WO2021068661A1 - 液晶显示面板及其驱动方法、显示装置 - Google Patents

液晶显示面板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2021068661A1
WO2021068661A1 PCT/CN2020/110996 CN2020110996W WO2021068661A1 WO 2021068661 A1 WO2021068661 A1 WO 2021068661A1 CN 2020110996 W CN2020110996 W CN 2020110996W WO 2021068661 A1 WO2021068661 A1 WO 2021068661A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
base substrate
layer
light
light source
Prior art date
Application number
PCT/CN2020/110996
Other languages
English (en)
French (fr)
Inventor
李忠孝
王倩
赵文卿
杨松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/286,640 priority Critical patent/US11347090B2/en
Publication of WO2021068661A1 publication Critical patent/WO2021068661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present disclosure generally relates to the field of display technology. More specifically, the present disclosure relates to a liquid crystal display panel, a display device including the liquid crystal display panel, and a method for driving the liquid crystal display panel.
  • Liquid crystal display panels are widely used in various display devices due to a series of advantages such as lightness and thinness, high color gamut, good shock resistance, wide viewing angle, high contrast, and fast response time.
  • advantages such as lightness and thinness, high color gamut, good shock resistance, wide viewing angle, high contrast, and fast response time.
  • the brightness division and corresponding color display performance of the liquid crystal display panel have met the conventional display requirements.
  • the liquid crystal display panel can provide more brightness values in order to achieve a finer gray-scale display effect and color display effect.
  • An aspect of the present disclosure provides a liquid crystal display panel, including: a first substrate; a second substrate; a liquid crystal layer located between the first substrate and the second substrate; A first light source; and a second light source located on one side of the second substrate.
  • the first substrate includes: a first base substrate; a first functional layer located between the first base substrate and the liquid crystal layer, and the first functional layer includes alternately arranged first light extraction structures and Filter structure; a first polarizing layer, located between the first functional layer and the liquid crystal layer, the orthographic projection of the first polarizing layer on the first base substrate and the filter structure in place The orthographic projections on the first base substrate overlap; and the first planar electrode layer is located between the first polarizing layer and the liquid crystal layer.
  • the second substrate includes: a second base substrate; a second functional layer located between the liquid crystal layer and the second base substrate, and the second functional layer includes a strip-shaped electrode area and a first reflection area And the first light absorbing area; an insulating layer, located between the strip-shaped electrode area and the second base substrate; a second planar electrode layer, located between the insulating layer and the second base substrate A second polarizing layer, located between the second planar electrode layer and the second base substrate; and a second light extraction structure, located between the second polarizing layer and the second base substrate ,
  • the orthographic projection of the second light extraction structure on the first base substrate overlaps the orthographic projection of the filter structure on the first base substrate.
  • the first light source, the first light extraction structure, the first planar electrode layer, the liquid crystal layer, the strip-shaped electrode area, and the first reflective area are configured to provide selected from the first set Brightness; the second light source, the second light extraction structure, the first polarizing layer, the second planar electrode layer, the liquid crystal layer, the first planar electrode layer, and the second The polarizing layer is configured to provide brightness selected from the second set.
  • the light emitted by the first light source and the second light source is emitted from the side of the first base substrate away from the second base substrate, and the first light source and the second light source are not at the same time Emit light.
  • the first set and the second set have no intersection.
  • the first light extraction structure and/or the second light extraction structure include a light extraction grating.
  • the orthographic projection of the first light extraction structure on the first base substrate and the orthographic projection of the first polarizing layer on the first base substrate do not overlap.
  • the orthographic projection of the second light extraction structure on the first base substrate and the first polarizing layer and the second polarizing layer are on the first base substrate
  • the orthographic projections are overlapped.
  • the orthographic projection of the second light extraction structure on the first base substrate and the orthographic projection of the first light absorption region on the first base substrate do not overlap.
  • the orthographic projection of the first reflective area on the first base substrate is located between the orthographic projection of the first light extraction structure on the first base substrate and the first base substrate.
  • a light absorption area is between the orthographic projections on the first base substrate.
  • the surface of the first reflective area facing the first base substrate forms an acute angle with the first base substrate.
  • the first light source includes an edge-type light source
  • the second light source includes a direct-type light source or an edge-type light source.
  • the filter structure includes quantum dots, and the quantum dots include red quantum dots, green quantum dots, or colorless transparent scattering particles.
  • the first light source and the second light source include blue LEDs.
  • the liquid crystal display panel provided by the embodiments of the present disclosure further includes a first dielectric layer located between the first base substrate and the filter structure, and the refractive index of the first dielectric layer is The refractive index of the second dielectric layer is less than the refractive index of the first base substrate; and/or the second dielectric layer located between the second base substrate and the second polarizing layer, the refractive index of the second dielectric layer is less than The refractive index of the second base substrate.
  • the first light extraction structure includes a third dielectric layer, the refractive index of the third dielectric layer is greater than the refractive index of the first base substrate, and/or the second light extraction structure
  • the optical structure includes a fourth dielectric layer, and the refractive index of the fourth dielectric layer is greater than the refractive index of the second base substrate.
  • the orthographic projection of the second light extraction structure on the first base substrate of the side end of the second light extraction structure close to the first reflection area is similar to that of the first reflection area close to the second light extraction structure.
  • the orthographic projections of the side ends of the light structure on the first base substrate overlap.
  • the orthographic projection of the first light extraction structure on the first base substrate and the orthographic projection of the second light extraction structure on the first base substrate do not overlap.
  • the liquid crystal display panel provided by the embodiments of the present disclosure further includes a third light source located on the other side of the first substrate opposite to the first light source.
  • the second functional layer further includes a second reflection area and a second light absorption area, and the second reflection area and the second light absorption area are symmetrical to the first reflection area and the first light absorption area. Are arranged on both sides of the strip electrode area.
  • Another aspect of the present disclosure provides a display device including the liquid crystal display panel described in any of the foregoing embodiments.
  • Another aspect of the present disclosure provides a method for driving the above-mentioned liquid crystal display panel, including: turning on the first light source to pass the first light source, the first light extraction structure, and the first light source.
  • the planar electrode layer, the liquid crystal layer, the strip electrode area, and the first reflective area provide brightness selected from the first set; and turn on the second light source to pass the second light source, the
  • the second light extraction structure, the first polarizing layer, the second planar electrode layer, the liquid crystal layer, the first planar electrode layer, and the second polarizing layer provide selected from the second set brightness.
  • FIG. 1 schematically illustrates a cross-sectional view of a liquid crystal display panel according to an embodiment of the present disclosure
  • FIG. 2 schematically illustrates a schematic diagram of the liquid crystal display panel shown in FIG. 1 during a working process
  • FIG. 3 schematically illustrates a schematic diagram of the liquid crystal display panel shown in FIG. 1 during another working process
  • FIG. 4 schematically illustrates a schematic diagram of a liquid crystal prism formed in the liquid crystal layer shown in FIG. 3;
  • FIG. 5 schematically illustrates a schematic diagram of the liquid crystal display panel shown in FIG. 1 during another working process
  • FIG. 6 schematically illustrates a schematic diagram of the liquid crystal display panel shown in FIG. 1 during still another working process
  • FIG. 7 schematically illustrates a plan view of a liquid crystal display panel according to an embodiment of the present disclosure
  • FIG. 8 schematically illustrates a cross-sectional view of a liquid crystal display panel according to another embodiment of the present disclosure.
  • FIG. 9 schematically illustrates a flowchart of a method for driving a liquid crystal display panel according to an embodiment of the present disclosure.
  • the liquid crystal display panel can provide more brightness values to achieve a more refined grayscale display effect and a color display effect.
  • a conventional method for increasing the number of brightness values of a display panel is to stack two display panels up and down to achieve more brightness values.
  • these film layers have different degrees of transmittance to light (for example, the light provided by the backlight), so two display panels are stacked up and down to achieve more brightness
  • This method of value usually causes the brightness of the display panel to be significantly reduced, which affects the display effect of the display panel.
  • the embodiments of the present disclosure provide a liquid crystal display panel, which can provide finer brightness value division without affecting light transmittance, and achieve finer grayscale display effects and color display effects.
  • FIG. 1 schematically illustrates a cross-sectional view of a liquid crystal display panel according to an embodiment of the present disclosure.
  • the liquid crystal display panel 100 includes a first substrate 100A; a second substrate 100B; a liquid crystal layer 106 located between the first substrate 100A and the second substrate 100B; and a first light source located on one side of the first substrate 100A 115; and a second light source 116 located on one side of the second substrate 100B.
  • the first substrate 100A includes a first base substrate 101; a first functional layer 1021 located between the first base substrate 101 and the liquid crystal layer 106, and the first functional layer 1021 includes alternately arranged first light extraction structures 102 and filters.
  • Optical structure 103 the first polarizing layer 104 located between the first functional layer 1021 and the liquid crystal layer 106, the orthographic projection of the first polarizing layer 104 on the first substrate 101 and the filter structure 103 on the first substrate The orthographic projections on the substrate 101 overlap; and the first planar electrode layer 105 located between the first polarizing layer 104 and the liquid crystal layer 106.
  • the second substrate 100B includes a second base substrate 114; a second functional layer 1022 located between the liquid crystal layer 106 and the second base substrate 114, and the second functional layer 1022 includes a strip-shaped electrode area 107 and a first reflection area 108 And the first light absorbing region 109; the insulating layer 110 between the strip-shaped electrode region 107 and the second base substrate 114; the second planar electrode layer 111 between the insulating layer 110 and the second base substrate 114; The second polarizing layer 112 is located between the second planar electrode layer 111 and the second base substrate 114; and the second light extraction structure 113 is located between the second polarizing layer 112 and the second base substrate 114, the first The orthographic projection of the second light extraction structure 113 on the first base substrate 101 overlaps the orthographic projection of the filter structure 103 on the first base substrate 101.
  • the first light source 115, the first light extraction structure 102, the first planar electrode layer 105, the liquid crystal layer 106, the strip electrode region 107, and the first reflective region 108 are configured to provide The brightness of the collection.
  • the second light source 116, the second light extraction structure 113, the first polarizing layer 104, the second planar electrode layer 111, the liquid crystal layer 106, the first planar electrode layer 105, and the second polarizing layer 112 are configured to provide The brightness of the collection.
  • the light emitted by the first light source 115 and the second light source 116 exits from the side of the first base substrate 101 away from the second base substrate 114, and the first light source 115 and the second light source 116 do not emit light at the same time.
  • the brightness set of light provided by the first light source 115 and emitted from the side of the first base substrate 101 away from the second base substrate 114 is denoted as L1, and will be provided by the second light source 116 and emitted from the first base substrate.
  • the brightness set of the light emitted from the side of the base substrate 101 facing away from the second base substrate 114 is denoted as L2.
  • the set L1 and the set L2 are different sets, wherein at least one element in the set L1 is different from any element in the set L2. In particular, in the exemplary embodiment, there is no intersection between the set L1 and the set L2.
  • the controller (not shown in the figure) of the liquid crystal display panel 100 can control the first light source 115 to emit light or the second set L2 according to whether the required brightness comes from the first set L1 or the second set L2.
  • the light source 116 emits light.
  • the controller of the liquid crystal display panel 100 controls the first light source 115 to emit light according to the required brightness from the first set L1
  • the controller of the liquid crystal display panel 100 controls the brightness from the second set L2 according to the required brightness.
  • the second light source 116 emits light.
  • liquid crystal display panel 100 provides more and finer brightness values will be described in detail with reference to the drawings.
  • the first light source 115 is an edge light source, and may be located on one side of the first base substrate 101, as shown in FIG. 1.
  • the controller of the liquid crystal display panel 100 controls the first light source 115 to emit light from the first set according to the required brightness to be achieved
  • the first light source 115 emits a collimated light beam, so that the light beam passes through a light deflecting member (such as a photomask). ) Incident into the first base substrate 101 from the side of the first base substrate 101 at an appropriate angle.
  • the incident light can be propagated, for example, by means of total reflection between the upper and lower surfaces of the first base substrate 101, as shown in the first base substrate 101 in FIG. Shown by the dotted line inside.
  • the first base substrate 101 can also serve as a light guide plate of an edge light source, realize the multiplexing of functions, and reduce the overall thickness of the liquid crystal display panel 100.
  • the first light source 115 and the second light source 116 are blue LEDs.
  • first light extraction structure 102 e.g., light extraction grating
  • second light extraction structure 113 e.g., light extraction grating
  • blue LEDs can be better than white light LEDs. It is conducive to the light extraction of the light extraction structure.
  • the first light extraction structure 102 is disposed between the first base substrate 101 and the liquid crystal layer 106, and the first light extraction structure 102 can at least partially interrupt the light emitted by the first light source 115 in the first base substrate 101. Reflects and couples out part of the light into the liquid crystal layer 106.
  • the first light extraction structure 102 includes a light extraction grating.
  • the first light extraction structure 102 may also include other suitable structures.
  • the first light extraction structure 102 includes a third dielectric layer, and the refractive index of the third dielectric layer is greater than the refractive index of the first base substrate 101.
  • the first light extraction structure 102 couples out (for example, partially couples out) light that is totally reflected at the interface of the first base substrate 101 and the first light extraction structure 102 through diffraction, as shown in FIG. 1 As shown by the diagonally upward arrow on the first light extraction structure 102 in the middle.
  • the first light extraction structure 102 can be configured to have a suitable The light extraction angle ⁇ .
  • the “light extraction angle ⁇ ” refers to the angle ⁇ between the light emitted from the first light extraction structure 102 and the normal of the first base substrate 101.
  • the light extraction angle ⁇ of the first light extraction structure 102 may be 60°, for example.
  • the light coupled from the first base substrate 101 through the first light extraction structure 102 propagates in the direction of the dashed arrow in FIG. 2 After passing through the liquid crystal layer 106, it is irradiated onto the first light absorption area 109 and is absorbed by the first light absorption area 109.
  • the orthographic projection of the first light extraction structure 102 on the first base substrate 101 and the orthographic projection of the first polarizing layer 104 on the first base substrate 101 do not overlap, and escape from the first light extraction structure 102.
  • the emitted light does not pass through the first polarizing layer 104 but is incident into the liquid crystal layer 106 (ie, natural light).
  • the liquid crystal molecules in the liquid crystal layer 106 have no optical deflection effect on the light incident therein, so the light escaping from the first light extraction structure 102 can travel on the liquid crystal layer 106 along the original propagation direction. Continue to spread.
  • the optical parameters for example, grating period
  • the light escaping from the first light extraction structure 102 can be made to pass through the liquid crystal layer 106. It is irradiated on and absorbed by the first light absorbing area 109, but not on the first reflection area 108 adjacent to the first light absorbing area 109.
  • the width of the first light absorption region 109 in a direction parallel to the surface of the liquid crystal display panel is greater than or equal to the width of the first light extraction structure 102 in the x direction The width.
  • the width of the first light extraction structure 102 in the x direction is 17 um.
  • the first light absorption region 109 may be any suitable structure that can absorb natural light.
  • the material of the first light absorption region 109 includes, but is not limited to, carbon black particles made of organic resin materials, metal materials (such as chromium), or metal oxide materials (such as chromium oxide).
  • the light emitted by the first light source 115 passes through the liquid crystal layer 106 and other multiple film structures and is finally absorbed by the first light absorption region 109, so it cannot deviate from the first base substrate 101 from the second base substrate. 114 shot from one side.
  • the liquid crystal layer 106 when different first voltage V1 and second voltage V2 are applied to the first planar electrode layer 105 and the strip electrode region 107 (that is, the liquid crystal layer 106 is driven), the liquid crystal layer 106
  • the liquid crystal molecules in can be equivalent to a liquid crystal prism, and the light escaping from the first light extraction structure 102 enters the liquid crystal layer 106 and the light propagation direction is deflected.
  • the values of the first voltage V1 and the second voltage V2 are selected so that the liquid crystal molecules in the liquid crystal layer 106 are all erected (that is, the long axis of the liquid crystal molecules is along the direction perpendicular to the surface of the liquid crystal display panel, as shown in FIG.
  • the light extraction angle ⁇ of the first light extraction structure 102 may be 45°, for example.
  • the orthographic projection of the first reflective layer 108 on the first base substrate 101 is located on the orthographic projection of the first light extraction structure 102 on the first base substrate 101 and the first light absorption region 109 is on the first base substrate 101 between the orthographic projections on a base substrate 101, therefore, the light deflected by the liquid crystal layer 106 no longer irradiates the first light absorption region 109 but is deflected upward to the first reflective layer 108. The light is reflected at the surface of the first reflective layer 108, and the reflected light is incident on the liquid crystal layer 106 again.
  • the reflected light After passing through the liquid crystal layer 106, the reflected light passes through structures such as the first polarizing layer 104 and the filter structure 103 and exits from the side of the first base substrate 101 away from the second base substrate 114.
  • the width of the first reflective layer 108 in the x direction is smaller than the width of the first light extraction structure 102 in the x direction.
  • the width of the surface of the first reflective layer 108 facing the first base substrate 101 in the x direction is 10 um.
  • the first planar electrode layer 105 may be a common electrode layer configured to receive a common voltage Vcom (such as 0V).
  • the first planar electrode layer 105 and the strip electrode region 107 may be applied to the first planar electrode layer 105 and the strip electrode region 107 respectively.
  • the third voltage V3 is applied to the second planar electrode layer 111.
  • the voltage value of the third voltage V3 may be the same as the voltage value of the first voltage V1 of the first planar electrode layer 105.
  • the liquid crystal prism that is optically equivalently formed will change as the voltage difference between the first voltage V1 and the second voltage V2 changes.
  • the two parameters of refractive index and base angle can be used to represent the liquid crystal prism.
  • the refractive index of the equivalently formed liquid crystal prism can be selected to be fixed (for example, the extraordinary refractive index n e of the liquid crystal), and the base angle ⁇ that changes with the voltage difference ( Figure 4) to express different equivalent liquid crystal prisms formed under different voltage differences.
  • the bottom angle ⁇ of the formed liquid crystal prism can be changed by changing the value of the first voltage V1 and/or the second voltage V2.
  • the bottom angle of the liquid crystal prism formed in the liquid crystal layer 106 can be changed ⁇ changes, so that the light incident from the first light extraction structure 102 into the liquid crystal layer 106 will experience different degrees of angular deflection and irradiate to different positions of the first reflective area 108 and be reflected.
  • the strongest light at the central angular position in the diffracted light beam from the first light extraction structure 102 can be made after being deflected by the liquid crystal prism. It is irradiated on the first reflective area 108 and reflected. The reflected light returns to the liquid crystal layer 106 again and passes through the first polarizing layer 104 and the filter structure 103 and exits from the side of the first base substrate 101 away from the second base substrate 114. In this way, the light with the maximum intensity can be emitted from the side of the first base substrate 101 of the liquid crystal display panel 100 away from the second base substrate 114, thereby realizing a display with maximum brightness.
  • the voltage values of the first voltage V1 and the second voltage V2 are selected so that the weaker light near the edge angle position in the diffracted light beam from the first light extraction structure 102 irradiates after being deflected by the liquid crystal prism
  • the light finally emitted from the side of the first base substrate 101 of the liquid crystal display panel 100 away from the second base substrate 114 will also have a weaker intensity, thereby achieving a smaller intensity.
  • Brightness display. Therefore, the display of different brightness values can be realized by controlling the voltage values of the first voltage V1 applied to the first planar electrode layer 105 and the second voltage V2 of the strip electrode region 107.
  • the surface of the first reflective area 108 facing the first base substrate 101 forms an acute angle with the first base substrate 101.
  • the acute angle may be 22°.
  • the first reflective area 108 includes an oblique prism structure. It is located between the second light extraction structure 113 and the first light absorption area 109 and is adjacent to the first light absorption area 109, and its width in the lateral extension direction of the first base substrate 101 is slightly larger than that of the first light extraction structure 102 The width of the first base substrate 101 in the lateral extension direction. The width of the first reflective area 108 can allow all the light deflected to the liquid crystal layer 106 under the maximum driving condition.
  • the first reflective area 108 may be a metal material or other materials with high reflectivity.
  • the filter structure 103 includes a color filter layer.
  • the color filter layer may include, for example, a red filter layer (R), a green filter layer (G), and a blue filter layer (B), so that the liquid crystal display panel 100 realizes color display.
  • the color filter layer can also adopt other color schemes, such as RGBG, RGBW, and so on.
  • the filter structure 103 includes quantum dots, and the quantum dots include red quantum dots, green quantum dots, and colorless transparent scattering particles. In this case, both the first light source 115 and the second light source 116 include blue LEDs.
  • the blue light emitted by the first light source 115 or the second light source 116 becomes red light after passing through the position corresponding to the red quantum dot, becomes green light after passing through the position corresponding to the green quantum dot, and passes through the colorless light.
  • the position corresponding to the transparent scattering particles is still blue, so that color display can be realized.
  • the quantum dot color filter layer can achieve a fuller color display effect.
  • the working process of the liquid crystal display panel 100 when the first light source 115 emits light is described above.
  • the liquid crystal layer 106 when the liquid crystal layer 106 is not driven, the light emitted from the first light source 115 is absorbed by the first light absorbing region 109, and therefore cannot be separated from the first base substrate 101 away from the second base substrate 114. Side shot.
  • the liquid crystal layer 106 is driven, by controlling the voltage values of the first voltage V1 applied to the first planar electrode layer 105 and the second voltage V2 of the strip electrode region 107, it is possible to make light of different intensities from the first
  • the base substrate 101 is emitted from a side away from the second base substrate 114, so that the liquid crystal display panel 100 can achieve display effects with different brightness values.
  • the second light source 116 may be an edge light source or a direct light source.
  • the second light source 116 may be disposed inside the second base substrate 114 and located on a side away from the first base substrate 101. The light emitted by the second light source 116 propagates in the second base substrate 114 in a manner of total reflection.
  • the second light source 116 is an edge-type light source and is located on one side of the second base substrate 114, such as the left side, as shown in FIG. 1.
  • the second light source 116 emits a collimated light beam, so that the light beam is incident into the second base substrate 114 from the side of the second base substrate 114 at an appropriate angle through a light deflecting member (such as a photomask).
  • a light deflecting member such as a photomask
  • the incident light can be propagated, for example, by means of total reflection between the upper and lower surfaces of the second base substrate 114, as shown in the second base substrate 114 in FIG. Shown by the dotted line inside.
  • the second base substrate 114 in addition to the conventional support and protection function of the second base substrate 114, it can also serve as a light guide plate for an edge light source or a direct light source to realize the multiplexing of functions and reduce the cost of the liquid crystal display panel 100.
  • the overall thickness in addition to the conventional support and protection function of the second base substrate 114, it can also serve as a light guide plate for an edge light source or a direct light source to realize the multiplexing of functions and reduce the cost of the liquid crystal display panel 100.
  • the second light extraction structure 113 is disposed between the liquid crystal layer 106 and the second base substrate 114, and the second light extraction structure 113 can at least partially interrupt the light emitted by the second light source 116 in the second base substrate 114. Reflects and couples part of the light out into the liquid crystal layer 106.
  • the second light extraction structure 113 includes a light extraction grating. In a specific example, the width of the second light extraction structure 113 in the x direction is 16 um. Of course, the second light extraction structure 113 may also be other suitable structures.
  • the second light extraction structure 113 includes a fourth dielectric layer, and the refractive index of the fourth dielectric layer is greater than the refractive index of the second base substrate 114.
  • the second light extraction structure 113 couples out (for example, partially couples out) the light that is totally reflected at the interface of the second base substrate 114 and the second light extraction structure 113 through diffraction, as shown in FIG. 1 As shown by the arrow at the second light extraction structure 113 in the middle.
  • the second light extraction structure 113 is configured such that the light incident thereon from the second base substrate 114 is perpendicular to the second base substrate 114 into the liquid crystal layer 106.
  • parameters such as the grating period of the second light extraction structure 113 can be selected so that the light emitted downward from the second light extraction structure 113 has a vertical exit angle relative to the second base substrate 114.
  • the orthographic projection of the second light-trapping structure 113 on the first base substrate 101 and the orthographic projection of the first light-trapping structure 102 on the first base substrate 101 do not overlap each other.
  • the orthographic projections of the absorption region 109 on the first base substrate 101 also do not overlap each other.
  • the light vertically emitted from the second light extraction structure 113 will not irradiate the first light extraction structure 102 or the first reflection area 108 or the first light absorption area 109 below, so that it can be avoided in the first light extraction structure 113.
  • Undesired secondary diffraction occurs at the light extraction structure 102 or undesired reflection occurs at the first reflection area 108.
  • the orthographic projections on 101 overlap.
  • the orthographic projection of the second light extraction structure 113 on the first base substrate 101 and the orthographic projections of the first polarizing layer 104 and the second polarizing layer 112 on the first base substrate 101 are overlapped.
  • the light vertically emitted from the second light extraction structure 113 becomes linearly polarized light after passing through the second polarizing layer 112 and is incident into the liquid crystal layer 106.
  • the first polarizing layer 104 and/or the second polarizing layer 112 includes a metal wire grid polarizer, and the function of the metal wire grid polarizer is similar to that of a polarizer, and plays a role of polarization or analyzer.
  • the transmission axis direction of the first polarization layer 104 and the transmission axis direction of the second polarization layer 112 are perpendicular to each other, and the transmission axis direction of the first polarization layer 104 and the transmission axis direction of the second polarization layer 112 are perpendicular to each other.
  • the angle between the axis direction and the initial orientation of the liquid crystal molecules in the liquid crystal layer 106 is both 45°.
  • the thickness d of the liquid crystal layer 106 can be compatible with the existing process capability and meet the thickness required for forming the liquid crystal prism.
  • the liquid crystal molecules in the liquid crystal layer 106 move along the long axis.
  • the directions are arranged horizontally and can be equivalent to a half-wave plate. It is known that when linearly polarized light passes through the half-wave plate, the emitted light is still linearly polarized, but the vibration plane of the emitted linearly polarized light is deflected by an angle of 2 ⁇ relative to the vibration plane of the incident linearly polarized light, where ⁇ is The angle between the vibration plane of the incident linearly polarized light and the optical axis of the crystal used as a half-wave plate.
  • the angle between the transmission axis direction of the first polarizing layer 104 and the initial orientation of the liquid crystal molecules in the liquid crystal layer 106 is 45° (substantially equivalent to the vibration plane of the incident linearly polarized light and the crystal The angle between the optical axes is ⁇ ). Therefore, when the linearly polarized light emitted from the second polarizing layer 112 enters the liquid crystal layer 106, the polarization direction of the linearly polarized light is deflected by 90°.
  • the transmission axis direction of the first polarizing layer 104 and the transmission axis direction of the second polarizing layer 112 are perpendicular to each other.
  • the polarization direction of the linearly polarized light emitted from the liquid crystal layer 106 is the same as that of the second polarizing layer 112.
  • the transmission axis directions are parallel to each other. Therefore, the linearly polarized light emitted from the liquid crystal layer 106 can just pass through the first polarizing layer 104, as shown by the black arrow in FIG. 5.
  • the linearly polarized light passing through the first polarizing layer 104 passes through the filter structure 103 and the first base substrate 101, and then exits from the side of the first base substrate 101 away from the second base substrate 114.
  • the liquid crystal layer 106 As shown in FIG. 6, when the first voltage V1 and the third voltage V3 are respectively applied to the first planar electrode layer 105 and the second planar electrode layer 111 (that is, the liquid crystal layer 106 is driven), the liquid crystal layer 106 The liquid crystal molecules in are all erected and arranged vertically along the long axis. In this case, the liquid crystal molecules in the liquid crystal layer 106 cannot change the polarization state of the polarized light incident therein. In other words, the polarization direction of the polarized light after passing through the liquid crystal layer 106 is still along the transmission axis of the second polarization layer 112.
  • the transmission axis direction of the first polarizing layer 104 and the transmission axis direction of the second polarizing layer 112 are perpendicular to each other. Therefore, the polarization direction of the linearly polarized light emitted from the liquid crystal layer 106 is the same as that of the first polarizing layer 104.
  • the transmission axis directions are perpendicular to each other. Therefore, the linearly polarized light emitted from the liquid crystal layer 106 cannot pass through the first polarizing layer 104, as shown by the black arrow in FIG. 6. In this way, the light emitted by the second light source 16 cannot finally be emitted from the side of the first base substrate 101 away from the second base substrate 114.
  • the degree of deflection of the liquid crystal molecules in the liquid crystal layer 106 can be controlled by controlling the voltage values of the first voltage V1 and/or the third voltage V3.
  • the voltage value of the third voltage V3 is greater than the voltage value of the first voltage V1, and the voltage value of the first voltage V1 may be selected as 0 under appropriate circumstances.
  • the liquid crystal molecules in the liquid crystal layer 106 are deflected to different degrees, thereby controlling the light emitted by the second light source 116 from the first base substrate 101.
  • the liquid crystal display panel 100 can realize the display of different brightness values.
  • the values of the first voltage V1 and the third voltage V3 can be selected so that the difference between V3-V1 is as small as possible (for example, close to 0).
  • the liquid crystal molecules in the liquid crystal layer 106 are horizontal along the long axis direction. Arranged and can be equivalent to a half-wave plate. In this way, the maximum intensity of light can be emitted from the side of the first base substrate 101 of the liquid crystal display panel 100 away from the second base substrate 114, thereby achieving a display close to the maximum brightness.
  • the values of the first voltage V1 and the third voltage V3 can be selected so that the difference between V3-V1 is as large as possible (for example, approaching the voltage difference required to make all the liquid crystal molecules stand up), then it can be very Light of low intensity is emitted from the side of the first base substrate 101 of the liquid crystal display panel 100 away from the second base substrate 114, so as to realize a display with lower brightness.
  • the first voltage may be applied to the first planar electrode layer 105 and the second planar electrode layer 111, respectively.
  • the second voltage V2 is applied to the strip electrode region 107.
  • the voltage value of the second voltage V2 may be the same as the voltage value of the third voltage V3 of the second planar electrode layer 111.
  • first voltage V1, the second voltage V2, and the third voltage V3 represent voltage signals applied to the first planar electrode layer 105, the strip electrode region 107, and the second planar electrode layer 111, respectively. Does not represent a specific voltage value.
  • the first voltage V1, the second voltage V2, and the third voltage V3 can be respectively selected with different voltage values according to actual needs.
  • the materials of the first planar electrode layer 105, the second planar electrode layer 111, and the strip electrode region 107 include any suitable transparent conductive material, such as indium tin oxide (ITO), indium zinc oxide (IZO) Wait.
  • the second light source 116 when the second light source 116 emits light, when the liquid crystal layer 106 is driven, a voltage is applied to the first planar electrode layer 105 and the second planar electrode layer 111 respectively.
  • the vertical electric field formed between the two planar electrode layers causes the liquid crystal molecules at different positions in the liquid crystal layer 106 to be deflected to the same degree, so that no liquid crystal prism is formed.
  • the first light source 115 when the liquid crystal layer 106 is driven, a voltage is applied to the first planar electrode layer 105 and the strip electrode region 107, respectively.
  • the in-plane switching electric field formed between the planar electrode layer and the strip-shaped electrode region causes the liquid crystal molecules at different positions in the liquid crystal layer 106 to be deflected to different degrees, so that a liquid crystal prism can be formed.
  • the first light source 115 and the second light source 116 are respectively provided on both sides of the liquid crystal display panel 100.
  • the two light sources do not emit light at the same time, so that the display panel 100 can emit more different brightness. That is, when the first light source 115 emits light, the first light source 115, the first light extraction structure 102, the first planar electrode layer 105, the liquid crystal layer 106, the strip electrode area 107, and the first reflective area 108 can provide options.
  • the liquid crystal display panel 100 further includes a first dielectric layer 117 located between the first base substrate 101 and the filter structure 103, and a first dielectric layer 117 located between the second base substrate 114 and the second base substrate 114.
  • the second dielectric layer 118 between the two polarizing layers 112.
  • the refractive index of the first dielectric layer 117 is smaller than the refractive index of the first base substrate 101
  • the refractive index of the second dielectric layer 118 is smaller than the refractive index of the second base substrate 114.
  • the existence of the first dielectric layer 117 and the second dielectric layer 118 makes it easier for light to be totally reflected in the first base substrate 101 and the second base substrate 114.
  • the display effect of the liquid crystal display panel 100 can be further improved.
  • the liquid crystal display panel 100 optionally further includes an insulating layer 110, a first flat layer 119 and a second flat layer 120.
  • the insulating layer 110 is disposed between the strip-shaped electrode region 107 and the second planar electrode layer 111 to electrically isolate the strip-shaped electrode region 107 from the second planar electrode layer 111.
  • the refractive index of the first flat layer 119 may be smaller than the refractive index of the first base substrate 101; the refractive index of the insulating layer 110 and the second flat layer 120 may be smaller than the refractive index of the second base substrate The refractive index of 114.
  • the liquid crystal display panel 100 provided by the embodiments of the present disclosure can provide finer brightness division without affecting the light transmittance, and achieve finer grayscale display effects and color display effects. It overcomes the shortcomings of reduced transmittance caused by the traditional scheme of increasing the number of brightness.
  • FIG. 7 is a schematic plan view of the liquid crystal display panel 100.
  • the liquid crystal display panel 100 includes a plurality of crisscrossed gate lines 122 and data lines 123, and the plurality of gate lines 122 and the plurality of data lines 123 cross each other to define a plurality of pixel units.
  • Each pixel unit shown in the figure includes a thin film transistor 121, a first reflection area 108, and a first light absorption area 109.
  • each pixel unit also includes a first light extraction structure 102, a filter structure 103, a strip electrode area 107, a second grating 113 and other structures.
  • a light shielding layer (represented by thick black lines) is provided above each gate line 122 and each data line 123, and a light shielding layer (represented by black squares) is also provided above each thin film transistor 121.
  • the light-shielding layer can shield the thin film transistor 121, the gate line 122, and the data line 123 arranged on the array substrate, and absorb visible light that is not normally controlled by the deflection of the liquid crystal and other stray light that affects the display effect, so as to make the liquid crystal display panel 100 has a good display effect.
  • the structure of the liquid crystal display panel 100 is not limited to this, it may also include other structures such as a pixel defining layer, a pixel circuit layer, etc., and these structures cooperate with each other to realize the liquid crystal display panel 100 Required features.
  • FIG. 8 provides another modification of the liquid crystal display panel 100.
  • the liquid crystal display panel 200 shown in FIG. 8 has substantially the same configuration as the liquid crystal display panel 100 shown in FIG. 1, and therefore the same reference numerals are used to refer to the same components.
  • the liquid crystal display panel 200 further includes a third light source 124 located on the other side of the first base substrate 101 opposite to the first light source 115.
  • a second reflective region 108' and a second light absorption region 109' are additionally provided on the other side of the strip-shaped electrode region 107, and the second reflective region 108' and the second light
  • the absorption area 109 ′ is arranged opposite to the first reflection area 108 and the first light absorption area 109.
  • the liquid crystal display panel 200 can provide a greater number of brightness values on the basis of the liquid crystal display panel 100.
  • the controller (not shown in the figure) of the liquid crystal display panel 200 can control the first light source 115 to emit light or the second light source 116 to emit light according to the required brightness.
  • the corresponding working process can be referred to the above description, which will not be described here.
  • the controller of the liquid crystal display panel 200 can also control the first light source 115 and the third light source 124 to emit light simultaneously according to the required brightness.
  • the working process when the first light source 115 emits light may be similar as described above.
  • the optical parameters (such as the grating period) of the first light extraction structure 102 are designed so that the light out of the first base substrate 101 through the first light extraction structure 102 Both are absorbed by the first light absorption region 109 and the second light absorption region 109', so the light emitted by the first light source 115 and the third light source 124 cannot be emitted from the side of the first base substrate 101 away from the second base substrate 114 .
  • the liquid crystal layer 106 is driven, by controlling the voltage values of the first voltage V1 applied to the first planar electrode layer 105 and the second voltage V2 of the strip electrode region 107, the liquid crystal layer 106 can be equivalent to liquid crystal Prism.
  • the light coupled out of the first base substrate 101 through the first light extraction structure 102 is deflected after being incident into the liquid crystal layer 106, and irradiates and reflects on the first reflection area 108 and the second reflection area 108'.
  • the reflected light enters the liquid crystal layer 106 again and exits from the side of the first base substrate 101 away from the second base substrate 114. Therefore, by controlling the voltage values of the first voltage V1 applied to the first planar electrode layer 105 and the second voltage V2 of the strip electrode region 107, the bottom angle ⁇ of the liquid crystal prism can be controlled, so that the slave liquid crystal display panel 200 can be controlled.
  • the liquid crystal display panel 200 can provide more brightness and achieve finer Brightness division.
  • a display device includes the liquid crystal display panel described in any of the previous embodiments.
  • the display device can be any suitable device such as a TV, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator, and the like. Since the display device can solve basically the same technical problems as the previous liquid crystal display panel and achieve the same technical effects, for the sake of brevity, the technical effects of the display device will not be described repeatedly in this article.
  • FIG. 9 is a flowchart of the driving method 300. Referring to FIG. 9, the driving method 300 includes the following steps:
  • the first light source to provide the first light source, the first light extraction structure, the first planar electrode layer, the liquid crystal layer, the strip electrode area, and the reflective area. Brightness selected from the first set;
  • step S31 is executed to drive the liquid crystal layer 106.
  • the second voltage V2 is provided to the strip electrode region 107 through the data line
  • the first voltage V1 is provided to the first planar electrode layer 105 through the data line.
  • step S32 is executed to drive the liquid crystal layer 106. Further, the third voltage V3 is provided to the second planar electrode layer 111 through the data line, and the first voltage V1 is provided to the first planar electrode layer 105 through the data line.
  • the deflection state of the liquid crystal molecules in the liquid crystal layer 106 can be controlled, thereby controlling the The intensity of the light emitted from the side of the first base substrate 101 of the liquid crystal display panel 100 away from the second base substrate 114 allows the liquid crystal display panel 100 to provide brightness selected from the second set.
  • the method for driving the liquid crystal display panel provided by the embodiments of the present disclosure can provide finer brightness division without affecting the light transmittance of the liquid crystal display panel, and achieve finer grayscale display effects and color display effects. It overcomes the shortcomings of reduced transmittance caused by the traditional scheme of increasing the number of brightness.
  • the term “substantially” herein may also include embodiments having “completely”, “completely”, “all” and the like. Therefore, in the embodiment, the adjective basically can also be removed. Where applicable, the term “substantially” may also refer to 90% or higher, such as 95% or higher, particularly 99% or higher, even more particularly 99.5% or higher, including 100%.
  • the term “comprising” also includes embodiments in which the term “comprising” means “consisting of.”
  • the term “and/or” particularly relates to one or more of the items mentioned before and after “and/or”. For example, the phrase “item 1 and/or item 2" and similar phrases may refer to one or more of item 1 and item 2.
  • the term “comprising” in an embodiment may mean “consisting of”, but in another embodiment may mean “comprising at least the defined species and optionally one or more other species” .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板(100)、显示装置及驱动方法。液晶显示面板(100)包括:第一基板(100A)、第二基板(100B)、在第一基板(100A)与第二基板(100B)之间的液晶(106)、第一光源(115)以及第二光源(116)。液晶显示面板(100)配置成提供选自第一集合或第二集合的亮度,并且第一光源(115)和第二光源(116)不同时发射光。

Description

液晶显示面板及其驱动方法、显示装置 技术领域
本公开一般地涉及显示技术领域。更具体地,本公开涉及一种液晶显示面板、包括该液晶显示面板的显示装置,以及用于驱动该液晶显示面板的方法。
背景技术
液晶显示面板由于其轻薄化、色域高、抗震性好、视角广、对比度高、响应时间快等一系列的优点而广泛应用于各种显示装置中。随着关于显示技术的理论研究和实际工艺等各方面的成熟发展,液晶显示面板的亮度划分以及对应的彩色显示性能已经满足常规的显示需求。然而,在诸如医疗显示、电子画屏等一些特殊的显示应用场景中,通常期望液晶显示面板可以提供更多的亮度值,以实现更加精细的灰阶显示效果以及彩色显示效果。
发明内容
本公开的一方面提供了一种液晶显示面板,包括:第一基板;第二基板;液晶层,位于所述第一基板与所述第二基板之间;位于所述第一基板一侧的第一光源;以及位于所述第二基板一侧的第二光源。所述第一基板包括:第一衬底基板;第一功能层,位于所述第一衬底基板与所述液晶层之间,所述第一功能层包括交替布置的第一取光结构和滤光结构;第一偏振层,位于所述第一功能层与所述液晶层之间,所述第一偏振层在所述第一衬底基板上的正投影与所述滤光结构在所述第一衬底基板上的正投影交叠;以及第一面状电极层,位于所述第一偏振层与所述液晶层之间。所述第二基板包括:第二衬底基板;第二功能层,位于所述液晶层与所述第二衬底基板之间,所述第二功能层包括条状电极区、第一反射区和第一光吸收区;绝缘层,位于所述条状电极区与所述第二衬底基板之间;第二面状电极层,位于所述绝缘层与所述第二衬底基板之间;第二偏振层,位于所述第二面状电极层与所述第二衬底基板之间;以及第二取光结构,位于所述第二偏振层与所述第二衬底基板之间,所述第二取光结构在所述第一衬底基板 上的正投影与所述滤光结构在所述第一衬底基板上的正投影交叠。所述第一光源、所述第一取光结构、所述第一面状电极层、所述液晶层、所述条状电极区以及所述第一反射区配置成提供选自第一集合的亮度;所述第二光源、所述第二取光结构、所述第一偏振层、所述第二面状电极层、所述液晶层、所述第一面状电极层以及所述第二偏振层配置成提供选自第二集合的亮度。由所述第一光源和所述第二光源发射的光从所述第一衬底基板背离所述第二衬底基板的一侧出射,并且所述第一光源和所述第二光源不同时发射光。
根据本公开的一些实施例,所述第一集合和所述第二集合无交集。
根据本公开的一些实施例,所述第一取光结构和/或所述第二取光结构包括取光光栅。
根据本公开的一些实施例,所述第一取光结构在所述第一衬底基板上的正投影与所述第一偏振层在所述第一衬底基板上的正投影不交叠。
根据本公开的一些实施例,所述第二取光结构在所述第一衬底基板上的正投影与所述第一偏振层和所述第二偏振层在所述第一衬底基板上的正投影均交叠。所述第二取光结构在所述第一衬底基板上的正投影与所述第一光吸收区在所述第一衬底基板上的正投影不交叠。
根据本公开的一些实施例,所述第一反射区在所述第一衬底基板上的正投影位于所述第一取光结构在所述第一衬底基板上的正投影和所述第一光吸收区在所述第一衬底基板上的正投影之间。所述第一反射区面向所述第一衬底基板的表面与所述第一衬底基板成锐角角度。
根据本公开的一些实施例,所述第一光源包括侧入式光源,并且所述第二光源包括直下式光源或侧入式光源。
根据本公开的一些实施例,所述滤光结构包括量子点,所述量子点包括红色量子点、绿色量子点或无色透明散射粒子。所述第一光源和所述第二光源包括蓝光LED。
根据本公开的一些实施例,由本公开的实施例提供的液晶显示面板还包括位于所述第一衬底基板与所述滤光结构之间的第一介质层,所述第一介质层的折射率小于所述第一衬底基板的折射率;和/或位于所述第二衬底基板与所述第二偏振层之间的第二介质层,所述第二介质层的折射率小于所述第二衬底基板的折射率。
根据本公开的一些实施例,所述第一取光结构包括第三介质层,所述第三介质层的折射率大于所述第一衬底基板的折射率,和/或所述第二取光结构包括第四介质层,所述第四介质层的折射率大于所述第二衬底基板的折射率。
根据本公开的一些实施例,所述液晶层的厚度满足Δn*d=2.5λ,其中,Δn是所述液晶层中的液晶分子沿长轴方向的折射率与沿短轴方向的折射率之差,d是所述液晶层的厚度,以及λ是由所述第二光源发射的光的波长。
根据本公开的一些实施例,所述第二取光结构靠近所述第一反射区的侧端在所述第一衬底基板上的正投影与所述第一反射区靠近所述第二取光结构的侧端在所述第一衬底基板上的正投影重叠。所述第一取光结构在所述第一衬底基板上的正投影与所述第二取光结构在所述第一衬底基板上的正投影不交叠。
根据本公开的一些实施例,由本公开的实施例提供的液晶显示面板还包括第三光源,所述第三光源位于与所述第一光源相对的所述第一基板的另一侧。所述第二功能层还包括第二反射区和第二光吸收区,所述第二反射区和所述第二光吸收区与所述第一反射区和所述第一光吸收区对称地布置在所述条状电极区的两侧。
本公开的另一方面提供了一种显示装置,该显示装置包括在前面任一个实施例中描述的液晶显示面板。
本公开的又一方面提供了一种用于驱动上述液晶显示面板的方法,包括:接通所述第一光源,以通过所述第一光源、所述第一取光结构、所述第一面状电极层、所述液晶层、所述条状电极区以及所述第一反射区提供选自第一集合的亮度;以及接通所述第二光源,以通过所述第二光源、所述第二取光结构、所述第一偏振层、所述第二面状电极层、所述液晶层、所述第一面状电极层以及所述第二偏振层提供选自第二集合的亮度。
应理解,以上的一般描述和下文的细节描述仅是示例性和解释性的,并非旨在以任何方式限制本申请的保护范围。
附图说明
将在下文中进一步以非限制性方式并且参照随附各图来描述本公 开的实施例,在附图中:
图1示意性地图示了根据本公开的实施例的液晶显示面板的截面图;
图2示意性地图示了图1中示出的液晶显示面板在一种工作过程期间的示意图;
图3示意性地图示了图1中示出的液晶显示面板在另一种工作过程期间的示意图;
图4示意性地图示了在图3中示出的液晶层中形成的液晶棱镜的示意图;
图5示意性地图示了图1中示出的液晶显示面板在又一种工作过程期间的示意图;
图6示意性地图示了图1中示出的液晶显示面板在再一种工作过程期间的示意图;
图7示意性地图示了根据本公开的实施例的液晶显示面板的平面图;
图8示意性地图示了根据本公开的另一实施例的液晶显示面板的截面图;以及
图9示意性地图示了用于驱动根据本公开的实施例的液晶显示面板的方法的流程图。
具体实施方式
如前所述,在一些特殊的显示应用场景中,通常期望液晶显示面板可以提供更多的亮度值,以实现更加精细的灰阶显示效果以及彩色显示效果。一种常规的用于提升显示面板的亮度值数目的方法是将两个显示面板上下叠合在一起,以实现更多的亮度值。然而,由于显示面板内通常存在许多膜层,这些膜层对光(例如,背光源提供的光)具有不同程度的透过率,所以通过将两个显示面板上下叠合以实现更多的亮度值的这种方法通常会导致显示面板的亮度显著降低,影响显示面板的显示效果。
本公开的实施例提供了一种液晶显示面板,该液晶显示面板可以在不影响光线透过率的情况下提供更加精细的亮度值划分,实现更加精细的灰阶显示效果以及彩色显示效果。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施例的技术方案作进一步地详细描述。需要指出的是,所有示例性的图示和描述均不应当视为对本公开的任何限制。事实上,在获益于本公开的技术教导的基础上,本领域技术人员将能够根据实际情况设想到其它合适的可替换方案。
图1示意性地图示了根据本公开的实施例的液晶显示面板的截面图。
如图1所示,该液晶显示面板100包括第一基板100A;第二基板100B;位于第一基板100A与第二基板100B之间的液晶层106;位于第一基板100A一侧的第一光源115;以及位于第二基板100B一侧的第二光源116。第一基板100A包括第一衬底基板101;位于第一衬底基板101与液晶层106之间的第一功能层1021,该第一功能层1021包括交替布置的第一取光结构102和滤光结构103;位于第一功能层1021与液晶层106之间的第一偏振层104,该第一偏振层104在第一衬底基板101上的正投影与滤光结构103在第一衬底基板101上的正投影交叠;以及位于第一偏振层104与液晶层106之间的第一面状电极层105。第二基板100B包括第二衬底基板114;位于液晶层106与第二衬底基板114之间的第二功能层1022,该第二功能层1022包括条状电极区107、第一反射区108和第一光吸收区109;位于条状电极区107与第二衬底基板114之间的绝缘层110;位于绝缘层110与第二衬底基板114之间的第二面状电极层111;位于第二面状电极层111与第二衬底基板114之间的第二偏振层112;以及位于第二偏振层112与第二衬底基板114之间的第二取光结构113,该第二取光结构113在第一衬底基板101上的正投影与滤光结构103在第一衬底基板101上的正投影交叠。在本公开的实施例中,第一光源115、第一取光结构102、第一面状电极层105、液晶层106、条状电极区107以及第一反射区108配置成提供选自第一集合的亮度。第二光源116、第二取光结构113、第一偏振层104、第二面状电极层111、液晶层106、第一面状电极层105以及第二偏振层112配置成提供选自第二集合的亮度。由第一光源115和第二光源116发射的光从第一衬底基板101背离第二衬底基板114的一侧出射,并且第一光源115和第二光源116不同时发射光。
在本文中,将由第一光源115提供并且从第一衬底基板101背离 第二衬底基板114的一侧出射的光的亮度集合记作L1,并且将由第二光源116提供并且从第一衬底基板101背离第二衬底基板114的一侧出射的光的亮度集合记作L2。集合L1和集合L2是不同的集合,其中集合L1中的至少一个元素不同于集合L2中的任何元素。特别地,在示例性实施例中,在集合L1与集合L2之间不存在交集。在一些实施例中,液晶显示面板100的控制器(图中未示出)可以根据所要求实现的亮度来自第一集合L1还是第二集合L2而相应地控制第一光源115发射光或第二光源116发射光。例如,液晶显示面板100的控制器根据所要求实现的亮度来自第一集合L1而控制第一光源115发射光,并且液晶显示面板100的控制器根据所要求实现的亮度来自第二集合L2而控制第二光源116发射光。控制器的功能实现应当是本领域技术人员在获益于本公开的精神和教导的前提下容易设想到的,并且因此在本文中不进行详细解释。
下面,结合各附图来具体描述液晶显示面板100如何提供更多且更精细的亮度值。
在示例性实施例中,第一光源115为侧入式光源,并且可以位于第一衬底基板101的一侧,如图1所示。在液晶显示面板100的控制器根据所要求实现的亮度来自第一集合而控制第一光源115发射光的情况下,第一光源115发射准直光束,使得该光束通过光线偏转构件(例如光罩)以适当角度从第一衬底基板101的侧面入射到第一衬底基板101中。在准直光束入射到第一衬底基板101中之后,入射光可以例如借助于在第一衬底基板101的上下表面之间的全反射而进行传播,如图1中第一衬底基板101内的虚线所示。在该实施例中,第一衬底基板101除了具有常规的支撑保护作用之外,还可以充当侧入式光源的导光板,实现功能的复用,减小液晶显示面板100的整体厚度。在一些实施例中,第一光源115和第二光源116为蓝光LED。由于第一取光结构102(例如,取光光栅)和第二取光结构113(例如,取光光栅)通常对光源发射的光的波长具有选择性,所以蓝光LED相比于白光LED可以更有利于取光结构的取光。
第一取光结构102设置在第一衬底基板101与液晶层106之间,该第一取光结构102可以至少部分地中断第一光源115发射的光在第一衬底基板101内的全反射并将部分光线耦出到液晶层106中。在该 实施例中,第一取光结构102包括取光光栅。当然,第一取光结构102也可以包括其他合适的结构。在可替换的实施例中,第一取光结构102包括第三介质层,该第三介质层的折射率大于第一衬底基板101的折射率。第一取光结构102通过衍射的方式将在第一衬底基板101的与第一取光结构102交界的表面处发生全反射的光进行耦出(例如,部分地耦出),如图1中第一取光结构102上的斜向上的箭头所示。如图2所示,在不向第一面状电极层105和条状电极区107施加电压(即,液晶层106不被驱动)的情况下,第一取光结构102可以被配置为具有合适的取光角度α。“取光角度α”是指从第一取光结构102射出的光线与第一衬底基板101的法线之间的夹角α。在一个具体示例中,第一取光结构102的取光角度α例如可以是60°。
在不向第一面状电极层105和条状电极区107施加电压的情况下,通过第一取光结构102从第一衬底基板101耦出的光沿着图2中的虚线箭头方向传播,经过液晶层106后照射到第一光吸收区109上并被第一光吸收区109吸收。具体地,第一取光结构102在第一衬底基板101上的正投影与第一偏振层104在第一衬底基板101上的正投影不交叠,并且从第一取光结构102逸出的光不经过第一偏振层104而入射到液晶层106中(即,自然光)。在液晶层106不被驱动的情况下,液晶层106中的液晶分子对入射到其中的光无光学偏转作用,所以从第一取光结构102逸出的光可以沿原传播方向在液晶层106中继续传播。通过使第一取光结构102的光学参数(例如,光栅周期)与第一光吸收区109的尺寸相匹配地设计,可以使得从第一取光结构102逸出的光通过液晶层106后全部照射到第一光吸收区109上并被其吸收,而不会照射到与第一光吸收区109相邻的第一反射区108上。在理想情况下,第一光吸收区109在平行于液晶显示面板的表面的方向上(即如图1中示出的x方向)上的宽度大于或等于第一取光结构102在x方向上的宽度。在一个具体示例中,第一取光结构102在x方向上的宽度为17um。第一光吸收区109可以是可以吸收自然光的任意适当的结构。例如,第一光吸收区109的材料包括但不限于由有机树脂材料制成的碳黑颗粒、金属材料(例如铬)或金属氧化物材料(例如氧化铬)。在这种情况下,第一光源115发射的光通过液晶层106和其他多个膜层结构并且最终被第一光吸收区109吸收,因此无法从第一衬 底基板101背离第二衬底基板114的一侧射出。
如图3所示,在分别向第一面状电极层105和条状电极区107施加不同的第一电压V1和第二电压V2(即,液晶层106被驱动)的情况下,液晶层106中的液晶分子可以等效为液晶棱镜,从第一取光结构102逸出的光进入到液晶层106之后光传播方向发生偏转。在第一电压V1和第二电压V2的数值被选择为使得液晶层106中的液晶分子全部竖起(即,液晶分子的长轴沿着垂直于液晶显示面板的表面的方向,即图1中的y方向)时,第一取光结构102的取光角度α例如可以是45°。在该实施例中,由于第一反射层108在第一衬底基板101上的正投影位于第一取光结构102在第一衬底基板101上的正投影和第一光吸收区109在第一衬底基板101上的正投影之间,因此,经过液晶层106偏转后的光不再照射到第一光吸收区109上而是被向上偏转到第一反射层108上。光在第一反射层108的表面处发生反射,并且反射光重新入射到液晶层106中。反射光通过液晶层106之后,穿过第一偏振层104和滤光结构103等结构而从第一衬底基板101背离第二衬底基板114的一侧射出。第一反射层108在x方向上的宽度小于第一取光结构102在x方向上的宽度。例如,在一个示例中,第一反射层108面向第一衬底基板101的表面在x方向上的宽度为10um。
下面结合图3和图4来详细地解释和说明在液晶层106中形成液晶棱镜的这一具体过程。
通过向第一面状电极层105施加第一电压V1和向条状电极区107施加第二电压V2而在第一面状电极层105和条状电极区107之间形成面内开关型电场(Fringe Field Switching,FFS),可以驱动液晶层106中的不同位置处的液晶分子发生不同程度的偏转,从而形成阵列排布的多个液晶棱镜(图4以三角形示出了其中一个液晶棱镜结构)。在一些实施例中,第一面状电极层105可以是公共电极层,其配置为接收公共电压Vcom(诸如,0V)。在可替换的实施例中,为了避免第二面状电极层111对条状电极区107产生不期望的屏蔽作用,可以在向第一面状电极层105和条状电极区107分别施加第一电压V1和第二电压V2的同时,向第二面状电极层111施加第三电压V3。该第三电压V3的电压值可以与第一面状电极层105的第一电压V1的电压值相同。
具体地,在光学上等效形成的液晶棱镜将随着第一电压V1与第二 电压V2之间的电压差的变化而变化。一般地,可以利用折射率和底角这两个参数来表示液晶棱镜。在光学上的这种等效过程中,可以选择等效形成的液晶棱镜的折射率为固定的(例如,液晶的非常光折射率n e),并且通过随电压差变化的底角θ(图4中所示)来表述在不同电压差下形成的不同等效的液晶棱镜。例如,可以通过改变第一电压V1和/或第二电压V2的值来改变所形成的液晶棱镜的底角θ。也就是说,通过改变向第一面状电极层105施加的第一电压V1和/或向条状电极区107施加的第二电压V2,可以使液晶层106中所形成的液晶棱镜的底角θ发生变化,从而导致从第一取光结构102入射到液晶层106中的光将经历不同程度的角度偏转而照射到第一反射区108的不同位置处并发生反射。
这意味着,通过适当地选择第一电压V1和第二电压V2的电压值,可以使得来自第一取光结构102的衍射光束中处于中心角度位置处的最强光线在经过液晶棱镜的偏转之后照射到第一反射区108上并发生反射。反射光再次返回到液晶层106中并穿过第一偏振层104和滤光结构103等结构从第一衬底基板101背离第二衬底基板114的一侧射出。以这样的方式,可以使得最大强度的光线从液晶显示面板100的第一衬底基板101远离第二衬底基板114的一侧射出,从而实现最大亮度的显示。与此类似,如果将第一电压V1和第二电压V2的电压值选择为使得来自第一取光结构102的衍射光束中处于边缘角度位置附近的较弱光线在经过液晶棱镜的偏转之后照射到第一反射区108上并发生反射,那么最终从液晶显示面板100的第一衬底基板101背离第二衬底基板114的一侧射出的光将同样具有较弱的强度,由此实现较小亮度的显示。因此,可以通过控制施加到第一面状电极层105的第一电压V1和条状电极区107的第二电压V2的电压值来实现不同亮度值的显示。
如图3所示,第一反射区108面向第一衬底基板101的表面与第一衬底基板101成锐角角度。在一个具体示例中,该锐角角度可以为22°。在一些实施例中,第一反射区108包括斜棱镜结构。其位于第二取光结构113与第一光吸收区109之间且与第一光吸收区109相邻,其在第一衬底基板101横向延伸方向上的宽度略大于第一取光结构102在第一衬底基板101横向延伸方向上的宽度。第一反射区108的宽度 可以使其接纳全部液晶层106最大驱动情况下偏转到其上的光线。当然,此处作为示例图示的第一反射区108的形状仅仅代表本公开的一种可能的实现方式,但是并不应当解释为对本公开的任何限制。实际上,根据本公开的精神和教导,本领域技术人员将能够根据具体情况而选择第一反射区108的其他合适形状,并且本公开旨在涵盖所有这些可替换的实现方案。第一反射区108可以为金属材料或者其他具有高反射率的材料。
在示例性实施例中,滤光结构103包括彩色滤光层。该彩色滤光层例如可以包括红色滤光层(R)、绿色滤光层(G)以及蓝色滤光层(B),从而使得液晶显示面板100实现彩色显示。当然,根据设计需求,该彩色滤光层还可以采用其他配色方案,诸如RGBG、RGBW等。在一些实施例中,滤光结构103包括量子点,并且该量子点包括红色量子点、绿色量子点以及无色透明散射粒子。在这种情况下,第一光源115和第二光源116均包括蓝光LED。这样,第一光源115或第二光源116发射的蓝光在穿过红色量子点对应的位置之后变为红光,在穿过绿色量子点对应的位置之后变为绿光,并且在穿过无色透明散射粒子对应的位置之后依然是蓝光,从而可以实现彩色显示。量子点彩色滤光层可以实现色彩更饱满的彩色显示效果。
以上描述了第一光源115发射光时液晶显示面板100的工作过程。简言之,在液晶层106不被驱动的情况下,从第一光源115发射的光被第一光吸收区109吸收,因而不能从第一衬底基板101背离第二衬底基板114的一侧射出。在液晶层106被驱动的情况下,通过控制施加到第一面状电极层105的第一电压V1和条状电极区107的第二电压V2的电压值,可以使得不同强度的光线从第一衬底基板101背离第二衬底基板114的一侧射出,从而使得液晶显示面板100可以实现不同亮度值的显示效果。
下面,结合图1、图5以及图6来描述第二光源116发射光的情形。
在液晶显示面板100的控制器(未示出)根据所要求实现的亮度来自第二集合而控制第二光源116发射光的情况下,第二光源116可以为侧入式光源或直下式光源。当为直下式光源时,第二光源116可以设置在第二衬底基板114的内部并且位于远离第一衬底基板101的一侧。第二光源116发射的光在第二衬底基板114内以全反射的方式 进行传播。
示例性地,在图1示出的示例中,第二光源116为侧入式光源,并且位于第二衬底基板114的一侧,例如左侧,如图1所示。第二光源116发射准直光束,使得该光束通过光线偏转构件(例如光罩)以适当角度从第二衬底基板114的侧面入射到第二衬底基板114中。在准直光束入射到第二衬底基板114中之后,入射光可以例如借助于在第二衬底基板114的上下表面之间的全反射而进行传播,如图1中第二衬底基板114内的虚线所示。在该实施例中,第二衬底基板114除了具有常规的支撑保护作用之外,还可以充当侧入式光源或直下式光源的导光板,实现功能的复用,减小液晶显示面板100的整体厚度。
第二取光结构113设置在液晶层106与第二衬底基板114之间,该第二取光结构113可以至少部分地中断第二光源116发射的光在第二衬底基板114内的全反射并将部分光耦出到液晶层106中。在该实施例中,第二取光结构113包括取光光栅。在一个具体示例中,第二取光结构113在x方向上的宽度为16um。当然,第二取光结构113也可以是其他合适的结构。在可替换的实施例中,第二取光结构113包括第四介质层,该第四介质层的折射率大于第二衬底基板114的折射率。第二取光结构113通过衍射的方式将在第二衬底基板114的与第二取光结构113交界的表面处发生全反射的光进行耦出(例如,部分地耦出),如图1中第二取光结构113处的箭头所示。
第二取光结构113配置成使从第二衬底基板114入射到其上的光与第二衬底基板114垂直地射入到液晶层106中。例如,可以对第二取光结构113的光栅周期等参数进行选择,使得从第二取光结构113向下射出的光具有相对于第二衬底基板114的垂直出射角度。第二取光结构113在第一衬底基板101上的正投影与第一取光结构102在第一衬底基板101上的正投影互不重叠,并且与第一反射区108和第一光吸收区109在第一衬底基板101上的正投影也互不重叠。在这样的情况下,从第二取光结构113垂直射出的光不会照射到下面的第一取光结构102或者第一反射区108或第一光吸收区109上,从而可以避免在第一取光结构102处发生不期望的二次衍射或在第一反射区108处发生不期望的反射。另外,第二取光结构113靠近第一反射区108的侧端在第一衬底基板101上的正投影与第一反射区108靠近第二取 光结构113的侧端在第一衬底基板101上的正投影重叠。在实施例中,第二取光结构113在第一衬底基板101上的正投影与第一偏振层104和第二偏振层112分别在第一衬底基板101上的正投影均交叠。
从第二取光结构113垂直射出的光经过第二偏振层112之后变为线偏振光并且入射到液晶层106中。第一偏振层104和/或第二偏振层112包括金属线栅偏振器,金属线栅偏振器的功能与偏振片的功能相似,起到起偏或检偏的作用。在该实施例中,第一偏振层104的透过轴方向与第二偏振层112的透过轴方向相互垂直,并且第一偏振层104的透过轴方向和第二偏振层112的透过轴方向与液晶层106中的液晶分子的初始取向之间的夹角均为45°。
在一些实施例中,液晶层106的厚度满足Δn*d=2.5λ,其中,Δn是液晶层106中的液晶分子沿长轴方向的折射率与沿短轴方向的折射率之差(诸如,Δn=0.3),d是液晶层106的厚度(诸如,约为5um),以及λ是由第二光源116发射的光的波长。通过选择适当的波长λ和液晶分子折射率之差Δn,可以使得液晶层106的厚度d兼容现有的工艺加工能力,并且满足形成液晶棱镜所需的厚度。
如图5所示,在不向第一面状电极层105和第二面状电极层111施加电压(即,液晶层106不被驱动)的情况下,液晶层106中的液晶分子沿长轴方向呈水平排布,并且可以等效为半波片。已知的是,当线偏振光穿过半波片时,出射光仍为线偏振光,只是出射的线偏振光的振动平面相对于入射的线偏振光的振动平面偏转了角度2α,其中α为入射的线偏振光的振动平面与用作半波片的晶体光轴之间的夹角。结合上文描述的,第一偏振层104的透过轴方向与液晶层106中的液晶分子的初始取向之间的夹角为45°(基本上等同于入射的线偏振光的振动平面与晶体光轴之间的夹角,即α),所以,当从第二偏振层112射出的线偏振光入射到液晶层106中之后,线偏振光的偏振方向偏转了90°。如前所述,第一偏振层104的透过轴方向与第二偏振层112的透过轴方向相互垂直,所以,从液晶层106射出的线偏振光的偏振方向与第二偏振层112的透过轴方向相互平行。因此,从液晶层106射出的线偏振光可以恰好透过第一偏振层104,如图5中黑色箭头所示。透过第一偏振层104的线偏振光穿过滤光结构103和第一衬底基板101之后,从第一衬底基板101背离第二衬底基板114的一侧射出。
如图6所示,在分别向第一面状电极层105和第二面状电极层111施加第一电压V1和第三电压V3(即,液晶层106被驱动)的情况下,液晶层106中的液晶分子全部竖起,并且沿长轴方向呈竖直排布。在这样的情况下,液晶层106中的液晶分子不能改变入射到其中的偏振光的偏振状态。也就是说,通过液晶层106后的偏振光的偏振方向仍然是沿第二偏振层112的透过轴方向。如前所述,第一偏振层104的透过轴方向与第二偏振层112的透过轴方向相互垂直,所以,从液晶层106射出的线偏振光的偏振方向与第一偏振层104的透过轴方向相互垂直。因此,从液晶层106射出的线偏振光无法透过第一偏振层104,如图6中黑色箭头所示。这样,第二光源16发射的光最终无法从第一衬底基板101背离第二衬底基板114的一侧射出。
因此,可以通过控制第一电压V1和/或第三电压V3的电压值来控制液晶层106中的液晶分子的偏转程度。例如,第三电压V3的电压值大于第一电压V1的电压值,在适当的情况下,第一电压V1的电压值可以选择为0。通过控制第三电压V3与第一电压V1之间的电压差,使得液晶层106中的液晶分子发生不同程度地偏转,从而控制第二光源116发射的光从第一衬底基板101射出的光的强度,进而使得液晶显示面板100可以实现不同亮度值的显示。例如,可以将第一电压V1和第三电压V3的数值选择为使得V3-V1的差值尽量小(例如,趋近0),此时,液晶层106中的液晶分子沿长轴方向呈水平排布并且可以等效为半波片。这样,可以使得最大强度的光线从液晶显示面板100的第一衬底基板101背离第二衬底基板114的一侧射出,从而实现接近最大亮度的显示。与此类似,可以将第一电压V1和第三电压V3的数值选择为使得V3-V1的差值尽量大(例如,趋近使液晶分子全部竖起所需的电压差),则可以使得很小强度的光线从液晶显示面板100的第一衬底基板101背离第二衬底基板114的一侧射出,从而实现较小亮度的显示。
在可替换的实施例中,为了避免条状电极区107对面状电极层111产生不期望的屏蔽作用,可以在向第一面状电极层105和第二面状电极层111分别施加第一电压V1和第三电压V3的同时,向条状电极区107施加第二电压V2。该第二电压V2的电压值可以与第二面状电极层111的第三电压V3的电压值相同。
需要说明的是,第一电压V1、第二电压V2以及第三电压V3分别代表施加在第一面状电极层105、条状电极区107以及第二面状电极层111上的电压信号,而不代表具体的电压值。第一电压V1、第二电压V2以及第三电压V3可以根据实际需要而分别选择不同的电压值。在实施例中,第一面状电极层105、第二面状电极层111以及条状电极区107的材料包括任意适合的透明导电材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)等。
需要指出的是,在第二光源116发光的情况下,当驱动液晶层106时,是在第一面状电极层105和第二面状电极层111上分别施加电压。两个面状电极层之间所形成的垂直电场使得液晶层106中的不同位置处的液晶分子产生相同程度地偏转,因此不会形成液晶棱镜。而在第一光源115发光的情况下,当驱动液晶层106时,是在第一面状电极层105和条状电极区107上分别施加电压。面状电极层与条状电极区之间所形成的面内开关型电场使得液晶层106中的不同位置处的液晶分子产生不同程度地偏转,因此可以形成液晶棱镜。
通过上面的描述可以看出,在本公开的实施例中,在液晶显示面板100的两侧分别提供有第一光源115和第二光源116。通过设定第一光源115和第二光源116所能提供的亮度集合L1和L2,使得两个光源不同时发光,从而使得显示面板100可以发出更多不同的亮度。也就是说,当第一光源115发光时,第一光源115、第一取光结构102、第一面状电极层105、液晶层106、条状电极区107以及第一反射区108可以提供选自第一集合的亮度。当第二光源116发光时,第二光源116、第二取光结构113、第一偏振层104、第二面状电极层111、液晶层106、第一面状电极层105以及第二偏振层112可以提供选自与第一集合不同的第二集合的亮度。换言之,可以简单地认为:液晶显示面板100的亮度=光源亮度*液晶效率。其中,光源有第一光源115和第二光源116这两种情况,在8位数据的示例中,液晶效率有256种情况。若第一集合与第二集合之间不存在交集,则液晶显示面板100最多可以提供2*256=512种不同等级的亮度。与传统的仅具有一侧光源的液晶显示面板(在8位数据的情况下,通常仅可以提供256种不同等级的亮度)相比,液晶显示面板100可以提供更多的亮度值,实现更精细的亮度划分。
返回参照图1,在示例性实施例中,该液晶显示面板100还包括位于第一衬底基板101与滤光结构103之间的第一介质层117,以及位于第二衬底基板114与第二偏振层112之间的第二介质层118。第一介质层117的折射率小于第一衬底基板101的折射率,并且第二介质层118的折射率小于第二衬底基板114的折射率。第一介质层117和第二介质层118的存在使得光可以更容易地在第一衬底基板101内和第二衬底基板114内发生全反射。以这样的布置方式,有效地防止了光从第一衬底基板101和第二衬底基板114泄漏出来(当然,不包括第一取光结构102和第二取光结构113的耦出)的风险,从而可以进一步提高液晶显示面板100的显示效果。
继续参照图1,该液晶显示面板100还可选地包括绝缘层110、第一平坦层119以及第二平坦层120。具体地,绝缘层110设置在条状电极区107与第二面状电极层111之间,以将条状电极区107与第二面状电极层111电隔离。作为示例,在本公开的实施例中,第一平坦层119的折射率可以小于第一衬底基板101的折射率;绝缘层110和第二平坦层120的折射率可以小于第二衬底基板114的折射率。
综上所述,本公开的实施例提供的液晶显示面板100可以在不影响光线透过率的情况下提供更精细的亮度划分,实现更加精细的灰阶显示效果以及彩色显示效果。克服了传统的增加亮度数目的方案所带来的透过率降低的弊端。
图7是液晶显示面板100的平面示意图。如图7所示,液晶显示面板100包括多条纵横交错的栅线122和数据线123,多条栅线122和多条数据线123相互交叉限定多个像素单元。图中示出的每个像素单元包括薄膜晶体管121、第一反射区108以及第一光吸收区109。实际上,每个像素单元还包括第一取光结构102、滤光结构103、条状电极区107以及第二光栅113等其他结构。在每条栅线122上方和每条数据线123上方设置有遮光层(以黑色粗线条表示),并且在每个薄膜晶体管121上方也同样设置有遮光层(以黑色方块表示)。遮光层可以遮挡设置在阵列基板上的薄膜晶体管121、栅线122以及数据线123等部件,并吸收不受液晶偏转正常控制的可见光以及其他对显示效果有影响的杂散光,以使液晶显示面板100具有良好的显示效果。
需要指出的是,为了便于清楚地示出液晶显示面板100的平面结 构,图7中仅示出了液晶显示面板100的部分结构。然而,本领域技术人员应当清楚地知道,液晶显示面板100的结构并不限于此,其还可以包括诸如像素限定层、像素电路层等其他结构,并且这些结构相互协作以实现液晶显示面板100的所需功能。
图8提供了一种液晶显示面板100的其他变型。在图8中示出的液晶显示面板200具有与在图1中示出的液晶显示面板100大体相同的构造,并且因此使用相同的附图标记来指代相同的部件。与图1中的实施例不同的是,液晶显示面板200还包括第三光源124,该第三光源124位于与第一光源115相对的第一衬底基板101的另一侧。另外,在液晶显示面板200中,在条状电极区107的另一侧附加地提供有第二反射区108’和第二光吸收区109’,该另第二反射区108’和第二光吸收区109’与第一反射区108和第一光吸收区109相对地设置。在这样的情况下,液晶显示面板200可以在液晶显示面板100的基础上提供更多的亮度值数目。
具体地,液晶显示面板200的控制器(图中未示出)可以根据所要求实现的亮度而控制第一光源115发射光或第二光源116发射光。对应的工作过程可以参考上文的描述,本文在此不再描述。除此之外,液晶显示面板200的控制器还可以根据所要求实现的亮度而控制第一光源115与第三光源124同时发射光。当第一光源与第三光源124同时发射光时,可以如上文描述第一光源115发射光时的工作过程相似。具体地,在液晶层106不被驱动的情况下,通过设计第一取光结构102的光学参数(例如光栅周期),使得通过第一取光结构102从第一衬底基板101耦出的光均被第一光吸收区109和第二光吸收区109’吸收,因而第一光源115和第三光源124发射的光不能从第一衬底基板101背离第二衬底基板114的一侧射出。在液晶层106被驱动的情况下,通过控制施加到第一面状电极层105的第一电压V1和条状电极区107的第二电压V2的电压值,使得液晶层106可以等效为液晶棱镜。通过第一取光结构102从第一衬底基板101耦出的光在入射到液晶层106中之后发生偏转,并且照射到第一反射区108和第二反射区108’上并发生反射。反射光重新入射到液晶层106中并从第一衬底基板101背离第二衬底基板114的一侧射出。因此,通过控制施加到第一面状电极层105的第一电压V1和条状电极区107的第二电压V2的电压值, 可以控制液晶棱镜的底角θ,从而可以控制从液晶显示面板200的第一衬底基板101背离第二衬底基板114的一侧出射的光的强度,使得液晶显示面板200可以实现不同亮度的显示。可以简单地认为:液晶显示面板200的亮度=光源亮度*液晶效率。在该实施例中,光源有第一光源115、第二光源116、第一光源115和第三光源124这3种情况,在8位数据的示例中,液晶效率有256种情况。在第一集合与第二集合之间不存在交集的情况下,液晶显示面板200最多可以提供3*256=768种不同等级的亮度。与常规的仅具有一侧光源的液晶显示面板(在8位数据的情况下,通常仅可以提供256种不同等级的亮度)相比,液晶显示面板200可以提供更多的亮度,实现更精细的亮度划分。
根据本公开的另一方面,提供了一种显示装置。该显示装置包括在前面任一个实施例中描述的液晶显示面板。该显示装置可以是诸如电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任意合适的装置。由于显示装置能够解决与前面的液晶显示面板基本相同的技术问题,并且实现相同的技术效果,因此,出于简洁的目的,在本文中不再对显示装置的技术效果进行重复描述。
根据本公开的又一方面,提供了一种用于驱动液晶显示面板的方法300,该液晶显示面板可以是在前面任一个实施例中描述的液晶显示面板100。图9是该驱动方法300的流程图,参照图9,该驱动方法300包括以下步骤:
S31,接通第一光源,以通过所述第一光源、所述第一取光结构、所述第一面状电极层、所述液晶层、所述条状电极区以及所述反射区提供选自第一集合的亮度;
S32,接通第二光源,以通过所述第二光源、所述第二取光结构、所述第一偏振层、所述第二面状电极层、所述液晶层、所述第一面状电极层以及所述第二偏振层提供选自第二集合的亮度。
具体地,在液晶显示面板100的控制器根据所要求实现的亮度来自第一集合而控制第一光源115发射光的情况下,执行步骤S31以驱动液晶层106。进一步地,通过数据线向条状电极区107提供第二电压V2,并且通过数据线向第一面状电极层105提供第一电压V1。通过控制施加到第一面状电极层105的第一电压V1和条状电极区107的第二 电压V2的电压值,可以控制液晶棱镜的底角θ,从而可以控制从液晶显示面板100的第一衬底基板101背离第二衬底基板114的一侧出射的光的强度,使得液晶显示面板100可以提供选自第一集合的亮度。
在液晶显示面板100的控制器根据所要求实现的亮度来自第二集合而控制第二光源116发射光的情况下,执行步骤S32以驱动液晶层106。进一步地,通过数据线向第二面状电极层111提供第三电压V3,并且通过数据线向第一面状电极层105提供第一电压V1。通过控制施加到第一面状电极层105的第一电压V1和第二面状电极层111的第三电压V3的电压值,可以控制液晶层106中的液晶分子的偏转状态,从而可以控制从液晶显示面板100的第一衬底基板101背离第二衬底基板114的一侧出射的光的强度,使得液晶显示面板100可以提供选自第二集合的亮度。
本公开的实施例提供的用于驱动液晶显示面板的方法,可以在不影响液晶显示面板光线透过率的情况下提供更精细的亮度划分,实现更加精细的灰阶显示效果以及彩色显示效果。克服了传统增加亮度数目的方案所带来的透过率降低的弊端。
本领域技术人员将理解到,本文中的术语“基本上”还可以包括具有“完整地”、“完全地”、“所有”等的实施例。因此,在实施例中,也可以移除形容词基本上。在适用的情况下,术语“基本上”还可以涉及90%或更高,诸如95%或更高,特别地99%或更高,甚至更特别地99.5%或更高,包括100%。术语“包括”还包括其中术语“包括”意指“由......构成”的实施例。术语“和/或”特别地涉及在“和/或”之前和之后提到的项目中的一个或多个。例如,短语“项目1和/或项目2”及类似短语可以涉及项目1和项目2中的一个或多个。术语“包括”在实施例中可以是指“由......构成”,但是在另一个实施例中可以是指“包含至少所限定的物种以及可选的一个或多个其它物种”。
另外,说明书和权利要求书中的术语第一、第二、第三等被用于在类似的元件之间进行区分并且不一定用于描述序列性或者时间次序。应理解到,如此使用的术语在适当的情况下是可互换的,并且本文所描述的本公开的实施例能够以除本文所描述或说明的其它顺序来操作。
应当指出,以上提到的实施例说明而不是限制本申请的保护范围,并且本领域技术人员将能够在不脱离随附权利要求书的范围的情况下 设计许多可替换的实施例。在权利要求中,放置在圆括号之间的任何参考标记不应解释为限制权利要求。动词“包括”及其词形变化的使用不排除除权利要求中所陈述的那些之外的元件或步骤的存在。在元件前面的冠词“一”或“一个”不排除多个这样的元件的存在。在相互不同的从属权利要求中陈述某些措施的仅有事实不指示这些措施的组合不能用于获益。
可以组合本专利中所讨论的各个方面以便提供附加的优点。另外,特征中的一些可以形成一个或多个分案申请的基础。

Claims (15)

  1. 一种液晶显示面板,包括:
    第一基板;
    第二基板,与所述第一基板相对设置;
    液晶层,位于所述第一基板与所述第二基板之间;
    位于所述第一基板一侧的第一光源;以及
    位于所述第二基板一侧的第二光源,
    其中,所述第一基板包括:
    第一衬底基板;
    第一功能层,位于所述第一衬底基板与所述液晶层之间,所述第一功能层包括交替布置的第一取光结构和滤光结构;
    第一偏振层,位于所述第一功能层与所述液晶层之间,所述第一偏振层在所述第一衬底基板上的正投影与所述滤光结构在所述第一衬底基板上的正投影交叠;以及
    第一面状电极层,位于所述第一偏振层与所述液晶层之间;
    其中,所述第二基板包括:
    第二衬底基板;
    第二功能层,位于所述液晶层与所述第二衬底基板之间,所述第二功能层包括条状电极区、第一反射区和第一光吸收区;
    绝缘层,位于所述条状电极区与所述第二衬底基板之间;
    第二面状电极层,位于所述绝缘层与所述第二衬底基板之间;
    第二偏振层,位于所述第二面状电极层与所述第二衬底基板之间;以及
    第二取光结构,位于所述第二偏振层与所述第二衬底基板之间,所述第二取光结构在所述第一衬底基板上的正投影与所述滤光结构在所述第一衬底基板上的正投影交叠;
    其中,
    所述第一光源、所述第一取光结构、所述第一面状电极层、所述液晶层、所述条状电极区以及所述第一反射区配置成提供选自第一集合的亮度,所述第二光源、所述第二取光结构、所述第一偏振层、所述第二面状电极层、所述液晶层、所述第一面状电极层以及所述第二 偏振层配置成提供选自第二集合的亮度,
    由所述第一光源和所述第二光源发射的光从所述第一衬底基板背离所述第二衬底基板的一侧出射,并且
    所述第一光源和所述第二光源不同时发射光。
  2. 根据权利要求1所述的液晶显示面板,其中,所述第一集合和所述第二集合无交集。
  3. 根据权利要求1所述的液晶显示面板,其中,所述第一取光结构和/或所述第二取光结构包括取光光栅。
  4. 根据权利要求1所述的液晶显示面板,其中,所述第一取光结构在所述第一衬底基板上的正投影与所述第一偏振层在所述第一衬底基板上的正投影不交叠。
  5. 根据权利要求1所述的液晶显示面板,
    其中,所述第二取光结构在所述第一衬底基板上的正投影与所述第一偏振层和所述第二偏振层在所述第一衬底基板上的正投影均交叠;并且
    其中,所述第二取光结构在所述第一衬底基板上的正投影与所述第一光吸收区在所述第一衬底基板上的正投影不交叠。
  6. 根据权利要求1所述的液晶显示面板,
    其中,所述第一反射区在所述第一衬底基板上的正投影位于所述第一取光结构在所述第一衬底基板上的正投影和所述第一光吸收区在所述第一衬底基板上的正投影之间;并且
    其中,所述第一反射区面向所述第一衬底基板的表面与所述第一衬底基板成锐角角度。
  7. 根据权利要求1所述的液晶显示面板,其中,所述第一光源包括侧入式光源,并且所述第二光源包括直下式光源或侧入式光源。
  8. 根据权利要求1所述的液晶显示面板,
    其中,所述滤光结构包括量子点,所述量子点包括红色量子点、绿色量子点或无色透明散射粒子;并且
    其中,所述第一光源和所述第二光源包括蓝光LED。
  9. 根据权利要求1所述的液晶显示面板,还包括:
    位于所述第一衬底基板与所述滤光结构之间的第一介质层,所述第一介质层的折射率小于所述第一衬底基板的折射率;和/或
    位于所述第二衬底基板与所述第二偏振层之间的第二介质层,所述第二介质层的折射率小于所述第二衬底基板的折射率。
  10. 根据权利要求1所述的液晶显示面板,其中,
    所述第一取光结构包括第三介质层,所述第三介质层的折射率大于所述第一衬底基板的折射率,和/或
    所述第二取光结构包括第四介质层,所述第四介质层的折射率大于所述第二衬底基板的折射率。
  11. 根据权利要求1所述的液晶显示面板,其中,所述液晶层的厚度满足Δn*d=2.5λ,
    其中,Δn是所述液晶层中的液晶分子沿长轴方向的折射率与沿短轴方向的折射率之差,d是所述液晶层的厚度,以及λ是由所述第二光源发射的光的波长。
  12. 根据权利要求1所述的液晶显示面板,
    其中,所述第二取光结构靠近所述第一反射区的侧端在所述第一衬底基板上的正投影与所述第一反射区靠近所述第二取光结构的侧端在所述第一衬底基板上的正投影重叠,并且
    其中,所述第一取光结构在所述第一衬底基板上的正投影与所述第二取光结构在所述第一衬底基板上的正投影不交叠。
  13. 根据权利要求1所述的液晶显示面板,还包括第三光源,
    其中,所述第三光源位于与所述第一光源相对的所述第一基板的另一侧;并且
    其中,所述第二功能层还包括第二反射区和第二光吸收区,所述第二反射区和所述第二光吸收区与所述第一反射区和所述第一光吸收区对称地布置在所述条状电极区的两侧。
  14. 一种显示装置,包括根据权利要求1-13中任一项所述的液晶显示面板。
  15. 一种用于驱动根据权利要求1所述的液晶显示面板的方法,包括:
    接通所述第一光源,以通过所述第一光源、所述第一取光结构、所述第一面状电极层、所述液晶层、所述条状电极区以及所述第一反射区提供选自第一集合的亮度;以及
    接通所述第二光源,以通过所述第二光源、所述第二取光结构、 所述第一偏振层、所述第二面状电极层、所述液晶层、所述第一面状电极层以及所述第二偏振层提供选自第二集合的亮度。
PCT/CN2020/110996 2019-10-08 2020-08-25 液晶显示面板及其驱动方法、显示装置 WO2021068661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/286,640 US11347090B2 (en) 2019-10-08 2020-08-25 Liquid crystal display panel, driving method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910949636.3 2019-10-08
CN201910949636.3A CN110646982B (zh) 2019-10-08 2019-10-08 液晶显示面板及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021068661A1 true WO2021068661A1 (zh) 2021-04-15

Family

ID=68993620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110996 WO2021068661A1 (zh) 2019-10-08 2020-08-25 液晶显示面板及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US11347090B2 (zh)
CN (1) CN110646982B (zh)
WO (1) WO2021068661A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262119B (zh) * 2019-07-18 2021-10-08 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
CN110646982B (zh) * 2019-10-08 2021-08-10 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN111240076B (zh) * 2020-02-03 2022-08-09 京东方科技集团股份有限公司 透明显示装置
CN111240079B (zh) * 2020-03-10 2022-07-22 京东方科技集团股份有限公司 显示基板及显示装置
KR20220017546A (ko) * 2020-08-04 2022-02-14 삼성디스플레이 주식회사 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160247466A1 (en) * 2009-04-08 2016-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
CN107942575A (zh) * 2017-11-22 2018-04-20 樊子健 多层tn‑lcd的显示系统
CN107945760A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN109541850A (zh) * 2019-01-07 2019-03-29 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
TWI658294B (zh) * 2017-12-28 2019-05-01 宏碁股份有限公司 可切換視角之背光模組及相關電子裝置
CN110262119A (zh) * 2019-07-18 2019-09-20 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
CN110286525A (zh) * 2019-07-29 2019-09-27 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN110646982A (zh) * 2019-10-08 2020-01-03 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851908B2 (ja) * 2006-10-10 2012-01-11 株式会社 日立ディスプレイズ 液晶表示装置
TWI364594B (en) 2007-07-06 2012-05-21 Chimei Innolux Corp Liquid crystal display device and driving method thereof
KR101724065B1 (ko) * 2010-11-01 2017-04-07 삼성전자주식회사 지향성 도광판, 지향성 면광원 및 지향성 면광원을 채용한 3d 영상 디스플레이 장치
CN105652511B (zh) * 2016-04-11 2019-06-07 京东方科技集团股份有限公司 一种显示装置
CN107817629B (zh) * 2017-09-28 2020-06-02 京东方科技集团股份有限公司 一种液晶显示装置
CN207882620U (zh) * 2018-02-12 2018-09-18 京东方科技集团股份有限公司 显示装置
CN108415191A (zh) * 2018-03-15 2018-08-17 京东方科技集团股份有限公司 显示装置、电子设备和显示方法
CN209167739U (zh) * 2018-12-10 2019-07-26 珠海川普光电科技有限公司 一种具有抗寒性能的液晶显示屏结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160247466A1 (en) * 2009-04-08 2016-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
CN107942575A (zh) * 2017-11-22 2018-04-20 樊子健 多层tn‑lcd的显示系统
TWI658294B (zh) * 2017-12-28 2019-05-01 宏碁股份有限公司 可切換視角之背光模組及相關電子裝置
CN107945760A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN109541850A (zh) * 2019-01-07 2019-03-29 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN110262119A (zh) * 2019-07-18 2019-09-20 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
CN110286525A (zh) * 2019-07-29 2019-09-27 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN110646982A (zh) * 2019-10-08 2020-01-03 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US11347090B2 (en) 2022-05-31
CN110646982A (zh) 2020-01-03
US20210373371A1 (en) 2021-12-02
CN110646982B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
US11126054B2 (en) Display panel and display device
CN108761946B (zh) 一种透明显示面板和透明显示装置
KR100817366B1 (ko) 액정표시장치용 컬러필터 기판 및 그 제조방법
KR101087244B1 (ko) 액정표시장치 및 백라이트유닛
US20190285935A1 (en) Display panel and method for fabricating the same, display device and display method
CN107945760B (zh) 液晶显示面板及其驱动方法、显示装置
WO2017148010A1 (zh) 液晶显示器以及电子设备
US10558083B2 (en) Liquid crystal display module and liquid crystal display device
JP6689745B2 (ja) 表示装置
US10831059B2 (en) Display panel, display apparatus and method of controlling the same
CN110187536B (zh) 显示面板、显示装置及其控制方法
CN110646989B (zh) 显示面板、显示装置及其控制方法
US20240248341A1 (en) Light control film and display panel
JP2012103695A (ja) ディスプレイ装置
US11333938B2 (en) Display panel, driving method thereof, and display device
KR20120075142A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
WO2019184810A1 (zh) 液晶显示面板、液晶显示装置及其灰阶控制方法
JP5114853B2 (ja) 表示装置
WO2020116050A1 (ja) 光学装置
JP6531313B2 (ja) 液晶表示装置
KR102192474B1 (ko) 액정 표시 장치
CN114624906A (zh) 宽窄视角区域可调的液晶显示装置及驱动方法
KR102128924B1 (ko) 액정표시장치 및 그 제조방법
WO2012005320A1 (ja) 照明装置、液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875532

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20875532

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20875532

Country of ref document: EP

Kind code of ref document: A1