color layer, a black matrix BM is provided as a light shielding layer. Further, by providing a yellow color filter on one surface, it is possible to cut blue light that is not absorbed by the light-emitting nanocrystal.
  • a nanocrystal layer NCL and a color material layer (so-called color filter) CFL containing a color material are laminated. Since all the light from the light source (excitation light, for example, blue light) cannot be converted by the light conversion layer, the remaining excitation light needs to be absorbed without passing through the light conversion layer. For this reason, the light conversion layer does not visually recognize the remaining excitation light (blue light) by laminating a layer (NC) containing nanocrystals for light emission and a color layer (so-called color filter) CFL containing a color material. Is suppressed. However, the color layer (so-called color filter) CFL including a color material may be eliminated if necessary. In that case, another preferred embodiment of the light conversion layer is composed of a nanocrystal layer NCL as shown in FIG.
  • a color layer including a blue color material is provided as a light source assuming light having a main emission peak in a wavelength region of 420 nm or more and 480 nm or less (for example, light of a blue LED or the like).
  • the type of the color layer is appropriately changed depending on the type of light source used.
  • the red color layer R, the green color layer G, and the blue color layer B may appropriately include color materials as necessary.
  • the layer (NCL) including the light emitting nanocrystals NC may include color materials corresponding to the respective colors.
  • FIG. 21 schematically shows another preferred embodiment of the light conversion layer.
  • the light conversion layer 6 includes a red color layer R, a green color layer G, and a blue color layer B.
  • the red (R) pixel portion R is a light conversion pixel layer (NC) including a color material layer (so-called red color filter) CF-Red including a red color material and a red light emitting nanocrystal.
  • a color material layer CFL blue or yellow color filter CF-BLue • Yellow
  • the green (G) pixel portion includes a color material layer containing a green color material (so-called green color filter) CF-Green and a light conversion pixel layer (NC) containing green light emitting nanocrystals. It is composed of a color material layer CFL (blue or yellow color filter CF-Blue / Yellow) containing a blue color material.
  • the blue (R) pixel portion includes a transparent resin layer and / or a color layer CFL (so-called blue or yellow color filter) containing a blue or yellow color material, and a light-emitting nanocrystal included as necessary. And a color layer CFL (blue or yellow color filter) containing a blue color material.
  • a black matrix is disposed as a light shielding layer between the red color layer, the green color layer, and the blue color layer.
  • the light conversion layer 6 includes a color filter layer CFL (blue or yellow), a layer (NCL) including nanocrystals NC for light emission, and three primary color pixels of red (R), green (G), and blue (B).
  • the red (R), green (G), and blue (B) color filters provided with are laminated in order, and have a three-layer laminate.
  • the color filter layer CFL may be omitted if necessary.
  • a color material layer (so-called yellow color filter) including a yellow color material may be used for color adjustment instead of the color material layer (so-called green color filter) CF-Green including the green color material.
  • the red color layer R, the green color layer G, and the blue color layer B may appropriately include color materials as necessary.
  • the layer (NCL) including the light emitting nanocrystals NC may include color materials corresponding to the respective colors.
  • a blue color filter layer is provided as a color filter layer CFL assuming a blue LED as a light source.
  • the color type of the color filter layer is appropriately changed depending on the type of light source used.
  • FIG. 22 shows another example of an enlarged schematic diagram of the light conversion layer 6 according to the present invention.
  • the light conversion layer 6 includes a red color layer R, a green color layer G, and a blue color layer B.
  • the red (R) pixel portion R (red color layer R) is composed of a light conversion pixel layer (NC-Red) including red light emitting nanocrystals.
  • the green (G) pixel portion G (green color layer G) is composed of a light conversion pixel layer (NC-Green) containing green light emitting nanocrystals.
  • the blue (B) pixel portion B blue color layer portion B (blue color layer portion B) includes a (light conversion pixel) layer (or a transparent resin layer) that optionally includes blue light emitting nanocrystals.
  • the light conversion layer 6 is composed of one layer of the nanocrystal layer NCL including the red color layer R, the green color layer G, and the blue color layer B. Further, in order to prevent color mixture between the red color layer R, the green color layer G, and the blue color layer B, a black matrix BM is provided as a light shielding layer.
  • the red color layer R, the green color layer G, and the blue color layer B may appropriately include color materials as necessary.
  • the layer (NCL) including the light emitting nanocrystals NC may include color materials corresponding to the respective colors.
  • the preferred embodiments of the light conversion layer 6 according to the present invention have been described with reference to FIGS. 20 to 22.
  • the preferred embodiments of the light conversion layer 6 are IPS type liquid crystal display elements.
  • the present invention can also be applied to the light conversion layer 6 in a VA liquid crystal display element.
  • a preferred embodiment of the structure of the thin film transistor includes a gate electrode 11 formed on the surface of the substrate 2 and a gate insulating layer provided so as to cover the gate electrode 11 and cover substantially the entire surface of the substrate 2. 12, a semiconductor layer 13 formed on the surface of the gate insulating layer 12 so as to face the gate electrode 11, a protective film 14 provided so as to cover a part of the surface of the semiconductor layer 13, and the protection A drain electrode 16 which covers one side edge of the layer 14 and the semiconductor layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2; the protective film 14; and the semiconductor A source electrode 17 which covers the other side edge of the layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2; It has a fine the source electrode 17 insulating protective layer 18 provided to cover the, the.
  • An anodic oxide film (not shown) may be formed on the surface of the gate electrode 11 for reasons such as eliminating a step with the gate electrode.
  • the common electrode 22 is a flat electrode formed on almost the entire surface of the gate insulating layer 12.
  • the pixel electrode 21 is a comb-shaped electrode formed on the insulating protective layer 18 covering the common electrode 22. That is, the common electrode 22 is disposed at a position closer to the first substrate 2 than the pixel electrode 21, and these electrodes are disposed so as to overlap each other via the insulating protective layer 18.
  • the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), and the like. Since the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material, the area opened by the unit pixel area increases, and the aperture ratio and transmittance increase.
  • the pixel electrode 21 and the common electrode 22 have a horizontal component of the inter-electrode path between the pixel electrode 21 and the common electrode 22 (both the horizontal component of the minimum separation path) in order to form a fringe electric field between these electrodes.
  • R is formed to be smaller than the thickness G of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7.
  • the horizontal component R of the interelectrode path represents the distance in the horizontal direction on the substrate between the electrodes.
  • the FFS type liquid crystal display element can use a horizontal electric field formed in a direction perpendicular to a line forming the comb shape of the pixel electrode 21 and a parabolic electric field.
  • the electrode width of the comb-shaped portion of the pixel electrode 21: l and the width of the gap of the comb-shaped portion of the pixel electrode 21: m are such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable to form.
  • the horizontal component R of the minimum separation path between the pixel electrode and the common electrode can be adjusted by the (average) film thickness of the insulating film 35 or the like.
  • the configuration of the liquid crystal panel 10 in the IPS type liquid crystal display element is a structure in which an electrode layer 3 (including a common electrode, a pixel electrode, and a TFT) is provided on one side substrate as in the FFS type in FIG.
  • First polarizing layer 1, first substrate 2, electrode layer 3, alignment layer 4, liquid crystal layer 5 containing a liquid crystal composition, alignment layer 4, second polarizing layer 8, and light conversion The layer 6 and the second substrate 7 are sequentially stacked.
  • FIG. 15 is an enlarged plan view of a part of the region surrounded by the II line of the electrode layer 3 formed on the first substrate 2 of FIGS. 1 and 2 in the IPS liquid crystal display unit.
  • a comb-tooth shape is formed in a region surrounded by a plurality of gate bus lines 26 for supplying scanning signals and a plurality of source bus lines 25 for supplying display signals (in a unit pixel).
  • the first electrode (for example, pixel electrode) 21 and the comb-shaped second electrode (for example, common electrode) 22 are loosely engaged with each other (the two electrodes are spaced apart and meshed with each other while maintaining a certain distance). Is provided).
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of an intersection where the gate bus line 26 and the source bus line 25 intersect each other.
  • the thin film transistor is connected to the first electrode 21 as a switch element that supplies a display signal to the first electrode 21.
  • a common line (V com ) 29 is provided in parallel with the gate bus line 26. The common line 29 is connected to the second electrode 22 in order to supply a common signal to the second electrode 22.
  • FIG. 17 is a cross-sectional view of the IPS liquid crystal panel cut in the direction of the line III-III in FIG.
  • a gate insulating layer 32 provided so as to cover the gate bus line 26 (not shown) and to cover substantially the entire surface of the first substrate 2, and on the surface of the gate insulating layer 32
  • the formed insulating protective layer 31 is provided, and the first electrode (pixel electrode) 21 and the second electrode (common electrode) 22 are provided on the insulating protective film 31 separately.
  • the insulating protective layer 31 is a layer having an insulating function, and is formed of silicon nitride, silicon dioxide, silicon oxynitride film, or the like.
  • the second substrate 7 on which the layer 8 and the light conversion layer 6 are formed on one surface is spaced apart from the alignment layer at a predetermined interval, and the space is filled with the liquid crystal layer 5 containing a liquid crystal composition.
  • the light conversion layer 6 has red (R), green (G), and blue (G) light incident on the light source unit incident on at least one of the three primary color pixels of red (R), green (G), and blue (B).
  • B) contains a light-emitting nanocrystal (not shown) having an emission spectrum.
  • the description of the light conversion layer 6 is as described above with reference to FIGS.
  • the first electrode 21 and the second electrode 22 are comb-shaped electrodes formed on the insulating protective layer 31, that is, on the same layer, and are mutually connected. It is provided in a state of being separated and meshed.
  • the interelectrode distance G between the first electrode 21 and the second electrode 22 and the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 ( Cell gap): H satisfies the relationship G ⁇ H.
  • the distance between electrodes: G represents the shortest distance in the horizontal direction on the substrate between the first electrode 21 and the second electrode 22.
  • the first electrode 21 is used.
  • the distance H between the first substrate 2 and the second substrate 7 represents the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7, specifically, The distance (namely, cell gap) between the alignment layers 4 (outermost surfaces) provided on each of the substrate 2 and the second substrate 7 and the thickness of the liquid crystal layer are represented.
  • FIG. 17 shows an example in which the alignment layer 4 is provided, but the alignment layer 4 may not be formed as shown in FIG.
  • the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 is the substrate between the first electrode 21 and the second electrode 22.
  • the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 is the first electrode 21 and the second electrode. 22 is less than the shortest horizontal distance to the substrate.
  • the IPS type liquid crystal panel drives liquid crystal molecules using an electric field in a horizontal direction with respect to a substrate surface formed between the first electrode 21 and the second electrode 22.
  • the electrode width Q of the first electrode 21 and the electrode width R of the second electrode 22 are preferably formed such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field.
  • VA type liquid crystal display is a vertical alignment type liquid crystal panel (VA type liquid crystal display).
  • VA type liquid crystal display An example of the VA type liquid crystal panel of the liquid crystal display element according to the present invention will be described with reference to FIGS. 18 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 (or also referred to as the thin film transistor layer 3) including the thin film transistor formed on the substrate in FIG.
  • FIG. 19 is a cross-sectional view of the liquid crystal panel shown in FIGS. 3 and 4 taken along the line III-III in FIG.
  • the configuration of the liquid crystal panel 10 in the liquid crystal display device according to the present invention is, as shown in FIGS.
  • a first substrate 2 including a second substrate 7 having a light conversion layer 6, a pixel electrode and an electrode layer 3 on which a thin film transistor for controlling the pixel electrode included in each pixel is formed; and the first substrate 2 Liquid crystal layer 5 (consisting of a liquid crystal composition) sandwiched between the substrate 2 and the second substrate 7, and the alignment of the liquid crystal molecules in the liquid crystal composition when no voltage is applied is the substrate 2.
  • 7 is a liquid crystal display element that is substantially perpendicular to the liquid crystal display device, and uses a specific liquid crystal composition as a liquid crystal layer.
  • the electrode layer 3 ′ is preferably made of a transparent conductive material like the other liquid crystal display elements.
  • FIG. 17 shows an example in which the light conversion layer 6 is provided between the second substrate 7 and the common electrode 3 ′, the present invention is not necessarily limited thereto.
  • a pair of alignment layers 4 are formed on the surface of the transparent electrodes (layers) 3 and 3 ′ so as to be adjacent to the liquid crystal layer 5 according to the present invention and in direct contact with the liquid crystal composition constituting the liquid crystal layer 5. (The alignment layer 4 is shown in FIG. 19).
  • the first polarizing layer 1 is provided on the surface of the first substrate 2 on the backlight unit side, and the second polarizing layer 8 is interposed between the transparent electrode (layer) 3 ′ and the light conversion layer 6. Is provided. Therefore, one of the preferable forms of the liquid crystal panel 10 in the liquid crystal display element according to the present invention is that the alignment layer 4 and the electrode layer 3 including the thin film transistor are formed on one surface, and the first polarizing layer 1 is formed on the other surface. And a second substrate 7 having an alignment layer 4, a transparent electrode (layer) 3 ′, a second polarizing layer 8 and a light conversion layer 6 formed on one surface.
  • a liquid crystal layer 5 containing a liquid crystal composition is filled between the first substrate 2 and the second substrate 7 so that the alignment layers are spaced apart from each other at a predetermined interval.
  • the light conversion layer 6 has red (R), green (G), and blue (G) light incident on the light source unit incident on at least one of the three primary color pixels of red (R), green (G), and blue (B).
  • B) contains a light-emitting nanocrystal (not shown) having an emission spectrum. The description of the light conversion layer 6 is as described above with reference to FIGS.
  • FIG. 18 is a diagram showing a pixel electrode of “” ”type as an example of the shape of the pixel electrode 21, and the region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIGS.
  • the pixel electrode 21 is formed in a "" "shape over substantially the entire area surrounded by the gate bus line 26 and the source bus line 25, as in FIGS.
  • the shape of the pixel electrode is not limited to this, and may be a fishbone structure pixel electrode when used for PSVA, etc. Further, other configurations and functions of the pixel electrode 21 are as described above. Therefore, it is omitted here.
  • the liquid crystal panel portion of the vertical alignment type liquid crystal display element has a common electrode 3 ′ (not shown) opposed to and separated from the pixel electrode 21 on the substrate facing the TFT. Is formed. In other words, the pixel electrode 21 and the common electrode 22 are formed on different substrates. On the other hand, in the aforementioned FFS or IPS type liquid crystal display element, the pixel electrode 21 and the common electrode 22 are formed on the same substrate.
  • the light conversion layer 6 may form a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor 23 from the viewpoint of preventing light leakage.
  • FIG. 19 is a cross-sectional view of the liquid crystal display element shown in FIGS. 3 and 4 taken along the line III-III in FIG. That is, the liquid crystal panel 10 of the liquid crystal display element according to the present invention includes a first polarizing layer 1, a first substrate 2, an electrode layer (also referred to as a thin film transistor layer) 3 including a thin film transistor, an alignment layer 4, A liquid crystal layer 5 containing a liquid crystal composition, an alignment layer 4, a common electrode 3 ', a first polarizing layer 8, a light conversion layer 6, and a second substrate 7 are sequentially laminated. .
  • a preferred embodiment of the structure of the thin film transistor (region IV in FIG. 19) of the liquid crystal display element according to the present invention is as described above, and is omitted here.
  • the liquid crystal display element according to the present invention may have a local dimming technique for improving the contrast by controlling the brightness of the backlight unit 100 for each of a plurality of sections smaller than the number of pixels of the liquid crystal.
  • the plurality of light emitting elements L may be arranged in a planar shape, or may be arranged in a line on one side of the liquid crystal panel 10.
  • the light guide unit 102 may include a control layer that controls the amount of light of the backlight for each specific region smaller than the number of pixels of the liquid crystal.
  • a liquid crystal element having fewer than the number of pixels of the liquid crystal may be further included, and various existing methods can be used as the liquid crystal element.
  • An LCD layer containing is preferable in terms of transmittance.
  • the layer containing the (nematic) liquid crystal in which the polymer network is formed (if necessary, the layer containing the (nematic) liquid crystal in which the polymer network is sandwiched between a pair of transparent electrodes) scatters light when the voltage is OFF,
  • an LCD layer including a liquid crystal formed with a polymer network partitioned so as to divide the entire display screen into a plurality of partitions, a light guide plate (and / or a light diffusion plate) and a liquid crystal panel Local dimming can be realized by providing it between the substrate on the light source side.
  • ⁇ n represents the refractive index anisotropy at 589 nm
  • d represents the cell thickness ( ⁇ m) of the liquid crystal layer of the liquid crystal display element. It is preferably 220 to 300 nm.
  • liquid crystal display element that switches transmission of conventional white light including wavelengths in the entire visible light range, and transmission of blue visible light (so-called short wavelength region light) or ultraviolet light of about 500 nm or less that causes excitation of the quantum dots. Since liquid crystal display elements that are switched are different in the optical properties of the transmitted light and the transmitted light, the characteristics and the like required for each element are also different.
  • the light source section the polarizing layer, the liquid crystal layer, and the alignment layer, which are the main components of the liquid crystal display element according to the present invention, will be described.
  • the light source unit includes a light emitting element that emits ultraviolet or visible light.
  • the light-emitting element is not particularly limited with respect to the wavelength region, but preferably has a main light emission peak in the blue region.
  • a light emitting diode (blue light emitting diode) having a main light emission peak in a wavelength region of 420 nm or more and 480 nm or less can be suitably used.
  • the light-emitting element (or light-emitting diode) according to the present invention is not particularly limited in the wavelength region, but preferably has a main light emission peak in the blue region.
  • a light emitting diode having a main emission peak in a wavelength region of 430 nm to 500 nm (420 nm to 480 nm) can be suitably used.
  • a known light emitting diode having a main light emission peak in the blue region can be used.
  • the stacked semiconductor layer may be configured by stacking a base layer, an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer in this order from the substrate side.
  • the ultraviolet light source examples include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, an electrodeless lamp, a metal halide lamp, a xenon arc lamp, and an LED.
  • L is preferably an LED that generates ultraviolet light other than the LED having the main emission peak in the wavelength region of 420 nm to 480 nm.
  • light having an emission center wavelength in the wavelength band of 420 to 480 nm is referred to as blue light
  • light having an emission center wavelength in the wavelength band of 500 to 560 nm is referred to as green light
  • wavelength of 605 to 665 nm is referred to as red light
  • the ultraviolet light in this specification refers to light having an emission center wavelength in a wavelength band of 300 nm or more and less than 420 nm.
  • the “half-value width” refers to the width of the peak at the peak height 1 ⁇ 2.
  • the polarizing layer according to the present invention is not particularly limited, and a known polarizing plate (polarizing layer) can be used. Examples thereof include a dichroic organic dye polarizer, a coating type polarizing layer, a wire grid type polarizer, or a cholesteric liquid crystal type polarizer.
  • the wire grid polarizer is formed on a first substrate, a second substrate, and a color filter, and is formed by any one of nanoimprint method, block copolymer method, E-beam lithography method, and glansing angle deposition method. It is preferable.
  • a coating type polarizing layer you may further provide the orientation layer demonstrated by this specification below. Therefore, when the polarizing layer which concerns on this invention is a coating type polarizing layer, it is preferable to have a coating type polarizing layer and an orientation layer.
  • liquid crystal layer an alignment layer, and the like, which are components of the liquid crystal panel portion of the liquid crystal display element according to the present invention will be described.
  • the liquid crystal layer according to the present invention has the general formula (i):
  • R i1 and R i2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group,
  • a i1 represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, and n i1 represents 0 or 1.
  • the liquid crystal layer containing a compound having high reliability with respect to light resistance can be constituted by the above compound, deterioration of the liquid crystal layer due to light from a light source, particularly blue light (from a blue LED) can be suppressed / prevented.
  • the retardation of the liquid crystal layer can be adjusted, the decrease in the transmittance of the liquid crystal display element is suppressed or prevented.
  • the preferred content of the compound represented by the general formula (i) The lower limit of is 1% by mass, 2% by mass, 3% by mass, 5% by mass, 7% by mass, and 10% by mass with respect to the total amount of the composition of the present invention.
  • the upper limit of the preferable content is 95% by mass, 90% by mass, 85% by mass, 80% by mass, 75% by mass, and 70% by mass with respect to the total amount of the composition of the present invention.
  • % By mass, 65% by mass, 60% by mass, 55% by mass, 50% by mass, 45% by mass, 40% by mass, 35% by mass, and 30% by mass And 25% by mass.
  • the liquid crystal layer according to the present invention particularly preferably contains 10 to 50% by mass of the compound represented by the general formula (i).
  • the compound represented by the general formula (i) is preferably a compound selected from the group of compounds represented by the general formulas (i-1) to (i-2).
  • the compound represented by the general formula (i-1) is the following compound.
  • R i11 and R i12 each independently represent the same meaning as R i1 and R i2 in the general formula (i).
  • R i11 and R i12 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the compound represented by the general formula (i-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content is 1% by mass, 2% by mass, 3% by mass, 5% by mass, 7% by mass, and 10% by mass with respect to the total amount of the composition of the present invention.
  • the upper limit of the preferable content is 95% by mass, 90% by mass, 85% by mass, 80% by mass, 75% by mass, and 70% by mass with respect to the total amount of the composition of the present invention.
  • % by mass 65% by mass, 60% by mass, 55% by mass, 50% by mass, 48% by mass, 45% by mass, 43% by mass, and 40% by mass. 38% by mass, 35% by mass, 33% by mass, 30% by mass, 28% by mass, 25% by mass, 23% by mass, and 20% by mass .
  • the lower limit value is high and the upper limit value is preferably high. Moreover, maintaining high T NI of the compositions of the present invention, it is preferred if good composition temperature stability is required is the upper limit value in the lower limit of the above is moderate is moderate. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the lower limit value is low and the upper limit value is low.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-1).
  • the compound represented by the general formula (i-1-1) is a compound selected from the group of compounds represented by the formula (i-1-1.1) to the formula (i-1-1.3). And is preferably a compound represented by formula (i-1-1.2) or formula (i-1-1.3), and particularly represented by formula (i-1-1.3). It is preferable that it is a compound.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-1.3) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass 5% by mass, 7% by mass, and 10% by mass.
  • the upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, 8% by mass, and 7% by mass with respect to the total amount of the composition of the present invention. % By mass, 6% by mass, 5% by mass, and 3% by mass.
  • the compound represented by the general formula (i-1) is a compound selected from the group of compounds represented by the general formula (i-1-2), and the light having a wavelength of 200 to 400 nm in the ultraviolet region as a backlight. Even when it is irradiated, it is preferable in that it has excellent durability and can express a voltage holding ratio.
  • R i12 represents the same meaning as in general formula (i-1).
  • the lower limit of the preferable content of the compound represented by the formula (i-1-2) with respect to the total amount of the composition of the present invention is 1% by mass, 5% by mass, and 10% by mass. 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, 42% by mass, and 40% by mass with respect to the total amount of the composition of the present invention. % By mass, 38% by mass, 35% by mass, 33% by mass, and 30% by mass.
  • the compound represented by the general formula (i-1-2) is a compound selected from the group of compounds represented by the formula (i-1-2.1) to the formula (i-1-2.4).
  • it is a compound represented by the formula (i-1-2.2) to the formula (i-1-2.4).
  • the compound represented by the formula (i-1-2.2) is preferable because the response speed of the composition of the present invention is particularly improved.
  • it is preferable to use a compound represented by the formula (i-1-2.3) or the formula (i-1-2.4).
  • the content of the compounds represented by the formulas (i-1-2.3) and (i-1-2.4) is preferably not more than 30% by mass in order to improve the solubility at low temperatures. .
  • the lower limit of the preferable content of the compound represented by the formula (i-1-2.2) with respect to the total amount of the composition of the present invention is 10% by mass, 15% by mass, 18% by mass 20% by mass 23% by mass 25% by mass 27% by mass 30% by mass 33% by mass 35% by mass 38% by mass 40% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, 43% by mass, and 40% by mass with respect to the total amount of the composition of the present invention. % By mass, 38% by mass, 35% by mass, 32% by mass, 30% by mass, 20% by mass, 15% by mass and 10% by mass.
  • the upper limit of the content is preferably 15% by mass, particularly 10% by mass.
  • the lower limit of the preferable total content of the compound represented by formula (i-1-1.3) and the compound represented by formula (i-1-2.2) relative to the total amount of the composition of the present invention The values are 10% by weight, 15% by weight, 20% by weight, 25% by weight, 27% by weight, 30% by weight, 35% by weight, and 40% by weight.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, 43% by mass, and 40% by mass with respect to the total amount of the composition of the present invention. % By mass, 38% by mass, 35% by mass, 32% by mass, 30% by mass, 27% by mass, 25% by mass and 22% by mass.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-3).
  • R i13 and R i14 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R i13 and R i14 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (i-1-3) with respect to the total amount of the composition of the present invention is 1% by mass, 5% by mass, and 10% by mass. 13% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, and 30% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, 40% by mass, and 37% with respect to the total amount of the composition of the present invention. % By mass, 35% by mass, 33% by mass, 30% by mass, 27% by mass, 25% by mass, 23% by mass, 20% by mass, and 17% by mass 15% by mass, 13% by mass, and 10% by mass.
  • the compound represented by the general formula (i-1-3) is a compound selected from the group of compounds represented by the formula (i-1-3.1) to the formula (i-1-3.12).
  • it is a compound represented by formula (i-1-3.1), formula (i-1-3.3) or formula (i-1-3.4).
  • the compound represented by the formula (i-1-3.1) is preferable because the response speed of the composition of the present invention is particularly improved.
  • the equation (i-1-3.3), the equation (i-1-3.4), the equation (L-1-3.11), and the equation (i It is preferable to use a compound represented by (1-3.12).
  • Sum of compounds represented by formula (i-1-3.3), formula (i-1-3.4), formula (i-1-3.11) and formula (i-1-3.12) The content of is not preferably 20% by mass or more in order to improve the solubility at low temperatures.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-3.1) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass 5 mass% 7 mass% 10 mass% 13 mass% 15 mass% 18 mass% 20 mass%
  • the upper limit of the preferable content is 20% by mass, 17% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the composition of the present invention. % By mass, 7% by mass, and 6% by mass.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-4) and / or (i-1-5).
  • R i15 and R i16 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R i15 and R i16 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (i-1-4) with respect to the total amount of the composition of the present invention is 1% by mass, 5% by mass, and 10% by mass. 13 mass%, 15 mass%, 17 mass%, and 20 mass%.
  • the upper limit of the preferable content is 25% by mass, 23% by mass, 20% by mass, 17% by mass, 15% by mass, and 13% by mass with respect to the total amount of the composition of the present invention. % By mass, and 10% by mass.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-5) with respect to the total amount of the composition of the present invention is 1% by mass, 5% by mass, and 10% by mass. 13 mass%, 15 mass%, 17 mass%, and 20 mass%.
  • the upper limit of the preferable content is 25% by mass, 23% by mass, 20% by mass, 17% by mass, 15% by mass, and 13% by mass with respect to the total amount of the composition of the present invention. % By mass, and 10% by mass.
  • the compounds represented by the general formulas (i-1-4) and (i-1-5) are represented by the formulas (i-1-4.1) to (i-1-5.3). Are preferably selected from the group of compounds represented by formula (i-1-4.2) or (i-1-5.2).
  • the lower limit of the preferable content of the compound represented by the formula (i-1-4.2) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass 5 mass% 7 mass% 10 mass% 13 mass% 15 mass% 18 mass% 20 mass%
  • the upper limit of the preferable content is 20% by mass, 17% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the composition of the present invention. % By mass, 7% by mass, and 6% by mass.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the compound group represented by the general formula (i-1-6).
  • R i17 and R i18 each independently represent a methyl group or a hydrogen atom.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-6) with respect to the total amount of the composition of the present invention is 1% by mass, 5% by mass, and 10% by mass. 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, 42% by mass, and 40% by mass with respect to the total amount of the composition of the present invention. % By mass, 38% by mass, 35% by mass, 33% by mass, and 30% by mass.
  • the compound represented by the general formula (i-1-6) is a compound selected from the compound group represented by the formula (i-1-6.1) to the formula (i-1-6.3). Preferably there is.
  • the compound represented by the general formula (i-2) is the following compound.
  • R i21 and R i22 each independently represent the same meaning as R i1 and R i2 in formula (i)).
  • R i21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (i-2) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (i-2) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, Mass%, 7 mass%, and 10 mass%.
  • the upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, 8% by mass, and 7% by mass with respect to the total amount of the composition of the present invention.
  • the compound represented by the general formula (i-2) is preferably a compound selected from the group of compounds represented by the formulas (i-2.1) to (i-2.6)
  • a compound represented by formula (L-2.1), formula (i-2.3), formula (i-2.4) and formula (i-2.6) is preferred.
  • composition of the present invention further contains one or more compounds selected from the compounds represented by formulas (N-1), (N-2), (N-3) and (N-4) It is preferable to do. These compounds correspond to dielectrically negative compounds (the sign of ⁇ is negative and the absolute value is greater than 2).
  • R N11 , R N12 , R N21 , R N22 , R N31 , R N32 , R N41 and R N42 each independently represents an alkyl group having 1 to 8 carbon atoms, or one or two or more non-adjacent —CH 2 — in the alkyl chain having 2 to 8 carbon atoms, each independently A structural moiety having a chemical structure substituted by CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, A N11 , A N12 , A N21 , A N22 , A N31 , A N32 , A N41 and A N42 each independently represents (a) a 1,4-cyclohexylene group (one —CH present in this group) 2 or two or more non-adjacent —CH 2 — may be replaced by —O—) and (b) a
  • (D) represents a group selected from the group consisting of 1,4-cyclohexenylene groups, and the group (a), the group (b), the group (c) and the group (d) are each a hydrogen atom in the structure Each independently may be substituted with a cyano group, a fluorine atom or a chlorine atom, Z N11 , Z N12 , Z N21 , Z N22 , Z N31 , Z N32 , Z N41 and Z N42 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH.
  • X N21 represents a hydrogen atom or a fluorine atom
  • T N31 represents —CH 2 — or an oxygen atom
  • X N41 represents an oxygen atom, a nitrogen atom, or —CH 2 —
  • n N41 + n N42 represents an integer of 0 to 3, if a N41 and a N42, Z N41 and Z N42 there are multiple, they differ even for the same Even though it may.
  • the compounds represented by the general formulas (N-1), (N-2), (N-3) and (N-4) are preferably compounds whose ⁇ is negative and whose absolute value is larger than 2. .
  • R N11 , R N12 , R N21 , R N22 , R N31 , R N32 , R N41 and R N42 Each independently is preferably an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or an alkenyloxy group having 2 to 8 carbon atoms, An alkyl group having 1 to 5 atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable, and an alkyl having 1 to 5 carbon atoms is preferred.
  • an alkyl group having 2 to 5 carbon atoms More preferably an alkyl group having 2 to 5 carbon atoms, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms, and an alkenyl group having 3 carbon atoms (propenyl group). Especially preferred There.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • a N11 , A N12 , A N21 , A N22 , A N31, and A N32 are preferably aromatic when it is required to increase ⁇ n independently, and in order to improve the response speed, fat
  • fat Preferably a trans-1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5 -Difluoro-1,4-phenylene group, 2,3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1 , 4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group Preferred, it is more preferable that represents the following
  • it represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group.
  • Z N11, Z N12, Z N21 , Z N22, Z N31 and Z N32 -CH 2 each independently O -, - CF 2 O - , - CH 2 CH 2 -, - CF 2 CF 2 - or a single bond preferably represents an, -CH 2 O -, - CH 2 CH 2 - or a single bond is more preferable, -CH 2 O-or a single bond is particularly preferred.
  • XN21 is preferably a fluorine atom.
  • T N31 is preferably an oxygen atom.
  • n N11 + n N12 , n N21 + n N22 and n N31 + n N32 are preferably 1 or 2, a combination in which n N11 is 1 and n N12 is 0, a combination in which n N11 is 2 and n N12 is 0, n A combination in which N11 is 1 and n N12 is 1, a combination in which n N11 is 2 and n N12 is 1, a combination in which n N21 is 1 and n N22 is 0, n N21 is 2 and n N22 is n A combination in which n N31 is 1 and n N32 is 0, and a combination in which n N31 is 2 and n N32 is 0 are preferable.
  • the lower limit of the preferable content of the compound represented by the formula (N-1) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, 30% % By mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, 75% by mass, and 80% by mass. It is.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
  • the lower limit of the preferable content of the compound represented by the formula (N-2) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, 30% % By mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, 75% by mass, and 80% by mass. It is.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
  • the lower limit of the preferable content of the compound represented by the formula (N-3) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, 30% % By mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, 75% by mass, and 80% by mass. It is.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
  • the lower limit value is preferably low and the upper limit value is preferably low. Moreover, maintaining high T NI of the compositions of the present invention, it is preferred if good composition temperature stability is required a low upper limit lower the lower limit of the above. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is increased and the upper limit value is high.
  • the liquid crystal composition according to the present invention includes a compound represented by general formula (N-1), a compound represented by general formula (N-2), a compound represented by general formula (N-3), and a general formula Among the compounds represented by (N-4), it is preferable to have a compound represented by the general formula (N-1).
  • Examples of the compound represented by the general formula (N-1) include compounds represented by the following general formulas (N-1a) to (N-1g).
  • Examples of the compound represented by the general formula (N-4) include a compound group represented by the following general formula (N-1h).
  • R N11 and R N12 are as defined R N11 and R N12 in the general formula (N-1), n Na11 represents 0 or 1, n NB11 represents 0 or 1, n NC11 is Represents 0 or 1, n Nd11 represents 0 or 1, n Ne11 represents 1 or 2, n Nf11 represents 1 or 2, n Ng11 represents 1 or 2, A Ne11 represents trans-1,4 -Represents a cyclohexylene group or a 1,4-phenylene group, and A Ng11 represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group, but at least one Represents a 1,4-cyclohexenylene group, and Z Ne11 represents a single bond or ethylene, but at least one represents ethylene.
  • the composition of the present invention preferably further contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n J1 represents 0, 1, 2, 3 or 4;
  • a J1 , A J2 and A J3 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
  • the group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group
  • Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present.
  • X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group.
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a J1 , A J2 and A J3 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic to improve the response speed.
  • Z J1 and Z J2 each independently preferably represent —CH 2 O—, —OCH 2 —, —CF 2 O—, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond, OCH 2 —, —CF 2 O—, —CH 2 CH 2 — or a single bond is more preferred, and —OCH 2 —, —CF 2 O— or a single bond is particularly preferred.
  • X J1 is preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
  • n J1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and 1 or 2 when emphasizing TNI. preferable.
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (J) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the general formula (J) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, and 30% by mass. %, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, 75% by mass, 80% by mass is there.
  • the upper limit of the preferable content is, for example, 95% by mass, 85% by mass, 75% by mass, and 65% by mass with respect to the total amount of the composition of the present invention. , 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
  • R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • composition of the present invention preferably further contains one or more compounds represented by the general formula (M). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n M1 represents 0, 1, 2, 3 or 4;
  • a M1 and A M2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
  • a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • Z M1 and Z M2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n M1 is 2, 3 or 4 and a plurality of A M2 are present, they may be the same or different, and n M1 is 2, 3 or 4 and a plurality of Z M1 is present
  • X M1 and X M3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
  • X M2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R M1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a M1 and A M2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • Z M1 and Z M2 each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
  • n M1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and 1 or 2 when emphasizing T NI preferable.
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (M) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (M) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, and 30% by mass. 40% by mass 50% by mass 55% by mass 60% by mass 65% by mass 70% by mass 75% by mass 80% by mass .
  • the upper limit of the preferable content is, for example, 95% by mass, 85% by mass, 75% by mass, and 65% by mass with respect to the total amount of the composition of the present invention. , 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
  • composition of the present invention preferably contains one or more compounds represented by the general formula (K). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R K1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n K1 represents 0, 1, 2, 3 or 4;
  • a K1 and A K2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
  • a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • Z K1 and Z K2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n K1 is 2, 3 or 4 and a plurality of A K2 are present, they may be the same or different, and n K1 is 2, 3 or 4 and a plurality of Z K1 is present
  • X K1 and X K3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
  • X K2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
  • R K1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • RK1 is preferably an alkyl group when importance is placed on reliability, and an alkenyl group is preferred when importance is placed on lowering viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a K1 and A K2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • Z K1 and Z K2 are each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
  • n K1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and 1 or 2 when emphasizing TNI. preferable.
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (K) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (K) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, and 30% by mass. 40% by mass 50% by mass 55% by mass 60% by mass 65% by mass 70% by mass 75% by mass 80% by mass .
  • the upper limit of the preferable content is, for example, 95% by mass, 85% by mass, 75% by mass, and 65% by mass with respect to the total amount of the composition of the present invention. , 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
  • the liquid crystal composition of the present invention preferably further contains one or more compounds represented by the general formula (L).
  • the compound represented by the general formula (L) corresponds to a dielectrically neutral compound ( ⁇ value is ⁇ 2 to 2).
  • R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n L1 represents 0, 1, 2 or 3,
  • a L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other).
  • the group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • n L1 is 2 or 3 and a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but excludes compounds represented by general formulas (N-1), (N-2), (N-3), (J) and (i).
  • the compound represented by general formula (L) may be used independently, it can also be used in combination.
  • the types of compounds that can be combined but they are used in appropriate combinations according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention.
  • the content of the compound represented by the general formula (L) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the composition of the present invention is 1% by mass, 10% by mass, 20% by mass, and 30% by mass. 40% by mass 50% by mass 55% by mass 60% by mass 65% by mass 70% by mass 75% by mass 80% by mass .
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass.
  • the lower limit value is high and the upper limit value is preferably high. Moreover, maintaining high T NI of the compositions of the present invention, it is preferable if the temperature stability with good composition is required upper limit higher the lower limit of the above is high. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is lowered and the upper limit value is low.
  • R L1 and R L2 are preferably both alkyl groups, and when importance is placed on reducing the volatility of the compound, it is preferably an alkoxy group, and importance is placed on viscosity reduction. In this case, at least one is preferably an alkenyl group.
  • the number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and 1 is preferred when importance is attached to compatibility with other liquid crystal molecules.
  • R L1 and R L2 are each a linear alkyl group having 1 to 5 carbon atoms or a linear alkyl group having 1 to 4 carbon atoms when the ring structure to which R L1 is bonded is a phenyl group (aromatic).
  • a phenyl group aromatic
  • Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferred for improving the upper limit temperature of the nematic phase, and 1 is preferred for balancing these. In order to satisfy the properties required for the composition, it is preferable to combine compounds having different values.
  • a L1 , A L2, and A L3 are preferably aromatic when it is required to increase ⁇ n, and are preferably aliphatic for improving the response speed, and are each independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It preferably represents a diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • Z L1 and Z L2 are preferably single bonds when the response speed is important.
  • the compound represented by the general formula (L) preferably has 0 or 1 halogen atom in the molecule.
  • the compound represented by the general formula (L) is preferably a compound selected from the group of compounds represented by the general formulas (L-3) to (L-8).
  • the compound represented by the general formula (L-3) is the following compound.
  • R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L31 and R L32 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the compound represented by the general formula (L-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-3) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, Mass%, 7 mass%, and 10 mass%.
  • the upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, 8% by mass, and 7% by mass with respect to the total amount of the composition of the present invention.
  • the effect is high when the content is set to be large.
  • the high TNI is emphasized, the effect is high when the content is set low.
  • the compound represented by the general formula (L-4) is the following compound.
  • R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-4) can be used alone, or two or more compounds can be used in combination.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-4) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, % By mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass, 26% by mass, 30% by mass It is 35% by mass and 40% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 50% by mass, 40% by mass, 35% by mass, 30% % By mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the compound represented by the general formula (L-5) is the following compound.
  • R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L51 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L52 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-5) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, % By mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass, 26% by mass, 30% by mass It is 35% by mass and 40% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 50% by mass, 40% by mass, 35% by mass, 30%
  • the compound represented by the general formula (L-6) is 5% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • R L61 and R L62 each independently represent the same meaning as R L1 and R L2 in the general formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom.
  • R L61 and R L62 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom and the other is a hydrogen atom. Is preferred.
  • the compound represented by the general formula (L-6) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, % By mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass, 26% by mass, 30% by mass It is 35% by mass and 40% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 50% by mass, 40% by mass, 35% by mass, 30% % By mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the compound represented by the general formula (L-7) is the following compound.
  • R L71 and R L72 each independently represent the same meaning as R L1 and R L2 in Formula (L), A L71 and A L72 is A L2 and in the general formula (L) independently A L3 represents the same meaning, but the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, Z L71 represents the same meaning as Z L2 in formula (L), X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.
  • R L71 and R L72 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and
  • a L71 and A L72 Are each independently preferably a 1,4-cyclohexylene group or a 1,4-phenylene group, the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-7) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, % By mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, and 20% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 30% by mass, 25% by mass, 23% by mass, % By mass, 18% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the compound represented by the general formula (L-8) is the following compound.
  • R L81 and R L82 each independently represent the same meaning as R L1 and R L2 in General Formula (L), and A L81 represents the same meaning or single bond as A L1 in General Formula (L)).
  • each hydrogen atom on A L81 may be independently substituted with a fluorine atom
  • X L81 to X L86 each independently represent a fluorine atom or a hydrogen atom.
  • R L81 and R L82 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms of 2 to 5 carbon atoms preferably, A L81 is 1, A 4-cyclohexylene group or a 1,4-phenylene group is preferable
  • the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and the same in general formula (L-8)
  • the number of fluorine atoms in the ring structure is preferably 0 or 1, and the number
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-8) includes solubility at low temperature, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the composition of the present invention is 1% by mass, 2% by mass, 3% by mass, % By mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, and 20% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the composition of the present invention is 30% by mass, 25% by mass, 23% by mass, 20% % By mass, 18% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • any one of the compounds represented by the general formula (N-1), (N-2), (N-3) or (J) is 0. It is preferable that it is mass%.
  • composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
  • the content of the compound having a carbonyl group is preferably 5% by mass or less, preferably 3% by mass or less, based on the total mass of the composition. Is more preferable, and it is still more preferable to set it as 1 mass% or less, and it is most preferable not to contain substantially.
  • the content of the compound substituted with chlorine atoms is preferably 15% by mass or less, and preferably 10% by mass or less, based on the total mass of the composition. 8% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably substantially not contained.
  • the content of a compound in which all the ring structures in the molecule are 6-membered rings is 80% relative to the total mass of the composition. It is preferably at least 90% by mass, more preferably at least 90% by mass, even more preferably at least 95% by mass, and it is composed of only a compound having substantially all 6-membered ring structures in the molecule. Most preferably it constitutes a product.
  • the content of the compound having a cyclohexenylene group as a ring structure, and the content of the compound having a cyclohexenylene group as the total mass of the composition is preferably 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and preferably 3% by mass or less, and substantially not contained. Further preferred.
  • a hydrogen atom to reduce the content of the compound having the optionally substituted 2-methyl-1,4-diyl group halogen in the molecule is preferably 10% by mass or less, and preferably 8% by mass or less with respect to the total mass of the composition. It is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably substantially not contained.
  • substantially not contained in the present application means that it is not contained except for an unintentionally contained product.
  • the alkenyl group when the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms.
  • the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
  • the average elastic constant (K AVG ) of the liquid crystal composition used in the present invention is preferably 10 to 25, and the lower limit thereof is preferably 10, preferably 10.5, preferably 11 and preferably 11.5.
  • 12 is preferable, 12.3 is preferable, 12.5 is preferable, 12.8 is preferable, 13 is preferable, 13.3 is preferable, 13.5 is preferable, 13.8 is preferable, 14 is preferable, 14 .3 is preferred, 14.5 is preferred, 14.8 is preferred, 15 is preferred, 15.3 is preferred, 15.5 is preferred, 15.8 is preferred, 16 is preferred, 16.3 is preferred, 16 .5, 16.8 is preferable, 17 is preferable, 17.3 is preferable, 17.5 is preferable, 17.8 is preferable, and 18 is preferable.
  • 25 is preferable, 24.5 is preferable, 24 is preferable, 23.5 is preferable, 23 is preferable, 22.8 is preferable, 22.5 is preferable, 22.3 is preferable, 22 is preferable, and 21.8 is 21.5 is preferred, 21.3 is preferred, 21 is preferred, 20.8 is preferred, 20.5 is preferred, 20.3 is preferred, 20 is preferred, 19.8 is preferred, 19.5 is preferred 19.3 is preferred, 19 is preferred, 18.8 is preferred, 18.5 is preferred, 18.3 is preferred, 18 is preferred, 17.8 is preferred, 17.5 is preferred, 17.3 is preferred 17 is preferable.
  • the value of K AVG should be set low. preferable. It is preferable to set a higher value of K AVG in the case of emphasizing improved response speed.
  • the composition of the present invention may contain a polymerizable compound in order to produce a liquid crystal display element such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • a polymerizable compound such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light.
  • the structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound. More specifically, the general formula (XX)
  • Z 201 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH
  • X 201 and X 202 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group.
  • diacrylate derivatives are the fastest, dimethacrylate derivatives are slow, asymmetric compounds are in the middle, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 201 and Sp 202 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
  • a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
  • 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
  • Z 201 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
  • —COO—, —OCO— or a single bond is more preferred, and a single bond is particularly preferred.
  • M 201 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted by a fluorine atom, but the 1,4-phenylene group or the single bond is preferable.
  • C represents a ring structure other than a single bond
  • Z 201 is preferably a linking group other than a single bond.
  • M 201 is a single bond
  • Z 201 is preferably a single bond.
  • the ring structure between Sp 201 and Sp 202 is specifically preferably the structure described below.
  • both ends shall be bonded to Sp 201 or Sp 202.
  • the polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of the alignment regulating power after polymerization, and a good alignment state can be obtained, so that display unevenness is suppressed or does not occur at all.
  • general formula (XX-1) to general formula (XX-4) are particularly preferable, and among them, general formula (XX-2) is most preferable.
  • the content is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass, and The content is preferably 1% by mass to 2% by mass.
  • the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to accelerate the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • the liquid crystal display element of the present invention may have the alignment layer 4, but without providing the alignment layer, a spontaneous alignment agent is added to the liquid crystal composition constituting the liquid crystal layer according to the present invention. It is possible to include liquid crystal without an alignment film, or to align it using a solvent-soluble alignment polyimide, or to align the liquid crystal with a photo-alignment film, particularly a non-polyimide-based photo-alignment film.
  • the display element is preferable because it is easy to manufacture.
  • the liquid crystal composition according to the present invention preferably contains a spontaneous alignment agent.
  • the spontaneous alignment agent can control the alignment direction of the liquid crystal molecules contained in the liquid crystal composition constituting the liquid crystal layer. It is considered that the alignment direction of the liquid crystal molecules can be controlled by accumulating or adsorbing the components of the spontaneous alignment agent at the interface of the liquid crystal layer. Thereby, when a spontaneous alignment agent is included in the liquid crystal composition, the alignment layer of the liquid crystal panel can be eliminated.
  • the content of the spontaneous alignment agent in the liquid crystal composition according to the present invention is preferably 0.1 to 10% by mass in the whole liquid crystal composition. Further, the spontaneous alignment agent in the liquid crystal composition according to the present invention may be used in combination with the polymerizable compound.
  • the liquid crystal composition according to the present invention preferably contains a spontaneous alignment agent.
  • the spontaneous alignment agent can control the alignment direction of the liquid crystal molecules contained in the liquid crystal composition constituting the liquid crystal layer. It is considered that the alignment direction of the liquid crystal molecules can be controlled by accumulating or adsorbing the components of the spontaneous alignment agent at the interface of the liquid crystal layer. Thereby, when a spontaneous alignment agent is included in the liquid crystal composition, the alignment layer of the liquid crystal panel can be eliminated.
  • the content of the spontaneous alignment agent in the liquid crystal composition according to the present invention is preferably 0.1 to 10% by mass in the whole liquid crystal composition. Further, the spontaneous alignment agent in the liquid crystal composition according to the present invention may be used in combination with the polymerizable compound.
  • the spontaneous alignment agent has a polar group and a mesogenic group, and preferably has a polymerizable group if necessary.
  • the above mesogenic group means a group capable of inducing the behavior of the liquid crystal phase, but the surface modifying compound containing the mesogenic group does not necessarily need to exhibit the liquid crystal phase itself.
  • the “mesogenic group” is a group that easily induces structural order, and typically includes a rigid portion such as a cyclic group such as an aromatic ring.
  • the “liquid crystal phase” herein refers to a phase having both the fluidity of liquid and the anisotropy of crystal, and examples thereof include nematic liquid crystal, smectic liquid crystal, and cholesteric liquid crystal.
  • the shape of the mesogenic group and the shape of the molecule of the surface modification compound in the surface modification compound according to the present invention are not particularly limited, and are rod-shaped, disk-shaped, banana-shaped, L-shaped, T-shaped, or cyclodextrin , Inclusion type such as calixarene or cucurbituril, and the like, but a shape capable of inducing liquid crystal phase behavior is more preferable.
  • the polymerizable group is preferably represented by the following general formula (P-1) to general formula (P-15).
  • the polar group is preferably an atomic group of a polar element having a heteroatom (a state where charges are separated), and includes a heteroatom such as N, O, S, P, B and Si in the structure. It is more preferable that the atomic group is. Further, the polar group according to the present invention may be either a cyclic structure atomic group including a polar element having a hetero atom or a linear or branched structure atomic group including a polar element having a hetero atom.
  • the valence of the polar element having the hetero atom is not particularly limited, such as monovalent, divalent, trivalent, etc., and the number of the polar element having the hetero atom is also particularly limited. There is no.
  • the polar element having a hetero atom includes a nitrogen-containing group; a cyano group (—CN), a primary amino group (—NH 2 ), a secondary amino group (—NH—), a tertiary amino group ( —NRR ′; wherein R and R ′ are alkyl groups), pyridyl groups, oxygen-containing groups; hydroxyl groups (—OH), alkoxy groups (—OR; where R is an alkyl group), formyl groups (—CHO), carboxyls A group (—COOH), an ether group (—R a ′ OR a ′′ —, where R a ′ and R a ′′ are an alkylene group or an alkenylene group), a ketone group (—R a ′ C ( ⁇ O) R a ′′ —; where R a ′ and R a ′′ are an alkylene group or an alkenylene group), a carbonate group (—O—C ( ⁇ O) —O—),
  • the spontaneous alignment agent is preferably the following general formula (al-1) and / or general formula (al-2).
  • R al1 represents a hydrogen atom, a halogen, a straight chain, branched or cyclic alkyl having 1 to 20 carbon atoms, wherein in the alkyl group, one or two or more non-adjacent CH 2 The group is substituted by —O—, —S—, —CO—, —CO—O—, —O—CO—, —O—CO—O— so that the O and / or S atoms are not directly bonded to each other.
  • one or more hydrogen atoms may be
  • Spal1 , Spal2 and Spal3 each independently represent an alkyl group having 1 to 12 carbon atoms or a single bond
  • Xal1 , Xal2 and Xal3 each independently represent an alkyl group, an acrylic group, a methacrylic group or a vinyl group
  • Z al1 is —O—, —S—, —CO— , —CO—O— , —OCO— , —O—CO—O—, —OCH 2 —, —CH 2 O—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, — (CH 2 ) n al —, —CF 2 CH 2 —, —CH 2 CF 2 — , — (CF 2 ) n al —, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, —CH ⁇ CH— CO
  • na1 -, - CH (-Sp al1 -X al1) -, - CH 2 CH (-Sp al1 -X al1) -, - CH (-Sp al1 -X al1) CH (- Sp al1 -X al1 )- L al1 , L al2 and L al3 are each independently a hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine
  • Z i1 and Z i2 are each independently a single bond, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, —COO—, —OCO—, —OCOO—, —OOCO.
  • a AL21 and Aa 122 each independently represents a divalent 6-membered ring aromatic group or a divalent 6-membered ring aliphatic group, a divalent unsubstituted 6-membered ring aromatic group, a divalent An unsubstituted 6-membered cycloaliphatic group or a hydrogen atom in these ring structures is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halogen atom It is preferable that a divalent unsubstituted 6-membered
  • R al21 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group, or P i1 —Sp i1 —
  • —CH 2 — in the alkyl group represents —O —, —OCO—, or —COO— is preferable (where —O— is not continuous), more preferably a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or P i1 —.
  • Sp i1 — represents —CH 2 — in the alkyl group represents —O— or —OCO— (however, —O— is not continuous).
  • K i1 represents a substituent represented by the following general formula (K-1) to general formula (K-11),
  • P i1 represents a polymerizable group, and represents a substituent selected from the group represented by the following general formulas (P-1) to (P-15) (in the formula, the black dot on the right end represents a bond). To express.),
  • Z ii1 is at least —CH 2 —CH 2 COO—, —OCOCH 2 —CH 2 —, —CH 2 Including —CH (CH 3 ) COO—, —OCOCH (CH 3 ) —CH 2 —, —OCH 2 CH 2 O—,
  • m iii1 represents an integer of 1 to 5
  • m iii2 represents an integer of 1 to 5
  • G i1 represents a divalent, trivalent or tetravalent branched structure, or a divalent, trivalent or tetravalent aliphatic or aromatic ring structure;
  • R bl1 represents a linear alkyl group having 1 to 12 carbon atoms
  • R bl2 and R bl3 each independently represents a hydrogen atom or 1 to 3 carbon atoms.
  • L bl1 and L bl1 each independently represent a hydrogen atom or a linear alkyl group having 1 to 7 carbon atoms.
  • composition in the present invention can further contain a compound represented by the general formula (Q).
  • RQ represents a straight-chain alkyl group or a branched-chain alkyl group having 1 to 22 carbon atoms, and one or more CH 2 groups in the alkyl group are —O—so that oxygen atoms are not directly adjacent to each other.
  • MQ represents a trans-1,4-cyclohexylene group, a 1,4
  • the compound represented by the general formula (Q) is preferably a compound represented by the following general formula (Qa) to general formula (Qd).
  • R Q1 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms
  • R Q2 is preferably a linear or branched alkyl group having 1 to 20 carbon atoms
  • R Q3 is A straight-chain alkyl group having 1 to 8 carbon atoms, a branched-chain alkyl group, a straight-chain alkoxy group or a branched-chain alkoxy group is preferred
  • L Q is preferably a straight-chain alkylene group or branched-chain alkylene group having 1 to 8 carbon atoms.
  • compounds represented by general formula (Qa) to general formula (Qd) compounds represented by general formula (Qc) and general formula (Qd) are more preferable.
  • the compound represented by the general formula (Q) preferably contains one or two kinds, more preferably contains 1 to 5 kinds, and the content thereof is from 0.001.
  • the content is preferably 1% by mass, more preferably 0.001 to 0.1% by mass, and particularly preferably 0.001 to 0.05% by mass.
  • antioxidants or light stabilizers are preferred as antioxidants or light stabilizers that can be used in the present invention.
  • composition of the present invention preferably contains one or more compounds represented by general formula (Q) or compounds selected from general formulas (III-1) to (III-38). It is more preferable to contain 5 types, and the content is preferably 0.001 to 1% by mass, more preferably 0.001 to 0.1% by mass, and 0.001 to 0.05% by mass. Particularly preferred.
  • the polymerizable compound contained therein is polymerized by ultraviolet irradiation to impart liquid crystal alignment ability, and the amount of transmitted light is controlled using the birefringence of the composition. Used for liquid crystal display elements.
  • the liquid crystal composition of the present invention contains a polymerizable compound
  • an appropriate polymerization rate is desirable for obtaining a good alignment performance of the liquid crystal as a method for polymerizing the polymerizable compound, such as ultraviolet rays or electron beams.
  • ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is carried out in a state where the polymerizable compound-containing composition is sandwiched between two substrates, at least the substrate on the irradiated surface side must be given adequate transparency to the active energy rays. Don't be.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element.
  • the pretilt angle of the liquid crystal display element can be controlled by the applied voltage.
  • the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the composition of the present invention is maintained. Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet-ray to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • Intensity of ultraviolet irradiation is preferably from 0.1mW / cm2 ⁇ 100W / cm 2 , 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2.
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • an appropriate polymerization rate is desirable in order to obtain good alignment performance of liquid crystals. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
  • the method of polymerizing by is preferred.
  • ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is carried out in a state where the polymerizable compound-containing composition is sandwiched between two substrates, at least the substrate on the irradiated surface side must be given adequate transparency to the active energy rays. Don't be.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element.
  • the pretilt angle of the liquid crystal display element can be controlled by the applied voltage.
  • the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the composition of the present invention is maintained. Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet-ray to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100W / cm 2, 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2.
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • the liquid crystal molecules of the liquid crystal layer 5 are aligned on the surface in contact with the liquid crystal composition between the first substrate and the second substrate. It may be provided. In a liquid crystal display element that requires an alignment layer, it is arranged between the light conversion layer and the liquid crystal layer. Even if the alignment layer is thick, it is as thin as 100 nm or less and constitutes the light conversion layer. It does not completely block the interaction between the dyes such as nanocrystals and pigments and the liquid crystal compound constituting the liquid crystal layer.
  • the interaction between the light-emitting nanocrystals constituting the light conversion layer, pigments such as pigments, and the liquid crystal compound constituting the liquid crystal layer becomes greater.
  • the alignment layer according to the present invention is preferably at least one selected from the group consisting of a rubbing alignment layer and a photo alignment layer.
  • a rubbing alignment layer there is no particular limitation, and a known polyimide-based alignment layer can be suitably used.
  • rubbing alignment layer material transparent organic materials such as polyimide, polyamide, BCB (Penzocyclobutene Polymer), polyvinyl alcohol and the like can be used, and in particular, p-phenylenediamine, 4,4′-diaminodiphenyl.
  • Diamines such as aliphatic or alicyclic diamines such as methane and butanetetracarboxylic anhydride, aliphatic or alicyclic tetracarboxylic anhydrides such as 2,3,5-tricarboxycyclopentylacetic anhydride, pyromellitic acid
  • a polyimide alignment layer obtained by imidizing a polyamic acid synthesized from an aromatic tetracarboxylic anhydride such as dianhydride is preferable. When used for a vertical alignment layer or the like, it can also be used without imparting alignment.
  • the alignment layer according to the present invention is a photo-alignment layer, it may be one containing at least one photoresponsive molecule.
  • the photoresponsive molecule is a photoresponsive dimerization-type molecule that forms a cross-linked structure by dimerization in response to light, and is a photoresponsive molecule that isomerizes in response to light and is oriented substantially perpendicular or parallel to the polarization axis.
  • At least one selected from the group consisting of an isomerized molecule and a photoresponsive decomposable polymer in which a polymer chain is cleaved in response to light is preferred, and the photoresponsive isomerized molecule is sensitive and has an orientation regulating ability. This is particularly preferable.
  • the light used when isomerizing in response to light and oriented substantially perpendicular to the polarization axis is preferably 200 to 500 nm, and preferably 300 to 500 nm. It is more preferable that the thickness is 300 to 400 nm.
  • the weight average molecular weight of the photoresponsive isomerization polymer according to the present invention is preferably 10,000 to 800,000, more preferably 10,000 to 400,000, still more preferably 50,000 to 400,000, and 50,000 to 300,000. It is particularly preferred that
  • the weight average molecular weight (Mw) is obtained as a result of GPC (Gel Permeation Chromatography) measurement.
  • the measured characteristics are as follows.
  • T NI Nematic phase-isotropic liquid phase transition temperature (° C) ⁇ n: Refractive index anisotropy at 20 ° C. ⁇ : Dielectric anisotropy at 20 ° C. ⁇ : Viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1 : rotational viscosity at 20 ° C. (mPa ⁇ s) K 11 : elastic constant K 11 (pN) at 20 ° C. K 33 : Elastic constant at 20 ° C.
  • VHR measurement Voltage holding ratio (%) at 333 K under conditions of frequency 60 Hz and applied voltage 1 V
  • Light resistance test of a blue LED light source having a main emission peak at 450 nm The VHR was measured before and after irradiating the liquid crystal panel with a blue monochromatic LED light source having a peak at 450 nm at a wavelength of 450 nm for 68 hours.
  • LED light resistance test with main emission peak at 385 nm The VHR before and after irradiating the liquid crystal panel with a monochromatic LED having a peak at 385 nm at a wavelength of 385 nm for 60 seconds was measured.
  • the organic solvent and the liquid material used in the following were dehydrated and dried for 48 hours or more by adding 1 g of Kanto Chemical Co., Ltd. Molecular Sieve 3A in a nitrogen atmosphere per 10 ml.
  • trioctylphosphine indium phosphide
  • a stock solution was prepared by mixing 162 g of trioctylphosphine in a glove box with 42.9 ml of 1M hexane solution of diethylzinc and 92.49 g of a 9.09 wt% solution of bistrimethylsilyl sulfide in trioctylphosphine.
  • the temperature of the flask was set to 180 ° C., and when the temperature reached 80 ° C., 15 ml of the stock solution was added, and then 15 ml was continuously added every 10 minutes. (Flask temperature is maintained at 180 ° C.). After the last addition, the reaction was terminated by maintaining the temperature for another 10 minutes.
  • the solution was cooled to room temperature, and 500 ml of toluene and 2000 ml of ethanol were added to aggregate the nanocrystals. After the nanocrystals are precipitated using a centrifuge, the supernatant is discarded, and the precipitate is dissolved again in chloroform so that the nanocrystal concentration in the solution is 20% by mass, whereby the InP / ZnS core-shell nanocrystals are dissolved. A (red luminescent) chloroform solution (QD dispersion 1) was obtained.
  • indium phosphide (InP) red light-emitting nanocrystals instead of indium phosphide (InP) red light-emitting nanocrystals, the above indium phosphide (InP) green light-emitting nanocrystals were used, and a chloroform solution (QD dispersion) of InP / ZnS core-shell nanocrystals (green light-emitting) was used. A liquid 2) was obtained.
  • a nanocrystal (quantum dot) dispersion 1 including the above InP / ZnS core-shell nanocrystals (red light-emitting)
  • 80 g of a chloroform solution in which 8 g of TEGMEMMP synthesized above were dissolved were mixed.
  • the ligand was exchanged by stirring at 80 ° C. for 2 hours and cooled to room temperature.
  • the mixture was diluted with propylene glycol monomethyl ether acetate, stirred with a dispersion stirrer, and filtered with a filter having a pore size of 1.0 ⁇ m to obtain a red-emitting nanocrystal-containing composition 1.
  • Red coloring composition 10 parts of a red pigment (CI Pigment Red 254 having a water content of 0.3% and a specific electric conductivity of 30 ⁇ S / cm) are placed in a plastic bottle, 55 parts of propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.) 7 0.0 parts, 0.3-0.4 mm ⁇ Sepul beads were added, and dispersed for 4 hours with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.), followed by filtration with a 5 ⁇ m filter to obtain a pigment dispersion.
  • a red pigment CI Pigment Red 254 having a water content of 0.3% and a specific electric conductivity of 30 ⁇ S / cm
  • the water content of the pigment is based on JIS K5101-16-1 (Pigment test method-Part 16: Water content-Section 1: Boiling extraction method).
  • Water content of pigment (%) remaining evaporation (g) ⁇ 2.5 / mass of pigment (g) ⁇ 100
  • the specific conductivity of the pigment was measured using a conductivity meter (such as CM-30V manufactured by Toa DKK Corporation) after measuring the specific conductivity of ion-exchanged water, and 100 mL was measured with a graduated cylinder in 3 above.
  • the filtrate obtained is measured using the same conductivity meter, and the measured value is corrected by the following formula.
  • Specific conductivity of pigment specific conductivity of filtrate ⁇ specific conductivity of ion-exchanged water used [Nanocrystal-containing composition for green light emission 1] Instead of the red light emitting nanocrystal of the red light emitting nanocrystal-containing composition, a green light emitting nanocrystal-containing composition 1 was obtained in the same manner as described above, using the green light emitting nanocrystal.
  • Green coloring composition instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 6 parts of green pigment 1 (CI Pigment Green 36 having a water content of 0.3% and a specific conductivity of 40 ⁇ S / cm) and a yellow pigment 2 (water solution) Using a pigment (water content: 0.4%, specific conductivity: 50 ⁇ S / cm) mixed with 4 parts of CI Pigment Yellow 150 (0.6% min, specific conductivity: 70 ⁇ S / cm) in the same manner as above. Thus, a green coloring composition 1 was obtained.
  • the blue coloring composition was prepared by mixing propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.), 0.3-0.4 mm ⁇ zirconia beads “ER-120S” manufactured by Saint-Gobain, and paint conditioner (Toyo After dispersion for 4 hours by Seiki Co., Ltd., a 1 ⁇ m filter was used to prepare a dispersion.
  • Blue Coloring Composition 2 In the blue coloring composition, blue dye 1 (CI Solvent Blue 7) is put in a polybin, propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.), 0.3-0. 4 mm ⁇ zirconia beads “ER-120S” was added and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours, followed by filtration with a 1 ⁇ m filter to obtain a pigment dispersion.
  • a paint conditioner manufactured by Toyo Seiki Co., Ltd.
  • this pigment dispersion 75 parts by mass of this pigment dispersion, 5.5 parts by mass of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5 parts by mass of Yakuhin Co., Ltd., 1.00 parts of benzophenone (KAYACURE (trade name) BP-100, manufactured by Nippon Kayaku Co., Ltd.) and 13.5 parts of Euker Ester EEP are stirred with a dispersion stirrer, and the pore size is 1.0 ⁇ m.
  • the blue colored composition 2 was obtained by filtering with a filter.
  • yellow coloring composition instead of the red pigment of the red pigment composition, yellow pigment (CI Pigment Yellow 150 having a water content of 0.6% and a specific conductivity of 70 ⁇ S / cm) was used in the same manner as above for yellow coloring. A composition was obtained.
  • yellow pigment CI Pigment Yellow 150 having a water content of 0.6% and a specific conductivity of 70 ⁇ S / cm
  • Preparation of ink composition [Preparation of titanium oxide dispersion]
  • 6 g of titanium oxide, 1.01 g of a polymer dispersant, and 1,4-butanediol diacetate were mixed so as to have a nonvolatile content of 40%.
  • zirconia beads (diameter: 1.25 mm)
  • the compound container is dispersed by shaking the sealed container filled with nitrogen gas for 2 hours using a paint conditioner. Went. Thereby, the light scattering particle dispersion 1 was obtained. All of the above materials were those in which nitrogen gas was introduced and dissolved oxygen was replaced with nitrogen gas.
  • Core-shell nanocrystals including red light-emitting: 22.5g
  • Thermosetting resin “Fine Dick A-254” (6.28 g) manufactured by DIC Corporation and curing agent: 1-methylcyclohexane-4,5-dicarboxylic acid anhydride (1.05 g) and curing Accelerator: Dimethylbenzylamine (0.08 g) dissolved in organic solvent: 1,4-butanediol diacetate to a non-volatile content of 30%, thermosetting resin solution: 12.5 g
  • the light scattering particle dispersion 1 7.5 g [Preparation of Ink Composition 2 Containing Green Crystals]
  • a dispersion of QD QD-TEGMEMMP (green light emission)
  • Ink composition instead of the above InP / ZnS core-shell nanocrystals (red light emission)
  • QD-TEGMEMMP green light emission
  • ink composition 3 Y138 (manufactured by BASF Corporation) 0.50 parts by mass was ground together with 1.50 parts by mass of sodium chloride and 0.75 parts by mass of diethylene glycol. Thereafter, this mixture was poured into 600 parts by mass of warm water and stirred for 1 hour. The water-insoluble matter was separated by filtration and washed well with warm water, and then air-dried at 90 ° C. for pigmentation. The pigment particle system was 100 nm or less and the average particle length / width ratio was less than 3.00. The following dispersion test and color filter evaluation test were conducted using the yellow pigment of the obtained quinophthalone compound.
  • Ink composition 3 was prepared.
  • the nanocrystal-containing composition for green light emission is similarly applied by spin coating so that the film thickness becomes 2 ⁇ m.
  • the striped colored layer was exposed and developed at a place different from the above-mentioned red pixel by an exposure machine, thereby forming a green pixel adjacent to the above-mentioned red pixel.
  • the light conversion layer 1 having stripe-like pixels of three colors of red, green, and blue, using the light emitting nanocrystal-containing composition or the coloring composition so as to have the configuration shown in Table 1 below.
  • the light conversion layer 3 having stripe-like pixels of 3, 5 or 4 colors of red, green, blue and yellow was obtained.
  • the design of the partition pattern thus created was a pattern having an opening corresponding to a sub-pixel of 100 ⁇ m ⁇ 300 ⁇ m, the line width was 20 ⁇ m, and the thickness was 8 ⁇ m.
  • This BM substrate was used for forming the light conversion layer 6.
  • a solid pattern was prepared by the same method, and the contact angle of the solvent (1,4-BDDA) used for the ink was measured. As a result, it was confirmed that it was 45 ° and showed liquid repellency with respect to the solvent.
  • the nanocrystal-containing ink composition 1 for red light emission Using an ink jet printer (trade name “DMP-2850” manufactured by FUJIFILM Dimatix Co., Ltd.), except that the ink compositions 1 and 2 and QD-TEGMEMP are not used, the nanocrystal-containing ink composition 1 for red light emission Similarly, a light-scattering ink composition ScB was prepared, and these ink compositions were discharged into the openings. In addition, 16 nozzles were formed in the head portion for ejecting ink of the ink jet printer, and the amount of ink composition used per ejection per nozzle was 10 pL.
  • a black matrix (hereinafter also referred to as BM) is placed on the platen (base table) of DMP-2850, the black matrix pattern on the base is aligned with the scanning direction of the head, and alignment is performed. Ink was ejected to the opening at a speed of 6 m / sec.
  • the ink was discharged and formed into a film until the thickness of the cured ink film reached 80% or more of the black matrix partition wall thickness.
  • the thickness of the ink cured film printed and cured in the opening of the BM was measured with a light interference type film thickness meter (Vert Scan).
  • the ink was dried and cured as follows.
  • the ink was thermosetting, since it contained a solvent, it was dried under reduced pressure, then heated in a nitrogen atmosphere at 100 ° C. for 3 minutes, and then heated and cured at 150 ° C. for 30 minutes.
  • the printed substrate was placed in a sealed container (purge box) having a light-transmitting window filled with nitrogen gas, and UV light was irradiated with an ultraviolet irradiation device to effect.
  • blue light is applied to the BM substrate with a pixel portion that converts blue light into red light, a pixel portion that converts blue light into green light, and a light scattering agent-containing dispersion that does not contain luminescent nanocrystals. And a pixel portion to be transmitted (without color conversion).
  • a patterned light conversion layer 6 including a plurality of types of pixel portions was obtained (configuration in FIG. 22).
  • a yellow color filter layer is coated on one side, and a pixel portion that converts blue light into red light, a pixel portion that converts blue light into green light, A pixel portion that transmits blue light (without color conversion) with a light-scattering agent-containing dispersion that does not contain crystals, and a light conversion layer 7 formed in the opening of the BM substrate were produced (configuration in FIG. 20). .
  • the transparent electrode and the polyimide vertical alignment layer were formed.
  • the first substrate and the counter substrate 1 on which the polyimide-based vertical alignment layer is formed are arranged so that the alignment layers face each other and the alignment direction of the alignment layer is an anti-parallel direction (180 °),
  • the peripheral part was bonded with a sealant in a state where a constant gap (4 ⁇ m) was maintained between the two substrates.
  • composition Example 1 the liquid crystal composition (Composition Example 1) shown in Table 1 below is filled into the cell gap defined by the alignment layer surface and the sealing agent by vacuum injection, and the polarizing plate is bonded onto the first substrate.
  • a VA type liquid crystal panel 1 was produced.
  • the liquid crystal panel thus fabricated was used as an evaluation element, and VHR measurement and display quality evaluation for UV were performed.
  • Composition Examples 2 to 8 in Tables 1 to 5 below were filled by vacuum injection, respectively, and VA liquid crystal panels 2 to 8 were prepared to evaluate VHR and display quality against UV. went.
  • Tables 1 to 9 the number of the composition example of the liquid crystal composition corresponds to the number of the VA liquid crystal panel.
  • the liquid crystal display element is excellent in light resistance, and it is considered that the deterioration of the liquid crystal layer due to the deterioration of the light-emitting nanocrystals or the partial irradiation spot of high-energy rays can be suppressed or prevented.
  • the liquid crystal display element having the composition example 2 has the lowest decrease rate of the VHR value.
  • ⁇ 1 related to the high-speed response of the liquid crystal display element is observed, it is confirmed that the composition example 3 is the highest.
  • the cause of the former is considered to be related to the fact that it contains two or more liquid crystal compounds including a condensed ring (naphthalene) and thus easily absorbs light.
  • the latter is considered to be due to the increase in viscosity because the liquid crystal compound contains two or more rings including a chroman ring.
  • VA type liquid crystal panel A1 Composition Example 1
  • the counter substrate 6 provided with the light conversion layer 6 was used instead of the counter substrate 1 used in the VA liquid crystal panel 1.
  • the liquid crystal composition was used. As a result, no decrease in the VHR value after the 14 hour light resistance test was observed.
  • VA type liquid crystal panel B1 A VA liquid crystal panel B1 was produced in the same manner as the VA liquid crystal panel 1 except that the counter substrate 7 provided with the light conversion layer 7 was used instead of the counter substrate 1 used in the VA liquid crystal panel 1. As a result, no decrease in the VHR value after the 14 hour light resistance test was observed.
  • composition example 8 0.05 parts by mass of an antioxidant of the following formula (III-22) is added to 100 parts by mass of the liquid crystal composition of the composition example 8, and the same as the above composition example 8.
  • a VA-type liquid crystal panel may be manufactured and a light resistance test using blue light having a main emission peak at 450 nm and a light resistance test using light having a main emission peak at 385 nm may be evaluated.
  • composition example 12 The light resistance test with blue light having a main light emission peak at 450 nm and the light resistance test with light having a main light emission peak at 385 nm were subjected to composition example 12 in the following Table 6 and Table 7 other than composition examples 1 to 9. Even when performed at ⁇ 22, it is considered that an effect that is stable with respect to blue light having a main emission peak at 450 nm or light having a main emission peak at 385 nm is exhibited.
  • Example 30 of Japanese Patent No. 51222086 was used.
  • Polymeric compound-containing liquid crystal composition 1 in which 0.3 part by mass and 99.7 parts by mass of composition example 5 are mixed is coated with a polyimide alignment film that induces vertical alignment with a cell gap of 4 ⁇ m, and then a fishbone structure.
  • the liquid crystal panel including a substrate with ITO was injected by a vacuum injection method.
  • JALS2096 manufactured by JSR Corporation was used as a material for forming a vertical alignment film.
  • the liquid crystal panel into which the liquid crystal composition containing the polymerizable compound was injected was irradiated with ultraviolet rays through a filter that cuts out ultraviolet rays of 325 nm or less using a high-pressure mercury lamp with a voltage of 10 V applied at a frequency of 100 Hz.
  • illuminance measured at the center wavelength of 365nm condition was adjusted to 100 mW / cm 2, was irradiated with ultraviolet light at an accumulated light intensity of 10J / cm 2.
  • the illuminance was measured at a center wavelength of 313nm is adjusted to 3 mW / cm 2, further irradiated with ultraviolet light at an accumulated light intensity 10J / cm 2, the PSVA liquid crystal panel 1 As in Composition Example 5, the light resistance test using blue light having a main light emission peak at 450 nm and the light resistance test using light having a main light emission peak at 385 nm were evaluated. As a result, no display defect was observed in both cases of blue light having a main emission peak at 450 nm and light having a main emission peak at 385 nm.
  • a polymerizable compound-containing liquid crystal composition 2 obtained by mixing 99.7 parts by mass of Composition Example 1 is coated with a polyimide alignment film that induces vertical alignment at a cell gap of 4 ⁇ m, and then includes a fishbone structure ITO-attached substrate.
  • the liquid crystal panel was injected by a vacuum injection method.
  • JALS2096 manufactured by JSR Corporation was used as a material for forming a vertical alignment film.
  • the liquid crystal panel into which the liquid crystal composition containing the polymerizable compound was injected was irradiated with ultraviolet rays through a filter that cuts out ultraviolet rays of 325 nm or less using a high-pressure mercury lamp with a voltage of 10 V applied at a frequency of 100 Hz.
  • illuminance measured at the center wavelength of 365nm condition was adjusted to 100 mW / cm 2, was irradiated with ultraviolet light at an accumulated light intensity of 10J / cm 2.
  • the illuminance was measured at a center wavelength of 313nm is adjusted to 3 mW / cm 2, further irradiated with ultraviolet light at an accumulated light intensity 10J / cm 2, the PSVA liquid crystal panel 2
  • the light resistance test using a blue LED having a main light emission peak at 450 nm and the light resistance test using an LED having a main light emission peak at 385 nm were evaluated. As a result, no display defect was observed in any of a blue LED having a main emission peak at 450 nm and an LED having a main emission peak at 385 nm.
  • the liquid crystal composition mixed with was injected by a vacuum injection method into a liquid crystal panel including a substrate with ITO having a cell gap of 4 ⁇ m and no alignment film.
  • the liquid crystal panel into which the liquid crystal composition containing the polymerizable compound was injected was irradiated with ultraviolet rays through a filter that cuts out ultraviolet rays of 325 nm or less using a high-pressure mercury lamp with a voltage of 10 V applied at a frequency of 100 Hz.
  • illuminance measured at the center wavelength of 365nm condition was adjusted to 100 mW / cm 2, was irradiated with ultraviolet light at an accumulated light intensity of 10J / cm 2.
  • the liquid crystal composition mixed with was injected by a vacuum injection method into a liquid crystal panel including a substrate with ITO having a cell gap of 3.5 ⁇ m and no alignment film.
  • the liquid crystal panel into which the liquid crystal composition containing the polymerizable compound was injected was irradiated with ultraviolet rays through a filter that cuts out ultraviolet rays of 325 nm or less using a high-pressure mercury lamp with a voltage of 10 V applied at a frequency of 100 Hz.
  • illuminance measured at the center wavelength of 365nm condition was adjusted to 100 mW / cm 2, was irradiated with ultraviolet light at an accumulated light intensity of 10J / cm 2.
  • the vertical alignment layer solution used in Example 22 of International Publication No. 2013/002260 is formed by spin coating, and irradiated with polarized light to have a dry thickness of 0.1 ⁇ m.
  • the photo-alignment layer was formed.
  • an alignment layer was formed on the surface of the second transparent electrode substrate (counter substrate 1) on which the light conversion layer 1 having a polarizing layer was formed.
  • a first substrate on which a transparent electrode and an alignment layer are formed and a second (electrode) substrate that is the counter substrate 1 on which the light conversion layer 1 is formed are opposed to each other, and the alignment direction of the alignment layer was placed in an anti-parallel direction (180 °), and the peripheral part was bonded with a sealant in a state where a constant gap (4 ⁇ m) was maintained between the two substrates.
  • the liquid crystal composition described in Composition Example 1 is filled in the cell gap defined by the alignment layer surface and the sealing agent by vacuum injection, and the polarizing plate is bonded onto the first substrate.
  • a photo-alignment film type VA type liquid crystal panel was produced.
  • IPS liquid crystal panel An alignment layer solution was formed on the pair of comb-shaped electrodes formed on the first substrate by a spin coating method to form an alignment layer.
  • the alignment layers face each other and are arranged so that the direction of linearly polarized light irradiation or rubbing in the horizontal direction is the anti-parallel direction (180 °), and a constant gap (4 ⁇ m) is provided between the two substrates. In the state kept, the peripheral part was pasted together with a sealant.
  • the liquid crystal composition (Composition Example 6) is filled in the cell gap defined by the alignment layer surface and the sealing agent by a vacuum injection method, and then the pair of polarizing plates is formed on the first substrate and the second substrate.
  • An IPS-type liquid crystal panel was produced by pasting the top.
  • FFS type liquid crystal panel After forming a flat common electrode on the first transparent substrate, an insulating layer film is formed, a transparent comb electrode is further formed on the insulating layer film, and an alignment layer solution is then applied on the transparent comb electrode.
  • a first electrode substrate was formed by spin coating. The alignment layer was formed in the same manner on the second substrate on which the alignment layer, the in-cell polarizing layer, the light conversion layer 1 and the planarizing film were formed.
  • the first substrate on which the comb-shaped transparent electrode and the alignment layer are formed, and the alignment layer, the polarizing layer, the light conversion layer 1, and the second substrate on which the planarizing film is formed on the light conversion layer 1, are arranged in such a way that the direction where the linearly polarized light is radiated or rubbed is in the anti-parallel direction (180 °) and a constant gap (4 ⁇ m) is maintained between the two substrates.
  • the liquid crystal composition (Composition Example 9) was filled in the cell gap partitioned by the alignment layer surface and the sealing agent by a dropping method, to prepare an FFS type liquid crystal panel.
  • a blue LED is arranged in a lattice pattern on the lower reflection plate that scatters and reflects light, a diffusion plate is arranged immediately above the irradiation side, and a diffusion sheet is further arranged on the irradiation side to produce a backlight unit 2. .
  • the above-obtained backlight units 1 and 2 were attached to the IPS liquid crystal panel obtained above, and the color reproduction region was measured. As a result, it was confirmed that in both the liquid crystal display element having the light conversion layer and the conventional liquid crystal display element not having the light conversion layer, the color reproduction region is expanded in the former.
  • the backlight units 1 and 2 produced above were attached to the obtained FFS type liquid crystal panel, and the color reproduction area was measured. As a result, it was confirmed that in both the liquid crystal display element having the light conversion layer and the conventional liquid crystal display element not having the light conversion layer, the color reproduction region is expanded in the former.
  • Liquid crystal display element 100 Backlight unit (101: light source unit, 102: light guide unit, 103: light conversion unit) 101: light source part (L: light emitting element (105: light emitting diode, 110: light source substrate), 112a, b: fixing member) 102: Light guide section (106: diffusion plate, 104: light guide plate) 103: light source / light guide unit 110: light source substrate 111: transparent filling container 112a, b: fixing member NC: nanocrystal for light emission (compound semiconductor) DESCRIPTION OF SYMBOLS 1, 8: Polarizing layer 2, 7: Transparent substrate 3: 1st electrode layer 3 ': 2nd electrode layer 4: Orientation layer 5: Liquid crystal layer 6: Color filter (When the pigment

Abstract

「課題」 本発明が解決しようとする課題は、高エネルギー光線の照射による液晶層の劣化を抑制または防止するものである。 「解決手段」 本願発明の第一は、第一の基板および第二の基板が対向して設けられる一対の基板と、前記第一の基板と第二の基板と間に挟持された液晶層と、前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、発光素子を備えた光源部と、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、を備え、 前記液晶層が一般式(i) で表される化合物を10~50質量%含有する液晶組成物を含有することを特徴とする液晶表示素子である。

Description

液晶表示素子
 本願発明は、液晶表示素子に関する。
 表示品質が優れていることから、アクティブマトリクス形液晶表示装置が携帯端末、液晶テレビ、プロジェクタ、コンピューター等の市場に出されている。アクティブマトリクス表示方式は、画素毎にTFT(薄膜トランジスタ)あるいはMIM(メタル・インシュレータ・メタル)等が使われており、高電圧保持率を有する液晶組成物との組合せにおいて、TN型(ツイストネマチック)を初めとする一般的液晶表示素子として広く用いられている。また、更に広い視角特性を得るためにVA(バーチカルアライメント:垂直配向)、IPS(In Plane Switching:インプレーンスイッチング)、IPSの改良型であるFFS(Fringe Field Switching:フリンジフィールドスイッチング)等が用いられており、この様な表示素子に対応するために、現在も新しい液晶化合物あるいは液晶組成物の提案がなされている。
 一方液晶表示素子は自己発光型では無いため、発光するための光源が必須となり、ディスプレイとして求められる色再現領域に発光スペクトルを有する白色光源が使用される。光源としては、冷陰極管や白色LED(発光ダイオード)等が用いられるが発光効率の観点から、現在では白色LEDを用いることが主流となっている。LEDは現在一つの素子で380nmから750nmにおよぶ可視光全領域のカバーすることはできず、白色光を得るためにはいくつかの形式が知られている。
1)青色LEDと黄色蛍光体の組合せ
2)3原色の各LED(赤色・緑色・青色)の組合せ
3)近紫外線または紫色LEDと赤色・緑色・青色の蛍光体との組合せ
 これら3方式中、液晶表示素子の光源として最適な白色光を得る観点では3)が最も優れ、2)、1)の順となり、発光効率の観点では、1)が最も優れている。
 液晶表示素子においては、消費電力の低減が重要であり、先進各国が検討中の省電力プログラムに対応するためには、光源の発光効率が重視されている。そのため、現在では1)の青色LEDと黄色蛍光体の組合せにより白色光を得ている。
 この方式は、発光効率的には優れるものの、赤色光の不足など白色光源としての特性的には劣り、色再現性に問題を有していた。特に液晶表示素子はカラー表示を実現するために液晶素子と合わせてカラーフィルタを用いることから、光源部を改良しても色再現性を向上させることは難しく、そのため色再現性を向上させるにはカラーフィルタ中の高顔料濃度化を図るか、或いは、着色膜厚を大きくすることにより色純度を高める必要があった。然しながら、この場合、透過率が低下し、光量を増加させなければならず消費電力が増加することとなる問題があった。
 そこで、液晶表示素子の色再現性と発光効率を同時に解決するための技術として、発光用ナノ結晶の一例である量子ドット技術(特許文献1参照)が注目されている。量子ドットは、粒子径数nmから数十nmの半導体微結晶からなり電子正孔対の閉じ込め効果によりエネルギーレベルが離散的に存在し、粒子径が小さくなるにつれてエネルギーバンドギャップが大きくなる性質を有している。この性質を応用し、粒子径をコントロールしバンドギャップを均一化することにより、発光スペクトルの半値幅が小さい光源を得ることができる。半値幅の小さい三原色の光源を得ることにより広色域ディスプレイが実現できることから、量子ドットをバックライトの構成部材として用いることにより、色再現性を向上させた液晶表示素子を構成できることが開示されている(特許文献2及び非特許文献1参照)。更に、光源として近紫外線または青色等の短波長可視光線を用いて、三色の量子ドットを従来のカラーフィルタの替わりに用いる提案がなされている(特許文献3参照)。これらの表示素子は、原理的には高い発光効率と色再現性を両立できるものである。
特表2001-523758号公報 国際公開2004/074739号パンフレット 米国特許8648524号公報
SID 2012 DIGEST,p895-896
 しかしながら、上記の通り、特許文献2、3及び非特許文献1のように発光用ナノ結晶の一例である量子ドットを液晶表示素子に用いた場合、当該量子ドットの励起を引き起こすために光源として短波長または紫外光の可視光源が必要であることから、液晶層を透過する光は、従来の白色光を用いる場合と異なり短波長領域が主体となる。
 より詳細に説明すると、発光用ナノ結晶の発光に使用するための光源に用いる短波長の可視光線や紫外光は高エネルギー光線であり、光スイッチとして機能する液晶層はこれらの高エネルギー光の長時間暴露に耐えうることが求められる。特に、短波長の可視光線や紫外光といった高エネルギー光線に液晶層が暴露されると液晶材料自体が分解する等の問題が確認された。
 そこで、本発明が解決しようとする課題は、発光用ナノ結晶を含有する光変換層をカラーフィルタの替わりに用いた場合において、高い発光効率と色再現性を両立しつつ、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる液晶表示素子を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の液晶化合物を含有する液晶層を、量子ドットなどの発光用ナノ結晶をカラーフィルタとして用いた液晶表示素子に使用することで、前記課題を解決できることを見出し本願発明の完成に至った。
 本発明の液晶表示素子は、短波長の可視光線や紫外光といった高エネルギー光線に対しても劣化しにくく、色再現領域を長期間維持する。
 本発明の液晶表示素子は、透過率に優れ、かつ色再現領域を長期間維持する。
本発明の液晶表示素子の実施形態を示す斜視図である。 本発明の液晶表示素子の他の実施形態を示す斜視図である。 本発明の液晶表示素子の他の実施形態を示す斜視図である。 本発明の液晶表示素子の他の実施形態を示す斜視図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の一例を示す模式図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。 図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。 本発明の液晶表示素子の画素部分を等価回路で示した模式図である。 本発明の画素電極の形状の一例を示す模式図である。 本発明の画素電極の形状の一例を示す模式図である。 本発明のIPS型の液晶表示素子の電極構造を示す模式図である。 図13または図14におけるIII-III線方向に図2に示す液晶表示素子を切断した断面図の例の一つである。 図15におけるIII-III線方向にIPS型の液晶パネルを切断した断面図である。 図3、図4における基板上に形成された薄膜トランジスタを含む電極層3のII線で囲まれた領域を拡大した平面図である。 図18におけるIII-III線方向に図3、図4に示す液晶表示素子を切断した断面図である。 図20は、光変換層6の一例を示す模式図である。 図21は、光変換層6の一例を示す模式図である。 図22は、光変換層6の一例を示す模式図である。 量子ドットの発光スペクトルを示す図である。
 本願発明の第一は、第一の基板および第二の基板が対向して設けられる一対の基板と、前記第一の基板と第二の基板と間に挟持された液晶層と、前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、発光素子を備えた光源部と、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、を備え、
 前記液晶層が一般式(i)
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10~50質量%含有する液晶組成物を含有することを特徴とする液晶表示素子である。
 本発明では、液晶層を特性の構成とすることにより、光源に用いる短波長の可視光線や紫外光などの高エネルギー光線の長時間暴露に耐えうる液晶層を備えた信頼性の高い液晶表示素子を提供できる。
 また、発光素子は、紫外または可視光を発光する発光素子が好ましい。
 本発明に係る好適な液晶表示素子について図を用いて以下に説明した後、液晶表示素子の各構成要素について説明する。
 図1は、本実施形態で用いられる液晶表示素子の一例の全体を示す斜視図であり、説明のために便宜上各構成要素を離間して記載している。
 本発明に係る液晶表示素子1000は、バックライトユニット100と、液晶パネル10とを備えている。当該バックライトユニット100は、発光素子Lを有する光源部101と、導光板(図示せず)または光拡散板(図示せず)の役割を果たす導光部102と、を有している。図1に示すように、バックライト100の一形態は、複数の発光素子Lを含む光源部101が導光部102の一側面に配置されている。必要により、複数の発光素子Lを含む光源部101を、液晶パネル10の一側面側(導光部102の一側面)だけでなく、液晶パネル10の他方の側面側(対向する両側面)に設けてもよく、また、導光部102の周囲を囲むように、複数の発光素子Lを含む光源部101が、該導光部102の3つ側面又は該導光部102の全周囲を囲むように、4つの側面に設けられていてもよい。なお、導光部102は必要に応じて導光板の代わりに光拡散板(図示せず)を備えてもよい。
 図1に示す液晶パネル10において、第一の(透明絶縁)基板2は、一方の面に偏光層1が設けられ、他方の面に電極層3が設けられている。また、液晶層5を挟んで前記第一の基板2と対向するように、第二の(透明絶縁)基板7が配設され、該基板7上に光変換層(いわゆる色層)6および偏光層8の順で設けられている。ここで、該光変換層(色層)6は、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内の少なくとも一色の画素が、前記光源部からの入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有するものである。
 図1では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第一の基板2側に設けられている形態を示しているが、別の実施形態(例えば、図3、図4)では、画素電極を第一の基板2に設け、共通電極3’を第二の基板7に設けてもよい。
 また、図1では、前記第二の基板7と液晶層5との間に光変換層6が設けられているが、本発明に係る液晶表示素子の他の実施形態としては、図10、図11に示す様な、いわゆるカラーフィルタオンアレイ(COA)であってもよく、この場合、電極層3と液晶層5の間に光変換層6を設けても、または当該電極層3と第一の基板2との間に光変換層6を設けてもよい。また、必要により、オーバコート層(図示せず)を、光変換層6を覆う様に設けることで、光変換層に含まれる物質が液晶層へ流出することを防止してもよい。
 次に、図2に示す液晶表示素子1000は、図1の液晶パネル10において、更に配向層4を設けた実施形態を示す図である。具体的には、図2の液晶パネル10において、第一の(透明絶縁)基板2の一方の面に偏光層1が設けられており、他方の面に電極層3が設けられている。さらに前記電極層3上には配向層4が形成されている。また、液晶層5を挟んで前記第一の基板2と対向するよう、第二の(透明絶縁)基板7上に発光用ナノ結晶を含有する光変換層6を有する。また、当該光変換層6の第一の基板2側に偏光層8が設けられ、さらに当該偏光層8の第一の基板2側に配向層4が設けられている。
 図2では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第一の基板2側に設けられているが、別の実施形態(例えば、図3、図4)では、画素電極3を第一の基板2に設け、共通電極を第二の基板7に設けてもよい。
 また、配向層4により電圧無印加時に該液晶組成物中の液晶分子が前記基板2,7に対して所定方向に配向することができる。図2では一対の配向層4により液晶層5を挟持した形態を例にしているが、配向層4は第一の基板2または第二の基板の片側にだけ設けてもよい。
 また、図2では、前記第二の基板7と配向層4との間に光変換層6が設けられているが、図1の場合と同様に、いわゆるカラーフィルタオンアレイ(COA)型と同様に光変換層6が第一の基板2側に設けられていてもよい。更に、図2および後述の図4において、配向層4は液晶層5に接するように第一の基板2側と第二の基板7側に設けられているが、そのどちらか一方のみでもよい。
 このように、本発明に係る液晶パネル10は、第一の偏光層1と、第一の基板2と、電極層3と、液晶層5と、第二の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成、或いは、第一の偏光層1と、第一の基板2と、電極層3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、第二の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成を有するものであることが好ましい。
 図1、図2において、発光素子Lから発光された光は、導光部102内(例えば、導光板や光拡散板を介して)を通過して、液晶パネル10の面内に入射する。当該液晶パネル10内に入射した光は、第一の偏光層1により特定の方向に偏光された後、電極層3の駆動により液晶層5の液晶分子の配向方向を制御することができるため、光シャッターとしての役割を果たす液晶層5により偏光の方向が変えられた光は、第二の偏光層8で遮断または特定方向に偏光された後、光変換層6に入光する。当該光変換層6では、該光変換層6に入光した光が発光用ナノ結晶に吸収され、赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルに変換されることで、赤色(R)、緑色(G)、青色(B)の何れかの色を表示することができる。
 この際、導光部102(特に導光板)の形状が、発光素子Lから発光された光が入射する側面から対向面に向かって厚さが次第に減少する側面を備えた平板体である(側面がテーパー状の形態や楔状四角形板)と、線光を面光に変換することができるため液晶パネル10内に光を入射しやすくなる為好ましい(後述に実施形態として記載する)。
 図3は、バックライトユニット100が、複数の発光素子Lを平板状の導光部102に対して平面状に配置された、所謂直下型バックライト構造を持つ液晶表示素子の一例の全体を示す斜視図である。なお、説明のために便宜上各構成要素を離間して記載している。
 直下型バックライト構造は、発光素子Lからの光は面光であるため、導光部102の形状は、図1、図2とは異なりテーパー状である必要はない。
 図3における液晶パネル10は、一方の面に第一の電極層3(例えば、画素電極)を備え、かつ他方の面に第一の偏光層1を備えた第一の基板2と、第二の電極層3’(例えば、共通電極)を具備した第二の基板7と、前記第一の基板2と第二の基板7との間に挟持された液晶層5を備えている。また、前記第二の基板7と第二の電極層3’との間に光変換層6が設けられており、さらに当該光変換層6の上の第二の電極層3’側に第二の偏光層8が設けられている。
 すなわち、図3の実施形態では、液晶表示素子1000は、バックライトユニット100と、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層や画素電極とも称する)3と、液晶組成物を含む層5と、第二の電極層3’と、第二の偏光板8と、光変換層6と、第二の基板7と、が順次積層された構成となる。
 次に、図4に示す液晶表示素子1000は、図3の液晶パネル10において、更に配向層4を設けた実施形態を示す図である。即ち、図4における液晶パネル10は、一方の面に第一の電極層3(例えば、画素電極)を備え、かつ他方の面に第一の偏光層1を備えた第一の基板2と、第二の電極層3’(例えば、共通電極)を具備した第二の基板7と、前記第一の基板2と第二の基板7との間に挟持された液晶組成物(または液晶層5)を有し、前記第一の基板2と前記液晶層5の間に前記液晶層5と接するように設けられた配向層4と、前記第二の基板7と前記液晶層5との間に前記液晶層5と接するように設けられた配向層4と、を備えている。また、前記第二の基板7と第二の電極層3’との間に光変換層6が設けられており、さらに当該光変換層6の上の第二の電極層3’側に第二の偏光層8が設けられている。
 すなわち、図4の実施形態では、液晶表示素子1000は、バックライトユニット100と、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、配向層4と、液晶組成物を含む層5と、配向層4と、第二の電極層3’と、第二の偏光板8と、光変換層6と、第二の基板7と、が順次積層された構成であることが好ましい。
 図3、図4において、発光素子Lから発光された光は、導光部102を(光拡散板や光拡散板を介して)通過して、液晶パネル10の面内に入射する。当該液晶パネル10内に入射した光は、第一の偏光層1により特定の方向に偏光された後、第一の電極層3、第二の電極層3’の駆動により液晶層5内で偏光の方向が変えられた光が、第二の偏光層8で遮断または特定方向に偏光された後、光変換層6に入光する。当該光変換層6では、光変換層6に入光した光が発光用ナノ結晶に吸収され、赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルに変換されることで、赤色(R)、緑色(G)、青色(B)の何れかの色を表示することができる。
 また、前記導光部102として、液晶パネル10と前記導光部102との間に光拡散板を備えることが好ましい(後述に実施形態として記載する)。
 以下、本発明の好ましい液晶表示素子における液晶パネル部分の断面構造、特に、偏光層、光変換層、および液晶層などの積層態様について説明する。
 図5~11は、本実施形態で用いられる液晶パネルの構成を示すために、液晶表示素子における液晶パネル10部分を切断した断面図の模式図であり、液晶パネル10における偏光層、光変換層および液晶層の積層態様を示す概略図である。また、図5~11では、偏光層、光変換層および液晶層の位置関係の説明のため便宜上、図1~図4で示されている電極層3(TFTを含む)、電極層3’、配向層4などを省略して模式的に示している。
 さらに、図5~11では、液晶層5に対して、バックライトユニット(光源)側の基板とその基板に積層される積層体をアレイ基板(A-SUB)、当該アレイ基板と液晶層5を挟んで対向する基板とその基板に積層される積層体を対向基板(O-SUB)としている。これらアレイ基板(A-SUB)および対向基板(O-SUB)の構成や好ましい実施態様は、後述の図12~図19における電極構造の説明の箇所で詳細に説明する。なお、図5~11では、アレイ基板側にTFTが形成されている例を記載しているが、アレイ基板と対向基板とを入れ替えてもよい。
 図5の実施態様は、光変換層6が対向基板(O-SUB)に設けられ、かつ、該光変換層6と第二の偏光層8とが、一対の基板(第一の基板2及び第二の基板7)の間に設けられた所謂インセル偏光層を備える形態である。
 一般的な液晶表示素子は、白色光源からの光をカラーフィルタにおいて、波長選択し、その一部を吸収することによりそれぞれの色表示を行っているのに対して、本発明では、発光用ナノ結晶を含有する光変換層をカラーフィルタの代替部材として用いたことを特徴の一つとしている。よって、本発明における光変換層6は、赤色(R)、緑色(G)および青色(B)の三原色画素を備えており、いわゆるカラーフィルタと同様の役割を果たす。
 具体的には、光変換層6は、例えば、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)を備え、緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)を備え、そして青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を含む光変換画素層(NC-Blue)を備えている。斯かる単層型の光変換層6の一例を図22に示す。
 すなわち、光変換層6は、青色LEDなどの450nm近傍に主ピークを持つ光を光源として使用する場合、青色LEDが発する青色光を青色として利用することができる。そのため、光源部からの光が青色光である場合には、前記各色の光変換画素層(NC-Red、NC-Green、NC-Blue)のうち、光変換画素層(NC-Blue)を省略し、青色はバックライト光をそのまま使用してもよい。この場合、青色を表示する色層は透明樹脂や青色の色材を含む色材層(いわゆる青色カラーフィルタ)などによって構成することができる。よって、図5及び図22では、青色発光用ナノ結晶が任意成分となりうることから、青色発光用ナノ結晶を一点破線で表示している。
 また、特に好ましい実施形態として、光変換層6における赤色の色層に光源部が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCを含有し、かつ緑色の色層に光源部が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCを含有する例を記載しているがこれに限定されることはない。
 本発明に係る発光用ナノ結晶NCは、光源部が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、光源部が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび光源部が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種で表されることが好ましく、光源部が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、光源部が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび光源部が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCで表されることがより好ましい。本発明に係る光変換層は、赤色発光用ナノ結晶を含む層(NC-Red)と、緑色発光用ナノ結晶を含む層(NC-Green)と、を含むことが特に好ましい。
 図5で示す本発明の液晶表示素子では、各色層の間の混色を防ぐ目的でブラックマトリックスを設けてもよい。また、図5において、使用する光源の種類(発光素子として青色LED)に応じて、光変換層6と第二の偏光層8との間に、青色の色材を含む色層(いわゆる「青色カラーフィルタ」)をそれらの間に一面に設けることが、外部からの不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる青色カラーフィルタを配した構造を図21に示す。
 図5に示す実施形態をVA型液晶表示素子に適用する場合、対向基板側O-SUBにおいて、液晶5と第二の偏光層8との間、或いは、第二の偏光層8と光変換層6との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。また、図5において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基2上に形成されていることが好ましい。
 次に、図6の実施態様は、光変換層6が対向基板(O-SUB)に設けられ、かつ、該光変換層6が、一対の基板(第一の基板2及び第二の基板7)の外側に設けられた形態である。そのため、第二の偏光層8および光変換層6を支持する支持基板9が設けられている。当該支持基板9は、透明基板であることが好ましい。
 図6における光変換層6は、図5の実施形態と同様に、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)を備え、緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)を備え、当該青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を必要により含む光変換画素層(NC-Blue)を備えている。また、図6における光変換層8における赤色(R)の画素部、緑色(G)の画素部および青色(B)の画素部の好ましい形態は、図5で示した実施形態と同一であるためここでは省略する。
 図6に示す実施形態をVA型液晶表示素子に適用する場合、対向基板側O-SUBにおいて、液晶5と第二の偏光層8との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。また、図6において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。
 次に、図7の実施態様は、光変換層6が対向基板側O-SUBに設けられ、該光変換層6及び第二の偏光層8が一対の基板(第一の基板2及び第二の基板7)の間に設けられたインセル偏光板を備える形態であって、かつ、該光変換層6を構成する赤色及び緑色の各色層部において、赤色の色層部が、赤色発光用ナノ結晶を含有する光変換画素層(NC-Red)と、赤色の色材を含む色材層(いわゆる赤色カラーフィルタ)(CF‐Red)とが積層された2層構造を有し、緑色の色層部が、緑色光を発する緑色発光用ナノ結晶を含有する光変換画素層(NC-Green)と、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)(CF‐Green)とが積層された2層構造を有するものである。
 即ち、斯かる色層の2層構造は、入射光(光源からの光、好ましくは青色光)の全てをナノ結晶を含有する光変換画素層で変換できない場合に、残った励起光を透過させず吸収する目的でカラーフィルタ(CFL)や各色の色材層を積層させるものである。
 図7によれば、本発明に係る液晶表示素子の液晶パネル部において、第二の偏光層8および赤色の色層と緑色の色層と青色の色層を有する光変換層6は、バックライトユニット(光源)側の基板A-SUBと対向する基板側O-SUBに設けられている。また、図7では第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備える形態である。図7における実施形態は、図5の光変換層6が二層に積層された形態である。より詳細には、光変換層6は、赤色の色層部と緑色の色層部と青色の色層部とを有し、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)と赤色の色材を含む色材層(CF‐Red)との二層構造として構成される。緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)と緑色の色材を含む色材層(CF‐Green)との二層構造として構成される。この場合、図7では、緑色の色層部は、励起光の透過を考慮して色補正を行うために、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)と黄色の色材を含む色材層(CF‐Yellow)との組み合わせでもよい。青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を必要により含む色層(NC-Blue)で構成される。
 図7における光変換層6における赤色発光用ナノ結晶を含む光変換画素層(NC-Red)、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)および青色発光用ナノ結晶を必要により含む色層(NC-Blue)の好ましい形態は、図5で示した実施形態と同一であるためここでは省略する。なお、図7でも、赤色の色層部と緑色の色層部と青色の色層部はそれぞれ接しているように示されているが、混色を防止するために、それぞれの間に遮光層としてブラックマトリックスを配置してもよい。
 また、使用する発光素子として青色LEDなど使用する場合には、図7の光変換層6と第二の偏光層8との間に、青色の色材を含む色材層(いわゆる青色カラーフィルタ)をそれらの間に一面に設けることが外部からの不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる2層構造の光変換層6と青色カラーフィルタとを必須の構成要素とする層構造は、例えば図22で示される構造が挙げられる。
 図7に示す実施形態をVA型液晶表示素子に適用する場合、対向する基板側O-SUBにおいて、液晶5と第二の偏光層8との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。また、図7において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。また、VA型、FFS型またはIPS型液晶表示素子において、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。
 次に、図8の実施形態は、第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備えた形態であり、発光用ナノ結晶を含む層とカラーフィルタとが積層された二層の光変換層6を持つものである。具体的には、光変換層6は、赤色(R)の画素部(赤色の色層部)が、発光用ナノ結晶を含む層(NCL)と赤色の色材を含む色材層との二層構造で構成され、緑色(R)の画素部(緑色の色層部)が、発光用ナノ結晶を含む層(NC)と緑色の色材を含む色材層との二層構造で構成され、かつ、青色(R)の画素部(青色の色層部)は、発光用ナノ結晶を含む層(NC)と青色の色材を含む色材層との二層構造で構成されている。
 この場合、発光用ナノ結晶NCを含む層における発光用ナノ結晶は、入射光(光源からの光、好ましくは青色光)を吸収して青色光を発する青色発光用ナノ結晶、入射光(光源からの光、好ましくは青色光)を吸収して緑色光を発する緑色発光用ナノ結晶および入射光(光源からの光、好ましくは青色光)を吸収して赤色光を発する赤色発光用ナノ結晶からなる群から選択される1種または2種を含むことが好ましい。なお、本実施形態においても各色層の間の混色を防ぐ目的でブラックマトリックスを設けてもよい。
 また、図8の実施形態では、青色または黄色カラーフィルタを光変換層6の液晶層側に隣接するように一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる青色または黄色カラーフィルタを配設した構造は図9で示すことができる。
 図8又は図9に示す実施形態をVA型液晶表示素子に適用する場合、対向基板側O-SUBにおいて、液晶5と第二の偏光層8との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の表示基板SUB1上に形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。また、図8において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の表示基板SUB1上に形成されていることが好ましい。
 以上詳述した図5~9に示す実施形態では、短波長の可視光線や紫外光といった高エネルギー光線の光源を用いた光を、光スイッチとして機能する液晶層および偏光層を介して、光変換層に含まれる発光用ナノ結晶が吸収し、当該吸収した光を当該発光用ナノ結晶により特定の波長の光に変換して発光することにより色を表示する。
 次に、図10の実施形態は、光変換層6がアレイ基板側(A-SUB)側に設けられ、また、第二の偏光層8が、第二の基板7の外側に設けられ、さらに、第一の偏光層1が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備える、カラーフィルタオンアレイ型の液晶パネルである。
 図10に示す実施形態をVA型液晶表示素子に適用する場合、対向する基板側O-SUBにおいて、液晶5と第二の基板7との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。
 例えば、第一の基板2と光変換層6との間、第一の偏光層1と光変換層6との間または第一の偏光層1と液晶層5との間に画素電極3が形成されていることが好ましい。
 また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。
 また、図10において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上、例えば、第一の基板2と光変換層6との間、第一の偏光層1と光変換層6との間または第一の偏光層1と液晶層5との間に形成されていることが好ましい。また、光変換層6と第一の基板2との間には、青色カラーフィルタをそれらの間に一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。また、入射光が青色光である場合には、青色を表示する色層は青色発光用ナノ結晶を用いなくともよく、この場合、透明樹脂や青色の色材を含む色層(いわゆる青色カラーフィルタ)などによって構成することができる。
 図11に示す実施形態は、光変換層6がバックライトユニット(光源)側のアレイ基板(A-SUB)側に設けられ、かつ、第一の偏光層1および第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間の外側に設けられた形態である。そのため、第一の偏光層1および光変換層6を支持する支持基板9が第一の基板2より光源部(バックライトユニット)側に設けられている。
 図11に示す実施形態をVA型液晶表示素子に適用する場合、対向する基板側O-SUBにおいて、液晶5と第二の基板7との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。例えば、第一の基板2と液晶層5との間に共通電極3’が形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されいることが好ましい。また、図11において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上、例えば、第一の基板2と液晶層5との間に画素電極および共通電極が形成されていることが好ましい。また、光変換層6と支持基板9との間には、青色カラーフィルタをそれらの間に一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。また、入射光が青色光である場合には、青色を表示する色層は青色発光用ナノ結晶を用いなくともよく、この場合、透明樹脂や青色の色材を含む色材層(いわゆる青色カラーフィルタ)などによって構成することができる。
 以上詳述した通り、図10~11に示す実施形態では、短波長の可視光線や紫外光といった高エネルギー光線の光源を用いた光のうち、光変換層に含まれる発光用ナノ結晶で吸収されなかった光、特に青色の色層部を通過した光が光スイッチとして機能する液晶層を介して、色を表示するものである。
 以上の図5~図11の各実施態様の中でも、特に、図5~図9で示される、光変換層6を、バックライトユニット(光源)側の基板A-SUBと対向する基板側O-SUB側に設けられた構造のものが、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる、という本発明の効果が顕著に現れるものとなる点から好ましい。
 上述した通り、図5~11の模式図を用いて、本発明の好ましい液晶表示素子(特に液晶パネル)における、偏光層、光変換層および液晶層の位置関係を説明した。
 「光変換層」
 次に、本発明における光変換層につき更に詳述すれば、その画素部の構成要素は、発光用ナノ結晶を必須成分として含み、樹脂成分、その他必要により当該発光用ナノ結晶に対して親和性のある分子、公知の添加剤、その他色材を含有してもよいものである。また、前記した通り、各画素層の境界部分にはブラックマトリックスを有することがコントラストの点から好ましい。
 (発光用ナノ結晶)
 本発明に係る光変換層は、発光用ナノ結晶を含有する。本明細書における用語「ナノ結晶」は、好ましくは、100nm以下の少なくとも1つの長さを有する、粒子を指す。ナノ結晶の形状は、任意の幾何学的形状を有してもよく、対称または不対称であってよい。当該ナノ結晶の形状の具体例としては、細長、ロッド状の形状、円形(球状)、楕円形、角錐の形状、ディスク状、枝状、網状または任意の不規則な形状等を含む。一部の実施形態では、ナノ結晶は、量子ドットまたは量子ロッドであることが好ましい。
 当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有することが好ましい。
 そのため、発光用ナノ結晶は、少なくとも第一半導体材料を含むコアと、第二半導体材料を含むシェルからなり、前記第一半導体材料と、前記第二半導体材料とは同じでも異なっていても良い。また、コアおよび/またはシェル共に第一半導体および/または第二半導体以外の第三の半導体材料を含んでも良い。なお、ここでいうコアを被覆とは、コアの少なくとも一部を被覆していればよい。
 さらに、当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含む第一のシェルと、必要により、前記第一のシェルを被覆し、かつ前記第一のシェルと同一または異なる第三の半導体材料を含む第二のシェルと、を有することが好ましい。
 したがって、本発明に係る発光用ナノ結晶は、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと同一の第二の半導体材料を含むシェルを有する形態、すなわち1種類又は2種以上の半導体材料から構成される態様(=コアのみの構造(コア構造とも称する))と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含むシェルを有する形態等の、すなわちコア/シェル構造と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含む第一のシェルと、前記第一のシェルを被覆し、かつ前記第一のシェルと異なる第三の半導体材料を含む第二のシェルを有する形態の、すなわちコア/シェル/シェル構造との3つの構造のうち少なくとも一つを有することが好ましい。
 また、本発明に係る発光用ナノ結晶は、上記の通り、コア構造、コア/シェル構造、コア/シェル/シェル構造の3つの形態を含むことが好ましく、この場合、コアは2種以上の半導体材料を含む混晶であってもよい(例えば、CdSe+CdS、CIS+ZnS等)。またさらに、シェルも同様に2種以上の半導体材料を含む混晶であってもよい。
 本発明に係る光変換層において、発光用ナノ結晶は、当該発光用ナノ結晶に対して親和性のある分子が発光用ナノ結晶と接触していてもよい。
 上記親和性のある分子とは、発光用ナノ結晶に対して親和性のある官能基を有する低分子および高分子であり、親和性のある官能基としては特に限定されるものでは無いが、窒素、酸素、硫黄およびリンからなる群から選択される1種の元素を含む基である事が好ましい。例えば、有機系硫黄基、有機系リン酸基ピロリドン基、ピリジン基、アミノ基、アミド基、イソシアネート基、カルボニル基、および水酸基等を挙げる事が出来る。
 本発明に係る半導体材料は、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群から選択される1種又は2種以上であることが好ましい。本発明に係る第一の半導体材料、第一の半導体材料および第三の半導体材料の好ましい例は、上記の半導体材料と同様である。
 本発明に係る半導体材料は、具体的には、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C、SiおよびGeからなる群から選択される少なくとも1つ以上選ばれ、これらの化合物半導体は単独で使用されても、または2つ以上が混合されていても良く、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、GeおよびCuZnSnSからなる群から選択される少なくとも1つ以上選ばれることがより好ましく、これらの化合物半導体は単独で使用されても、または2つ以上が混合されていても良い。
 本発明に係る発光用ナノ結晶は、赤色光を発光する赤色発光用ナノ結晶、緑色光を発光する緑色発光用ナノ結晶および青色光を発光する青色発光用ナノ結晶からなる群から選択される少なくとも1種のナノ結晶を含むことが好ましい。一般に、発光用ナノ結晶の発光色は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば粒子径に依存するが、発光用ナノ結晶が有するエネルギーギャップにも依存するため、使用する発光用ナノ結晶とその粒子径を調整することにより、発光色を選択する。
 本発明において赤色光を発光する赤色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、665nm、663nm、660nm、658nm、655nm、653nm、651nm、650nm、647nm、645nm、643nm、640nm、637nm、635nm、632nmまたは630nmであることが好ましく、前記波長ピークの下限は、628nm、625nm、623nm、620nm、615nm、610nm、607nmまたは605nmであることが好ましい。
 本発明において緑色光を発光する緑色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、560nm、557nm、555nm、550nm、547nm、545nm、543nm、540nm、537nm、535nm、532nmまたは530nmであることが好ましく、前記波長ピークの下限は、528nm、525nm、523nm、520nm、515nm、510nm、507nm、505nm、503nmまたは500nmであることが好ましい。
 本発明において青色光を発光する青色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、480nm、477nm、475nm、470nm、467nm、465nm、463nm、460nm、457nm、455nm、452nmまたは450nmであることが好ましく、前記波長ピークの下限は、450nm、445nm、440nm、435nm、430nm、428nm、425nm、422nmまたは420nmであることが好ましい。
 本発明において赤色光を発光する赤色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が635nm±30nmの範囲に入っている事が望ましい。同じく、緑色光を発光する緑色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が530nm±30nmの範囲に入っている事が望ましく、青色光を発光する青色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が450nm±30nmの範囲に入っている事が望ましい。
 本発明に係る発光用ナノ結晶の蛍光量子収率の下限値は、40%以上、30%以上、20%以上、10%以上の順で好ましい。
 本発明に係る発光用ナノ結晶の蛍光スペクトルの半値幅の上限値は、60nm以下、55nm以下、50nm以下、45nm以下の順で好ましい。
 本発明に係る赤色発光用ナノ結晶の粒子径(1次粒子)の上限値は、50nm以下、40nm以下、30nm以下、20nm以下の順で好ましい。
 本発明に係る赤色発光用ナノ結晶のピーク波長の上限値は665nm、下限値は605nmであり、このピーク波長に合う様に化合物およびその粒径を選択する。同じく、緑色発光用ナノ結晶のピーク波長の上限値は560nm、下限値は500nm、青色発光用ナノ結晶のピーク波長の上限値は420nm、下限値は480nmであり、それぞれこのピーク波長に合う様に化合物およびその粒径を選択する。
 本発明に係る液晶表示素子は、少なくとも1つの画素を備える。当該画素を構成する色は、近接する3つの画素により得られ、各画素は、赤色(例えば、CdSeの発光用ナノ結晶、CdSeのロッド状発光用ナノ結晶、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶、InPの発光用ナノ結晶、InPの発光用ナノ結晶、InPのロッド状発光用ナノ結晶、CdSeとCdSとの混晶の発光用ナノ結晶、CdSeとCdSとの混晶のロッド状発光用ナノ結晶、ZnSeとCdSとの混晶の発光用ナノ結晶、ZnSeとCdSとの混晶のロッド状発光用ナノ結晶など)、緑色(CdSeの発光用ナノ結晶、CdSeのロッド状の発光用ナノ結晶、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶など)および青色(ZnSeの発光用ナノ結晶、ZnSeのロッド状発光用ナノ結晶、ZnSの発光用ナノ結晶、ZnSのロッド状発光用ナノ結晶、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、CdSの発光用ナノ結晶、CdSのロッド状発光用ナノ結晶)で発光する異なるナノ結晶を含む。他の色(例えば、黄色)についても、必要に応じて光変換層に含有してもよく、さらには近接する4画素以上の異なる色を使用してもよい。
 本明細書における本発明に係る発光用ナノ結晶の平均粒子径(1次粒子)はTEM観察によって測定できる。一般的に、ナノ結晶の平均粒子径の測定方法としては、光散乱法、溶媒を用いた沈降式粒度測定法、電子顕微鏡により粒子を直接観察して平均粒子径を実測する方法が挙げられる。発光用ナノ結晶は水分などにより劣化しやすいため、本発明では、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)により任意の複数個の結晶を直接観察し、投影二次元映像よる長短径比からそれぞれの粒子径を算出し、その平均を求める方法が好適である。そのため、本発明では上記方法を適用して平均粒子径を算出している。発光用ナノ結晶の1次粒子とは、構成する数~数十nmの大きさの単結晶またはそれに近い結晶子のことであり、発光用ナノ結晶の一次粒子の大きさや形は、当該一次粒子の化学組成、構造、製造方法や製造条件などによって依存すると考えられる。
 本発明に係る光変換層において、発光用ナノ結晶は、分散安定性の観点から、その表面に有機リガンドを有することが好ましい。有機リガンドは、例えば、発光用ナノ結晶の表面に配位結合されていてよい。換言すれば、発光用ナノ結晶の表面は、有機リガンドによってパッシベーションされていてよい。また、発光用ナノ結晶は、その表面に高分子分散剤を有していてもよい。一実施形態では、例えば、上述の有機リガンドを有する発光用ナノ結晶から有機リガンドを除去し、有機リガンドと高分子分散剤とを交換することで発光用ナノ結晶の表面に高分子分散剤を結合させてよい。ただし、インクジェットインクにした際の分散安定性の観点では、有機リガンドが配位したままの発光用ナノ結晶に対して高分子分散剤が配合されることが好ましい。
 有機リガンドとしては、発光用ナノ結晶粒子に対して親和性のある官能基を有する低分子および高分子であり、親和性のある官能基としては特に限定されるものでは無いが、窒素、酸素、硫黄およびリンからなる群から選択される1種の元素を含む基である事が好ましい。例えば、有機系硫黄基、有機系リン酸基ピロリドン基、ピリジン基、アミノ基、アミド基、イソシアネート基、カルボニル基、および水酸基等を挙げることができる。例えば、TOP(トリオクチルフォスフィン)、TOPO(トリオクチルフォスフィンオキサイド)、オレイン酸、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、及びオクチルホスフィン酸(OPA)が挙げられる。
 その他の有機リガンドとしては、発光性ナノ結晶粒子の分散性及び発光強度がより一層優れたものになるという観点から、親和性基としてエチレンオキシド鎖及び/又はプロピレンオキシド鎖を有する脂肪族炭化水素を有することが好ましい。
 上記好ましい有機リガンドは、例えば、下記一般式(1)で表される有機リガンドであってもよい。
Figure JPOXMLDOC01-appb-C000005
 [式(1)中、pは0~50の整数を示し、qは0~50の整数を示す。]
 上記一般式(1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であることが好ましく、p及びqの両方が1以上であることがより好ましい。
 発光用ナノ結晶としては、有機溶剤の中にコロイド形態で分散しているものを用いることができる。有機溶剤中で分散状態にある発光用ナノ結晶の表面は、上述の有機リガンドによってパッシベーションされていることが好ましい。有機溶剤としては、例えば、シクロヘキサン、ヘキサン、ヘプタン、クロロホルム、トルエン、オクタン、クロロベンゼン、テトラリン、ジフェニルエーテル、プロピレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート、又はそれらの混合物が挙げられる。
 本発明に係る光変換層(または当該光変換層の調製用インク組成物)は、高分子分散剤を含有させることが好ましい。高分子分散剤は、光散乱性粒子をインク中に均一分散させることができる。
 本発明における光変換層は、上記で示した発光用ナノ結晶粒子に加え、該発光用ナノ結晶粒子を適度に分散安定化させる高分子分散剤を含むことが好ましい。
 本発明において、高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物であり、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して高分子分散剤が光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子がインク組成物中に分散される。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、発光用ナノ結晶の表面に結合して発光性ナノ粒子に吸着していてもよく、インク組成物中に遊離していてもよい。
 光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。
 酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)、が挙げられる。
 塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキシド基、ホスフィンスルフィド基が挙げられる。
 光散乱性粒子の分散安定性の観点、発光用ナノ結晶が沈降するという副作用を起こしにくい観点、高分子分散剤の合成の容易性の観点、及び官能基の安定性の観点から、酸性官能基としては、カルボキシル基、スルホ基、ホスホン酸基及びリン酸基が好ましく用いられ、塩基性官能基としては、アミノ基が好ましく用いられる。これらの中でも、カルボキシル基、ホスホン酸基及びアミノ基がより好ましく用いられ、最も好ましくはアミノ基が用いられる。
 酸性官能基を有する高分子分散剤は酸価を有する。酸性官能基を有する高分子分散剤の酸価は、好ましくは、固形分換算で、1~150mgKOH/gである。酸価が1以上であると、光散乱性粒子の充分な分散性が得られやすく、酸価が150以下であると、画素部(インク組成物の硬化物)の保存安定性が低下しにくい。
 また、塩基性官能基を有する高分子分散剤はアミン価を有する。塩基性官能基を有する高分子分散剤のアミン価は、好ましくは、固形分換算で、1~200mgKOH/gである。アミン価が1以上であると、光散乱性粒子の充分な分散性が得られやすく、アミン価が200以下であると、画素部(インク組成物の硬化物)の保存安定性が低下しにくい。
 高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、エポキシ樹脂、ポリイミドなどであってよい。
 前記高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK-シリーズ、BASF社製のEfkaシリーズ等を使用することができる。
 本発明に係る光変換層(または当該光変換層の調製用インク組成物)は、硬化物中においてバインダーとして機能する樹脂成分を含むことが好ましい。本発明に係る樹脂成分は、硬化性樹脂が好ましく、当該硬化性樹脂としては、熱硬化性樹脂またはUV硬化性樹脂が好ましい。
 当該熱硬化性樹脂としては、硬化性基を有し、当該硬化性基としては、エポキシ基、オキセタン基、イソシアネート基、アミノ基、カルボキシル基、メチロール基等が挙げられ、インク組成物の硬化物の耐熱性及び保存安定性に優れる観点、及び、遮光部(例えばブラックマトリックス)及び基材への密着性に優れる観点から、エポキシ基が好ましい。熱硬化性樹脂は、1種の硬化性基を有していてもよく、二種以上の硬化性基を有していてもよい。
 熱硬化性樹脂は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、熱硬化性樹脂は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。
 熱硬化性樹脂としては、1分子中に熱硬化性官能基を2個以上有する化合物が用いられ、通常、硬化剤と組み合わせて用いられる。熱硬化性樹脂を用いる場合、熱硬化反応を促進できる触媒(硬化促進剤)を更に添加してもよい。言い換えれば、インク組成物は、熱硬化性樹脂(並びに、必要に応じて用いられる硬化剤及び硬化促進剤)を含む熱硬化性成分を含有していてよい。また、これらに加えて、それ自体は重合反応性のない重合体を更に用いてもよい。
 1分子中に熱硬化性官能基を2個以上有する化合物として、例えば、1分子中にエポキシ基を2個以上有するエポキシ樹脂(以下、「多官能エポキシ樹脂」ともいう。)を用いてよい。「エポキシ樹脂」には、モノマー性エポキシ樹脂及びポリマー性エポキシ樹脂の両方が含まれる。多官能性エポキシ樹脂が1分子中に有するエポキシ基の数は、好ましくは2~50個であり、より好ましくは2~20個である。エポキシ基は、オキシラン環構造を有する構造であればよく、例えば、グリシジル基、オキシエチレン基、エポキシシクロヘキシル基等であってよい。エポキシ樹脂としては、カルボン酸により硬化しうる公知の多価エポキシ樹脂を挙げることができる。このようなエポキシ樹脂は、例えば、新保正樹編「エポキシ樹脂ハンドブック」日刊工業新聞社刊(昭和62年)等に広く開示されており、これらを用いることが可能である。
 熱硬化性樹脂として、比較的分子量が小さい多官能エポキシ樹脂を用いると、インク組成物(インクジェットインク)中にエポキシ基が補充されてエポキシの反応点濃度が高濃度となり、架橋密度を高めることができる。
 熱硬化性樹脂を硬化させるために用いられる硬化剤及び硬化促進剤としては、上記した有機溶剤に溶解又は分散し得る公知慣用のものをいずれも用いることができる。
 熱硬化性樹脂は、信頼性に優れるカラーフィルタ画素部が得られやすい観点から、アルカリ不溶性であってよい。熱硬化性樹脂がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における熱硬化性樹脂の溶解量が、熱硬化性樹脂の全質量を基準として、30質量%以下であることを意味する。熱硬化性樹脂の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。
 熱硬化性樹脂の重量平均分子量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、750以上であってよく、1000以上であってもよく、2000以上であってよい。インクジェットインクとしての適正な粘度とする観点から、500000以下であってよく、300000以下であってもよく、200000以下であってもよい。ただし、架橋後の分子量に関してはこの限りでない。
 熱硬化性樹脂の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、インク組成物の不揮発分の質量を基準として、10質量%以上であってよく、15質量%以上であってもよく、20質量%以上であってもよい。熱硬化性樹脂の含有量は、画素部の厚さが光変換機能に対して厚くなりすぎない観点から、インク組成物の不揮発分の質量を基準として、90質量%以下であってよく、80質量%以下であってもよく、70質量%以下であってもよく、60質量%以下であってもよく、50質量%以下であってもよい。
 上記UV硬化性樹脂は、光の照射によって重合する、光ラジカル重合性化合物又は光カチオン重合性化合物を重合した樹脂であることが好ましく、光重合性のモノマー又はオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。光ラジカル重合性化合物は光ラジカル重合開始剤と共に用いられ、光カチオン重合性化合物は光カチオン重合開始剤と共に用いられることが好ましい。言い換えれば、本発明に係る光変換層用のインク組成物は、光重合性化合物及び光重合開始剤を含む光重合性成分を含有していてよく、光ラジカル重合性化合物及び光ラジカル重合開始剤を含む光ラジカル重合性成分を含有していてもよく、光カチオン重合性化合物及び光カチオン重合開始剤を含む光カチオン重合性成分を含有していてもよい。光ラジカル重合性化合物と光カチオン重合性化合物とを併用してもよく、光ラジカル重合性と光カチオン重合性を具備した化合物を用いてもよく、光ラジカル重合開始剤と光カチオン重合開始剤とを併用してもよい。光重合性化合物は一種を単独で用いてもよいし、二種以上を併用してもよい。
 上記光ラジカル重合性化合物としては、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物は、(メタ)アクリロイル基を一つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。カラーフィルタ製造時における硬化収縮に起因する平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。なお、本明細書において、(メタ)アクリレートとは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。「(メタ)アクリロイル」との表現についても同様である。
 光カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。
 また、本実施形態における光重合性化合物として、特開2013-182215号公報の段落0042~0049に記載の光重合性化合物を用いることもできる。
 本発明に係る光変換層用のインク組成物において、硬化可能成分を、光重合性化合物のみ又はそれを主成分として構成する場合には、上記したような光重合性化合物としては、重合性官能基を一分子中に2以上有する2官能以上の多官能の光重合性化合物を必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。
 光重合性化合物は、信頼性に優れるカラーフィルタ画素部が得られやすい観点から、アルカリ不溶性であってよい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。
 光重合性化合物の含有量は、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、インク組成物の不揮発分の質量を基準として、10質量%以上であってもよく、15質量%以上であってもよく、20質量%以上であってもよい。光重合性化合物の含有量は、より優れた光学特性(漏れ光)が得られる観点から、インク組成物の不揮発分の質量を基準として、90質量%以下であってよく、80質量%以下であってもよく、70質量%以下であってもよく、60質量%以下であってもよく、50質量%以下であってもよい。
 光重合性化合物は、画素部(インク組成物の硬化物)の安定性に優れる(例えば、経時劣化を抑制でき、高温保存安定性及び湿熱保存安定性に優れる)観点から、架橋性基を有していてもよい。架橋性基は、熱又は活性エネルギー線(例えば、紫外線)により他の架橋性基と反応する官能基であり、例えば、エポキシ基、オキセタン基、ビニル基、アクリロイル基、アクリロイルオキシ基、ビニルエーテル基等が挙げられる。
 光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。
 光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよく、1質量部以上であってもよい。光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよい。
 また、これらのUV硬化樹脂と共に、一部熱可塑性樹脂を併用してもよく、該熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等が挙げられる。
 また、本発明に係る光変換層の調製用インク組成物は、公知の有機溶剤を使用してもよく、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジブチルエーテル、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、1,4-ブタン時オールジアセテート、グリセリルトリアセテートなどが挙げられる。
 さらに、本発明に係る光変換層(または当該光変換層の調製用インク組成物)において、上記硬化性樹脂、上記高分子分散剤、上記発光用ナノ結晶粒子の他に、光散乱性粒子といった公知の添加剤を含んでもよい。
 発光用ナノ結晶を用いたインク組成物によりカラーフィルタ画素部(以下、単に「画素部」ともいう。)を形成した場合、光源からの光が発光用ナノ結晶に吸収されずに画素部から漏れることがある。このような漏れ光は、画素部の色再現性を低下させるため、光変換層として上記画素部を用いる場合には、その漏れ光を可能な限り低減することが好ましい。上記光散乱性粒子は、画素部の漏れ光を防止するために、好適には用いられる。光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。光散乱性粒子は、カラーフィルタ画素部に照射された光源からの光を散乱させることができる。
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、酸化チタン、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム及びシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウム及び炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましい。
 光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性、流動性及び光散乱性をより高められる点で好ましい。
 インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、漏れ光の低減効果により優れる観点から、0.05μm以上であってよく、0.2μm以上であってもよく、0.3μm以上であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm以下であってもよく、0.6μm以下であってもよく、0.4μm以下であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、又は0.3~0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、50nm以上であってよく、1000nm以下であってよい。光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。
 光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点から、インク組成物の不揮発分の質量を基準として、0.1質量%以上であってよく、1質量%以上であってもよく、5質量%以上であってもよく、7質量%以上であってもよく、10質量%以上であってもよく、12質量%以上であってもよい。光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点及び吐出安定性に優れる観点から、インク組成物の不揮発分の質量を基準として、60質量%以下であってよく、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよく、25質量%以下であってもよく、20質量%以下であってもよく、15質量%以下であってもよい。本実施形態では、インク組成物が高分子分散剤を含むため、光散乱性粒子の含有量を上記範囲とした場合であっても光散乱性粒子の良好に分散させることができる。
 発光用ナノ結晶の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光用ナノ結晶)は、0.1~5.0である。質量比(光散乱性粒子/発光用ナノ結晶)は、漏れ光の低減効果により優れる観点から、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光用ナノ結晶)は、漏れ光の低減効果により優れる観点から、2.0以下であってもよく、1.5以下であってもよい。質量比(光散乱性粒子/発光用ナノ結晶)は、0.1~2.0、0.1~1.5、0.2~5.0、0.2~2.0、0.2~1.5、0.5~5.0、0.5~2.0、又は0.5~1.5であってもよい。なお、光散乱性粒子による漏れ光低減は、次のようなメカニズムによると考えられる。すなわち、光散乱性粒子が存在しない場合、バックライト光は画素部内をほぼ直進して通過するのみであり、発光用ナノ結晶に吸収される機会が少ないと考えられる。一方、光散乱性粒子を発光用ナノ結晶と同一の画素部内に存在させると、その画素部内でバックライト光が全方位に散乱され、それを発光用ナノ結晶が受光することができるため、同一のバックライトを用いていても、画素部における光吸収量が増大すると考えられる。結果的に、このようなメカニズムで漏れ光を防ぐことが可能になったと考えられる。
 本発明における光変換層は、上記で示した発光用ナノ結晶に加え、製造工程に応じて該発光用ナノ結晶を適度分散安定化させる樹脂成分を含むことが好ましい。
 斯かる樹脂成分は、該光変換層をフォトリソグラフィ法で製造される観点では、光重合性化合部物の重合体であって、かつ、アルカリ現像可能なものが好ましく、具体的には、例えば、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、ビス(アクリロキシエトキシ)ビスフェノールA、3-メチルペンタンジオールジアクリレート等のような2官能モノマーの重合体:トリメチルロールプロパトントリアクリレート、ペンタエリスリトールトリアクリレート、トリス〔2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等の比較的分子量の小さな多官能モノマーの重合体、ポリエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート等の様な比較的分子量の大きな多官能モノマーの重合体が挙げられる。
 また、これらの重合体と共に、一部熱可塑性樹脂を併用してもよく、該熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等が挙げられる。
 さらに、本発明に係る光変換層において、必要により、上記透明樹脂、上記発光用ナノ結晶の他に、重合開始剤、触媒、アルミナ、シリカ、酸化チタンビーズ、ゼオライトまたはジルコニアなどの散乱剤といった、公知の添加剤を含んでもよい。
 (色材)
 本発明に係る光変換層は、赤(R)、緑(G)、青(B)の三色画素部を備え、必要により色材を含んでもよく、当該色材としては、公知の色材を使用することができ、例えば、赤(R)の画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、緑(G)の画素部中にハロゲン化銅フタロシニアン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を、青(B)の画素部中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有することが好ましい。
 本発明に係る赤色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を含有するのが好ましい。ジケトピロロピロール顔料としては、具体的にはC.I.Pigment Red 254、同255、同264、同272、Orange 71及び同73から選ばれる1種又は2種以上が好ましく、Red 254、同255、同264及び同272から選ばれる1種又は2種以上がより好ましく、C.I.Pigment Red 254が特に好ましい。アニオン性赤色有機染料としては、具体的には、C.I.Solvent Red 124、Acid Red 52及び同289から選ばれる1種又は2種以上が好ましく、C.I.Solvent Red 124が特に好ましい。
 上記本発明に係る赤色の色層中には、色材として、更に、C.I.Pigment Red 177、同242、同166、同167、同179、C.I.Pigment Orange 38、同71、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Red 89、C.I.Solvent Orange 56、C.I.Solvent Yellow 21、同82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。
 本発明に係る緑色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ハロゲン化金属フタロシアニン顔料、フタロシアニン系緑色染料及びフタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を含有するのが好ましい。上記ハロゲン化金属フタロシアニン顔料としては、次の2つの群のハロゲン化金属フタロシアニン顔料が挙げられる。
 (第一群)
 Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有し、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基(-SOH)のいずれかが結合しており、中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料。
 (第二群)
 Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO-)からなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
 本発明で用いるハロゲン化金属フタロシアニン顔料において、ベンゼン環に結合するハロゲン原子は、全て同一であっても、それぞれ異なっていてもよい。また、ひとつのベンゼン環に異なるハロゲン原子が結合していてもよい。
 ここで、フタロシアニン分子1個当たり8~16個のハロゲン原子のうち9~15個の臭素原子がフタロシアニン分子のベンゼン環に結合した、本発明で用いるハロゲン化金属フタロシアニン顔料は、黄味を帯びた明るい緑色を呈し、カラーフィルタの緑色画素部への使用に最適である。本発明で用いるハロゲン化金属フタロシアニン顔料は、水や有機溶媒に不溶または難溶である。本発明で用いるハロゲン化金属フタロシアニン顔料には、後述する仕上げ処理が行われていない顔料(粗顔料とも呼ばれる)も、仕上げ処理が行われた顔料も、いずれも包含される。
 前記第一群および第二群に属するハロゲン化金属フタロシアニン顔料は、下記一般式(PIG-1)で表すことが出来る。
Figure JPOXMLDOC01-appb-C000006
 第一群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG-1)において、次の通りである。
 一般式(PIG-1)において、X~X16は、水素原子、塩素原子、臭素原子またはヨウ素原子を表す。ひとつのベンゼン環に結合した4個のXの原子は同一でも異なっていても良い。4個のベンゼン環に結合したX~X16のうち、8~16個は塩素原子、臭素原子またはヨウ素原子である。Mは中心金属を表す。後述するY及びそれの個数mが同一であるハロゲン化金属フタロシアニン顔料の範囲において、16個のX~X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8未満の顔料は青色であり、同様に16個のX~X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8以上の顔料で前記合計値が大きいほど黄味が強くなる。中心金属Mに結合するYはフッ素、塩素、臭素またはヨウ素のいずれかのハロゲン原子、酸素原子、水酸基及びスルホン酸基からなる群から選ばれる一価原子団であり、mは中心金属Mに結合するYの数を表し、0~2の整数である。
 中心金属Mの原子価により、mの値が決定される。中心金属Mが、Al、Sc、Ga、Y、Inの様に原子価が3価の場合、m=1であり、フッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の一つが中心金属に結合する。中心金属Mが、Si、Ti、V、Ge、Zr、Snの様に原子価が4価の場合は、m=2であり、酸素の一つが中心金属に結合するか、またはフッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の二つが中心金属に結合する。中心金属Mが、Mg、Fe、Co、Ni、Zn、Zr、Sn、Pbの様に原子価が2価の場合は、Yは存在しない。
 また、第二群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG-1)において次の通りである。
 前記一般式(PIG-1)において、X~X16については、前記定義と同義であり、中心金属MはAl、Sc、Ga、Y及びInからなる群から選ばれる三価金属を表し、mは1を表す。Yは次の原子団を表す。
Figure JPOXMLDOC01-appb-C000007
 なお、原子団Yの化学構造中、中心金属Mは前記した定義と同義であり、X17~X32については、一般式(PIG-1)において前記したX~X16の定義と同義である。Aは、酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO-)からなる群から選ばれる二価原子団を表す。一般式(PIG-1)中のMと原子団YのMとは、二価原子団Aを介して結合していることを表す。
 即ち、第二群に属するハロゲン化金属フタロシアニン顔料は、ハロゲン化金属フタロシアニンの2分子を構成単位とし、これらが前記二価原子団を介して結合したハロゲン化金属フタロシアニン二量体である。
 一般式(PIG-1)で表わされるハロゲン化金属フタロシアニン顔料としては、具体的には、次の(1)~(4)が挙げられる。
 (1) ハロゲン化錫フタロシアニン顔料、ハロゲン化ニッケルフタロシアニン顔料、ハロゲン化亜鉛フタロシアニン顔料の様な、Mg、Fe、Co、Ni、Zn、Zr、Sn及びPbからなる群から選ばれる二価金属を中心金属として有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。なお、この中で、塩素化臭素化亜鉛フタロシアニン顔料は、C.I.Pigment Green 58であり、特に好ましい。
 (2) ハロゲン化クロロアルミニウムフタロシアニンの様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属として有し、中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。
 (3) ハロゲン化オキシチタニウムフタロシアニン、ハロゲン化オキシバナジウムフタロシアニンの様な、Si、Ti、V、Ge、Zr及びSnからなる群から選ばれる四価金属を中心金属として有し、中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。
 (4) ハロゲン化されたμ-オキソ-アルミニウムフタロシアニン二量体、ハロゲン化されたμ-チオ-アルミニウムフタロシアニン二量体の様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル及びスルホニルからなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
 その他の色材としては、緑色の色層中にC.I.Solvent Blue 67とC.I.Solvent Yellow 162との混合物、又はC.I.Pigment Green 7及び/又は同36を任意に含有するのが好ましい。
 上記本発明に係る緑色の色層中には、色材として、更に、C.I.Pigment Yellow 150、同215、同185、同138、C.I.Solvent Yellow 21、同82、同83:1、同33からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。
 本発明に係る青色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有するのが好ましい。ε型銅フタロシニアン顔料は、C.I.Pigment Blue 15:6である。カチオン性青色有機染料としては、具体的には、C.I.Solvent Blue 2、同3、同4、同5、同6、同7、同23、同43、同72、同124、C.I.Basic Blue7、同26が好ましく、C.I.Solvent Blue 7、Basic Blue7がより好ましく、C.I.Solvent Blue 7が特に好ましい。
 上記本発明に係る青色の色層中には、色材として、更に、C.I.Pigment Blue 1、C.I.Pigment Violet 23、C.I.Basic Blue 7、C.I.Basic Violet 10、C.I.Acid Blue 1、同90、同83、C.I.Direct Blue 86からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。
 また、本発明に係る光変換層に、黄色(Y)画素部(黄色の色層)を含む場合、色材として、黄色の色層中には、に、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Yellow 21、82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の黄色有機染顔料を含有するのも好ましい。
 本発明における光変換層において、透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、80質量部、70質量部、60質量部、50質量部が好ましく、前記発光用ナノ結晶の含有量の下限は、透明樹脂100質量部に対して、1.0質量部、3.0質量部、5.0質量部、10.0質量部が好ましい。光変換層に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。
 (カラーフィルタ)
 本発明に係る光変換層は、発光用ナノ結晶を含む層(NC)とカラーフィルタ(CF)とを積層させた積層体であることが好ましい(例えば、図19)。より詳細には、当該光変換層は、赤色の色層Rと、緑色の色層Gと、青色の色層Bと、を有することが好ましい。この場合、赤色(R)の画素部R(赤色の色層部R)は、赤色発光用ナノ結晶を含む層(NC)と赤色の色材を含む色材層(CF‐Red)とで構成されることが好ましい。緑色(R)の画素部(緑色の色層部G)は、緑色発光用ナノ結晶を含む層(NC)と緑色の色材を含む色材層(CF‐Green)または黄色の色材を含む色材層(黄色の色層)とで構成されることが好ましい。青色(R)の画素部(青色の色層部B)は、青色の色材を含む色材層(CF‐Blue 青色の色材を含む層)および/または透明樹脂層と、必要により青色発光用ナノ結晶を含む層(NC)とで構成されることが好ましい。本発明では、図7における光変換画素層に積層される色材層(CF―Green、CF、Red)、図8又は図9におけるカラーフィルタ(CFL)、図9における青色カラーフィルタ(CF-Blue)のように色材を含むカラーフィルタを適宜使用することができる。
 カラーフィルタは、上記色材を用いて形成することが好ましい。例えば、赤色(R)のカラーフィルタ中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、緑色(G)のカラーフィルタ中にハロゲン化銅フタロシニアン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を、青色(B)のカラーフィルタ中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有することが好ましい。
 また、カラーフィルタには、必要により前述の透明樹脂や後述の光硬化性化合物、分散剤などを含んでもよく、カラーフィルタの製造方法は公知のフォトリソグラフィ法などで形成することができる。
 (光変換層の製造方法)
 光変換層は、従来公知の方法で形成することができる。画素部の形成方法の代表的な方法としては、フォトリソグラフィ法であり、これは、後記する発光用ナノ結晶含有光硬化性組成物を、従来のカラーフィルタ用の透明基板のブラックマトリックスを設けた側の面に塗布、加熱乾燥(プリベーク)した後、フォトマスクを介して紫外線を照射することでパターン露光を行って、画素部に対応する箇所の光硬化性化合物を硬化させた後、未露光部分を現像液で現像し、非画素部を除去して画素部を透明基板に固着させる方法である。この方法では、発光用ナノ結晶含有光硬化性組成物の硬化着色皮膜からなる画素部が透明基板上に形成される。
 赤色(R)画素、緑色(G)画素、青色(B)画素、必要に応じて黄色(Y)画素等の他の色の画素ごとに、後記する光硬化性組成物を調製して、前記した操作を繰り返すことにより、所定の位置に赤色(R)画素、緑色(G)画素、青色(B)画素、黄色(Y)画素の着色画素部を有する光変換層を製造することができる。
 後記する発光用ナノ結晶含有光硬化性組成物をガラス等の透明基板上に塗布する方法としては、例えば、スピンコート法、ロールコート法、インクジェット法等が挙げられる。
 透明基板に塗布した発光用ナノ結晶含有光硬化性組成物の塗膜の乾燥条件は、各成分の種類、配合割合等によっても異なるが、通常、50~150℃で、1~15分間程度である。また、発光用ナノ結晶含有光硬化性組成物の光硬化に用いる光としては、200~500nmの波長範囲の紫外線、あるいは可視光を使用するのが好ましい。この波長範囲の光を発する各種光源が使用できる。
 現像方法としては、例えば、液盛り法、ディッピング法、スプレー法等が挙げられる。光硬化性組成物の露光、現像の後に、必要な色の画素部が形成された透明基板は水洗いし乾燥させる。こうして得られたカラーフィルタは、ホットプレート、オーブン等の加熱装置により、90~280℃で、所定時間加熱処理(ポストベーク)することによって、着色塗膜中の揮発性成分を除去すると同時に、発光用ナノ結晶を含有する光硬化性組成物の硬化着色皮膜中に残存する未反応の光硬化性化合物が熱硬化し、光変換層が完成する。
 本発明の光変換層用色材、樹脂は、本発明の発光用ナノ結晶と用いることで、液晶層の電圧保持率(VHR)の低下、青色光または紫外光による劣化、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供することが可能となる。
 上記発光用ナノ結晶含有光硬化性組成物の製造方法としては、発光用ナノ結晶と、有機溶剤と、を混合して、必要により、親和性のある分子、分散剤、色材(=染料及び/又は顔料組成物)と、を添加し均一となる様に攪拌分散を行って、まず光変換層の画素部を形成するための分散液を調製してから、そこに、光硬化性化合物と、必要に応じて熱可塑性樹脂や光重合開始剤等を加えて発光用ナノ結晶を含有する発光用ナノ結晶含有光硬化性組成物とする方法が一般的である。
 ここで用いられる有機溶媒としては、例えば、トルエンやキシレン、メトキシベンゼン等の芳香族系溶剤、酢酸エチルや酢酸プロピルや酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールプロピルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート等の酢酸エステル系溶剤、エトキシエチルプロピオネート等のプロピオネート系溶剤、メタノール、エタノール等のアルコール系溶剤、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ヘキサン等の脂肪族炭化水素系溶剤、N,N-ジメチルホルムアミド、γ-ブチロラクタム、N-メチル-2-ピロリドン、アニリン、ピリジン等の窒素化合物系溶剤、γ-ブチロラクトン等のラクトン系溶剤、カルバミン酸メチルとカルバミン酸エチルの48:52の混合物の様なカルバミン酸エステル等が挙げられる。
 ここで用いられる分散剤としては、例えば、ビックケミー社のディスパービック130、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック170、ディスパービック171、ディスパービック174、ディスパービック180、ディスパービック182、ディスパービック183、ディスパービック184、ディスパービック185、ディスパービック2000、ディスパービック2001、ディスパービック2020、ディスパービック2050、ディスパービック2070、ディスパービック2096、ディスパービック2150、ディスパービックLPN21116、ディスパービックLPN6919エフカ社のエフカ46、エフカ47、エフカ452、エフカLP4008、エフカ4009、エフカLP4010、エフカLP4050、LP4055、エフカ400、エフカ401、エフカ402、エフカ403、エフカ450、エフカ451、エフカ453、エフカ4540、エフカ4550、エフカLP4560、エフカ120、エフカ150、エフカ1501、エフカ1502、エフカ1503、ルーブリゾール社のソルスパース3000、ソルスパース9000、ソルスパース13240、ソルスパース13650、ソルスパース13940、ソルスパース17000、18000、ソルスパース20000、ソルスパース21000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース36000、ソルスパース37000、ソルスパース38000、ソルスパース41000、ソルスパース42000、ソルスパース43000、ソルスパース46000、ソルスパース54000、ソルスパース71000、味の素株式会社のアジスパーPB711、アジスパーPB821、アジスパーPB822、アジスパーPB814、アジスパーPN411、アジスパーPA111等の分散剤や、アクリル系樹脂、ウレタン系樹脂、アルキッド系樹脂、ウッドロジン、ガムロジン、トール油ロジン等の天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジン等の変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノール等のロジン誘導体等の、室温で液状かつ水不溶性の合成樹脂を含有させることが出来る。これら分散剤や、樹脂の添加は、フロッキュレーションの低減、顔料の分散安定性の向上、分散体の粘度特性を向上にも寄与する。
 また、分散助剤として、有機顔料誘導体の、例えば、フタルイミドメチル誘導体、同スルホン酸誘導体、同N-(ジアルキルアミノ)メチル誘導体、同N-(ジアルキルアミノアルキル)スルホン酸アミド誘導体等も含有することも出来る。もちろん、これら誘導体は、異なる種類のものを二種以上併用することも出来る。
 発光用ナノ結晶含有光硬化性組成物の調製に使用する熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等が挙げられる。
 発光用ナノ結晶含有光硬化性化合物としては、例えば、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、ビス(アクリロキシエトキシ)ビスフェノールA、3-メチルペンタンジオールジアクリレート等のような2官能モノマー、トリメチルロールプロパトントリアクリレート、ペンタエリスリトールトリアクリレート、トリス〔2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等の比較的分子量の小さな多官能モノマー、ポリエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート等の様な比較的分子量の大きな多官能モノマーが挙げられる。
 光重合開始剤としては、例えばアセトフェノン、ベンゾフェノン、ベンジルジメチルケタノール、ベンゾイルパーオキサイド、2-クロロチオキサントン、1,3-ビス(4’-アジドベンザル)-2-プロパン、1,3-ビス(4’-アジドベンザル)-2-プロパン-2’-スルホン酸、4,4’-ジアジドスチルベン-2,2’-ジスルホン酸等が挙げられる。市販の光重合開始剤としては、たとえば、BASF社製「イルガキュア(商標名)-184」、「イルガキュア(商標名)-369」、「ダロキュア(商標名)-1173」、BASF社製「ルシリン-TPO」、日本化薬社製「カヤキュアー(商標名)DETX」、「カヤキュアー(商標名)OA」、ストーファー社製「バイキュアー10」、「バイキュアー55」、アクゾー社製「トリゴナールPI」、サンド社製「サンドレー1000」、アップジョン社製「デープ」、黒金化成社製「ビイミダゾール」などがある。
 また上記光重合開始剤に公知慣用の光増感剤を併用することもできる。光増感剤としては、たとえば、アミン類、尿素類、硫黄原子を有する化合物、燐原子を有する化合物、塩素原子を有する化合物またはニトリル類もしくはその他の窒素原子を有する化合物等が挙げられる。これらは、単独で用いることも、2種以上を組み合わせて用いることもできる。
 光重合開始剤の配合率は、特に限定されるものではないが、質量基準で、光重合性あるいは光硬化性官能基を有する化合物に対して0.1~30%の範囲が好ましい。0.1%未満では、光硬化時の感光度が低下する傾向にあり、30%を超えると、顔料分散レジストの塗膜を乾燥させたときに、光重合開始剤の結晶が析出して塗膜物性の劣化を引き起こすことがある。
 前記した様な各材料を使用して、質量基準で、本発明の発光用ナノ結晶100部当たり、300~100000部の有機溶剤と、1~500部の親和性のある分子や分散剤とを、均一となる様に攪拌分散して前記染顔料液を得ることができる。次いでこの顔料分散液100部当たり、熱可塑性樹脂と光硬化性化合物の合計が0.125~2500部、光硬化性化合物1部当たり0.05~10部の光重合開始剤と、必要に応じてさらに有機溶剤を添加し、均一となる様に攪拌分散して画素部を形成するための発光用ナノ結晶含有光硬化性組成物を得ることができる。
 現像液としては、公知慣用の有機溶剤やアルカリ水溶液を使用することができる。特に前記光硬化性組成物に、熱可塑性樹脂または光硬化性化合物が含まれており、これらの少なくとも一方が酸価を有し、アルカリ可溶性を呈する場合には、アルカリ水溶液での洗浄がカラーフィルタ画素部の形成に効果的である。
 ここでは、フォトリソグラフィ法によるR画素、G画素、B画素、Y画素の着色画素部の製造方法について詳記したが、本発明の発光用ナノ結晶含有組成物を使用して調製された画素部は、その他の電着法、転写法、ミセル電解法、PVED(PhotovoltaicElectrodeposition)法、インクジェット法、反転印刷法、熱硬化法等の方法で各色画素部を形成して、光変換層を製造してもよい。
 本発明に係る光変換層用のインク組成物の製造方法について説明する。インク組成物の製造方法は、例えば、光散乱性粒子及び高分子分散剤を含有する、光散乱性粒子の分散体を用意する第1の工程と、光散乱性粒子の分散体及び発光性ナノ結晶粒子を混合する第2の工程と、を備える。この方法では、光散乱性粒子の分散体が熱硬化性樹脂を更に含有してよく、第2の工程において、熱硬化性樹脂を更に混合してもよい。この方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部における漏れ光を低減することができるインク組成物を容易に得ることができる。
 光散乱性粒子の分散体を用意する工程では、光散乱性粒子と、高分子分散剤と、場合により、熱硬化性樹脂とを混合し、分散処理を行うことにより光散乱性粒子の分散体を調製してよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星撹拌機等の分散装置を用いて行ってよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。
 インク組成物の製造方法は、第2の工程の前に、発光性ナノ結晶粒子と、熱硬化性樹脂とを含有する、発光性ナノ結晶粒子の分散体を用意する工程を更に備えていてもよい。この場合、第2の工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する。この方法によれば、発光性ナノ結晶粒子を充分に分散させることができる。そのため、画素部における漏れ光を低減することができるインク組成物を容易に得ることができる。発光性ナノ結晶粒子の分散体を用意する工程では、光散乱性粒子の分散体を用意する工程と同様の分散装置を用いて、発光性ナノ結晶粒子と、熱硬化性樹脂との混合及び分散処理を行ってよい。
 本実施形態のインク組成物を、インクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがなく、発光性ナノ結晶粒子の変質が起こり難く、カラーフィルタ画素部(光変換層)も期待した通りの発光特性がより容易に得られやすい。
 本発明に係る光変換層は、例えば、基材上に遮光部であるブラックマトリックスをパターン状に形成した後、基材上の遮光部によって区画された画素部形成領域に、上述した実施形態のインク組成物(インクジェットインク)をインクジェット方式により選択的に付着させ、活性エネルギー線の照射又は加熱によりインク組成物を硬化させる方法により製造することができる。
 遮光部を形成させる方法は、基材の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。
 インク組成物の硬化を活性エネルギー線(例えば紫外線)の照射により行う場合、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を用いてよい。照射する光の波長は、例えば、200nm以上であってよく、440nm以下であってよい。露光量は、例えば、10mJ/cm以上であってよく、4000mJ/cm以下であってよい。
 インク組成物の硬化を加熱により行う場合、加熱温度は、例えば、110℃以上であってよく、250℃以下であってよい。加熱時間は、例えば、10分以上であってよく、120分以下であってよい。
 また、本明細書において、インクジェット法で使用される化合物、樹脂などの材料は、フォトリソグラフィ法で用いてもよく、またその反対にフォトリソグラフィ法で使用される化合物、樹脂などの材料は、インクジェット法で用いてもよいことは言うまでもない。
 以上、カラーフィルタ及び光変換層、並びにこれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。
 「液晶パネル」
 次に、本発明に係る液晶表示素子における液晶パネルの構造について説明する。
 液晶パネル10の好ましい実施形態を、図12~19および図20~図22を用いて説明する。図12は、液晶表示部の電極層3の構造図の模式図を表し、液晶パネル10の電極部分を等価回路で示した模式図であり、図13および14は画素電極の形状の一例を示す模式図であり、本実施形態の一例として、FFS型の液晶表示素子の電極構造を示す模式図である。図16は、FFS型の液晶表示素子の液晶パネルの断面を示す模式図である。また、図15は、本実施形態の一例として、IPS型の液晶表示素子の電極構造を示す模式図である。図17は、IPS型の液晶表示素子の液晶パネルの断面を示す模式図である。さらに、図18は、本実施形態の一例として、VA型の液晶表示素子の電極構造を示す模式図である。図19は、VA型の液晶表示素子の液晶パネルの断面を示す模式図である。図1~図4に示すように、液晶パネル10に対して側面側または背面側から照明する照明手段としてバックライトユニットを設けることで液晶表示素子として駆動する。
 図1~4および図12において、本発明に係る電極層3、3’は、1以上の共通電極および/または1以上の画素電極を備えている。例えば、FFS型の液晶表示素子では、画素電極は、絶縁層(例えば、窒化シリコン(SiN)など)を介して共通電極上に配置されており、VA型の液晶表示素子では、画素電極と共通電極とは液晶層5を介して対向して配置されている。
 画素電極は表示画素毎に配置され、スリット状の開口部が形成されている。共通電極と画素電極とは、例えばITO(Indium Tin Oxide)によって形成された透明電極であり、電極層3は、表示部において、複数の表示画素が配列する行に沿って延びるゲートバスラインGBL(GBL1、GBL2・・・GBLm)と、複数の表示画素が配列する列に沿って延びるソースバスラインSBL(SBL1、SBL2・・・SBLm)と、ゲートバスラインとソースバスラインとが交差する位置近傍に画素スイッチとして薄膜トランジスタを備えている。また、当該薄膜トランジスタのゲート電極は対応するゲートバスラインGBLと電気的に接続されており、当該薄膜トランジスタのソース電極は対応する信号線SBLと電気的に接続されている。さらに、薄膜トランジスタのドレイン電極は、対応する画素電極と電気的に接続されている。
 電極層3は、複数の表示画素を駆動する駆動手段として、ゲートドライバとソースドライバとを備えており、前記ゲートドライバおよび前記ソースドライバは、液晶表示部の周囲に配置されている。また、複数のゲートバスラインはゲートドライバの出力端子と電気的に接続され、複数のソースバスラインはソースドライバの出力端子と電気的に接続されている。
 ゲートドライバは複数のゲートバスラインにオン電圧を順次印加して、選択されたゲートバスラインに電気的に接続された薄膜トランジスタのゲート電極にオン電圧を供給する。ゲート電極にオン電圧が供給された薄膜トランジスタのソース-ドレイン電極間が導通する。ソースドライバは、複数のソースバスラインのそれぞれに対応する出力信号を供給する。ソースバスラインに供給された信号は、ソース-ドレイン電極間が導通した薄膜トランジスタを介して対応する画素電極に印加される。ゲートドライバおよびソースドライバは、液晶表示素子の外部に配置された表示処理部(制御回路とも称する)により動作を制御される。
 本発明に係る表示処理部は、通常駆動のほかに駆動電力低減のために低周波駆動の機能と間欠駆動の機能とを備えてもよく、TFT液晶パネルのゲートバスラインを駆動するためのLSIであるゲートドライバの動作およびTFT液晶パネルのソースバスラインを駆動するためのLSIであるソースドライバの動作を制御するものである。また、共通電極に共通電圧VCOMを供給し、バックライトユニットの動作も制御している。例えば、本発明に係る表示処理部は、表示画面全体を複数の区画に分けて、それぞれの区画に映す画像の明るさに合わせてバックライトの光の強度を調整するローカルディミング手段を有してもよい。
 本発明に係る液晶表示素子におけるFFS型の液晶パネルの例を図13、図14および図16を用いて説明する。
 図13は、画素電極の形状の一例として櫛形の画素電極を示した図であり、図1および2における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図13に示すように、第一の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とが、互いに交差してマトリクス状に配置されている。当該複数のゲートバスライン26と当該複数のソースバスライン25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲートバスライン26と並行して、共通ライン29が設けられる。この共通ライン29は、共通電極22に共通信号を供給するために、共通電極22と連結している。
 画素電極21の背面には絶縁層18(図示せず)を介して共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間経路の水平成分は配向層同士(または基板同士)の最短離間距離(セルギャップ)より短い。前記画素電極の表面には保護絶縁膜及び配向層によって被覆されていることが好ましい。ここで言う「最短離間経路の水平成分」とは、隣接する共通電極と画素電極とを結ぶ最短離間経路を、基板に対して水平方向と基板に対して垂直方向(=厚み方向)とに分解した成分のうち、基板に対して水平方向の成分をいう。なお、前記複数のゲートバスライン26と複数のソースバスライン25とに囲まれた領域にはソースバスライン25を介して供給される表示信号を保存するストレイジキャパシタ(図示せず)を設けてもよい。
 また、図14は、図13の変形例であり、画素電極の形状の一例としてスリット状の画素電極を示した図である。当該図14に示す画素電極21は、略長方形の平板体の電極を、当該平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、その他の部分は略矩形枠状の切欠き部でくり抜かれた形状である。なお、切欠き部の形状は特に制限されるものではなく、楕円、円形、長方形状、菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。
 なお、図13および図14には、一画素における一対のゲートバスライン26及び一対のソースバスライン25のみが示されている。
 図16は、図13または図14におけるIII-III線方向に図2に示す液晶表示素子を切断した断面図の例の一つである。配向層4および薄膜トランジスタ(TFT)を含む電極層3が一方の面に形成され、かつ他方の面に第一の偏光層1が形成された第一の基板2と、配向層4、第二の偏光層8および光変換層6が一方の面に形成された第二の基板7と、が所定の間隔Gで配向層同士向かい合うよう離間しており、この第一の基板2と第二の基板7との間に液晶組成物を含む液晶層5が充填されている。第一の基板2の表面の一部にゲート絶縁膜12、薄膜トランジスタ(11、13、15、16、17)、パッシベーション膜18、平坦化膜33、共通電極22、絶縁膜35、画素電極21および配向層4の順で積層されている。図16では、パッシベーション膜18と平坦膜33との2層を別々に設けた例を記載しているが、パッシベーション膜18と平坦膜33との機能を併せ持つ平坦化膜を一層設けてもよい。また、図16では、配向層4を備えている例を示しているが、上記図1で示した通り、配向層4を形成しなくてもよい。上記光変換層6には、赤色(R)、緑色(G)および青色(B)の三原色画素の内少なくとも一色に入射した光源部による入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶(図示せず)を含有する。図20~図22を用いて光変換層6について以下説明する。
 本発明に係る光変換層6を拡大した模式図の一例を図20に示す。光変換層6は、赤色の色層Rと緑色の色層Gと青色の色層Bとを有する。赤色(R)の画素部R(赤色の色層R)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)と青色または黄色の色材を含む色材層(いわゆる黄色カラーフィルタまたは青色カラーフィルタ)とで構成されている。緑色(G)の画素部G(緑色の色層G)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)と青色または黄色の色材を含む色材層(いわゆる黄色カラーフィルタまたは青色カラーフィルタ)とで構成されている。青色(B)の画素部B(青色の色層B)は、青色発光用ナノ結晶を必要により含む光変換画素層(または透明樹脂層)と青色または黄色の色材を含む色材層(いわゆる黄色カラーフィルタまたは青色カラーフィルタ)とで構成される。そのため、光変換層6は、赤色の色層、緑色の色層および青色の色層を含むナノ結晶層NCLに対して光源側に色材を含む色層(いわゆるカラーフィルタ)CFLが積層した2層が設けられている。さらに赤色の色層と緑色の色層と青色の色層との間に、混色を防止するために、それぞれ遮光層としてブラックマトリックスBMが設けられている。また、黄色カラーフィルタを一面に設けることで、発光用ナノ結晶に吸収されない青色光をカットすることができる。
 図20では好ましい光変換層の態様の一つとして、ナノ結晶層NCLと色材を含む色材層(いわゆるカラーフィルタ)CFLとが積層されている。光源からの光(励起光、例えば青色光)を全て光変換層で変換できないため、残った励起光が光変換層を透過させず吸収する必要がある。そのため、光変換層は、発光用ナノ結晶を含む層(NC)と色材を含む色層(いわゆるカラーフィルタ)CFLとを積層させることで、残った励起光(青色光)を外部から視認しないよう抑制している。しかし、必要により色材を含む色層(いわゆるカラーフィルタ)CFLを無くしてもよい。その場合、好ましい光変換層の態様の他の一つとしては、図22などで示すようにナノ結晶層NCLから構成される。
 また、図20ではカラーフィルタ層CFLとして、光源として420nm以上480nm以下の波長領域に主発光ピークを有する光(例えば青色LEDなどの光)を想定して青色の色材を含む色層を設けているが、使用する光源の種類により当該色層の種類は適宜変更される。
 また、赤色の色層R、緑色の色層Gおよび青色の色層Bには、必要により適宜色材を含んでもよい。さらには、発光用ナノ結晶NCを含む層(NCL)には、それぞれの色に対応した色材を含んでも良い。
 図21は、好ましい光変換層の態様の他の一つを模式的に示している。光変換層6は、赤色の色層Rと緑色の色層Gと青色の色層Bとを有する。赤色(R)の画素部R(赤色の色層R)は、赤色の色材を含む色材層(いわゆる赤色カラーフィルタ)CF‐Redと赤色発光用ナノ結晶を含む光変換画素層(NC)と青色の色材を含む色材層CFL(青色または黄色カラーフィルタCF-BLue・Yellow)で構成される。緑色(G)の画素部(緑色の色層G)は、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)CF‐Greenと緑色発光用ナノ結晶を含む光変換画素層(NC)と青色の色材を含む色材層CFL(青色または黄色カラーフィルタCF-Blue・Yellow)とで構成される。青色(R)の画素部(青色の色層B)は、透明樹脂層および/または青色または黄色の色材を含む色層CFL(いわゆる青色または黄色カラーフィルタ)と必要により含まれる発光用ナノ結晶を含む層(NC)と青色の色材を含む色層CFL(青色または黄色カラーフィルタ)とで構成される。さらには、赤色の色層と緑色の色層と青色の色層のそれぞれの間に遮光層としてブラックマトリックスが配置されている。黄色カラーフィルタを一面に設けることで、発光用ナノ結晶に吸収されない青色光をカットすることができる。
 したがって、光変換層6は、(青色または黄色の)カラーフィルタ層CFLと、発光用ナノ結晶NCを含む層(NCL)と、赤色(R)、緑色(G)および青色(B)の三原色画素を備えた赤色(R)、緑色(G)および青色(B)カラーフィルタと、が順に積層された構造であり、三層構造の積層体を有する。しかし、必要によりカラーフィルタ層CFLを無くしてもよい。なお、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)CF‐Greenの代わりに、色調整のため黄色の色材を含む色材層(いわゆる黄色カラーフィルタ)を使用してもよい。
 また、赤色の色層R、緑色の色層Gおよび青色の色層Bには、必要により適宜色材を含んでもよい。さらには、発光用ナノ結晶NCを含む層(NCL)には、それぞれの色に対応した色材を含んでも良い。
 上記構成であると、光源からの光(励起光、例えば青色光)のうち、発光用ナノ結晶で吸収されない光を、各色のカラーフィルタや一面に設けられた青色のカラーフィルタ層CFLで吸収することができるため、残った励起光が光変換層を透過することを軽減・抑制することができる。また、図21でもカラーフィルタ層CFLとして、光源として青色LEDを想定して青色のカラーフィルタ層を設けているが、使用する光源の種類によりカラーフィルタ層の色の種類は適宜変更される。
 本発明に係る光変換層6を拡大した模式図の他の一例を図22に示す。光変換層6は、赤色の色層Rと緑色の色層Gと青色の色層Bとを有する。赤色(R)の画素部R(赤色の色層R)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)から構成されている。緑色(G)の画素部G(緑色の色層G)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)から構成されている。青色(B)の画素部B(青色の色層部B)は、青色発光用ナノ結晶を必要により含む(光変換画素)層(または透明樹脂層)から構成される。そのため、光変換層6は、赤色の色層R、緑色の色層Gおよび青色の色層Bを含むナノ結晶層NCLの1層で構成されている。また、赤色の色層Rと緑色の色層Gと青色の色層Bとの間に、混色を防止するために、それぞれ遮光層としてブラックマトリックスBMが設けられている。
 また、赤色の色層R、緑色の色層Gおよび青色の色層Bには、必要により適宜色材を含んでもよい。さらには、発光用ナノ結晶NCを含む層(NCL)には、それぞれの色に対応した色材を含んでも良い。
 上記図16におけるFFS型の液晶パネルにおいて、本発明に係る光変換層6の好ましい実施形態について図20~22で説明したが、これら光変換層6の好ましい実施形態は、IPS型の液晶表示素子、VA型の液晶表示素子における光変換層6にも適用することができる。
 図16において、薄膜トランジスタの構造の好適な一態様は、基板2表面に形成されたゲート電極11と、当該ゲート電極11を覆い、且つ前記基板2の略全面を覆うように設けられたゲート絶縁層12と、前記ゲート電極11と対向するよう前記ゲート絶縁層12の表面に形成された半導体層13と、前記半導体層13の表面の一部を覆うように設けられた保護膜14と、前記保護層14および前記半導体層13の一方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたドレイン電極16と、前記保護膜14および前記半導体層13の他方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたソース電極17と、前記ドレイン電極16および前記ソース電極17を覆うように設けられた絶縁保護層18と、を有している。ゲート電極11の表面にゲート電極との段差を無くす等の理由により陽極酸化被膜(図示せず)を形成してもよい。
 図1、図2、図13、図14および図16に示すようなFFS型の液晶表示素子の実施形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。すなわち、共通電極22は画素電極21よりも第一の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。
 また、画素電極21と共通電極22とは、これらの電極間にフリンジ電界を形成するために、画素電極21と共通電極22との間の電極間経路の水平成分(最小離間経路の水平成分とも称する)Rが、第一の基板2と第二の基板7との間の液晶層5の厚さGより小さくなるように形成される。ここで、電極間経路の水平成分Rは各電極間の基板に水平方向の距離を表す。図16では、平板状の共通電極22と櫛形の画素電極21とが重なり合っているため、最小離間経路の水平成分(または電極間距離):R=0となる例が示されており、最小離間経路の水平成分Rが第一の基板2と第二の基板7との間の液晶層の厚さ(セルギャップとも称される):Gよりも小さくなるため、フリンジの電界Eが形成される。したがって、FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の櫛状部分の電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。また、画素電極と共通電極との最小離間経路の水平成分Rは、絶縁膜35の(平均)膜厚などで調整することができる。
 本発明に係る液晶表示素子におけるFFS型の液晶パネルの変形例であるIPS型の液晶パネルの例を図15および図17を用いて説明する。IPS型の液晶表示素子における液晶パネル10の構成は、上記図1のFFS型と同様に片側の基板上に電極層3(共通電極と画素電極とTFTを含む)が設けられた構造であり、第一の偏光層1と、第一の基板2と、電極層3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、第二の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成である。
 図15は、IPS型の液晶表示部における図1、2の第一の基板2上に形成された電極層3のII線で囲まれた領域の一部を拡大した平面図である。図15に示すように、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とにより囲まれた領域内(単位画素内)で、櫛歯形の第一の電極(例えば、画素電極)21と櫛歯型の第二の電極(例えば、共通電極)22とが互いに遊嵌した状態(両電極が一定距離を保った状態で離間して噛合した状態)で設けられている。該単位画素内には、ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、第一の電極21に表示信号を供給するスイッチ素子として、第一の電極21と連結している。また、ゲートバスライン26と並行して、共通ライン(Vcom)29が設けられる。この共通ライン29は、第二の電極22に共通信号を供給するために、第二の電極22と連結している。
 図17は、図15におけるIII-III線方向にIPS型の液晶パネルを切断した断面図である。第一の基板2上には、ゲートバスライン26(図示せず)を覆い、且つ第一の基板2の略全面を覆うように設けられたゲート絶縁層32と、ゲート絶縁層32の表面に形成された絶縁保護層31とが設けられ、絶縁保護膜31上に、第一の電極(画素電極)21及び第二の電極(共通電極)22が離間して設けられる。絶縁保護層31は、絶縁機能を有する層であり、窒化ケイ素、二酸化ケイ素、ケイ素酸窒化膜等で形成される。また、配向層4および薄膜トランジスタを含む電極層3が一方の面に形成され、かつ他方の面に第一の偏光層1が形成された第一の基板2と、配向層4、第二の偏光層8および光変換層6が一方の面に形成された第二の基板7と、が所定の間隔で配向層同士向かい合うよう離間しており、この空間に液晶組成物を含む液晶層5が充填されている。当該光変換層6には、赤色(R)、緑色(G)および青色(B)の三原色画素の内少なくとも一色に入射した光源部による入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶(図子示せず)を含有する。光変換層6の説明は、図20~図22を用いて上記で説明した通りである。
 図15及び図17に示すような実施の形態では、第一の電極21及び第二の電極22は、絶縁保護層31上に、すなわち同一の層上に形成された櫛形の電極であり、互いに離間して噛合した状態で設けられている。IPS型の液晶表示部では、第一の電極21と第二の電極22との間の電極間距離Gと、第一の基板2と第二の基板7との間の液晶層の厚さ(セルギャップ):Hは、G≧Hの関係を満たす。電極間距離:Gとは、第一の電極21と第二の電極22との間の、基板に水平方向の最短距離を表し、図15及び図17で示す例においては、第一の電極21と第二の電極22とが遊嵌して交互に形成されたラインに対して、水平の方向の距離を表す。第一の基板2と第二の基板7との距離:Hとは、第一の基板2と第二の基板7との間の液晶層の厚さを表し、具体的には、第一の基板2及び第二の基板7のそれぞれに設けられた配向層4(最表面)間の距離(すなわちセルギャップ)、液晶層の厚みを表す。
 また、図17では、配向層4を備えている例を示しているが、上記図1で示した通り、配向層4を形成しなくてもよい。
 一方、先述のFFS型の液晶パネルでは、第一の基板2と第二の基板7との間の液晶層の厚さが、第一の電極21と第二の電極22との間の、基板に水平方向の最短距離以上であり、IPS型の液晶表示部は、第一の基板2と第二の基板7との間の液晶層の厚さが、第一の電極21と第二の電極22との間の、基板に水平方向の最短距離未満である。
 IPS型の液晶パネルは、第一の電極21及び第二の電極22間に形成される基板面に対して水平方向の電界を利用して液晶分子を駆動させる。第一の電極21の電極幅:Q、及び第二の電極22の電極幅:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。
 本発明の好ましい液晶パネルの他の実施形態は、垂直配向型の液晶パネル(VA型液晶ディスプレイ)である。本発明に係る液晶表示素子のVA型の液晶パネルの例を図18および図19を用いて説明する。図18は、当該図2における基板上に形成された薄膜トランジスタを含む電極層3(または薄膜トランジスタ層3とも称する。)のII線で囲まれた領域を拡大した平面図である。図19は、図18におけるIII-III線方向に図3、4に示す液晶パネルを切断した断面図である。
 本発明に係る液晶表示素子における液晶パネル10の構成は、図3、4に記載するように、(透明)電極層3’(または共通電極3’とも称する。)、第2の偏光層8および光変換層6を具備した第二の基板7と、画素電極および各画素に具備した前記画素電極を制御する薄膜トランジスタを形成した電極層3を含む第一の基板2と、前記第一の基板2と第二の基板7との間に挟持された液晶層5(液晶組成物から構成されている)を有し、該液晶組成物中の液晶分子の電圧無印加時の配向が前記基板2,7に対して略垂直である液晶表示素子であって、液晶層として特定の液晶組成物を用いたことを特徴の一つとするものである。また、電極層3’は、他の液晶表示素子と同じく透明導電性材料から構成されていることが好ましい。なお、図17では、前記第二の基板7と共通電極3’との間に光変換層6が設けられている例を記載しているが必ずしもこれに限定されることはない。さらに、本発明に係る液晶層5と隣接し、かつ当該液晶層5を構成する液晶組成物と直接接するよう一対の配向層4を透明電極(層)3,3’表面に必要により形成してもよい(図19では配向層4を図示している)。前記第一の基板2のバックライトユニット側の面に第一の偏光層1が設けられており、第二の偏光層8は、透明電極(層)3’と光変換層6との間に設けられている。したがって、本発明に係る液晶表示素子における液晶パネル10の好ましい形態の一つは、配向層4および薄膜トランジスタを含む電極層3が一方の面に形成され、かつ他方の面に第一の偏光層1が形成された第一の基板2と、配向層4、透明電極(層)3’、第二の偏光層8および光変換層6が一方の面に形成された第二の基板7と、が所定の間隔で配向層同士向かい合うよう離間しており、前記第一の基板2と第二の基板7と間に液晶組成物を含む液晶層5が充填されている。当該光変換層6には、赤色(R)、緑色(G)および青色(B)の三原色画素の内少なくとも一色に入射した光源部による入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶(図子示せず)を含有する。光変換層6の説明は、図20~図22を用いて上記で説明した通りである。
 図18は、画素電極21の形状の一例として“」”型の画素電極を示した図であり、図3、4における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。前記画素電極21は、上記図13、14および15と同様に、ゲートバスライン26とソースバスライン25とに囲まれた領域の略全面に“」”型に形成されているが、画素電極の形状はこれに限定されるものではなく、PSVAなどに使用する場合はフィッシュボーン構造の画素電極でもよい。また、画素電極21のその他の構成や機能などは上述した通りであるためここでは省略する。
 垂直配向型の液晶表示素子の液晶パネル部は、上記のIPS型やFFS型とは異なり、共通電極3’(図示せず)が画素電極21と対向離間して、TFTと対向する基板上に形成されている。換言すると、画素電極21と、共通電極22とは別の基板上に形成されている。一方、先述のFFSやIPS型の液晶表示素子は、画素電極21および共通電極22が同一基板上に形成されている。
 また、当該光変換層6は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタ23に対応する部分にブラックマトリックス(図示せず)を形成してもよい。
 図19は、図18おけるIII-III線方向に図3、4に示す液晶表示素子を切断した断面図である。すなわち、本発明に係る液晶表示素子の液晶パネル10は、第一の偏光層1と、第一の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、共通電極3’と、第一の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成である。本発明に係る液晶表示素子の薄膜トランジスタの構造(図19のIVの領域)の好適な一態様は、上述した通りであるためここでは省略する。
 本発明に係る液晶表示素子は、バックライトユニット100を液晶の画素数より少ない複数の区画毎に輝度を制御することで、コントラストを向上させるローカルディミングの手法を有していても良い。
 ローカルディミングの手法としては、複数存在する発光素子Lを液晶パネル上の特定の領域の光源として使用し、各発光素子Lを表示領域の輝度に応じて制御することが可能である。この場合、当該複数の発光素子Lが、平面状に配列された形態であっても、液晶パネル10の一側面側に一列に並べられた形態であっても良い。
 上記ローカルディミングの手法としてバックライトユニット100の導光部102と液晶パネル10とを有する構造になっている場合において、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に当該導光部102として、液晶の画素数より少ない特定領域毎にバックライトの光量を制御する制御層を有していても良い。
 バックライトの光量を制御する手法としては、液晶の画素数より少ない液晶素子を更に有していても良く、液晶素子としては既存の様々手法を用いることができるが、ポリマーネットワークが形成された液晶を含むLCD層が透過率の点で好ましい。当該ポリマーネットワークが形成された(ネマチック)液晶を含む層(必要により一対の透明電極で挟持されたポリマーネットワークが形成された(ネマチック)液晶を含む層)は、電圧OFF時は光を散乱し、電圧ON時は光を透過するため、表示画面全体を複数の区画に分けるように区画されたポリマーネットワークが形成された液晶を含むLCD層を、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に設けることでローカルディミングを実現できる。
 また、本発明に係る液晶表示素子は、450nmに主発光ピークを有する光源部を用いた場合において、下記数式(1)で定義されるリタデーション(Re)(25℃)が、Re=Δn×dで表される。
 (上記数式(1)中、Δnは589nmにおける屈折率異方性を表し、dは液晶表示素子の液晶層のセル厚(μm)を表す。)
220~300nmであることが好ましい。
 可視光全域の波長を含む従来の白色光の透過をスイッチングする通常の液晶表示素子と、当該量子ドットの励起を引き起こす約500nm以下の青色可視光(いわゆる短波長領域の光)または紫外線の透過をスイッチングする液晶表示素子とでは、透過する光および当該透過する光の光学的な性質が異なるため、それぞれの素子に求められる特性等も相違する。従来技術では、量子ドットなどの発光用ナノ結晶を発光素子として用いた液晶表示素子で用いられる光源と、量子ドットなどの発光用ナノ結晶を含まない通常の液晶表示素子で使用する光源との違いに起因する液晶材料の光学特性についての最適化がなされておらず、量子ドットなどの発光用ナノ結晶を用いた表示素子の光学特性を最大限に利用できない問題が確認された。しかし、上記リタデーションの条件により、液晶表示素子の透過率を向上することができる。そのため、発明が解決しようとする他の課題は、液晶表示素子の透過率の低下を抑制または防止するものである。
 以下、本発明に係る液晶表示素子の主な構成要素である光源部、偏光層、液晶層および配向層について説明する。
 (光源部)
 本発明に係る光源部は、紫外または可視光を発光する発光素子を有する。当該発光素子は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード(青色発光ダイオード)を好適に使用できる。
 本発明に係る発光素子(または発光ダイオード)は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、430nm以上500nm以下(420nm以上480nm以下)の波長領域に主発光ピークを有する発光ダイオードを好適に使用できる。当該青色領域に主発光ピークを有する発光ダイオードは、公知のものを使用することができる。青色領域に主発光ピークを有する発光ダイオードとしては、例えば、サファイア基板の上に形成されるAlNからなるシード層と、シード層上に形成される下地層と、GaNを主体とする積層半導体層とを少なくとも備えたものなどが例示として挙げられる。また、積層半導体層は、基板側から下地層、n型半導体層、発光層およびp型半導体層の順に積層されて構成されたものが挙げられる。
 紫外線の光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、無電極ランプ、メタルハライドランプ、キセノンアークランプ、LED等が挙げられるが、本発明に係る発光素子Lは、上記の420nm以上480nm以下の波長領域に主発光ピークを有するLED以外として、紫外光を発生するLEDが好ましい。
 なお、本明細書において、420~480nmの波長帯域に発光中心波長を有する光を青色光と称し、500~560nmの波長帯域に発光中心波長を有する光を緑色光と称し、605~665nmの波長帯域に発光中心波長を有する光を赤色光と称する。また、本明細書の紫外光とは、300nm以上420nm未満の波長帯域に発光中心波長を有する光をいう。さらに本明細書において、「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。
 (偏光層)
 本発明に係る偏光層は特に制限されることは無く、公知の偏光板(偏光層)を使用することができる。例えば、二色性有機色素偏光子、塗布型偏光層、ワイヤーグリッド型偏光子、またはコレステリック液晶型偏光子などが挙げられる。たとえば、ワイヤーグリッド型偏光子は、第1基板、第2基板、カラーフィルタ上に形成され、ナノインプリント法、ブロックコポリマー法、Eビームリソグラフィ法またはグランシングアングル蒸着法のうちいずれか一つによって形成されることが好ましい。また、塗布型偏光層を形成する場合、本明細書の以下で説明する配向層をさらに設けてもよい。そのため、本発明に係る偏光層が塗布型偏光層である場合、塗布型偏光層と配向層とを有することが好ましい。
 以下、本発明に係る液晶表示素子の液晶パネル部の構成要素である、液晶層、配向層などについて説明する。
 本発明に係る液晶層は、一般式(i):
Figure JPOXMLDOC01-appb-C000008
(式中、Ri1及びRi2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Ai1は1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、ni1は0又は1を表す。)で表される化合物を含有する液晶組成物を有する。
 上記化合物により耐光性に対する信頼性が高い化合物を含む液晶層を構成しえるため、光源からの光、特に青色光(青色LEDからの)による液晶層の劣化を抑制・防止することができる。また、液晶層のリタデーションを調整することができるため、液晶表示素子の透過率の低下を抑制または防止する
 本発明に係る液晶層において、上記一般式(i)で表される化合物の好ましい含有量の下限値は、本発明の組成物の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、15質量%であり、20質量%であり、25質量%であり、30質量%であり、35質量%であり、40質量%であり、45質量%であり、50質量%であり、55質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、95質量%であり、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%であり、65質量%であり、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、35質量%であり、30質量%であり、25質量%である。
 本発明に係る液晶層には、上記一般式(i)で表される化合物を10~50質量%含むことが特に好ましい。
 上記一般式(i)で表される化合物は一般式(i-1)~(i-2)で表される化合物群から選ばれる化合物であることが好ましい。
 一般式(i-1)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000009
(式中、Ri11及びRi12はそれぞれ独立して、一般式(i)におけるRi1及びRi2と同じ意味を表す。)
 Ri11及びRi12は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
 一般式(i-1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 好ましい含有量の下限値は、本発明の組成物の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、12質量%であり、15質量%であり、17質量%であり、20質量%であり、22質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%であり、40質量%であり、45質量%であり、50質量%であり、55質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、95質量%であり、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%であり、65質量%であり、60質量%であり、55質量%であり、50質量%であり、48質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が中庸で上限値が中庸であることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値が低く上限値が低いことが好ましい。
 一般式(i-1)で表される化合物は一般式(i-1-1)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中Ri12は一般式(i-1)における意味と同じ意味を表す。)
 一般式(i-1-1)で表される化合物は、式(i-1-1.1)から式(i-1-1.3)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-1.2)又は式(i-1-1.3)で表される化合物であることが好ましく、特に、式(i-1-1.3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 本発明の組成物の総量に対しての式(i-1-1.3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
 一般式(i-1)で表される化合物は一般式(i-1-2)で表される化合物群から選ばれる化合物であることが、バックライトとして紫外線領域にある波長200~400nmの光が照射された場合であっても優れた耐久性を持ち、電圧保持率を発現できる点から好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中Ri12は一般式(i-1)における意味と同じ意味を表す。)
 本発明の組成物の総量に対しての式(i-1-2)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
 さらに、一般式(i-1-2)で表される化合物は、式(i-1-2.1)から式(i-1-2.4)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-2.2)から式(i-1-2.4)で表される化合物であることが好ましい。特に、式(i-1-2.2)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTNIを求めるときは、式(i-1-2.3)又は式(i-1-2.4)で表される化合物を用いることが好ましい。式(i-1-2.3)及び式(i-1-2.4)で表される化合物の含有量は、低温での溶解度を良くするために30質量%以上にすることは好ましくない。
Figure JPOXMLDOC01-appb-C000013
 本発明の組成物の総量に対しての式(i-1-2.2)で表される化合物の好ましい含有量の下限値は、10質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、38質量%であり、40質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、32質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%である。これらの中でも青色の可視光に対する液晶層の劣化防止の観点から、含有量の上限値は、15質量%、特に10質量%であることが好ましい。
 本発明の組成物の総量に対しての式(i-1-1.3)で表される化合物及び式(i-1-2.2)で表される化合物の合計の好ましい含有量の下限値は、10質量%であり、15質量%であり、20質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%であり、40質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、32質量%であり、30質量%であり、27質量%であり、25質量%であり、22質量%である。
 一般式(i-1)で表される化合物は一般式(i-1-3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中Ri13及びRi14はそれぞれ独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表す。)
 Ri13及びRi14は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
 本発明の組成物の総量に対しての式(i-1-3)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、30質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、27質量%であり、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
さらに、一般式(i-1-3)で表される化合物は、式(i-1-3.1)から式(i-1-3.12)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-3.1)、式(i-1-3.3)又は式(i-1-3.4)で表される化合物であることが好ましい。特に、式(i-1-3.1)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTNIを求めるときは、式(i-1-3.3)、式(i-1-3.4)、式(L-1-3.11)及び式(i-1-3.12)で表される化合物を用いることが好ましい。式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及び式(i-1-3.12)で表される化合物の合計の含有量は、低温での溶解度を良くするために20質量%以上にすることは好ましくない。
Figure JPOXMLDOC01-appb-C000015
 本発明の組成物の総量に対しての式(i-1-3.1)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。
 一般式(i-1)で表される化合物は一般式(i-1-4)及び/又は(i-1-5)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中Ri15及びRi16はそれぞれ独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表す。)
 Ri15及びRi16は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
 本発明の組成物の総量に対しての式(i-1-4)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
 本発明の組成物の総量に対しての式(i-1-5)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
 さらに、一般式(i-1-4)及び(i-1-5)で表される化合物は、式(i-1-4.1)から式(i-1-5.3)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-4.2)又は式(i-1-5.2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 本発明の組成物の総量に対しての式(i-1-4.2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。
 式(i-1-1.3)、式(i-1-2.2)、式(i-1-3.1)、式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及び式(i-1-3.12)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、式(i-1-1.3)、式(i-1-2.2)、式(i-1-3.1)、式(i-1-3.3)、式(i-1-3.4)及び式(i-1-4.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、これら化合物の合計の含有量の好ましい含有量の下限値は、本発明の組成物の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、上限値は、本発明の組成物の総量に対して、80質量%であり、70質量%であり、60質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%である。組成物の信頼性を重視する場合には、式(i-1-3.1)、式(i-1-3.3)及び式(i-1-3.4))で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、組成物の応答速度を重視する場合には、式(i-1-1.3)、式(i-1-2.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましい。
 一般式(i-1)で表される化合物は一般式(i-1-6)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中Ri17及びRi18はそれぞれ独立してメチル基又は水素原子を表す。)
 本発明の組成物の総量に対しての式(i-1-6)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
 さらに、一般式(i-1-6)で表される化合物は、式(i-1-6.1)から式(i-1-6.3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(i-2)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000020
(式中、Ri21及びRi22はそれぞれ独立して、一般式(i)におけるRi1及びRi2と同じ意味を表す。)
 Ri21は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL22は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
 一般式(i-2)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、反対に、応答速度を重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 本発明の組成物の総量に対しての式(i-2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
 さらに、一般式(i-2)で表される化合物は、式(i-2.1)から式(i-2.6)で表される化合物群から選ばれる化合物であることが好ましく、式(L-2.1)、式(i-2.3)、式(i-2.4)及び式(i-2.6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 本発明の組成物は、一般式(N-1)、(N-2)、(N-3)および(N-4)で表される化合物から選ばれる化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に負の化合物(Δεの符号が負で、その絶対値が2より大きい。)に該当する。
Figure JPOXMLDOC01-appb-C000022
 [前記一般式(N-1)、(N-2)、(N-3)及び(N-4)中、RN11、RN12、RN21、RN22、RN31、RN32、RN41及びRN42はそれぞれ独立して炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルキル鎖中の1個又は非隣接の2個以上の-CH-が、それぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換された化学構造を持つ構造部位、
 AN11、AN12、AN21、AN22、AN31、AN32、AN41及びAN42はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
(d) 1,4-シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)は、その構造中の水素原子が、それぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZN11、ZN12、ZN21、ZN22、ZN31、ZN32、ZN41及びZN42は、それぞれ独立して、単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 XN21は水素原子又はフッ素原子を表し、TN31は-CH-又は酸素原子を表し、XN41は、酸素原子、窒素原子、又は-CH-を表し、YN41は、単結合、又は-CH-を表し、nN11、nN12、nN21、nN22、nN31、nN32、nN41、及びnN42は、それぞれ独立して0~3の整数を表すが、nN11+nN12、nN21+nN22及びnN31+nN32はそれぞれ独立して1、2又は3であり、AN11~AN32、ZN11~ZN32が複数存在する場合は、それらは同一であっても異なっていても良く、nN41+nN42は0~3の整数を表すが、AN41及びAN42、ZN41及びZN42が複数存在する場合は、それらは同一であっても異なっていても良い。]
 一般式(N-1)、(N-2)、(N-3)及び(N-4)で表される化合物は、Δεが負でその絶対値が2よりも大きな化合物であることが好ましい。
 一般式(N-1)、(N-2)、(N-3)及び(N-4)中、RN11、RN12、RN21、RN22、RN31、RN32、RN41およびRN42はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000023
 AN11、AN12、AN21、AN22、AN31及びAN32はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000024
トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基又は1,4-フェニレン基を表すことがより好ましい。
 ZN11、ZN12、ZN21、ZN22、ZN31及びZN32はそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CHO-、-CHCH-又は単結合が更に好ましく、-CHO-又は単結合が特に好ましい。
 XN21はフッ素原子が好ましい。
 TN31は酸素原子が好ましい。
 nN11+nN12、nN21+nN22及びnN31+nN32は1又は2が好ましく、nN11が1でありnN12が0である組み合わせ、nN11が2でありnN12が0である組み合わせ、nN11が1でありnN12が1である組み合わせ、nN11が2でありnN12が1である組み合わせ、nN21が1でありnN22が0である組み合わせ、nN21が2でありnN22が0である組み合わせ、nN31が1でありnN32が0である組み合わせ、nN31が2でありnN32が0である組み合わせ、が好ましい。
 本発明の組成物の総量に対しての式(N-1)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
 本発明の組成物の総量に対しての式(N-2)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
 本発明の組成物の総量に対しての式(N-3)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高く上限値が高いことが好ましい。
 本発明に係る液晶組成物は、一般式(N-1)で表される化合物、一般式(N-2)で表される化合物、一般式(N-3)で表される化合物および一般式(N-4)で表される化合物のうち、一般式(N-1)で表される化合物を有することが好ましい。
 一般式(N-1)で表される化合物として、下記の一般式(N-1a)~(N-1g)で表される化合物群を挙げることができる。
 一般式(N-4)で表される化合物として、下記の一般式(N-1h)で表される化合物群を挙げることができる。
Figure JPOXMLDOC01-appb-C000025
(式中、RN11及びRN12は一般式(N-1)におけるRN11及びRN12と同じ意味を表し、nNa11は0又は1を表し、nNb11は0又は1を表し、nNc11は0又は1を表し、nNd11は0又は1を表し、nNe11は1又は2を表し、nNf11は1又は2を表し、nNg11は1又は2を表し、ANe11はトランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表し、ANg11はトランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基又は1,4-フェニレン基を表すが少なくとも1つは1,4-シクロヘキセニレン基を表し、ZNe11は単結合又はエチレンを表すが少なくとも1つはエチレンを表す。)
 (p型化合物)
 本発明の組成物は、一般式(J)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。
Figure JPOXMLDOC01-appb-C000026
(式中、RJ1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nJ1は、0、1、2、3又は4を表し、
 AJ1、AJ2及びAJ3はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
 ZJ1及びZJ2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
 一般式(J)中、RJ1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
 信頼性を重視する場合にはRJ1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000027
 AJ1、AJ2及びAJ3はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、それらはフッ素原子により置換されていてもよく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000028
下記の構造を表すことがより好ましい。
Figure JPOXMLDOC01-appb-C000029
 ZJ1及びZJ2はそれぞれ独立して-CHO-、-OCH-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-OCH-、-CFO-、-CHCH-又は単結合が更に好ましく、-OCH-、-CFO-又は単結合が特に好ましい。
 XJ1はフッ素原子又はトリフルオロメトキシ基が好ましく、フッ素原子が好ましい。
 nJ1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。
 本発明の組成物において、一般式(J)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての一般式(J)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。
 信頼性を重視する場合にはRJ1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
 一般式(J)で表される化合物としては一般式(M)で表される化合物及び一般式(K)で表される化合物が好ましい。
 本発明の組成物は、一般式(M)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。
Figure JPOXMLDOC01-appb-C000030
(式中、RM1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nM1は、0、1、2、3又は4を表し、
 AM1及びAM2はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZM1及びZM2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nM1が2、3又は4であってAM2が複数存在する場合は、それらは同一であっても異なっていても良く、nM1が2、3又は4であってZM1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XM1及びXM3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
 XM2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。
 一般式(M)中、RM1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
 信頼性を重視する場合にはRM1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000031
 AM1及びAM2はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000032
下記の構造を表すことがより好ましい。
Figure JPOXMLDOC01-appb-C000033
 ZM1及びZM2はそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CFO-、-CHCH-又は単結合が更に好ましく、-CFO-又は単結合が特に好ましい。
 nM1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。
 本発明の組成物において、一般式(M)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(M)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。
 本発明の組成物は、一般式(K)で表される化合物を1種類又は2種類以上含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。
Figure JPOXMLDOC01-appb-C000034
(式中、RK1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nK1は、0、1、2、3又は4を表し、
 AK1及びAK2はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZK1及びZK2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nK1が2、3又は4であってAK2が複数存在する場合は、それらは同一であっても異なっていても良く、nK1が2、3又は4であってZK1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XK1及びXK3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
 XK2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
 一般式(K)中、RK1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
 信頼性を重視する場合にはRK1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000035
 AK1及びAK2はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000036
下記の構造を表すことがより好ましい。
Figure JPOXMLDOC01-appb-C000037
 ZK1及びZK2はそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CFO-、-CHCH-又は単結合が更に好ましく、-CFO-又は単結合が特に好ましい。
 nK1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。
 本発明の組成物において、一般式(K)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(K)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。
 本発明の液晶組成物は、一般式(L)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。一般式(L)で表される化合物は誘電的にほぼ中性の化合物(Δεの値が-2~2)に該当する。
Figure JPOXMLDOC01-appb-C000038
(式中、RL1及びRL2はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nL1は0、1、2又は3を表し、
 AL1、AL2及びAL3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZL1及びZL2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 nL1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL2が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(N-1)、(N-2)、(N-3)、(J)及び(i)で表される化合物を除く。)
 一般式(L)で表される化合物は単独で用いてもよいが、組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類である。あるいは本発明の別の実施形態では2種類であり、3種類であり、4種類であり、5種類であり、6種類であり、7種類であり、8種類であり、9種類であり、10種類以上である。
 本発明の組成物において、一般式(L)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。
 本発明の組成物の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明の組成物のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を低く上限値が低いことが好ましい。
 信頼性を重視する場合にはRL1及びRL2はともにアルキル基であることが好ましく、化合物の揮発性を低減させることを重視する場合にはアルコキシ基であることが好ましく、粘性の低下を重視する場合には少なくとも一方はアルケニル基であることが好ましい。
 分子内に存在するハロゲン原子は0、1、2又は3個が好ましく、0又は1が好ましく、他の液晶分子との相溶性を重視する場合には1が好ましい。
 RL1及びRL2は、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000039
 nL1は応答速度を重視する場合には0が好ましく、ネマチック相の上限温度を改善するためには2又は3が好ましく、これらのバランスをとるためには1が好ましい。また、組成物として求められる特性を満たすためには異なる値の化合物を組み合わせることが好ましい。
 AL1、AL2及びAL3はΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、それぞれ独立してトランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000040
トランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表すことがより好ましい。
 ZL1及びZL2は応答速度を重視する場合には単結合であることが好ましい。
 一般式(L)で表される化合物は分子内のハロゲン原子数が0個又は1個であることが好ましい。
 一般式(L)で表される化合物は一般式(L-3)~(L-8)で表される化合物群から選ばれる化合物であることが好ましい。
 一般式(L-3)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000041
(式中、RL31及びRL32はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL31及びRL32はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
 一般式(L-3)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物の総量に対しての式(L-3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
 高い複屈折率を得る場合は含有量を多めに設定すると効果が高く、反対に、高いTNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
 一般式(L-4)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000042
(式中、RL41及びRL42はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL41は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL42は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。)
 一般式(L-4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物において、一般式(L-4)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L-4)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明の組成物の総量に対しての式(L-4)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。
 一般式(L-5)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000043
(式中、RL51及びRL52はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL51は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL52は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
 一般式(L-5)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物において、一般式(L-5)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L-5)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明の組成物の総量に対しての式(L-5)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である
 一般式(L-6)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000044
(式中、RL61及びRL62はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表し、XL61及びXL62はそれぞれ独立して水素原子又はフッ素原子を表す。)
 RL61及びRL62はそれぞれ独立して炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、XL61及びXL62のうち一方がフッ素原子他方が水素原子であることが好ましい。
 一般式(L-6)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
 本発明の組成物の総量に対しての式(L-6)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明の組成物の総量に対しての式(L-6)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。Δnを大きくすることに重点を置く場合には含有量を多くした方が好ましく、低温での析出に重点を置いた場合には含有量は少ない方が好ましい。
 一般式(L-7)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000045
(式中、RL71及びRL72はそれぞれ独立して一般式(L)におけるRL1及びRL2と同じ意味を表し、AL71及びAL72はそれぞれ独立して一般式(L)におけるAL2及びAL3と同じ意味を表すが、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は一般式(L)におけるZL2と同じ意味を表し、XL71及びXL72はそれぞれ独立してフッ素原子又は水素原子を表す。)
 式中、RL71及びRL72はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、AL71及びAL72はそれぞれ独立して1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は単結合又はCOO-が好ましく、単結合が好ましく、XL71及びXL72は水素原子が好ましい。
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
 本発明の組成物において、一般式(L-7)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L-7)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。本発明の組成物の総量に対しての式(L-7)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。
 本発明の組成物が高いTNIの実施形態が望まれる場合は式(L-7)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
 一般式(L-8)で表される化合物は下記の化合物である。
Figure JPOXMLDOC01-appb-C000046
(式中、RL81及びRL82はそれぞれ独立して一般式(L)におけるRL1及びRL2と同じ意味を表し、AL81は一般式(L)におけるAL1と同じ意味又は単結合を表すが、AL81上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、XL81~XL86はそれぞれ独立してフッ素原子又は水素原子を表す。)
 式中、RL81及びRL82はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、AL81は1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、一般式(L-8)中の同一の環構造上にフッ素原子は0個又は1個が好ましく、分子内にフッ素原子は0個又は1個であることが好ましい。
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
 本発明の組成物において、一般式(L-8)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
 本発明の組成物の総量に対しての式(L-8)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。本発明の組成物の総量に対しての式(L-8)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。
 本発明の組成物が高いTNIの実施形態が望まれる場合は式(L-8)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
 本発明の組成物の総量に対しての一般式(i)、一般式(L)、(N-1)、(N-2)、(N-3)及び(J)で表される化合物の合計の好ましい含有量の下限値は、80質量%であり、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、95質量%である。ただし、Δεの絶対値が大きい組成物を得る観点からは、一般式(N-1)、(N-2)、(N-3)又は(J)で表される化合物のいずれか一方は0質量%であることが好ましい。
 本願発明の組成物は、分子内に過酸(-CO-OO-)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。
 組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。
 UV照射による安定性を重視する場合、塩素原子が置換している化合物の含有量を前記組成物の総質量に対して15質量%以下とすることが好ましく、10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
 分子内の環構造がすべて6員環である化合物の含有量を多くすることが好ましく、分子内の環構造がすべて6員環である化合物の含有量を前記組成物の総質量に対して80質量%以上とすることが好ましく、90質量%以上とすることがより好ましく、95質量%以上とすることが更に好ましく、実質的に分子内の環構造がすべて6員環である化合物のみで組成物を構成することが最も好ましい。
 組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
 粘度の改善及びTNIの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
 本願において実質的に含有しないとは、意図せずに含有する物を除いて含有しないという意味である。
 本発明の第一実施形態の組成物に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2~5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4~5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。
 本発明に使用される液晶組成物の平均弾性定数(KAVG)は10から25が好ましいが、その下限値としては、10が好ましく、10.5が好ましく、11が好ましく、11.5が好ましく、12が好ましく、12.3が好ましく、12.5が好ましく、12.8が好ましく、13が好ましく、13.3が好ましく、13.5が好ましく、13.8が好ましく、14が好ましく、14.3が好ましく、14.5が好ましく、14.8が好ましく、15が好ましく、15.3が好ましく、15.5が好ましく、15.8が好ましく、16が好ましく、16.3が好ましく、16.5が好ましく、16.8が好ましく、17が好ましく、17.3が好ましく、17.5が好ましく、17.8が好ましく、18が好ましく、その上限値としては、25が好ましく、24.5が好ましく、24が好ましく、23.5が好ましく、23が好ましく、22.8が好ましく、22.5が好ましく、22.3が好ましく、22が好ましく、21.8が好ましく、21.5が好ましく、21.3が好ましく、21が好ましく、20.8が好ましく、20.5が好ましく、20.3が好ましく、20が好ましく、19.8が好ましく、19.5が好ましく、19.3が好ましく、19が好ましく、18.8が好ましく、18.5が好ましく、18.3が好ましく、18が好ましく、17.8が好ましく、17.5が好ましく、17.3が好ましく、17が好ましい。消費電力削減を重視する場合にはバックライトの光量を抑えることが有効であり、液晶表示素子は光の透過率を向上させることが好ましく、そのためにはKAVGの値を低めに設定することが好ましい。応答速度の改善を重視する場合にはKAVGの値を高めに設定することが好ましい。
 本発明の組成物には、PSモード、横電界型PSAモード又は横電界型PSVAモードなどの液晶表示素子を作製するために、重合性化合物を含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。更に具体的には、一般式(XX)
Figure JPOXMLDOC01-appb-C000047
(式中、X201及びX202はそれぞれ独立して、水素原子又はメチル基を表し、
Sp201及びSp202はそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)が好ましく、
201は-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、
201およびL202はそれぞれ独立して、フッ素原子、炭素原子数1~8のアルキル基または炭素原子数1~8のアルコキシ基であり、
201は1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子、炭素原子数1~8のアルキル基または炭素原子数1~8のアルコキシ基により置換されていても良く、n201およびn202はそれぞれ独立して、0~4の整数である。)で表される二官能モノマーが好ましい。
 X201及びX202は、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
 Sp201及びSp202はそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1~8のアルキレン基又は-O-(CH-を表す態様が好ましい。この場合1~4のアルキル基が好ましく、sは1~4が好ましい。
 Z201は、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-又は単結合が好ましく、-COO-、-OCO-又は単結合がより好ましく、単結合が特に好ましい。
 M201は任意の水素原子がフッ素原子により置換されていても良い1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表すが、1,4-フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Z201は単結合以外の連結基も好ましく、M201が単結合の場合、Z201は単結合が好ましい。
 これらの点から、一般式(XX)において、Sp201及びSp202の間の環構造は、具体的には次に記載する構造が好ましい。
 一般式(XX)において、M201が単結合を表し、環構造が二つの環で形成される場合において、次の式(XXa-1)から式(XXa-5)を表すことが好ましく、式(XXa-1)から式(XXa-3)を表すことがより好ましく、式(XXa-1)を表すことが特に好ましい。
Figure JPOXMLDOC01-appb-C000048
(式中、両端はSp201又はSp202に結合するものとする。)
 これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
 以上のことから、重合性モノマーとしては、一般式(XX-1)~一般式(XX-4)が特に好ましく、中でも一般式(XX-2)が最も好ましい。
Figure JPOXMLDOC01-appb-C000049
(式中、ベンゼンはフッ素原子により置換されていても良く、Sp20は炭素原子数2から5のアルキレン基を表す。)
 本発明の組成物に重合性化合物を含有する場合の含有量は、0.01質量%~5質量%であることが好ましく、0.05質量%~3質量%であることが好ましく、0.1質量%~2質量%であることが好ましい。
 本発明の組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
 本発明の液晶表示素子は、前記した通り、配向層4を有するものであってもよいが、配向層を設けることなく、本発明に係る液晶層を構成する液晶組成物中に自発配向剤を含ませ、配向膜なしで液晶を自立させるか、溶剤可溶型の配向型ポリイミドを用いて配向させるか、或いは、光配向膜、とりわけ非ポリイミド系の光配向膜によって液晶を配向させることが液晶表示素子の製造が容易である点から好ましい。
 本発明に係る液晶組成物は、自発配向剤を含むことが好ましい。当該自発配向剤は、液晶層を構成する液晶組成物に含まれる液晶分子の配向方向を制御することができる。液晶層の界面に自発配向剤の成分が集積する、または当該界面に吸着することで液晶分子の配向方向を制御することができると考えられる。これにより、液晶組成物中に自発配向剤を含む場合は、液晶パネルの配向層を無くすことができる。
 本発明に係る液晶組成物における自発配向剤の含有量は、液晶組成物の全体のうち0.1~10質量%含むことが好ましい。また、本発明に係る液晶組成物における自発配向剤は、上記の重合性化合物と併用して使用してもよい。
 本発明に係る液晶組成物は、自発配向剤を含むことが好ましい。当該自発配向剤は、液晶層を構成する液晶組成物に含まれる液晶分子の配向方向を制御することができる。液晶層の界面に自発配向剤の成分が集積する、または当該界面に吸着することで液晶分子の配向方向を制御することができると考えられる。これにより、液晶組成物中に自発配向剤を含む場合は、液晶パネルの配向層を無くすことができる。
 本発明に係る液晶組成物における自発配向剤の含有量は、液晶組成物の全体のうち0.1~10質量%含むことが好ましい。また、本発明に係る液晶組成物における自発配向剤は、上記の重合性化合物と併用して使用してもよい。
 当該自発配向剤は極性基およびメソゲン性基を有し、必要により重合性基を有することが好ましい。
 上記メソゲン性基とは、液晶相の挙動を誘発できる基を意味するが、メソゲン性基を含む表面修飾化合物は、必ずしもそれ自体が液晶相を示す必要はない。換言すると、「メソゲン性基」は、構造的秩序を誘導しやすい基であり、典型的には、芳香族環などの環式基といった強固な部分を含むものである。さらに、ここでいう「液晶相」とは、液体の流動性と結晶の異方性とを合わせ持つ相を言い、ネマチック液晶、スメクチック液晶またはコレステリック液晶などが挙げられる。
 本発明に係る表面修飾化合物におけるメソゲン性基の形状や表面修飾化合物の分子の形状は、特に制限されることはなく、棒状、円盤状、バナナ型、L字型、T字型、またはシクロデキストリン、カリックスアレーンもしくはククルビツリルなどの包摂型など挙げられるが、液晶相挙動を誘発できる形状がより好ましい。
 上記重合性基は、後述の一般式(P-1)~一般式(P-15)で表されることが好ましい。
 上記極性基は、ヘテロ原子を有する極性要素(電荷が分離した状態)の原子団であることが好ましく、N、O、S、P、BおよびSi等のヘテロ原子をその構造中に含む極性要素の原子団であることがより好ましい。また、本発明に係る極性基は、ヘテロ原子を有する極性要素を含む環状構造原子団またはヘテロ原子を有する極性要素を含む直鎖状若しくは分岐状構造原子団のいずれでもよい。
 本発明に係る極性基において、当該ヘテロ原子を有する極性要素の価数は、一価、二価、三価など特に制限されず、また当該ヘテロ原子を有する極性要素の個数も特に制限されることは無い。当該ヘテロ原子を有する極性要素は、具体的には、含窒素基;シアノ基(-CN)、1級アミノ基(-NH)、2級アミノ基(-NH-)、3級アミノ基(-NRR’;但し、R,R’はアルキル基)、ピリジル基、含酸素基;水酸基(-OH)、アルコキシ基(-OR;但し、Rはアルキル基)、ホルミル基(-CHO)、カルボキシル基(-COOH)、エーテル基(-R’OR’’-;但し、R’、R’’はアルキレン基またはアルケニレン基)、ケトン基(-R’C(=O)R’’-;但し、R’、R’’はアルキレン基またはアルケニレン基)、カーボネート基(-O-C(=O)-O-)、アルコキシ(アルケニルオキシ)カルボニル基(-COOR’’-;但しR’’はアルキレン基またはアルケニレン基)、カルバモイル基(-CONH)、ウレイド基(-NHCONH)、含リン基;ホスフィニル基(-P(=O)H)、リン酸基(-OP(=O)(OH))、含ホウ素基;ホウ酸基(-B(OH))、含硫黄基;メルカプト基(-SH)、スルフィド基(-S-)、スルフィニル基(-S(=O)-)、スルホニル基(-SO-)、スルホンアミド基(-SONH)、スルホ酸基(-SOH)またはスルフィノ基(-S(=O)OH)で表される部分構造であることが好ましい。
 当該自発配向剤としては、以下の一般式(al-1)および/または一般式(al-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000050
 (式中、Ral1、Ral2、Zal1、Zal2、Lal1、Lal2、Lal3、Spal1、Spal2、Spal3、Xal1、Xal2、Xal3、mal1、mal2、mal3、nal1、nal2、nal3、pal1、pal2およびpal3はそれぞれ互いに独立して、
 Ral1は、水素原子、ハロゲン、1~20個の炭素原子を有する直鎖状、分枝状もしくは環状アルキルを示し、ここで当該アルキル基において、1または2つ以上の隣接していないCH基は、-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-によって、Oおよび/またはS原子が互いに直接結合しないように置換されてもよく、さらに1個または2個以上の水素原子は、FまたはClによって置き換えられていてもよい、
 Ral2は、以下のいずれかの部分構造を備えた基を表し、
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 Spal1、Spal2およびSpal3はそれぞれ互いに独立して、炭素原子数1~12個のアルキル基または単結合を表し、
 Xal1、Xal2およびXal3はそれぞれ互いに独立して、アルキル基、アクリル基、メタクリル基またはビニル基を示し、
 Zal1は、-O-、-S-、-CO-、-CO-O-、-OCO-、-O-CO-O-、-OCH-、-CHO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-(CH al-、-CFCH-、-CHCF-、-(CF al-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-、-OCO-CH=CH-、-(CRal3al4 a1-、-CH(-Spal1-Xal1)-、-CHCH(-Spal1-Xal1)-、-CH(-Spal1-Xal1)CH(-Spal1-Xal1)-を示し、
 Zal2はそれぞれ互いに独立して、単結合、-O-、-S-、-CO-、-CO-O-、-OCO-、-O-CO-O-、-OCH-、-CHO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-(CH)n1-、-CFCH-、-CHCF-、-(CF al-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-、-OCO-CH=CH-、-(CRal3al4na1-、-CH(-Spal1-Xal1)-、-CHCH(-Spal1-Xal1)-、-CH(-Spal1-Xal1)CH(-Spal1-Xal1)-を示し、
 Lal1、Lal2、Lal3はそれぞれ互いに独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、-CN、-NO、-NCO、-NCS、-OCN、-SCN、-C(=O)N(Ral3、-C(=O)Ral3、3~15個の炭素原子を有する任意に置換されたシリル基、任意に置換されたアリール基もしくはシクロアルキル基または1~25個の炭素原子を表すが、ここで、1個もしくは2個以上の水素原子がハロゲン原子(フッ素原子、塩素原子)によって置き換えられていてもよく、
上記Ral3は、1~12個の炭素原子を有するアルキル基を表し、上記Ral4は、水素原子または1~12個の炭素原子を有するアルキル基を表し、上記nalは、1~4の整数を表し、
 pal1、pal2およびpal3はそれぞれ互いに独立して、0または1を表し、mal1、mal2およびmal3はそれぞれ互いに独立して、0~3の整数を表し、nal1、nal2およびnal3はそれぞれ互いに独立して、0~3の整数を表す。)
 一般式(Al-2):
Figure JPOXMLDOC01-appb-C000053
(式中、Zi1およびZi2はそれぞれ独立して、単結合、-CH=CH-、-CF=CF-、-C≡C-、-COO-、-OCO-、-OCOO-、-OOCO-、-CFO-、-OCF-、-CH=CHCOO-、-OCOCH=CH-、-CH-CHCOO-、-OCOCH―CH-、-CH=C(CH)COO-、-OCOC(CH)=CH-、-CH-CH(CH)COO-、-OCOCH(CH)―CH-、-OCHCHO-、又は炭素原子数2~20のアルキレン基を表し、このアルキレン基中の1個又は隣接しない2個以上の-CH-は-O-、-COO-又は-OCO-で置換されてもよく、ただしKi1が(K-11)の場合はメソゲン基に少なくとも-CH-CHCOO-、-OCOCH―CH-、-CH=C(CH)COO-、-OCOC(CH)=CH-、-CH-CH(CH)COO-、-OCOCH(CH)―CH-、-OCHCHO-の何れか一つを含み、
 Aal21およびAa122はそれぞれ独立して、2価の6員環芳香族基又は2価の6員環脂肪族基を表すが、2価の無置換の6員環芳香族基、2価の無置換の6員環脂肪族基又はこれらの環構造中の水素原子は、置換されていないか炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、ハロゲン原子で置換されていていることが好ましく、2価の無置換の6員環芳香族基若しくはこの環構造中の水素原子がフッ素原子で置換された基、又は2価の無置換の6員環脂肪族基が好ましく、置換基上の水素原子が、ハロゲン原子、アルキル基又はアルコキシ基によって置換されていても良い1,4-フェニレン基、2,6-ナフタレン基又は1,4-シクロヘキシル基が好ましいが、少なくとも一つの置換基はPi1-Spi1-で置換されており、
 Zi1、Aal21およびAa122がそれぞれ複数存在する場合は、それぞれ互いに同一であっても異なっていてもよく、
 Spi1は、好ましくは炭素原子数1~18の直鎖状アルキレン基又は単結合を表し、より好ましくは炭素原子数2~15の直鎖状アルキレン基又は単結合を表し、更に好ましくは炭素原子数3~12の直鎖状アルキレン基又は単結合を表し、
 Ral21は、水素原子、炭素原子数1~20の直鎖又は分岐のアルキル基、ハロゲン化アルキル基、又はPi1-Spi1-を表し、該アルキル基中の-CH-は、-O-、-OCO-、又は-COO-が好ましく(ただし-O-は連続にはならない)、より好ましくは、水素原子、炭素原子数1~18の直鎖又は分岐のアルキル基、又はPi1-Spi1-を表し、該アルキル基中の-CH-は、-O-、-OCO-(ただし-O-は連続にはならない)を表す。
 Ki1は、以下の一般式(K-1)~一般式(K-11)で表される置換基を表し、
Figure JPOXMLDOC01-appb-C000054
 Pi1は、重合性基を表し、以下の一般式(P-1)~一般式(P-15)で表される群より選ばれる置換基を表し(式中、右端の黒点は結合手を表す。)、
Figure JPOXMLDOC01-appb-C000055
 Zi1、Zi2、Aal21、miii1及び/又はAal22がそれぞれ複数存在する場合は、それぞれ互いに同一であっても異なっていてもよく、ただしAi1及びAi2の何れか一つは少なくとも一つのPi1-Spi1-で置換されており、Ki1が(K-11)の場合は、Zii1は少なくとも-CH-CHCOO-、-OCOCH―CH-、-CH-CH(CH)COO-、-OCOCH(CH)―CH-、-OCHCHO-の何れか一つを含み、
 miii1は、1~5の整数を表し、
 miii2は、1~5の整数を表し、
 Gi1は、2価、3価、4価のいずれかの分岐構造、または2価、3価、4価のいずれかの脂肪族または芳香族の環構造を表し、
 miii3は、Gi1の価数より1小さい整数を表す。)
 本発明に係る自発配向剤は、以下の一般式(al-1-1)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000056
(上記式中、Rbl1は、1~12個の炭素原子を有する直鎖状のアルキル基を表し、Rbl2はおよびRbl3はそれぞれ独立して、水素原子または1~3個の炭素原子を有する直鎖状のアルキル基を表し、Lbl1およびLbl1はそれぞれ独立して、水素原子または1~7個の炭素原子を有する直鎖状のアルキル基を表す。)
 その他、液晶パネルの配向層を無くす手段としては、重合性化合物を含有する液晶組成物を第1の基板および第2の基板間に充填する際に、当該晶組成物をTni以上の状態で充填し、重合性化合物を含有する液晶組成物に対してUV照射を行い重合性化合物を硬化させる方法などが挙げられる。
 本発明における組成物は、さらに、一般式(Q)で表される化合物を含有することができる。
Figure JPOXMLDOC01-appb-C000057
(式中、Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上のCH基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-、-OCF-で置換されてよく、Mはトランス-1,4-シクロへキシレン基、1,4-フェニレン基又は単結合を表す。)
 Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上のCH基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-、-OCF-で置換されてよいが、炭素原子数1から10の直鎖アルキル基、直鎖アルコキシ基、1つのCH基が-OCO-又は-COO-に置換された直鎖アルキル基、分岐鎖アルキル基、分岐アルコキシ基、1つのCH基が-OCO-又は-COO-に置換された分岐鎖アルキル基が好ましく、炭素原子数1から20の直鎖アルキル基、1つのCH基が-OCO-又は-COO-に置換された直鎖アルキル基、分岐鎖アルキル基、分岐アルコキシ基、1つのCH基が-OCO-又は-COO-に置換された分岐鎖アルキル基が更に好ましい。Mはトランス-1,4-シクロへキシレン基、1,4-フェニレン基又は単結合を表すが、トランス-1,4-シクロへキシレン基又は1,4-フェニレン基が好ましい。
 一般式(Q)で表される化合物は、より具体的には、下記の一般式(Q-a)から一般式(Q-d)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000058
式中、RQ1は炭素原子数1から10の直鎖アルキル基又は分岐鎖アルキル基が好ましく、RQ2は炭素原子数1から20の直鎖アルキル基又は分岐鎖アルキル基が好ましく、RQ3は炭素原子数1から8の直鎖アルキル基、分岐鎖アルキル基、直鎖アルコキシ基又は分岐鎖アルコキシ基が好ましく、Lは炭素原子数1から8の直鎖アルキレン基又は分岐鎖アルキレン基が好ましい。一般式(Q-a)から一般式(Q-d)で表される化合物中、一般式(Q-c)及び一般式(Q-d)で表される化合物が更に好ましい。
 本願発明の組成物において、一般式(Q)で表される化合物を1種又は2種を含有することが好ましく、1種から5種含有することが更に好ましく、その含有量は0.001から1質量%であることが好ましく、0.001から0.1質量%が更に好ましく、0.001から0.05質量%が特に好ましい。
 また、本発明に使用できる酸化防止剤又は光安定剤としてより具体的には以下の(III-1)~(III-38)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
(式中、nは0から20の整数を表す。)
 本願発明の組成物において、一般式(Q)で表される化合物又は一般式(III-1)~(III-38)から選ばれる化合物を1種又は2種以上含有することが好ましく、1種から5種含有することが更に好ましく、その含有量は0.001から1質量%であることが好ましく、0.001から0.1質量%が更に好ましく、0.001から0.05質量%が特に好ましい。
 本発明の重合性化合物を含有した組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。
 本発明の液晶組成物が重合性化合物を含有する場合、重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
 照射時の温度は、本発明の組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15~35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm2~100W/cmが好ましく、2mW/cm~50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cm2から500J/cm2が好ましく、100mJ/cm2から200J/cm2がより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
 重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
 照射時の温度は、本発明の組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15~35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm~100W/cmが好ましく、2mW/cm~50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cm2がより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
  「配向層」
 本発明の好適な液晶表示素子において、第一の基板と、第二の基板との間の液晶組成物と接する面には液晶層5の液晶分子を配向させるため、必要に応じて配向層を設けてもよい。配向層を必要とする液晶表示素子においては、光変換層と液晶層と間に配置するものであるが、配向層の膜厚が厚いものでも100nm以下と薄く、光変換層を構成する発光用ナノ結晶、顔料等の色素と液晶層を構成する液晶化合物との相互作用を完全に遮断するものでは無い。
 また、配向層を用いない液晶表示素子においては、光変換層を構成する発光用ナノ結晶、顔料等の色素と液晶層を構成する液晶化合物との相互作用はより大きくなる。
 本発明に係る配向層は、ラビング配向層および光配向層からなる群から選択される少なくとも1種であることが好ましい。ラビング配向層の場合は、特に制限されることは無く、公知のポリイミド系の配向層を好適に使用することができる。
 当該ラビング配向層材料としては、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコールなどの透明性有機材料を用いることができ、特に、p-フェニレンジアミン、4,4’-ジアミノジフエニルメタンなどの脂肪族または脂環族ジアミン等のジアミン及びブタンテトラカルボン酸無水物や2,3,5-トリカルボキシシクロペンチル酢酸無水物等の脂肪族又は脂環式テトラカルボン酸無水物、ピロメリット酸二無水物等の芳香族テトラカルボン酸無水物から合成されるポリアミック酸をイミド化した、ポリイミド配向層が好ましい。垂直配向層等に使用する場合は配向を付与しないで使用することもできる。
 (光配向)
 本発明に係る配向層が光配向層の場合は、光応答性分子を1種以上含むものであればよい。前記光応答性分子は、光に応答して二量化により架橋構造を形成する光応答性二量化型分子、光に応答して異性化し偏光軸に対して略垂直または平行に配向する光応答性異性化型分子、および光に応答して高分子鎖が切断する光応答性分解型高分子からなる群から選択される少なくとも1種が好ましく、光応答性異性化型分子が感度、配向規制力の点から特に好ましい。
 前記光応答性異性化型高分子において、光に応答して異性化し偏光軸に対して略垂直に配向する際に使用される光は、200~500nmであることが好ましく、300~500nmであることがより好ましく、300~400nmであることがさらに好ましい。
 本発明に係る光応答性異性化型高分子の重量平均分子量は、10000~800000であることが好ましく、10000~400000であることがより好ましく、50000~400000であることがさらに好ましく、50000~300000であることが特に好ましい。
 前記重量平均分子量(Mw)は、GPC(ゲル浸透クロマトグラフィー,Gel Permeation Chromatography)測定の結果得られたものである。
 以下、例を挙げて本願発明を更に詳述するが、本願発明はこれらによって限定されるものではない。実施例において化合物の記載について以下の略号を用いる。なお、nは自然数を表す。
 (側鎖)
 -n    -C2n+1 炭素原子数nの直鎖状のアルキル基
 n-    C2n+1- 炭素原子数nの直鎖状のアルキル基
 -On   -OC2n+1 炭素原子数nの直鎖状のアルコキシル基
 nO-   C2n+1O- 炭素原子数nの直鎖状のアルコキシル基
 -V    -CH=CH
 V-    CH=CH-
 -V1   -CH=CH-CH
 1V-   CH-CH=CH-
 -2V   -CH-CH-CH=CH
 V2-   CH=CH-CH-CH
 -2V1  -CH-CH-CH=CH-CH
 1V2-  CH-CH=CH-CH-CH
 (連結基)
-n-     -C2n
-nO-    -C2n-O-
-On-    -O-C2n
-COO-   -C(=O)-O-
-OCO-   -O-C(=O)-
-CF2O-  -CF-O-
-OCF2-  -O-CF
 (環構造)
Figure JPOXMLDOC01-appb-C000068
 実施例中、測定した特性は以下の通りである。
 TNI :ネマチック相-等方性液体相転移温度(℃)
 Δn :20℃における屈折率異方性
 Δε :20℃における誘電率異方性
 η  :20℃における粘度(mPa・s)
 γ :20℃における回転粘度(mPa・s)
 K11 :20℃における弾性定数K11(pN)
 K33 :20℃における弾性定数K33(pN)
 KAVG :K11とK33の平均値(KAVG=(K11+K33)/2)(pN)
 「VHR測定」
(周波数60Hz,印加電圧1Vの条件下で333Kにおける電圧保持率(%))
 450nmに主発光ピークを有する青色LED光源耐光試験:
 450nmにピークをもつ青色単色LED光源を液晶パネルに対して14時間450nmの波長で68J照射する前と後のVHRを測定した。
 385nmに主発光ピークを有するLED耐光試験:
 385nmをピークにもつ単色LEDを液晶パネルに対して60秒385nmの波長で10J照射する前と後のVHRを測定した。
 「液晶パネル、バックライトユニットおよび液晶表示素子の作製方法」
 (1)液晶パネルの作製
 (光変換層またはカラーフィルタの製造)
 (A)「発光性ナノ結晶の作製」
 下記の発光性ナノ結晶を製造する操作、及びインクを製造する操作は、窒素で満たしたグローブボックス内、または、大気を遮断し窒素気流下のフラスコ内で行った。
また以下で例示するすべての原料は、その容器内の大気を、容器内に窒素ガスを導入して窒素ガスにあらかじめ置換しておき用いた。尚、液体材料に関しては、液体に窒素ガスを導入して溶存酸素を窒素ガスに置換し用いた。酸化チタンについては使用前に、1mmHgの減圧下、2時間、120℃で加熱し、窒素ガス雰囲気下で放冷した。
 また、以下で用いる、有機溶剤及び液体材料は、10mlにつき、窒素雰囲気下、関東化学(株)モレキュラーシーブ 3Aを1gの割合で加えて、48時間以上脱水、乾燥させたものを用いた。
 〔赤色発光性ナノ結晶の製造〕
 1000mlのフラスコに酢酸インジウム17.48g、トリオクチルホスフィンオキサイド25.0g、ラウリン酸35.98gを仕込み、窒素ガスでバブリングしながら160℃で40分撹拌した。更に250℃で20分間撹拌した後、300℃まで加熱して撹拌を続けた。グローブボックス内でトリス(トリメチルシリル)ホスフィン4.0gをトリオクチルホスフィン15.0gに溶解させた後、ガラス注射器に充填した。これを300℃に加熱した前記のフラスコ中に注入し、250℃で10分間反応させた。さらにグローブボックス内でトリス(トリメチルシリル)ホスフィン7.5gをトリオクチルホスフィン30.0gに溶解させた混合液5mlを上記反応溶液に12分間で滴下し、その後、使い切るまで15分間隔で5mlずつ反応溶液に加えた。
 別の三口フラスコにて酢酸インジウム5.595g、トリオクチルホスフィンオキシド10.0g、ラウリン酸11.515gを仕込み、窒素ガスでバブリングしながら160℃で40分撹拌した。更に250℃で20分間撹拌、300℃まで加熱した後、70℃まで冷却した混合溶液を上記反応溶液に加えた。グローブボックス内でトリス(トリメチルシリル)ホスフィン4.0gをトリオクチルホスフィン15.0gに溶解させた混合液5mlを再度、上記反応溶液に12分間で滴下し、その後、使い切るまで15分間隔で5mlずつ反応溶液に加えた。1時間攪拌を維持、室温まで冷却した後、トルエン100mlとエタノール400mlを加えて微粒子を凝集させた。遠心分離機を用いて微粒子を沈殿させた後、上澄み液を廃棄し、沈殿した微粒子をトリオクチルホスフィンに溶解させる事によりリン化インジウム(InP)赤色発光性ナノ結晶のトリオクチルホスフィン溶液を得た。
 〔緑色発光性ナノ結晶の製造〕
 1000mlのフラスコに酢酸インジウム23.3g、トリオクチルホスフィンオキサイド40.0g、ラウリン酸48.0gを仕込み、窒素ガスでバブリングしながら160℃で40分撹拌した。更に250℃で20分間撹拌した後、300℃まで加熱して撹拌を続けた。グローブボックス内でトリス(トリメチルシリル)ホスフィン10.0gをトリオクチルホスフィン30.0gに溶解させた後、ガラス注射器に充填した。これを300℃に加熱した前記のフラスコ中に注入し、250℃で5分間反応させた。フラスコを室温まで冷却し、トルエン100mlとエタノール400mlを加えて微粒子を凝集させた。遠心分離機を用いて微粒子を沈殿させた後、上澄み液を廃棄し、沈殿した微粒子をトリオクチルホスフィンに溶解させる事によりリン化インジウム(InP)緑色発光性ナノ結晶のトリオクチルホスフィン溶液を得た。
 〔InP/ZnSコアシェルナノ結晶の製造〕
 上記にて合成したリン化インジウム(InP)赤色発光性ナノ結晶のトリオクチルホスフィン溶液においてInP3.6g、トリオクチルホスフィン90gに調整した後、1000mlのフラスコに投入し、さらにトリオクチルホスフィンオキシド90g、ラウリン酸30gを加える。一方、グローブボックス内でジエチル亜鉛の1Mヘキサン溶液42.9ml、ビストリメチルシリルスルフィドのトリオクチルホスフィン9.09重量%溶液92.49gをトリオクチルホスフィン162g混合する事でストックソリューションを作製した。フラスコ内を窒素雰囲気に置換した後、フラスコの温度を180℃に設定し、80℃に達した時点で上記ストックソリューション15mlを添加し、その後10分ごとに15mlを添加し続けた。(フラスコ温度は180℃に維持)。最後の添加が終了後、さらに10分間温度を維持する事で反応を終了させた。反応終了後、溶液を常温まで冷却させ、トルエン500mlとエタノール2000mlを加えてナノ結晶を凝集させた。遠心分離機を用い、ナノ結晶を沈殿した後、上澄み液を廃棄し、溶液中のナノ結晶濃度が20質量%となる様、沈殿物を再度クロロホルムに溶解させる事により、InP/ZnSコアシェルナノ結晶(赤色発光性)のクロロホルム溶液(QD分散液1)を得た。
 また、リン化インジウム(InP)赤色発光性ナノ結晶の代わりに、前記のリン化インジウム(InP)緑色発光性ナノ結晶を用い、InP/ZnSコアシェルナノ結晶(緑色発光性)のクロロホルム溶液(QD分散液2)を得た。
 〔発光性ナノ結晶のリガンド交換〕
 特開2002―121549(三菱化学(株)の公開特許公報)を参考にして3-メルカプトプロパン酸のトリエチレングリコールモノメチルエーテルエステル(トリエチレングリコールモノメチルエーテルメルカプトプロピオネート)(TEGMEMP)を合成し、減圧乾燥した。
 窒素ガスで満たした容器内でナノ結晶(量子ドット)分散液1(上記のInP/ZnSコアシェルナノ結晶(赤色発光性)を含む)と、上記で合成したTEGMEMP8gを溶解したクロロホルム溶液80gを混合して80℃で2時間撹拌することでリガンド交換を行い、室温まで冷却した。
 その後、減圧下40℃で撹拌しながらトルエン/クロロホルムを蒸発させ、液量が100mlになるまで濃縮した。この分散液に4倍重量のn-ヘキサンを加えてQDを凝集させ、遠心分離とデカンテーションによって上澄み液を除いた。沈殿物に50gのトルエンを加えて超音波で再分散させた。この洗浄操作を計3回行い、液中に残存する遊離しているリガンド成分を除去した。デカンテーション後の沈殿物を室温で2時間真空乾燥してTEGMEMPで修飾されたQD(QD-TEGMEMP(赤色発光))の粉体2gを得た。同様の方法でQD(QD-TEGMEMP(緑色発光))の粉体を得た。
 (B)着色用組成物、発光用ナノ結晶含有組成物およびインク組成物の作製
 [赤色発光用ナノ結晶含有組成物1]
 上記赤色発光用ナノ結晶固形分(リガンドを含む)30質量部と、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)30質量部と、重合開始剤(Irgacure-907(商標名) BASF社製)5質量部と、ポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)30質量部とを混合して、固形分が20質量%となるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色発光用ナノ結晶含有組成物1を得た。
 [赤色着色用組成物]
 赤色顔料(水溶分0.3%、比電導度30μS/cmのC.I.Pigment Red 254)10部をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート55部、ディスパービックLPN21116(ビックケミー株式会社製)7.0部、0.3-0.4mmφセプルビーズを加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、5μmのフィルタで濾過し顔料分散液を得た。この顔料分散液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色顔料着色組成物1を得た。
 なお、顔料の水溶分は、JIS K5101-16-1(顔料試験方法-第16部:水溶分-第1節:煮沸抽出法)に基づくものである。
 具体的には、
1.顔料5.00gを500mLの硬質ビーカーに正しく計り取り、イオン交換水(電導度5μS/cm以下、pH=7.0±1.0)200mLを、初め少量ずつ加え、試薬一級メタノール5mLを加えてよく濡らした後、全量を加え5分間煮沸する。
2.これを室温まで冷却し、250mLメスシリンダーに移し、更に上記イオン交換水を加えて250mLとし、よくかき混ぜてアドバンテック社製ろ紙No.5Cにてろ過する。
3.ろ液の最初の約50mLを捨て、残りの中から100mLをメスシリンダーで計り取り、質量既知の蒸発皿に移す。メスシリンダーに付着したろ液は少量のイオン交換水で蒸発皿に洗い流す。
4.この蒸発皿を水浴上で蒸発乾固させ、105~110℃に保った乾燥器中で2時間乾燥した後デシケーターに入れ、放冷した後の質量を計り、蒸発残量を求める。
5.次式により水溶分を算出する。
  顔料の水溶分(%)=蒸発残量(g)×2.5 / 顔料の質量(g) ×100
 また、顔料の比電導度は、イオン交換水の比電導度を電導度計(東亜ディーケーケー株式会社社製CM-30V型等)を使用して測定した後、上記3で100mLをメスシリンダーで計り取ったろ液を同じ電導度計を使用して測定し、次式により測定値を補正して算出する。
   顔料の比電導度=ろ液の比電導度-用いたイオン交換水の比電導度
 [緑色発光用ナノ結晶含有組成物1]
 上記赤色発光用ナノ結晶含有組成物の赤色発光用ナノ結晶に代え、上記緑色発光用ナノ結晶を用いて、上記と同様にして、緑色発光用ナノ結晶含有組成物1を得た。
 [緑色着色用組成物]
 上記赤色顔料着色組成物1の赤色顔料1 10部に代え、緑色顔料1(水溶分0.3%、比電導度40μS/cmのC.I.Pigment Green 36)6部と黄色顔料2(水溶分0.6%、比電導度70μS/cmのC.I.Pigment Yellow 150)4部を混合した顔料(水溶分0.4%、比電導度50μS/cm)を用いて、上記と同様にして、緑色着色用組成物1を得た。
 [青色(発光用ナノ結晶含有)組成物]
 青色(発光用ナノ結晶含有)組成物は、上記赤色発光用ナノ結晶含有組成物1の赤色発光用ナノ結晶に代え、青色発光用ナノ結晶を用いて、上記と同様にして、青色発光用ナノ結晶含有組成物を得た。
 [青色着色用組成物1]
 青色着色用組成物は、プロピレングリコールモノメチルエーテルアセテート、ディスパービックLPN21116(ビックケミー株式会社製)、Saint-Gobain社製0.3-0.4mmφジルコニアビーズ「ER-120S」を混合し、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、1μmのフィルタで濾過して分散液を調製した。次いで、当該分散液75質量部、ポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.5質量部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5質量部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1質量部およびユーカーエステルEEP13.5質量部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、青色着色組成物1を得た。
 [青色着色用組成物2]
 青色着色組成物は、青色染料1(C.I.Solvent Blue 7)をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート、ディスパービックLPN21116(ビックケミー株式会社製)、Saint-Gobain社製0.3-0.4mmφジルコニアビーズ「ER-120S」を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、1μmのフィルタで濾過し顔料分散液を得た。
 この顔料分散液75質量部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.5質量部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5質量部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、青色着色組成物2を得た。
 [黄色発光用ナノ結晶含有組成物]
 黄色発光用ナノ結晶含有組成物も上記赤色発光用ナノ結晶に代え、黄色色発光用ナノ結晶を用いて、上記と同様にして、黄色発光用ナノ結晶含有組成物を得た。
 [黄色着色用組成物]
 上記赤色顔料組成物の赤色顔料に代え、黄色顔料(水溶分0.6%、比電導度70μS/cmのC.I.Pigment Yellow 150)10部を用いて上記と同様にして、黄色着色用組成物を得た。
 「インク組成物の作製」
 〔酸化チタン分散液の調製〕
 窒素ガスで満たした容器内で、酸化チタン6gと、高分子分散剤1.01gと、1,4-ブタンジオールジアセテートとを不揮発分40%となるように混合した。窒素ガスで満たした容器内の配合物にジルコニアビーズ(直径:1.25mm)を加えた後、窒素ガスで満たした密閉容器をペイントコンディショナーを用いて2時間振とうさせることで配合物の分散処理を行った。これにより光散乱性粒子分散体1を得た。上記の材料は全て、窒素ガスを導入して溶存酸素を窒素ガスに置換したものを用いた。
 〔赤色発光用ナノ結晶含有インク組成物1の調製〕
 窒素ガスで満たした容器内で、以下の(1)、(2)及び(3)を均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルタでろ過、更に窒素ガスをインク内に導入し窒素ガスを飽和させた。次いで減圧して窒素ガスを除去することにより、インク組成物を得た。こうして、脱酸素処理された、水分を実質的に含有していない、最終インク組成物1を得た。尚、使用した材料は以下である。
 [光散乱性粒子]
 ・酸化チタン:MPT141(石原産業(株)製)
 [熱硬化系樹脂]
 ・グリシジル基含有固形アクリル樹脂:「ファインディックA-254」
                  (DIC(株)製)
 [高分子分散剤]
 ・高分子分散剤:BYK-2164
       (BYK社製の商品名、「DISPERBYK」は登録商標)
 [有機溶剤]
 ・1,4-ブタンジオールジアセテート ((株)ダイセル製)
 (1)上記で調製したQD(QD-TEGMEMP(赤色発光))に、有機溶剤1,4-ブタンジオールジアセテートを混合し不揮発分30%としたQD-TEGMEMP分散液1(上記のInP/ZnSコアシェルナノ結晶(赤色発光性)を含む):  22.5g
 (2)熱硬化系樹脂:DIC(株)製「ファインディックA-254」(6.28g)と、硬化剤:1-メチルシクロヘキサン-4,5-ジカルボン酸無水物 (1.05g)と硬化促進剤:ジメチルベンジルアミン (0.08g)とを、有機溶剤:1、4-ブタンジオールジアセテートに不揮発分30%となるように溶解した、熱硬化性樹脂溶液 : 12.5g
 (3)前記光散乱性粒子分散体1:  7.5g
 〔緑色発光用ナノ結晶含有インク組成物2の調製〕
 上記QD-TEGMEMP分散液1(上記のInP/ZnSコアシェルナノ結晶(赤色発光性)を含む)の代わりに、QD(QD-TEGMEMP(緑色発光))の分散液(上記のInP/ZnSコアシェルナノ結晶(緑色発光性)を含む)を用い、インク組成物1と同様にしてインク組成物2を得た。
 〔インク組成物3の調製〕
 Y138(BASF株式会社製) 0.50質量部を塩化ナトリウム1.50質量部、ジエチレングリコール0.75質量部とともに磨砕した。その後、この混合物を600質量部の温水に投じ、1時間攪拌した。水不溶分をろ過分離して温水でよく洗浄した後、90℃で送風乾燥して顔料化を行った。顔料の粒子系は、100nm以下、粒子の平均長さ/幅比は3.00未満であった。得られたキノフタロン化合物の黄色顔料を用いて以下の分散試験及びカラーフィルタ評価試験を行った。
 上記方法で顔料化したY138(BASF株式会社製)0.660質量部をガラス瓶に入れ、プロピレングリコールモノメチルエーテルアセテート6.42質量部、DISPERBYK(登録商標)LPN-6919(ビックケミー株式会社社製)0.467質量部、DIC株式会社製アクリル樹脂溶液ユニディック(登録商標)ZL-295 0.700質量部、0.3-0.4mmφセプルビーズ22.0質量部を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散し、顔料分散体を得た。さらに、得られた顔料分散体2.00質量部、DIC株式会社製アクリル樹脂溶液ユニディック(登録商標)ZL-295 0.490質量部、プロピレングリコールモノメチルエーテルアセテート0.110質量部をガラス瓶に入れ、インク組成物3を作製した。
 〔光散乱性インク組成物ScBの調製〕
 上記QD-TEGMEMP分散液1(上記のInP/ZnSコアシェルナノ結晶(赤色発光性)を含む)の代わりに、(1)として1,4-ブタンジオールジアセテートを用い、インク組成物1と同様にして光散乱性インク組成物ScBを得た。
 (C)光変換層の製造
 (フォトリソグラフィ法による光変換層1~5の作製)
 予めブラックマトリックスが形成されてあるガラス基板に、赤色発光用ナノ結晶含有組成物をスピンコートにより膜厚2μmとなるように塗布した。70℃で20分間乾燥の後、超高圧水銀ランプを備えた露光機にて紫外線をフォトマスクを介してストライプ状のパターン露光をした。アルカリ現像液にて90秒間スプレー現像、イオン交換水で洗浄し、風乾した。さらに、クリーンオーブン中で、180℃で30分間ポストベークを行い、ストライプ状の着色層である赤色画素を透明基板上に形成した。
 次に、緑色発光用ナノ結晶含有組成物も同様にスピンコートにて膜厚が2μmとなるように塗布。乾燥後、露光機にてストライプ状の着色層を前述の赤色画素とはずらした場所に露光し現像することで、前述赤色画素と隣接した緑色画素を形成した。
 以下、下記表1の構成となるように、各色の発光用ナノ結晶含有組成物又は着色用組成物を用いて、赤、緑、青の3色のストライプ状の画素を持つ光変換層1,3,5又は赤、緑、青、黄の4色のストライプ状の画素を持つ光変換層3を得た。
 また、光変換層1上の全面に青色着色組成物2を塗布・紫外線照射することにより赤、緑、青の3色のストライプ状の画素全面の上に青色層を形成させた光変換層4を得た。
Figure JPOXMLDOC01-appb-T000069
 〔インクジェット法による光変換層6の作製〕
 無アルカリガラスからなるガラス基板(日本電気硝子社製の「OA-10G」)上に金属クロムをスパッタリング後、フォトリソグラフィ法にてパターン形成したのち、フォトレジストSU-8(日本化薬株式会社製)を塗布、露光、現像、ポストベークして、クロムパターン上に、SU-8パターンを形成した。
 こうして作成した隔壁パターンのデザインは、100μm×300μmのサブ画素に相当する開口部分を有するパターンであり、線幅は20μmであり、厚さは8μmであった。このBM基板を光変換層6の作成に使用した。
 尚、同様の方法で、ベタパターンを作成し、インクに用いる溶剤(1,4-BDDA)の接触角を測定したところ、45°であり溶剤に対して撥液性を示すことを確認した。
 インクジェットプリンター(富士フイルムDimatix社製、商品名「DMP-2850」)を用いて、上記インク組成物1~2および、QD-TEGMEMPを用いないこと以外は赤色発光用ナノ結晶含有インク組成物1と同様にして光散乱性インク組成物ScBを作成し、これらのインク組成物を開口部に吐出させた。なお、本インクジェットプリンターのインクを吐出するヘッド部には16個のノズルが形成されており、1ノズル当たり、吐出一回あたりのインク組成物の使用量は10pLとした。
 ブラックマトリックス(以下、BMとも称する)を、DMP-2850のプラテン(基材テーブル)上に設置し、基材上のブラックマトリックスパターンとヘッドの走査方向を一致させ、位置あわせを行って、BMの開口部分に対して、インクを6m/秒の速度で吐出させた。
 尚、ブラックマトリックスの隔壁厚みに対して、インクの硬化膜の膜厚みが80%以上の厚みになるまでインクを吐出、製膜した。BMの開口部に印刷・硬化されたインク硬化膜の膜厚は、光干渉式の膜厚計(Vert Scan)にて測定した。
 尚、インクの乾燥や硬化処理は、以下のように行った。
 インクが熱硬化性の場合、溶剤を含むため、減圧下で乾燥させたのち、グローブボックス内で窒素雰囲気中、100℃3分加熱ののち、150℃30分、加熱し硬化させた。
 インクが光重合性の場合、窒素ガスを充填した光透過性窓を有する密閉容器(パージボックス)に、印刷した基板を入れ、紫外線照射装置にて、UV光を照射して効果させた。
 このようにして、BM基板に、青色光を赤色光に変換する画素部と、青色光を緑色光に変換する画素部と、発光性ナノ結晶を含まない光散乱剤含有分散液で青色光を(色変換せずに)透過させる画素部と、を形成した。
以上の操作により、複数種の画素部を備えるパターン付き光変換層6を得た(図22の構成)。
 [インクジェット法による光変換層7の作製]
 上記光変換層1を上記と同様の方法でガラス基板上に作製した後、光変換層1が形成されているガラス基板面とは反対側の面、すなわち画素部である硬化したインク組成物1~2および硬化したインク組成物ScB上にインク組成物3をスピンコーターにより塗布後、乾燥させた。次いで、180℃で1時間加熱することで、黄色カラーフィルタ層が一面にコーティングされ、かつ青色光を赤色光に変換する画素部と、青色光を緑色光に変換する画素部と、発光性ナノ結晶を含まない光散乱剤含有分散液で青色光を(色変換せずに)透過させる画素部と、がBM基板の開口部中に形成した光変換層7を作製した(図20の構成)。
 [インセル偏光層を備えた電極基板の製造方法]
 前記光変換層1上のクラレ社製「ポバール103」水溶液(固形分濃度4質量%)をそれぞれ塗布・乾燥させた後、ラビング処理を施した。
 次いで、ラビング処理面に、メガファックF‐554(DIC株式会社製)0.03質量部、以下の式(az-1)のアゾ色素1質量部、以下の式(az-2)のアゾ色素1質量部、
Figure JPOXMLDOC01-appb-C000070
クロロホルム98質量部、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学社製)2質量部、ジペンタエリスルトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製)2質量部、イルガキュア907(チバ・スペシャルティ・ケミカルズ社製)0.06質量部およびカヤキュアーDETX(日本化薬社製)からなる偏光層用塗布液を塗布・乾燥させて、偏光層および光変換層1を備えた基板1を作成した。その後、ITOをスパッタリング法により堆積させ、対向基板1(=第2(電極)基板)を作製した。
 同様に、光変換層1の代わりに、光変換層6を用いて対向基板6(=第2(電極)基板)を作製した。
 また、同様に光変換層1の代わりに、光変換層7を用いて対向基板7(=第2(電極)基板)を作製した。
 <VA型液晶パネルの作製と評価>
 上記対向基板1(=第2(電極)基板)のITO上および第1基板の透明電極上に、ポリイミド系垂直配向層をそれぞれ形成した後、前記透明電極およびポリイミド系垂直配向層が形成された第1基板と、前記ポリイミド系垂直配向層が形成された対向基板1とを、それぞれの配向層が対向し、当該配向層の配向方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、下記表1の液晶組成物(組成例1)を、真空注入法により、充填し、偏光板を第1基板上に貼りあわせることでVA型の液晶パネル1を作製した。このように作製した液晶パネルを評価用素子とし、VHR測定およびUVに対する表示品位の評価を行った。同様に組成例1の代わりに下記表1~5の組成例2~8を真空注入法により、それぞれ充填し、VA型液晶パネル2~8を作成してVHR測定およびUVに対する表示品位の評価を行った。その結果を以下の表1~9に示す。なお、液晶組成物の組成例の番号とVA型の液晶パネルの番号とは対応する。
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
 上記表1~5において、450nmに主発光ピークにおける低下率は、「14時間耐光試験後のVHR値/初期(=14時間耐光試験前)のVHR値」であり、385nmに主発光ピークにおける低下率は、「60秒耐光試験後のVHR値/初期(=60秒耐光試験前)のVHR値」である。したがって、低下率が1に近いほど、450nmに主発光ピークを有する青色光または385nmに主発光ピークを有する光に対して安定であることを示す。上記実験結果によれば上記液晶表示素子は、耐光性に優れており、発光用ナノ結晶の劣化や部分的な高エネルギー光線の照射スポットによる液晶層の劣化を抑制または防止できると考えられる。
 385nmに主発光ピークを有する光を照射した場合、組成例2を備えた液晶表示素子が最もVHR値の低下率が低いことが確認される。一方、液晶表示素子の高速応答性に関係するγ1をみると、組成例3が最も高いことが確認される。前者の原因としては、縮合環(ナフタレン)を含む2環以上の液晶化合物を含むため、光を吸収しやすいことに関係すると考えられる。また、後者の原因としては、クロマン環を含む2環以上液晶化合物であるため、粘性が高くなることが考えられる。
 [VA型液晶パネルA1]
 また、VA型液晶パネル1で使用した対向基板1の代わりに光変換層6を備えた対向基板6を用いた以外はVA型液晶パネル1と同様の方法でVA型液晶パネルA1(組成例1の液晶組成物を使用)を作製した。その結果、14時間耐光試験後のVHR値の低下は見られなかった。
 [VA型液晶パネルB1]
 また、VA型液晶パネル1で使用した対向基板1の代わりに光変換層7を備えた対向基板7を用いた以外はVA型液晶パネル1と同様の方法でVA型液晶パネルB1を作製した。その結果、14時間耐光試験後のVHR値の低下は見られなかった。
 [リタデーション特性]
 次に、組成例1に記載の液晶組成物を、VA型液晶パネル1の間隙(4μm)を間隙(3.5μm)に変更したVA型液晶パネル2と、VA型液晶パネル1の間隙(4μm)を間隙(2.8μm)に変更したVA型液晶パネル3とを用いて、透過率のシミュレーションを行った(シンテック社製LCDMasterを使用)。その結果を以下に示す。
Figure JPOXMLDOC01-appb-T000076
 上記結果から、リタデーションを325nmから260nmに変えると、透過率が約2割向上することが確認された。
 リタデーション(Re)は、以下の式(1)で表される
Re=Δn×d
(上記数式(1)中、Δnは589nmにおける屈折率異方性を表し、dは液晶表示素子の液晶層のセル厚(μm)を表す。)
 同様に、上記組成例2~9においても透過率が向上することが確認される。そのため、
リタデーション(Re)が、220~300nmの範囲であると透過率が向上すると考えられる。
 また、上記組成例8については組成例8の液晶組成物100質量部に対して、以下の式(III-22)の酸化防止剤を0.05質量部添加して、上記組成例8と同様に、VA型の液晶パネルを作製して、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行ってもよい。
Figure JPOXMLDOC01-appb-C000077
 なお、上記の450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験を組成例1~9以外の以下の表6および表7に記載の組成物例12~22で行った場合でも、450nmに主発光ピークを有する青色光または385nmに主発光ピークを有する光に対して安定である効果が発揮されると考えられる。なお、組成物例22は、特許第5122086号の例30を使用した。
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
 [PSVA型液晶パネル1]
 以下の重合性化合物
Figure JPOXMLDOC01-appb-C000081
0.3質量部と、組成物例5を99.7質量部とを混合した重合性化合物含有液晶組成物1をセルギャップ4μmで垂直配向を誘起するポリイミド配向膜を塗布した後、フィッシュボーン構造のITO付き基板を含む液晶パネルに真空注入法で注入した。垂直配向膜形成材料として、JSR社製のJALS2096を用いた。
 その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルタを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、PSVA型液晶パネル1を得て、上記組成例5と同様に、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色光および385nmに主発光ピークを有する光のいずれの場合も、表示不良は観察されなかった。
 [PSVA型液晶パネル2]
 以下の重合性化合物(XX-5)と、
Figure JPOXMLDOC01-appb-C000082
組成物例1を99.7質量部と、を混合した重合性化合物含有液晶組成物2をセルギャップ4μmで垂直配向を誘起するポリイミド配向膜を塗布した後、フィッシュボーン構造のITO付き基板を含む液晶パネルに真空注入法で注入した。垂直配向膜形成材料として、JSR社製のJALS2096を用いた。
 その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルタを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、PSVA型液晶パネル2を得て、上記組成例1と同様に、450nmに主発光ピークを有する青色LEDによる耐光試験および385nmに主発光ピークを有するLEDによる耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色LEDおよび385nmに主発光ピークを有するLEDのいずれの場合も、表示不良は観察されなかった。
 (自発配向型VA液晶パネル1)
 透明電極が形成された第1基板と、上記インセル偏光層を表面備えた光変換層6が形成された対向基板6(上記第2の透明電極基板)とを、それぞれの電極が対向するように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、以下の自発配向剤(以下の式(SA-1))2質量部と、上記重合性化合物(XX-2)0.5質量部と、上記組成例7を99.7質量部と、
Figure JPOXMLDOC01-appb-C000083
を混合した液晶組成物をセルギャップ4μmで配向膜なしのITO付き基板を含む液晶パネルに真空注入法で注入した。
 その後、上記重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルタを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、自発配向型VA液晶パネル1を得て、上記組成例7と同様に、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色光および385nmに主発光ピークを有する光のいずれの場合も、初期のVHR値、耐光試験後のVHR値は、上記組成例7とほぼ同様の結果になった。
 (自発配向型VA液晶パネル2)
 透明電極が形成された第1基板と、上記インセル偏光層を表面備えた光変換層6が形成された対向基板6(上記第2の透明電極基板)とを、それぞれの電極が対向するように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、以下の自発配向剤(以下の式(SA-2))2質量部と、上記重合性化合物(XX-5)0.5質量部と、上記組成物例4を99.7質量部と、
Figure JPOXMLDOC01-appb-C000084
を混合した液晶組成物をセルギャップ3.5μmで配向膜なしのITO付き基板を含む液晶パネルに真空注入法で注入した。
 その後、重合性化合物を含有する液晶組成物を注入した液晶パネルに周波数100Hzで電圧を10V印加した状態で高圧水銀灯を用い、325nm以下の紫外線をカットするフィルタを介して紫外線を照射した。このとき、中心波長365nmの条件で測定した照度が100mW/cmになるように調整し、積算光量10J/cmの紫外線を照射した。次に、蛍光UVランプを用いて、中心波長313nmの条件で測定した照度が3mW/cmになるように調整し、積算光量10J/cmの紫外線を更に照射し、自発配向型VA液晶パネル2を得て、上記組成例4と同様に、450nmに主発光ピークを有する青色光による耐光試験および385nmに主発光ピークを有する光による耐光試験の評価を行った。その結果、450nmに主発光ピークを有する青色光および385nmに主発光ピークを有する光のいずれの場合も、初期のVHR値、耐光試験後のVHR値は、上記組成例4とほぼ同様の結果になった。
 (光配向膜型VA型液晶パネル)
 第1基板に形成された透明電極の上に、国際公開2013/002260号パンフレットの実施例22で用いられた垂直配向層溶液をスピンコート法により形成し、偏光照射して乾燥厚さ0.1μmの光配向層を形成した。偏光層を表面備えた光変換層1が形成された上記第2の透明電極基板(対向基板1)にも同様にして表面に配向層を形成した。透明電極および配向層が形成された第1基板と、上記光変換層1が形成された対向基板1である第2(電極)基板を、それぞれの配向層が対向し、当該配向層の配向方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、上記の組成例1に記載の液晶組成物を、真空注入法により、充填し、偏光板を第1基板上に貼りあわせることで光配向膜型VA型液晶パネルを作製した。
 (IPS型液晶パネル)
 第1基板に形成された一対の櫛歯電極の上に、配向層溶液をスピンコート法により形成し、配向層を形成した。櫛形透明電極および配向層が形成された第1基板と、配向層、上記インセル偏光層、光変換層1および前記光変換層1上に平坦化膜が形成された形成された第2基板を、それぞれの配向層が対向し、かつ直線偏光を照射した、または水平方向にラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により張り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、上記の液晶組成物(組成例6)を、真空注入法により充填し、その後一対の偏光板を第1基板および第2基板上に貼りあわせIPS型の液晶パネルを作製した。
 (FFS型液晶パネル)
 第1の透明基板に平板状の共通電極を形成した後、絶縁層膜を形成し、さらに当該絶縁層膜上に透明櫛歯電極を形成した後、当該透明櫛歯電極上に配向層溶液をスピンコート法により形成し、第1の電極基板を形成した。配向層、上記インセル偏光層、光変換層1および平坦化膜が形成された第2基板にも同様にして配向層を形成した。次いで、櫛形透明電極および配向層が形成された第1基板と、配向層、偏光層、光変換層1および光変換層1上に平坦化膜が形成された第2基板を、それぞれの配向層が対向し、かつ直線偏光を照射した、またはラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により張り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、上記の液晶組成物(組成例9)を、滴下法により充填しFFS型の液晶パネルを作製した。
 (2)バックライトユニットの作製
 (バックライトユニット1の作製)
 青色LED光源を導光板の一辺の端部に設置し、反射シートで照射面を除く部分を覆い、導光板の照射側に拡散シートを配置してバックライトユニット1を作製した。
 (バックライトユニット2の作製)
 光を散乱反射する下側反射板上に格子状に青色LEDが配置され、さらにその照射側直上には拡散板を配置し、さらにその照射側に拡散シートを配置しバックライトユニット2を作製した。
 (3)液晶表示素子の作製と色再現領域の測定
 上記得られたVA型液晶パネル1、PSVA型液晶パネル1、VA型液晶パネルB1、自発配向型VA型液晶パネル1、自発配向型VA型液晶パネル2および光配向膜型VA型液晶パネル対して、上記で作製したバックライトユニット1~2をそれぞれ取り付けて色再現領域を測定した。その結果、いずれも光変換層を備えた液晶表示素子と光変換層を備えていない従来の液晶表示素子とでは、前者の方が色再現領域が拡大することが確認された。
 同様に、上記で得られたIPS型液晶パネルに対して、上記で作製したバックライトユニット1~2を取り付けて色再現領域を測定した。その結果、いずれも光変換層を備えた液晶表示素子と光変換層を備えていない従来の液晶表示素子とでは、前者の方が色再現領域が拡大することが確認された。
 上記得られたFFS型液晶パネルに対して、上記で作製したバックライトユニット1~2を取り付けて色再現領域を色再現領域を測定した。その結果、いずれも光変換層を備えた液晶表示素子と光変換層を備えていない従来の液晶表示素子とでは、前者の方が色再現領域が拡大することが確認された。
1000:液晶表示素子
100:バックライトユニット(101:光源部、102:導光部、103:光変換部)
101:光源部(L:発光素子(105:発光ダイオード、110:光源基板)、112a、b:固定部材)
102:導光部(106:拡散板、104:導光板)
103:光源・導光部
110:光源基板
111:透明充填容器
112a、b:固定部材
NC:発光用ナノ結晶(化合物半導体)
1、8:偏光層
2、7:透明基板
3:第一の電極層
3’:第二の電極層
4:配向層
5:液晶層
6:カラーフィルタ(樹脂に色素が含まれる場合も含む)
9:支持基板
11:ゲート電極
12:ゲート絶縁膜
13:半導体層
14:保護層
16:ドレイン電極
17:ソース電極
18:パッシベーション膜
21:画素電極
22:共通電極
23、25:絶縁層

Claims (12)

  1.  第一の基板および第二の基板が対向して設けられる一対の基板と、
     前記第一の基板と第二の基板と間に挟持された液晶層と、
     前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、
     前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、
     発光素子を備えた光源部と、
     赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、を備え、
     前記液晶層が一般式(i)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10~50質量%含有する液晶組成物を含有することを特徴とする液晶表示素子。
  2.  前記光変換層は、ブラックマトリクスを有し、青色光を吸収し赤色光を発光する第一の発光用ナノ結晶及び青色光を吸収し緑色光を発光する第二の発光用ナノ結晶を含有し、前記発光素子が青色領域に発光スペクトルを有する請求項1記載の液晶表示素子。
  3.  前記光源部からの発光が青色光であって、かつ、光変換層における青色画素を形成する青色画素領域が該青色光を透過させるものである請求項2記載の表示素子。
  4.  前記光変換層は、ブラックマトリクスを有し、紫外光を吸収し赤色光を発光する第三の発光用ナノ結晶、紫外光を吸収し緑色光を発光する第四の発光用ナノ結晶及び紫外光を吸収し青色光を発光する第五の発光用ナノ結晶を含有し、前記発光素子が紫外領域に発光スペクトルを有する請求項1記載の液晶表示素子。
  5.   前記光変換層は、前記光源部側の基板と対向する基板側に設けられる、請求項1~4のいずれか1項に記載の液晶表示素子。
  6.  前記第一の基板と第二の基板間に少なくとも一つの偏光板挟持した請求項1~5のいずれか1項に記載の表示素子。
  7. 赤色(R)、緑色(G)及び青色(B)域の少なくとも一つの発光スペクトルの半値幅が20から50nmである請求項1~6のいずれか1項に記載の液晶表示素子。
  8.  前記発光用ナノ結晶は、第一の半導体材料を少なくとも1種又は2種以上含むコアと、
     前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有する、請求項1~7のいずれか1項に記載の液晶表示素子。
  9.  前記第一の半導体材料は、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群から選択される1種又は2種以上である、請求項8に記載の液晶表示素子。
  10. 前記液晶組成物が、一般式(N-1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、RN11及びRN12はそれぞれ独立して、炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
     AN11及びAN12はそれぞれ独立して
    (a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
    (d) 1,4-シクロヘキセニレン基
    からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
     ZN11及びZN12はそれぞれ独立して、単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
     nN11及びnN12はそれぞれ独立して、0~3の整数を表すが、nN11+nN12はそれぞれ独立して1、2又は3であり、AN11~AN12、ZN11~ZN12が複数存在する場合は、それらは同一であっても異なっていても良い。)で表される化合物を20~80質量%含有し誘電率異方性(Δε)が-1以下の液晶組成物を含む請求項1~9のいずれか1項に記載の液晶表示素子。
  11.  前記液晶組成物は、一般式(J)
    Figure JPOXMLDOC01-appb-C000003
    (式中、RJ1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
     nJ1は、0、1、2、3又は4を表し、
     AJ1、AJ2及びAJ3はそれぞれ独立して、
    (a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
    からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
     ZJ1及びZJ2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
     nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
     XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)で表される化合物を5~60質量%含有し、誘電率異方性(Δε)が1以上の液晶組成物を含む請求項1から10のいずれか1項に記載の液晶表示素子。
  12.  前記液晶層における液晶組成物のΔnが0.05~0.15である、請求項1~16のいずれか1項に記載の液晶表示素子。
PCT/JP2017/043431 2016-12-05 2017-12-04 液晶表示素子 WO2018105545A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780070888.8A CN109964170A (zh) 2016-12-05 2017-12-04 液晶显示元件
JP2018554983A JPWO2018105545A1 (ja) 2016-12-05 2017-12-04 液晶表示素子
US16/465,323 US20190391418A1 (en) 2016-12-05 2017-12-04 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235828 2016-12-05
JP2016235828 2016-12-05

Publications (1)

Publication Number Publication Date
WO2018105545A1 true WO2018105545A1 (ja) 2018-06-14

Family

ID=62491133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043431 WO2018105545A1 (ja) 2016-12-05 2017-12-04 液晶表示素子

Country Status (5)

Country Link
US (1) US20190391418A1 (ja)
JP (1) JPWO2018105545A1 (ja)
CN (1) CN109964170A (ja)
TW (1) TW201835652A (ja)
WO (1) WO2018105545A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230322A1 (ja) * 2017-06-12 2018-12-20 Dic株式会社 重合性化合物及び液晶組成物
JP2019040179A (ja) * 2017-08-24 2019-03-14 Jsr株式会社 積層体、および積層体を含む表示装置
WO2019167640A1 (ja) * 2018-03-01 2019-09-06 Dic株式会社 重合性化合物並びにそれを使用した液晶組成物及び液晶表示素子
JP2019218422A (ja) * 2018-06-15 2019-12-26 Dic株式会社 インク組成物セット、光変換層及びカラーフィルタ
WO2020008896A1 (ja) * 2018-07-03 2020-01-09 Dic株式会社 配向助剤、液晶組成物および液晶表示素子
CN111198455A (zh) * 2018-11-20 2020-05-26 三星显示有限公司 显示面板
WO2020118013A1 (en) * 2018-12-06 2020-06-11 Kateeva, Inc. Stabilized print materials
CN111454711A (zh) * 2019-01-21 2020-07-28 三星Sdi株式会社 量子点、组合物与使用其的固化层、包含固化层的滤色器与显示装置以及制造固化层的方法
JP2020128457A (ja) * 2019-02-07 2020-08-27 Dic株式会社 インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
CN112272792A (zh) * 2018-07-03 2021-01-26 Dic株式会社 液晶显示元件的制造方法
CN112272791A (zh) * 2018-07-03 2021-01-26 Dic株式会社 基板及液晶显示元件
WO2021200278A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 硬化性樹脂組成物及び表示装置
JP2022502697A (ja) * 2018-09-27 2022-01-11 カティーバ, インコーポレイテッド 量子ドットカラーフィルタインク組成物、および量子ドットカラーフィルタインク組成物を利用したデバイス
US20220011497A1 (en) * 2018-01-03 2022-01-13 Boe Technology Group Co., Ltd. Backlight component, method for manufacturing backlight component, and display device
US11762289B2 (en) 2017-10-27 2023-09-19 Samsung Sdi Co., Ltd. Composition including quantum dot, manufacturing method quantum dot and color filter
US11760926B2 (en) 2019-07-26 2023-09-19 Samsung Sdi Co., Ltd. Quantum dot, curable composition comprising the same, cured layer using the composition, color filter including the cured layer, and display device including the cured layer
US11760934B2 (en) 2017-11-17 2023-09-19 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used
US11773318B2 (en) 2019-04-24 2023-10-03 Samsung Sdi Co., Ltd. Curable composition including quantum dot, resin layer using the same and display device including the resin layer
US11866624B2 (en) 2019-02-01 2024-01-09 Samsung Sdi Co., Ltd. Non-solvent type curable composition, cured layer using the same, color filter including the cured layer, display device including the cured layer and manufacturing method of the cured layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102573161B1 (ko) * 2018-01-18 2023-08-31 삼성디스플레이 주식회사 표시 장치
KR102477605B1 (ko) * 2018-01-23 2022-12-14 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN112433404B (zh) * 2020-11-22 2021-08-27 北京科技大学 一种光热响应技术制备宽波反射胆甾相液晶薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060442A (ja) * 1996-08-14 1998-03-03 Chisso Corp 液晶組成物および液晶表示素子
JP2000047184A (ja) * 1998-07-27 2000-02-18 Sharp Corp 液晶表示装置
WO2006017125A2 (en) * 2004-07-08 2006-02-16 Evident Technologies Micronized semiconductor nanocrystal complexes and methods of making and using same
JP2012502322A (ja) * 2008-09-10 2012-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 偏光を発する蛍光バックライトを有する液晶ディスプレイ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277626A1 (en) * 2006-05-23 2008-11-13 Evident Technologies, Inc. Quantum dot fluorescent inks
JP2012159520A (ja) * 2009-05-28 2012-08-23 Sharp Corp 液晶表示装置およびその製造方法
CN105694910A (zh) * 2013-03-26 2016-06-22 Dic株式会社 液晶组合物以及使用其的液晶显示元件
US9376618B2 (en) * 2013-05-22 2016-06-28 Dic Corporation Liquid crystal display device
WO2015025361A1 (ja) * 2013-08-20 2015-02-26 Dic株式会社 液晶組成物及びそれを使用した液晶表示素子
US10437107B2 (en) * 2013-10-30 2019-10-08 Dic Corporation Liquid-crystal display element
JP6561624B2 (ja) * 2014-12-11 2019-08-21 Jnc株式会社 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
WO2018123805A1 (ja) * 2016-12-28 2018-07-05 Dic株式会社 発光素子およびそれを用いた画像表示素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060442A (ja) * 1996-08-14 1998-03-03 Chisso Corp 液晶組成物および液晶表示素子
JP2000047184A (ja) * 1998-07-27 2000-02-18 Sharp Corp 液晶表示装置
WO2006017125A2 (en) * 2004-07-08 2006-02-16 Evident Technologies Micronized semiconductor nanocrystal complexes and methods of making and using same
JP2012502322A (ja) * 2008-09-10 2012-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 偏光を発する蛍光バックライトを有する液晶ディスプレイ

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230322A1 (ja) * 2017-06-12 2018-12-20 Dic株式会社 重合性化合物及び液晶組成物
JP2019040179A (ja) * 2017-08-24 2019-03-14 Jsr株式会社 積層体、および積層体を含む表示装置
US11762289B2 (en) 2017-10-27 2023-09-19 Samsung Sdi Co., Ltd. Composition including quantum dot, manufacturing method quantum dot and color filter
US11760934B2 (en) 2017-11-17 2023-09-19 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used
US20220011497A1 (en) * 2018-01-03 2022-01-13 Boe Technology Group Co., Ltd. Backlight component, method for manufacturing backlight component, and display device
US11860400B2 (en) * 2018-01-03 2024-01-02 Boe Technology Group Co., Ltd. Backlight component, method for manufacturing backlight component, and display device
US11739270B2 (en) 2018-03-01 2023-08-29 Dic Corporation Polymerizable compound as well as liquid crystal composition and liquid crystal display device each including polymerizable compound
WO2019167640A1 (ja) * 2018-03-01 2019-09-06 Dic株式会社 重合性化合物並びにそれを使用した液晶組成物及び液晶表示素子
JP2019218422A (ja) * 2018-06-15 2019-12-26 Dic株式会社 インク組成物セット、光変換層及びカラーフィルタ
WO2020008896A1 (ja) * 2018-07-03 2020-01-09 Dic株式会社 配向助剤、液晶組成物および液晶表示素子
TWI814843B (zh) * 2018-07-03 2023-09-11 日商Dic股份有限公司 液晶顯示元件之製造方法
CN112272792A (zh) * 2018-07-03 2021-01-26 Dic株式会社 液晶显示元件的制造方法
CN112272791A (zh) * 2018-07-03 2021-01-26 Dic株式会社 基板及液晶显示元件
CN112313310A (zh) * 2018-07-03 2021-02-02 Dic株式会社 取向助剂、液晶组合物及液晶显示元件
JPWO2020008896A1 (ja) * 2018-07-03 2021-03-11 Dic株式会社 配向助剤、液晶組成物および液晶表示素子
JP2022502697A (ja) * 2018-09-27 2022-01-11 カティーバ, インコーポレイテッド 量子ドットカラーフィルタインク組成物、および量子ドットカラーフィルタインク組成物を利用したデバイス
JP7144886B2 (ja) 2018-09-27 2022-09-30 カティーバ, インコーポレイテッド 量子ドットカラーフィルタインク組成物、および量子ドットカラーフィルタインク組成物を利用したデバイス
CN111198455A (zh) * 2018-11-20 2020-05-26 三星显示有限公司 显示面板
WO2020118013A1 (en) * 2018-12-06 2020-06-11 Kateeva, Inc. Stabilized print materials
CN116376357A (zh) * 2018-12-06 2023-07-04 科迪华公司 稳定的打印材料
US11945961B2 (en) 2018-12-06 2024-04-02 Kateeva, Inc. Stabilized print materials
CN113423789A (zh) * 2018-12-06 2021-09-21 科迪华公司 稳定的打印材料
US11407914B2 (en) 2018-12-06 2022-08-09 Kateeva, Inc. Stabilized print materials
KR20210088493A (ko) * 2019-01-21 2021-07-14 삼성에스디아이 주식회사 무용매형 경화성 조성물, 이를 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
CN111454711B (zh) * 2019-01-21 2024-03-12 三星Sdi株式会社 量子点、组合物与使用其的固化层、包含固化层的滤色器与显示装置以及制造固化层的方法
JP2020118971A (ja) * 2019-01-21 2020-08-06 三星エスディアイ株式会社Samsung SDI Co., Ltd. 量子ドット、これを含む硬化性組成物、前記組成物を用いて製造された硬化膜、前記硬化膜を含むカラーフィルタ、ディスプレイ装置、および前記硬化膜の製造方法
KR20200090493A (ko) * 2019-01-21 2020-07-29 삼성에스디아이 주식회사 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
CN111454711A (zh) * 2019-01-21 2020-07-28 三星Sdi株式会社 量子点、组合物与使用其的固化层、包含固化层的滤色器与显示装置以及制造固化层的方法
KR102465371B1 (ko) * 2019-01-21 2022-11-09 삼성에스디아이 주식회사 무용매형 경화성 조성물, 이를 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
KR102419673B1 (ko) * 2019-01-21 2022-07-08 삼성에스디아이 주식회사 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
JP7032457B2 (ja) 2019-01-21 2022-03-08 三星エスディアイ株式会社 量子ドット、これを含む硬化性組成物、前記組成物を用いて製造された硬化膜、前記硬化膜を含むカラーフィルタ、ディスプレイ装置、および前記硬化膜の製造方法
US11866624B2 (en) 2019-02-01 2024-01-09 Samsung Sdi Co., Ltd. Non-solvent type curable composition, cured layer using the same, color filter including the cured layer, display device including the cured layer and manufacturing method of the cured layer
JP7238445B2 (ja) 2019-02-07 2023-03-14 Dic株式会社 インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
JP2020128457A (ja) * 2019-02-07 2020-08-27 Dic株式会社 インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
US11773318B2 (en) 2019-04-24 2023-10-03 Samsung Sdi Co., Ltd. Curable composition including quantum dot, resin layer using the same and display device including the resin layer
US11760926B2 (en) 2019-07-26 2023-09-19 Samsung Sdi Co., Ltd. Quantum dot, curable composition comprising the same, cured layer using the composition, color filter including the cured layer, and display device including the cured layer
WO2021200278A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 硬化性樹脂組成物及び表示装置

Also Published As

Publication number Publication date
JPWO2018105545A1 (ja) 2019-10-24
US20190391418A1 (en) 2019-12-26
TW201835652A (zh) 2018-10-01
CN109964170A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2018105545A1 (ja) 液晶表示素子
TWI766927B (zh) 分散體及使用其之噴墨用墨水組成物、光轉換層及液晶顯示元件
JP6628012B2 (ja) 光変換フィルム及びそれを用いた画像表示素子
TWI699589B (zh) 電光切換元件及顯示裝置
WO2018079528A1 (ja) 液晶表示素子
US20150002788A1 (en) Method for preparing liquid crystal display panel, display device and monochromatic quantum dot layer
WO2018105439A1 (ja) 液晶表示素子
WO2018110406A1 (ja) 発光用ナノ結晶複合体
JP6501134B2 (ja) 液晶表示素子
JP2020177071A (ja) 液晶表示素子
JP6797361B2 (ja) 液晶表示素子
TWI773795B (zh) 顯示裝置
KR102360774B1 (ko) 액정 표시 장치 및 그 제조 방법
JP2020204726A (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878291

Country of ref document: EP

Kind code of ref document: A1