WO2018062003A1 - 積層コアの製造方法 - Google Patents

積層コアの製造方法 Download PDF

Info

Publication number
WO2018062003A1
WO2018062003A1 PCT/JP2017/034191 JP2017034191W WO2018062003A1 WO 2018062003 A1 WO2018062003 A1 WO 2018062003A1 JP 2017034191 W JP2017034191 W JP 2017034191W WO 2018062003 A1 WO2018062003 A1 WO 2018062003A1
Authority
WO
WIPO (PCT)
Prior art keywords
piece
stator
divided
stator piece
manufacturing
Prior art date
Application number
PCT/JP2017/034191
Other languages
English (en)
French (fr)
Inventor
武 本田
宏 北垣
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to DE112017004947.4T priority Critical patent/DE112017004947T5/de
Priority to CN201780060502.5A priority patent/CN109804532B/zh
Priority to JP2018542496A priority patent/JPWO2018062003A1/ja
Priority to US16/325,199 priority patent/US10985637B2/en
Publication of WO2018062003A1 publication Critical patent/WO2018062003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49069Data storage inductor or core

Definitions

  • the present invention relates to a method for manufacturing a laminated core.
  • a laminated iron core is used as a stator.
  • the manufacturing method of a laminated iron core is shown by patent document 1, for example.
  • the rotor core pieces are formed by punching out from a thin plate material, and then the yoke portions are formed by connecting the divided core pieces together. Shears and bends. And push back which pushes back the bent part is performed. Then, a predetermined number of slots are punched from the thin plate material. Furthermore, after the inner and outer diameters are punched to separate and form the split core pieces, the split core pieces are caulked and joined to the lower split core.
  • the laminated iron core is manufactured by the process as described above.
  • the connecting portion of the split core pieces is sheared and then bent, and then pushback is performed.
  • the metal plate used for the laminated iron core once it is bent, it does not return to its original shape even if it is pushed back. For this reason, the roundness of the laminated iron core may be reduced.
  • the portion that performs caulking is limited.
  • the properties of the metal may change, and the flow of magnetic flux changes. There is a risk that the magnetic properties of the laminated iron core may vary due to the limitation of the portion where the caulking is performed and the change in the metal properties of the bent portion.
  • an object of the present invention is to provide a method for manufacturing a laminated core in which variations in shape accuracy and magnetic characteristics are suppressed.
  • An exemplary method for manufacturing a laminated core according to the present invention includes a yoke piece forming region in which the yoke piece provided on a workpiece is formed and a central portion of the processing region including a tooth piece forming region in which the tooth piece is formed.
  • the exemplary laminated core manufacturing method of the present invention it is possible to suppress variations in the shape accuracy and magnetic characteristics of the laminated core.
  • FIG. 1 is a cross-sectional view of a motor.
  • FIG. 2 is a perspective view of the stator core.
  • FIG. 3 is a plan view of the divided stator piece.
  • FIG. 4 is a flowchart showing a method for manufacturing the laminated core of the first exemplary embodiment according to the present invention.
  • FIG. 5 is a diagram showing a part of the center hole punching process.
  • FIG. 6 shows a part of the slot punching process.
  • FIG. 7 is a diagram showing a part of the split stator piece part forming step.
  • FIG. 8 is a cross-sectional view showing a processed state in the split stator piece part forming step.
  • FIG. 9 is a diagram showing a part of the pushback process.
  • FIG. 1 is a cross-sectional view of a motor.
  • FIG. 2 is a perspective view of the stator core.
  • FIG. 3 is a plan view of the divided stator piece.
  • FIG. 4 is a flowchart showing
  • FIG. 10 is a cross-sectional view showing a processed state in the pushback process.
  • FIG. 11 is a diagram showing a part of the caulking portion forming step.
  • FIG. 12 is a cross-sectional view including a caulking portion provided on the divided stator piece portion.
  • FIG. 13 is a diagram showing a part of the outer shape punching step.
  • FIG. 14 is a plan view of the stator piece formed by the outer shape punching step.
  • FIG. 15 is a diagram illustrating a part of the stacking process.
  • FIG. 16 is a diagram illustrating the workpiece after performing the split stator piece forming step and the pushback step in another example of the method for manufacturing a laminated core according to the present embodiment.
  • FIG. 16 is a diagram illustrating the workpiece after performing the split stator piece forming step and the pushback step in another example of the method for manufacturing a laminated core according to the present embodiment.
  • FIG. 17 is a diagram showing the workpiece after performing the divided stator piece forming step and the pushback step in another example of the method for manufacturing the laminated core of the present embodiment.
  • FIG. 18 is a diagram illustrating the workpiece after performing the split stator piece forming step and the pushback step in another example of the method for manufacturing a laminated core according to the present embodiment.
  • FIG. 19 is a flowchart of the manufacturing process of the laminated core shown in this modification.
  • FIG. 20 is a diagram showing a part of the stacking step of the flowchart shown in FIG.
  • FIG. 21 is a diagram showing a part of the stacking step of the flowchart shown in FIG.
  • FIG. 22 is a flowchart showing a method for manufacturing the laminated core of the second exemplary embodiment according to the present invention.
  • FIG. 23 is a diagram showing a part of the slot punching process of the manufacturing method of the laminated core shown in FIG. 24 is a diagram showing a part of a split stator piece forming step of the method for manufacturing a laminated core shown in FIG.
  • FIG. 25 is a diagram showing a part of the pushback process of the manufacturing method of the laminated core shown in FIG.
  • FIG. 26 is a diagram showing a part of a caulking portion forming step of the method for manufacturing the laminated core shown in FIG.
  • FIG. 27 is a flowchart of the manufacturing process of the laminated core shown in this modification.
  • FIG. 28 is a diagram showing a part of the stacking step of the manufacturing method of the stacked core shown in FIG.
  • FIG. 29 is a diagram showing a part of the center hole punching step of the manufacturing method of the laminated core shown in FIG.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is a direction parallel to the axial direction of the central axis C1 shown in FIG.
  • the X-axis direction is orthogonal to the Z-axis direction and is a direction along the paper surface in FIG.
  • the Y-axis direction is a direction orthogonal to both the Z-axis direction and the X-axis direction.
  • the Z-axis is the upper side (+ Z side) and the lower side is the negative side ( ⁇ Z side).
  • the positive side (+ Z side) in the Z-axis direction is called “one side”
  • the negative side ( ⁇ Z side) in the Z-axis direction is called “the other side”.
  • the one side and the other side are simply names used for explanation, and do not limit the actual positional relationship and direction.
  • a direction parallel to the central axis C1 (Z-axis direction) is simply referred to as an “axial direction”, a radial direction centered on the central axis C1 is simply referred to as a “radial direction”, and the central axis C1
  • the direction along the arc centered on the axis, that is, the circumferential direction of the central axis C1 is simply referred to as “circumferential direction”.
  • FIG. 1 is a cross-sectional view of a motor.
  • the motor A includes a rotor 1, a stator 2, a housing 3, a first bearing 41, and a second bearing 42.
  • the motor A has a bearing holding portion 5 that holds the first bearing 41.
  • the rotor 1 includes a shaft 11 and a rotor core 12.
  • the rotor 1 is rotatable relative to the stator 2 around the central axis C1.
  • the shaft 11 has a cylindrical shape extending in the axial direction (Z-axis direction).
  • the shaft 11 is rotatably supported by the housing 3 via the first bearing 41 and the second bearing 42. Thereby, the rotor 1 can rotate with respect to the stator 2 around the central axis C1.
  • the shaft 11 is fixed to the rotor core 12 by press fitting.
  • the fixing of the shaft 11 and the rotor core 12 is not limited to press-fitting. A method that can fix the shaft 11 and the rotor core 12 can be widely adopted.
  • the rotor core 12 is a laminate in which electromagnetic steel plates are laminated. A magnet (not shown) is attached to the rotor core 12. The rotor core 12 is excited by a magnet.
  • the housing 3 has a cylindrical shape extending in the axial direction.
  • the stator 2 is fixed to the inner peripheral surface of the housing 3.
  • the stator 2 is fixed to the inside of the housing, so that the housing 3 and the center axis (center axis C1) coincide with each other.
  • a shaft 11 described later of the rotor 1 is rotatably supported by the first bearing 41 and the other side thereof by the second bearing 42. That is, the rotor 1 is rotatably supported by the first bearing 41 and the second bearing 42.
  • first bearing 41 and the second bearing 42 are ball bearings.
  • the shaft 11 is rotatably supported by the housing 3 via the first bearing 41 and the second bearing 42. At this time, the central axis of the shaft 11 coincides with the central axis C 1 of the housing 3. *
  • the first bearing 41 is fixed to a bearing holding portion 5 that closes an opening at one end of the housing 3 in the axial direction.
  • the second bearing 42 is fixed to the bottom of the end portion on the other axial side of the housing 3.
  • the stator 2 surrounds the outer side of the rotor 1 in the radial direction.
  • the center axis of the stator 2 and the rotor 1 coincides.
  • the stator 2 includes a stator core 21 and a coil 22.
  • Stator 2 faces rotor 1 and includes a plurality of coils 22.
  • FIG. 2 is a perspective view of the stator core.
  • FIG. 3 is a plan view of the divided stator piece.
  • the stator core 21 includes an annular yoke 211 and teeth 212 that extend radially inward from the yoke 211.
  • the stator core 21 is divided into 12 divided stators 210 in the circumferential direction.
  • the split stator 210 has a split yoke 213 obtained by dividing the annular yoke 211 in the circumferential direction. Further, teeth 212 extend radially inward from each of the divided yokes 213 of each divided stator 210.
  • the split stator 210 is a stacked body in which a plurality of split stator pieces 23 are stacked.
  • the divided stator piece 23 is continuously connected with the same material as the divided yoke piece 231 and the divided yoke piece 231 constituting the annular yoke piece 2301 (see FIG. 14 described later) by being connected in the circumferential direction of the central axis C1.
  • a predetermined number (here, 12) of teeth pieces 232 formed and extending radially inward of the yoke piece 230 is provided.
  • the stator core 21 is configured by connecting twelve divided stators 210 in an endless manner in the circumferential direction. Moreover, the stator piece 230 is formed by connecting the divided stator pieces 23 endlessly. In other words, twelve divided stator pieces 23 are connected endlessly in the circumferential direction, and stacked in the axial direction to form the stator core 21. That is, the stator core 21 is a laminated core.
  • the coil 22 is formed by winding a conducting wire around the outer periphery of the insulator covering the outer surface of the teeth 212 of the stator core 21. An end portion of a conducting wire is drawn out from the coil 22, and the end portion of the conducting wire extends from an end portion on one side in the axial direction of the stator 2 to one side in the axial direction.
  • the stator 21 is excited by supplying electric power to the coil 22 through the conducting wire.
  • the coil 22 of the motor A is divided into three phases (U, V, W). Each phase is supplied with a sinusoidal current with a phase shift. Therefore, a conducting wire is provided with the number which can supply an electric current to each of three phases.
  • FIG. 4 is a flowchart showing a method for manufacturing the laminated core of the first exemplary embodiment according to the present invention.
  • 5 to 15 are diagrams showing a part of each step in the method of manufacturing the motor shown in FIG.
  • the dashed-dotted line has shown the boundary line processed from now. For example, in the case of performing press working, the line indicates a position where a tool for press working is arranged.
  • the manufacturing method of the laminated core of this embodiment includes a center hole punching step S10, a slot punching step S20, a divided stator piece part forming step S30, a pushback step S40, and a caulking part forming step. S50, outer shape punching step S60, and laminating step S70.
  • FIG. 5 is a diagram showing a part of the center hole punching process.
  • the processing region Sa1 of the workpiece 6 that is an electromagnetic steel plate that is a magnetic material includes an annular yoke piece forming region Sa11 and an annular tooth piece forming region Sa12.
  • the central axis of the yoke piece forming region Sa11 and the tooth piece forming region Sa12 coincide with each other.
  • a circular center hole 61 is punched into the teeth piece forming region Sa ⁇ b> 12 of the work material 6.
  • the center hole punching step S10 is performed by pressing.
  • the central hole 61 has an inner diameter that is smaller than the inner diameter of the cylindrical portion provided in the center of the stator core 21.
  • the present invention is not limited to this, and it may be the same as the inner diameter of the center of the stator core 21.
  • the central hole 61 is not limited to a circular shape, and may be a polygonal shape having the same piece as the divided stator piece 23.
  • the center hole punching step S10 is a central portion of the processing region Sa1 including the yoke piece forming region Sa11 where the yoke piece 2301 provided on the workpiece 6 is formed and the tooth piece forming region Sa12 where the tooth piece 232 is formed.
  • the center hole 61 including the center axis C1 is punched out from the center.
  • the center hole punching step S ⁇ b> 10 may include a step of punching out a component piece of the rotor core 12 that is rotatably arranged inside the stator core 21.
  • FIG. 6 shows a part of the slot punching process.
  • slots 62 aligned in the circumferential direction are punched in the tooth piece forming region Sa12 on the radially outer side of the central hole 61.
  • Twelve slots 62 are provided in the circumferential direction.
  • the slot 62 has a radially outer circumferential length longer than a radially inner circumferential length.
  • the isosceles trapezoidal slot 62 with rounded corners is punched.
  • the slot 62 is provided with a conducting wire.
  • the slots 62 adjacent in the circumferential direction of the tooth piece portion 632 are punched out in the tooth piece forming region Sa12.
  • the slot punching step S20 is performed before the split stator piece forming step S30.
  • FIG. 7 is a diagram showing a part of the split stator piece part forming step.
  • FIG. 8 is a cross-sectional view showing a processed state in the split stator piece part forming step.
  • the divided stator piece part forming step S ⁇ b> 30 is a process of forming the divided stator piece part 63 to be the divided stator piece 23 in the processing region Sa ⁇ b> 1 of the workpiece 6.
  • the divided stator piece portion 63 is arranged side by side in the circumferential direction, and has a divided yoke piece portion 631 that becomes the divided yoke piece 231 and a teeth piece portion 632 that becomes the teeth piece 232. As shown in FIG.
  • the split stator piece forming step S30 the workpiece 6 is held by the mold Md, the tool Ms1 (blade) is moved in the axial direction, and the workpiece 6 is pushed out. That is, in the split stator piece part forming step S30, the yoke piece forming region Sa11 and the tooth piece forming region Sa12 are extruded in the same shape as the split stator piece in the thickness direction of the workpiece 6, and the circumferential direction around the central axis C1. A predetermined number of divided stator pieces 63 arranged adjacent to each other are formed.
  • the split stator piece part 63 includes an extruding part 63a that is pushed out by the tool Ms1 and a stationary part 63b that is not pushed out.
  • the pushing parts 63a and the stationary parts 63b are alternately arranged in the circumferential direction.
  • the pushing parts 63a and the stationary parts 63b can be arranged alternately.
  • the predetermined number is an even number
  • the divided stator piece part forming step S30 pushes out every other predetermined number of the divided stator piece parts 63a arranged in the circumferential direction.
  • the extrusion part 63a is extruded to such an extent that it does not isolate
  • the portion of the tool Ms1 used in the split stator piece forming step S30 that comes into contact with the workpiece 6 is a flat surface.
  • the push-out portion 63a is pushed out by the tool Ms1 while being kept parallel or substantially parallel to the other parts of the workpiece 6. That is, in the divided stator piece part forming step S ⁇ b> 30, the divided stator piece part 63 is pushed out in parallel with the workpiece 6.
  • the radially outer side of the extruded portion 63a extruded in the split stator piece portion forming step S30 is the radially outer side of the yoke piece forming region Sa11.
  • the radially inner side of the pushing portion 63 a reaches the central hole 61.
  • the divided stator piece part forming step S30 may be formed by extruding two or more divided stator piece parts 63 simultaneously. Further, the divided stator piece part forming step S30 may extrude two or more divided stator piece parts 63 one by one.
  • FIG. 9 is a diagram showing a part of the pushback process.
  • FIG. 10 is a cross-sectional view showing a processed state in the pushback process. In FIG. 9, the portion of the work material to be pushed back is shaded.
  • the push-up tool Ms2 disposed to face the tool Ms1 is pushed back in the direction opposite to the direction in which the pushing portion 63a protrudes from the workpiece 6. And the extrusion part 63a is pushed back to the original position of the workpiece 6.
  • the pushback step S40 the divided stator piece part 63a extruded in the divided stator piece part forming step S30 is pushed back and formed.
  • the divided stator pieces 63 arranged in the circumferential direction on the radially outer side of the central hole 61 are formed in the processing region Sa1 of the workpiece 6. That is, in the yoke piece forming region Sa11, a groove is formed at the boundary between the pushing portion 63a and the stationary portion 63b.
  • the pushback step S40 may return the pushing portion 63a in a state where the workpiece 6 is sandwiched between the tool Ms1 and the lifting tool Ms2. Further, the pushback step S40 may be performed in the same step as the split stator piece forming step S30.
  • the extruded portion 63a is extruded from the workpiece 6 while being kept parallel to the workpiece 6.
  • the pushing portion 63a is pushed back to the original position while being kept parallel to the workpiece 6.
  • the divided stator piece part 63 is not bent during processing. Thereby, generation
  • segmentation stator piece part 63 may be isolate
  • the pushing portion 63 a is held on the workpiece 6 by friction with other portions of the workpiece 6.
  • at least one part may be connected. That is, the divided stator piece 63 may be separated from the workpiece 6 in the divided stator piece forming step S30 or the pushback step S40.
  • FIG. 11 is a diagram showing a part of the caulking portion forming step.
  • FIG. 12 is a cross-sectional view including a caulking portion provided on the divided stator piece portion.
  • a caulking portion 64 for fixing the divided stator piece portions 63 to each other at the time of lamination is formed on the divided stator piece portion 63. That is, in the caulking portion forming step S ⁇ b> 50, the caulking portion 64 for caulking is formed on at least one of the divided yoke piece portion 631 and the tooth piece portion 632 of the divided stator piece portion 63. Then, the caulking part forming step S50 is executed before the lamination step S60.
  • the caulking portion 64 includes a protruding portion 641 that pushes the divided stator piece portion 63 from the other side in the axial direction toward one side, and a concave hole 642 provided in the surface on the other side in the axial direction. .
  • the protruding portion 641 of the caulking portion 64 provided on the other divided stator piece 63 on the other axial side is provided with the divided stator piece 63 laminated on the one axial side. It fits into the recessed hole 642 of the crimped portion 64.
  • the split stator piece 63 is fixed by the frictional force between the protrusion 641 of the caulking portion 64 and the concave hole 642 of the caulking portion 64.
  • the caulking portion 64 remains on the divided stator piece 23 even after the divided stator piece 23 is formed. As shown in FIG. 12, the caulking portion 64 protrudes to the other side in the axial direction from the other portion of the divided stator piece portion 63. For this reason, the flow of magnetic flux changes in the caulking portion 64 and its vicinity, which may adversely affect the magnetic characteristics of the stator core 21. Therefore, it is desirable that the caulking portion 64 is as small as possible.
  • the position and shape of the caulking portion 64 in the divided stator piece portion 63 are required to match with high accuracy.
  • the accuracy of the position and shape of the caulking portion 64 is required to be higher as the caulking portion 64 is smaller. For example, if the caulking portion 64 is formed in a portion where residual stress and residual strain are generated, the shape and position of the caulking portion 64 may be shifted due to the influence of the residual stress and / or residual strain.
  • the split stator piece forming step S30 and the pushback step S40 of the present embodiment residual stress and residual strain are unlikely to occur during processing of the extruded portion 63a of the split stator piece 63. Therefore, in the divided stator piece portion 63, a region where the caulking portion 64 can be formed is wide. In other words, in the divided stator piece portion 63 manufactured by the manufacturing method of the present invention, there are few restrictions on the place where the caulking portion 64 is formed. It is possible to provide the caulking portion 64 at a position where the flow of magnetic flux in the divided stator piece 23 is not disturbed or hardly disturbed. Thereby, it is possible to manufacture the stator core 21 which has a desired magnetic characteristic.
  • FIG. 13 is a diagram showing a part of the outer shape punching step.
  • FIG. 14 is a plan view of the stator piece formed by the outer shape punching step.
  • the radially inner side of the teeth piece portion 632 of the divided stator piece portion 63 is cut into a circular shape having the same inner diameter as the inner cylinder of the stator core 21.
  • the radially outer side of the divided stator piece 63 is cut into a circular shape having the same inner diameter as the cylindrical shape outside the stator core 21.
  • a tool is applied to the inner peripheral portion of the tooth piece forming region Sa12 to punch the inside of the tooth piece forming region Sa12. Further, a tool (blade) having the same outer diameter as that of the yoke piece forming region Sa11 is applied and punched. That is, in the outer shape punching step S60, the outer shape of the portion 63 that becomes the stator piece 23 formed on the workpiece 6 is punched. In other words, in the outer shape punching step S60, the radially inner side is punched from the radially outer end of the divided stator piece 63.
  • the boundary portion between the pushing portion 63a and the stationary portion 63b reaches the outer side of the yoke piece forming region Sa11 and reaches the central hole 61.
  • the boundary part of the extrusion part 63a and the stationary part 63b is shape
  • Both the pushing portion 63a and the stationary portion 63b are surrounded by the outer end portion of the yoke piece forming region Sa11, the boundary between the pushing portion 63a and the stationary portion 63b, and the inner end portion of the tooth piece forming region Sa12. That is, the pushing portion 63a and the stationary portion 63b are divided stator piece portions 63 having the same shape. In addition, the shape of the split stator piece portion 63 formed from the pushing portion 63a and the split stator piece portion 63 formed from the stationary portion 63b may be different.
  • FIG. 15 is a diagram illustrating a part of the stacking process.
  • the lamination step S ⁇ b> 70 is a step of laminating the stator pieces 230 formed in the outer shape drawing step.
  • the stator piece 230 is stacked on one side in the axial direction of the stator piece 230. That is, in the stacking step S70, the stacking direction is the axial direction.
  • the divided stator pieces 23 are overlapped, and the protruding portions 641 of the caulking portions 64 of the divided stator pieces 23 are fitted into the recessed holes 642 of the divided stator pieces 23 stacked on one side in the axial direction.
  • the stacking step S70 includes a caulking step that uses the caulking portion 64 to caulk.
  • the laminated body laminated in the laminating process has the same shape as the stator core 21 held by the housing 3.
  • the boundary between the adjacent divided stator pieces 23 is weaker than the other portions, the boundary between the divided stator pieces 23 is separated by applying a force to the divided stator 210. That is, the stator core 21 can be divided into divided stators 210.
  • the teeth 212 of the stator core 21 are covered with an insulator, and a coil 22 is formed by winding a conductive wire from above the insulator. When the coil is formed, workability is higher when the stator core 21 is divided into the divided stators 210.
  • the divided stator piece 23 is fixed to the adjacent divided stator piece 23 by, for example, laser welding. Therefore, even if the stator core 21 is divided into the divided stators 210, the divided stators 210 are not separated into the divided stator pieces 23.
  • FIG. 16 is a diagram illustrating the workpiece after performing the split stator piece forming step and the pushback step in another example of the method for manufacturing a laminated core according to the present embodiment.
  • the divided stator piece part forming step S ⁇ b> 30 all of the divided stator piece parts 63 arranged in the circumferential direction are pushed with the tool Ms ⁇ b> 1 and all of the extruded divided stator piece parts 63 are pushed.
  • Push back in the pushback step S40 That is, in the divided stator piece forming step S30, each of the predetermined number of divided stator pieces 63 arranged in the circumferential direction is pushed out.
  • the split stator piece forming process and the pushback process will be described. For example, after one split stator piece 63 is extruded in the split stator piece forming step, pushback is performed on the split stator piece 63 in the pushback step. Similarly, the adjacent divided stator piece 63 in the circumferential direction is formed. As described above, all the divided stator pieces 63 arranged in the circumferential direction may be formed. By forming in this way, for example, even when the stator core 21 is formed of an odd number of divided stators 210, the method of this embodiment can be employed.
  • FIG. 17 and FIG. 18 are diagrams showing the workpiece after performing the divided stator piece forming step and the pushback step in another example of the manufacturing method of the laminated core of the present embodiment.
  • the divided stator piece part forming step S ⁇ b> 30 among the divided stator piece parts 63 arranged in the circumferential direction, four extruded parts 63 a arranged at symmetrical positions with the center interposed therebetween are simultaneously provided. Extrude and push back to original position. Then, as shown in FIG.
  • the four divided stator piece parts 63 and the four extruding parts 63a adjacent to each other in the circumferential direction are simultaneously pushed out and pushed back to the original positions. In this way, it is possible to shorten the work time by extruding a plurality of pieces and pushing back.
  • the four extrusion parts 63a are shape
  • the number is not limited to 4 as long as it is a divisor of the total number of the divided stator pieces 63.
  • twelve divided stator pieces 63 are provided. Therefore, you may shape
  • FIG. 19 is a flowchart of the manufacturing process of the laminated core shown in this modification.
  • FIG. 20 is a diagram showing a part of the stacking step of the flowchart shown in FIG.
  • FIG. 21 is a diagram showing a part of the stacking step of the flowchart shown in FIG.
  • each workpiece 6 is laminated (lamination step S601).
  • the divided stator pieces 63 are fixed by the caulking portions 64 and are laminated in the axial direction.
  • the outer shape of the stator core 21 of the workpiece 6 laminated in the lamination step S601 is punched in the axial direction (outline punching step S701). That is, in the outer shape punching step S701, the outer shape of the portion that becomes the stator piece 210 of the entire stacked body after being stacked in the stacking step S601 is punched in the stacking direction.
  • the outer shape punching step S701 by forming the workpieces 6 before forming the stator pieces, it is possible to combine the outer shape punching step S701 at a time. In addition, some deformation may occur due to the outer shape punching process. The caulking portion 64 may be displaced depending on the place of deformation. By performing the stacking step S601 before the outer shape punching step S701, it is possible to suppress the influence of the displacement of the caulking portion 64 due to the outer shape punching step.
  • a caulking portion forming step may be performed before the divided stator piece portion forming step S30.
  • the divided stator piece portion 63 is not formed when the caulking portion 64 is formed. Further, it is possible to suppress a decrease in accuracy of the shape and position of the caulking portion 64 due to the shift.
  • the tool that pushes out the pushing portion 63a may have a configuration that avoids the caulking portion 64 such as a recess in a portion overlapping the caulking portion 64. By doing so, it is possible to suppress deformation of the caulking portion 64. Further, the caulking portion 64 may be formed at the same time when the push-out portion 63a is pushed out.
  • FIG. 22 is a flowchart showing a method for manufacturing the laminated core of the second exemplary embodiment according to the present invention.
  • 23 to 26 are diagrams showing a part of each step in the method of manufacturing the motor shown in FIG.
  • 2nd Embodiment it has a center hole punching process after a pushback process.
  • FIG. 23 is a diagram showing a part of the slot punching process of the manufacturing method of the laminated core shown in FIG.
  • the slot 62 is punched at a predetermined position of the workpiece 6 (slot punching step S11).
  • 24 is a diagram showing a part of a split stator piece forming step of the method for manufacturing a laminated core shown in FIG. After punching out the slot 12, as shown in FIG. 24, the divided stator piece 63 is formed (divided stator piece forming step S21).
  • the split stator piece part 63 has the extrusion part 63a and the stationary part 63b similarly to FIG.
  • FIG. 25 is a diagram showing a part of the pushback process of the manufacturing method of the laminated core shown in FIG. And as shown in FIG. 25, the extrusion part 63a is pushed back to the original position (pushback process S31).
  • FIG. 26 is a diagram showing a part of the caulking part forming step of the manufacturing method of the laminated core shown in FIG. Thereafter, as shown in FIG. 26, the caulking portion 64 is formed at a predetermined position of the divided stator piece portion 63 (caulking portion forming step S41). Then, as shown in FIG. 27, after the caulking portion 64 is formed, the center hole 61 is punched (center hole punching step S51).
  • the outer shape punching step S60 is performed. Thereafter, the procedure is the same as the manufacturing method of the laminated core shown in FIG.
  • the center hole 61 is punched after the formation of the divided stator piece 63 including the caulking portion 64 is completed. At this time, the center hole 61 is punched with the same outer diameter as the radially inner side of the tooth piece forming region Sa12. That is, by performing the center hole punching step S51 after the split stator piece 63 is formed, it is possible to punch the inner end of the split stator piece 63 once. Thereby, it is possible to reduce a manufacturing process.
  • the stacking step S601 of the manufacturing method of the stacked core shown in FIG. 19 may be performed. By proceeding to the stacking step S601, it is possible to stack the split core pieces 63 accurately and stably.
  • FIG. 27 is a flowchart of the manufacturing process of the laminated core shown in this modification.
  • the laminated core manufacturing process shown in FIG. 27 includes a caulking part forming process S41, a laminating process S511 for laminating the workpiece 6 and a central hole punching process for punching the central hole 61 of the laminated workpiece 6 in the axial direction.
  • S611 is included. That is, in the center hole punching step S611, after stacking in the stacking step S511, the center hole of the entire laminate is punched in the stacking direction. Then, after the center hole punching step S611, an outer shape punching step S701 shown in FIG. 19 is performed.
  • FIG. 28 is a diagram showing a part of the stacking process of the manufacturing method of the stacked core shown in FIG. As shown in FIG. 28, after the caulking portion 64 is formed on the divided stator piece portion 63, the workpiece 6 is laminated.
  • FIG. 29 is a diagram showing a part of the center hole punching step of the manufacturing method of the laminated core shown in FIG. And as shown in FIG. 29, the center part containing the center axis
  • the divided stator piece forming step is performed after the slot punching step. And a pushback process is performed immediately after a division
  • the caulking part forming step is performed before the laminating step.
  • the shape of the split stator piece 23 is not easily changed from that at the time of punching.
  • the roundness of the annular yoke piece 2301 can be increased. Since the split stator piece 23 hardly stretches, the caulked portions can be fitted and fixed together when the split stator piece 23 is laminated. Thereby, the roundness of the outer peripheral surface of the annular yoke 211 of the stator core 21 in which the divided stator 210 in which the divided stator pieces 23 are laminated is connected in the circumferential direction is increased. Thereby, it is possible to improve the accuracy when the stator core 21 is fixed to the housing 3.
  • the occurrence of residual stress and residual strain of the divided stator piece 23 is suppressed. Thereby, the flow of magnetic flux in the divided stator piece 23 is not easily changed.
  • the degree of freedom in arranging the caulking portion 64 is increased. As a result, the caulking portion 64 can be formed at a position where the flow of magnetic flux is not disturbed or hardly disturbed. For these reasons, it is possible to suppress variations in the magnetic characteristics of the stator core 21.
  • the workpiece 6 is pushed with a flat tool (blade) to form the split stator piece 63. Therefore, tool molding and maintenance are easy.
  • the present invention is applicable to manufacture of a stator core used for a brushless motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

積層コアの製造方法であって、加工領域の中央孔を打ち抜く中央孔打ち抜き工程と、周方向に隣接して配列された所定数の分割ステータ片部を成形する分割ステータ片部成形工程と、分割ステータ片部成形工程で押し出された前記分割ステータ片部を押し戻して成形するプッシュバック工程と、を有し、分割ステータ片部成形工程は、分割ステータ片部を被加工材と平行に押し出す。

Description

積層コアの製造方法
 本発明は、積層コアの製造方法に関する。
 従来の電動機には、固定子として積層鉄心が用いられる。積層鉄心の製造方法は、例えば、特許文献1に示される。特許文献1の積層鉄心の製造方法は、薄板材料から回転子鉄心片を打ち抜き形成した後、分割鉄心片を互いに連結させた形態のヨーク部形成領域において、隣接する分割鉄心片の連結部を互いにせん断分離するとともに曲げ加工する。そして、曲げ加工した部位を押し戻すプッシュバックを行う。そして、薄板材料から所定数のスロットを打抜く。さらに、内径および外径を打抜いて、分割鉄心片を分離形成した後に、分割鉄心片を下層の分割鉄心をかしめ結合する。以上のような工程で、積層鉄心は、製造される。
特開2005-318763号公報
 特許文献1に記載の積層鉄心の製造方法では、分割鉄心片の連結部をせん断した後に曲げ加工し、その後、プッシュバックを行っている。積層鉄心に用いる金属板では、一度曲げ加工を行うと、プッシュバックを行っても元の形状には戻らない。そのため、積層鉄心の真円度が低下する恐れがある。
 また、分割鉄心片の折り曲げ部の近傍では、寸法精度が低下するため、かしめ結合を行うには不向きである。そのため、かしめ結合を行う部分が制限される。さらに、曲げ加工によって発生する折り曲げ部では、金属の性質が変化してしまうことがあり、磁束の流れが変化する。かしめ結合を行う部分の制限および折り曲げ部の金属の性質の変化によって、積層鉄心の磁気特性のばらつく恐れがある。
 そこで、本発明は、形状精度および磁気特性のばらつきを抑制した積層コアの製造方法を提供することを目的とする。
 本発明の例示的な積層コアの製造方法は、被加工材に設けられた前記ヨーク片が形成されるヨーク片形成領域と前記ティース片が形成されるティース片形成領域を含む加工領域の中央部分から前記中心軸を含む中央孔を打ち抜く中央孔打ち抜き工程と、前記ヨーク片形成領域および前記ティース片形成領域を前記被加工材の厚み方向に前記分割ステータ片と同じ形状で押し出し、前記中心軸を中心とする周方向に隣接して配列された所定数の分割ステータ片部を成形する分割ステータ片部成形工程と、前記分割ステータ片部成形工程で押し出された前記分割ステータ片部を押し戻して成形するプッシュバック工程と、前記被加工材に成形された前記ステータ片となる部分の外形を打ち抜く外形打ち抜き工程と、前記分割ヨーク片および前記ティース片を軸方向に積層して結合する積層工程と、を有し、前記分割ステータ片部成形工程は、前記分割ステータ片部を前記被加工材と平行に押し出すことを特徴とする。
 例示的な本発明の積層コアの製造方法によれば、積層コアの形状精度および磁気特性のばらつきを抑制することが可能である。
図1は、モータの断面図である。 図2は、ステータコアの斜視図である。 図3は、分割ステータ片の平面図である。 図4は、本発明にかかる例示的な第1実施形態の積層コアの製造方法を示すフローチャートである。 図5は、中央孔打ち抜き工程の一部を示す図である。 図6は、スロット打ち抜き工程の一部を示す図である。 図7は、分割ステータ片部成形工程の一部を示す図である。 図8は、分割ステータ片部成形工程における加工状態を示す断面図である。 図9は、プッシュバック工程の一部を示す図である。 図10は、プッシュバック工程における加工状態を示す断面図である。 図11は、かしめ部成形工程の一部を示す図である。 図12は、分割ステータ片部に設けられたかしめ部を含む断面図である。 図13は、外形打ち抜き工程の一部を示す図である。 図14は、外形打ち抜き工程によって形成されたステータ片の平面図である。 図15は、積層工程の一部を示す図である。 図16は、本実施形態の積層コアの製造方法の他の例における分割ステータ片部成形工程およびプッシュバック工程を行った後の被加工材を示す図である。 図17は、本実施形態の積層コアの製造方法の他の例における分割ステータ片部成形工程およびプッシュバック工程を行った後の被加工材を示す図である。 図18は、本実施形態の積層コアの製造方法の他の例における分割ステータ片部成形工程およびプッシュバック工程を行った後の被加工材を示す図である。 図19は、本変形例で示す積層コアの製造工程のフローチャートである。 図20は、図19に示すフローチャートの積層工程の一部を示す図である。 図21は、図19に示すフローチャートの積層工程の一部を示す図である。 図22は、本発明にかかる例示的な第2実施形態の積層コアの製造方法を示すフローチャートである。 図23は、図22に示す積層コアの製造方法のスロット打ち抜き工程の一部を示す図である。 図24は、図22に示す積層コアの製造方法の分割ステータ片部成形工程の一部を示す図である。 図25は、図22に示す積層コアの製造方法のプッシュバック工程の一部を示す図である。 図26は、図22に示す積層コアの製造方法のかしめ部成形工程の一部を示す図である。 図27は、本変形例で示す積層コアの製造工程のフローチャートである。 図28は、図27に示す積層コアの製造方法の積層工程の一部を示す図である。 図29は、図27に示す積層コアの製造方法の中央孔打ち抜き工程の一部を示す図である。
 以下、図面を参照して、本発明の例示的な実施形態にかかるモータについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
 また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸C1の軸方向と平行な方向とする。X軸方向は、Z軸方向と直交し、図1において紙面に沿う方向とする。Y軸方向は、Z軸方向とX軸方向の両方と直交する方向とする。
 また、Z軸は、図1に示す状態において、上を正の側(+Z側)、下を負の側(-Z側)とする。そして、Z軸方向の正の側(+Z側)を「一方側」と呼び、Z軸方向の負の側(-Z側)を「他方側」と呼ぶ。なお、一方側及び他方側とは、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸C1に平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸C1を中心とする径方向を単に「径方向」と呼び、中心軸C1を中心とする円弧に沿う方向、すなわち、中心軸C1の周方向を単に「周方向」と呼ぶ。
<1.第1実施形態>
<1.1 モータの概略構成>
 本発明の例示的な第1実施形態にかかるモータの概略構成について説明する。図1は、モータの断面図である。
 図1に示すように、モータAは、ロータ1と、ステータ2と、ハウジング3と、第1軸受41と、第2軸受42と、を有する。また、モータAは、第1軸受41を保持する軸受保持部5を有する。
<1.2 ロータ>
 ロータ1は、シャフト11と、ロータコア12と、を有する。ロータ1は、ステータ2に対して、中心軸C1を中心として相対的に回転可能である。 シャフト11は、軸方向(Z軸方向)に延びる円柱状である。シャフト11は、第1軸受41および第2軸受42を介して、ハウジング3に回転可能に支持される。これにより、ロータ1は、中心軸C1を中心として、ステータ2に対して回転可能である。シャフト11は、ロータコア12に圧入により固定される。なお、シャフト11とロータコア12との固定は、圧入に限定されない。シャフト11とロータコア12とを固定できる方法を広く採用することができる。
 ロータコア12には、電磁鋼板を積層した積層体である。ロータコア12には、マグネット(不図示)が取り付けられる。ロータコア12は、マグネットによって励磁される。
<1.3 ハウジング>
 ハウジング3は、軸方向に延びる筒状である。ステータ2は、ハウジング3の内周面に固定される。ステータ2は、ハウジングの内方に固定されることで、ハウジング3と中心軸(中心軸C1)が一致する。
<1.4 軸受>
 ロータ1の後述するシャフト11は、第1軸受41に、他方側が第2軸受42にそれぞれ回転可能に支持される。すなわち、ロータ1は第1軸受41および第2軸受42に回転可能に支持される。
 第1軸受41および第2軸受42はここではボールベアリングである。シャフト11は、第1軸受41および第2軸受42を介して、ハウジング3に回転可能に支持される。このとき、シャフト11の中心軸は、ハウジング3の中心軸C1と一致する。 
 第1軸受41は、ハウジング3の軸方向一方側の端部の開口を塞ぐ軸受保持部5に固定される。また、第2軸受42は、ハウジング3の軸方向他方側の端部の底部に固定される。
<1.5 ステータ>
 ステータ2は、ロータ1の径方向外側を囲んでいる。ステータ2とロータ1とは、中心軸が一致する。ステータ2は、ステータコア21と、コイル22と、を有する。ステータ2は、ロータ1と対向し複数個のコイル22を含む。
 <1.5.1 ステータコア>
 図2は、ステータコアの斜視図である。図3は、分割ステータ片の平面図である。図2に示すように、ステータコア21は、環状のヨーク211と、ヨーク211から径方向内側に延びるティース212とを有する。また、ステータコア21は、周方向に12個の分割ステータ210に分割される。
 分割ステータ210は、環状ヨーク211を周方向に分割した分割ヨーク213を有する。また、各分割ステータ210の分割ヨーク213のそれぞれから径方向内側に向かってティース212が延びている。
 分割ステータ210は、複数の分割ステータ片23を積層した積層体である。分割ステータ片23は、中心軸C1の周方向に連結することで環状のヨーク片2301(後述の図14参照)を構成する分割ヨーク片231と、分割ヨーク片231と同一の材料で連続して形成されてヨーク片230の径方向内側に延びるティース片232とを所定数(ここでは、12個)有する。また、分割ヨーク片231の周方向両端部およびティース片232の径方向内側の端部には、かしめ部64を有する。
 12個の分割ステータ210を周方向に無端状に連結して、ステータコア21が構成される。また、分割ステータ片23を無端状に連結することで、ステータ片230が形成される。換言すると、12個の分割ステータ片23を周方向に無端状に連結するとともに、軸方向に積層してステータコア21が構成される。すなわち、ステータコア21は、積層コアである。
 コイル22は、ステータコア21のティース212の外面を被覆したインシュレータの外周に導線を巻きつけることで形成される。コイル22には、導線の端部が引き出されており、導線の端部は、ステータ2の軸方向一方側の端部から軸方向一方側に延びる。導線を介してコイル22に電力を供給することで、ステータ21は励磁される。例えば、モータAのコイル22は、3相(U、V、W)に分かれる。そして、各相には、位相をずらした正弦波形の電流が供給される。そのため、導線は、3相のそれぞれに電流が供給できる数を備える。
<2. 積層コアの製造方法>
 上述したステータコアを製造する積層コアの製造方法について、図面を参照して説明する。図4は、本発明にかかる例示的な第1実施形態の積層コアの製造方法を示すフローチャートである。図5~図15は、図4に示すモータの製造方法における各工程の一部を示す図である。なお、積層コアの製造方法において、一点鎖線は、これから加工する境界線を示している。例えば、プレス加工を行う場合では、プレス加工の工具を配置する位置を示す線である。
 図4に示すように、本実施形態の積層コアの製造方法は、中央孔打ち抜き工程S10と、スロット打ち抜き工程S20と、分割ステータ片部成形工程S30と、プッシュバック工程S40と、かしめ部成形工程S50と、外形打ち抜き工程S60と、積層工程S70と、を有する。
<2.1 中央孔打ち抜き工程>
 図5は、中央孔打ち抜き工程の一部を示す図である。図5に示すように、磁性材料である電磁鋼板である被加工材料6の、加工領域Sa1には、環状のヨーク片形成領域Sa11と、環状のティース片形成領域Sa12とを有する。ヨーク片形成領域Sa11と、ティース片形成領域Sa12とは、中心軸が一致している。
 図5に示すように、中央孔打ち抜き工程S10は、被加工材料6の、ティース片形成領域Sa12の内部に円形状の中央孔61を打ち抜く。中央孔打ち抜き工程S10は、プレス加工で行われる。なお、中央孔61は、ステータコア21の中央に設けられる筒形状部の内径よりも小さい内径としている。しかしながら、これに限定されず、ステータコア21の中央の筒形状の内径と同じであってもよい。また、中央孔61は、円形に限定されず、分割ステータ片23と同じ片を有する多角形状であってもよい。すなわち、中央孔打ち抜き工程S10は、被加工材6に設けられたヨーク片2301が形成されるヨーク片形成領域Sa11とティース片232が形成されるティース片形成領域Sa12を含む加工領域Sa1の中央部分から中心軸C1を含む中央孔61を打ち抜く。
 なお、中央孔打ち抜き工程S10で中央孔61を打抜いたとき、中央孔61の内側の部分は、中央孔61と同じ形状の板材である。この板材をそのまま廃棄せずに、ロータコア12の構成片を打ち抜いてもよい。すなわち、中央孔打ち抜き工程S10は、ステータコア21の内部に回転可能に配されるロータコア12の構成片を打ち抜く工程を含んでよい。
<2.2 スロット打ち抜き工程>
 図6は、スロット打ち抜き工程の一部を示す図である。スロット打ち抜き工程S20は、中央孔61の径方向外側のティース片形成領域Sa12に、周方向に並んだスロット62を打ち抜く。スロット62は、周方向に12個設けられる。スロット62は、径方向外側の周方向長さが径方向内側の周方向長さよりも長い。なお、本実施形態のスロット打ち抜き工程S20では、角を丸めた等脚台形のスロット62を打ち抜く。なお、スロット62には、導線が配される。スロット62を形成することで、ティース片となるティース片部632が形成される。すなわち、スロット打ち抜き工程S20は、ティース片形成領域Sa12において、ティース片部632の周方向に隣り合うスロット62を打ち抜く。スロット打ち抜き工程S20は、分割ステータ片部成形工程S30の前に実行される。
<2.3 分割ステータ片部成形工程>
 図7は、分割ステータ片部成形工程の一部を示す図である。図8は、分割ステータ片部成形工程における加工状態を示す断面図である。図7に示すように、分割ステータ片部成形工程S30は、被加工材6の加工領域Sa1に、分割ステータ片23となる分割ステータ片部63を成形する工程である。分割ステータ片部63は、周方向に並んで配され、分割ヨーク片231になる分割ヨーク片部631と、ティース片232になるティース片部632とを有する。図8に示すように、分割ステータ片部成形工程S30は、被加工材6を金型Mdで保持し、軸方向に工具Ms1(刃物)を移動させて、被加工材6を押し出す。すなわち、分割ステータ片部成形工程S30は、ヨーク片形成領域Sa11および前記ティース片形成領域Sa12を被加工材6の厚み方向に分割ステータ片と同じ形状で押し出し、中心軸C1を中心とする周方向に隣接して配列された所定数の分割ステータ片部63を成形する。
 分割ステータ片部成形工程S30において分割ステータ片部63は、工具Ms1で押し出される押出部63aと、押し出されない定置部63bとを有する。図8に示すように、分割ステータ片部成形工程S30において、押出部63aと定置部63bとは、周方向に交互に配置される。本実施形態では、分割ステータ片部63の数が偶数であることから、押出部63aと定置部63bとを交互に配置することが可能である。すなわち、所定数が偶数であり、分割ステータ片部成形工程S30は、周方向に配列された所定数の分割ステータ片部63aを1つおきに押し出す。なお、本実施形態では、押出部63aは、被加工材6から分離しない程度に押し出されるが、これに限定されず、分離させてもよい。
 図8に示すように、分割ステータ片部成形工程S30で用いられる工具Ms1の被加工材6と接触する部分は、平面である。すなわち、押出部63aは、工具Ms1によって被加工材6の他の部分と平行または略平行を保った状態で押し出される。すなわち、分割ステータ片部成形工程S30は、分割ステータ片部63を被加工材6と平行に押し出す。
 なお、分割ステータ片部成形工程S30で押し出される押出部63aの径方向外側は、ヨーク片形成領域Sa11の径方向外側である。また、押出部63aの径方向内側は、中央孔61に到達している。本実施形態において、分割ステータ片部成形工程S30は、2個以上の分割ステータ片部63を同時に押し出して形成してもよい。また、分割ステータ片部成形工程S30は、2個以上の分割ステータ片部63を1個ずつ押し出してもよい。
<2.4 プッシュバック工程>
 図9は、プッシュバック工程の一部を示す図である。図10は、プッシュバック工程における加工状態を示す断面図である。なお、図9において、被加工材料のプッシュバックされる部分に網掛けを施している。
 プッシュバック工程S40は、工具Ms1と対向して配された押上工具Ms2で押出部63aを被加工材6に対して突出している方向と逆方向に押し戻す。そして、押出部63aを、被加工材6の元の位置まで押し戻す。すなわち、プッシュバック工程S40は、分割ステータ片部成形工程S30で押し出された分割ステータ片部63aを押し戻して成形する。
 このようにすることで、被加工材6の加工領域Sa1に、中央孔61の径方向外側に周方向に並んだ分割ステータ片部63が形成される。すなわち、ヨーク片形成領域Sa11において、押出部63aと定置部63bとの境界に、溝が形成される。
 本実施形態において、プッシュバック工程S40は、被加工材6を工具Ms1と押上工具Ms2で挟んだ状態で押出部63aを戻してもよい。さらにプッシュバック工程S40は、分割ステータ片部成形工程S30と同じ工程で行うようにしてもよい。
 本実施形態において、分割ステータ部成形工程S30では、押出部63aを、被加工材6と平行を保った状態で、被加工材6から押し出す。また、プッシュバック工程S40でも同様に、押出部63aを被加工材6と平行を保って元の位置に押し戻される。
 すなわち、分割ステータ片部成形工程S30およびプッシュバック工程S40において、加工時に分割ステータ片部63が折り曲げられない。これにより、加工による分割ステータ片部63、すなわち、分割ステータ片23の残留応力および残留ひずみの発生を抑制できる。これにより、分割ステータ片23、すなわち、ステータコア21の寸法精度を高めることが可能である。また、磁束の流れの乱れを抑制できるため、ステータコア21の磁気特性の低下を抑制することができる。なお、プッシュバック工程S40が完了したときに、分割ステータ片部63の押出部63aと定置部63bの境界が分離されてもよい。分割される場合、押出部63aは、被加工材6の他の部分との摩擦によって被加工材6に保持される。また、少なくとも一部が連結されていてもよい。すなわち、分割ステータ片部成形工程S30またはプッシュバック工程S40において、分割ステータ片部63が被加工材6から分離されてもよい。
<2.5 かしめ部成形工程>
 図11は、かしめ部成形工程の一部を示す図である。図12は、分割ステータ片部に設けられたかしめ部を含む断面図である。かしめ部成形工程S50は、分割ステータ片部63に、積層時に分割ステータ片部63同士を固定するためのかしめ部64を成形する。すなわち、かしめ部成形工程S50は、分割ステータ片部63の分割ヨーク片部分631およびティース片部分632の少なくとも一方にかしめ用のかしめ部64を形成する。そして、かしめ部成形工程S50は、積層工程S60の前段に実行される。
 図12に示すように、かしめ部64は、分割ステータ片部63を軸方向他方側から一方側に向かって押し出した突出部641と、軸方向他方側の面に設けられる凹穴642とを有する。分割ステータ片部63を軸方向に積層するとき、軸方向他方側の分割ステータ片部63に設けられたかしめ部64の突出部641が、軸方向一方側に積層した分割ステータ片部63の設けられたかしめ部64の凹穴642に嵌めこまれる。かしめ部64の突出部641と、かしめ部64の凹穴642との摩擦力で、分割ステータ片部63は固定される。
 かしめ部64は、分割ステータ片23を成形した後も、分割ステータ片23に残る。そして、図12に示すように、かしめ部64は、分割ステータ片部63の他の部分よりも軸方向他方側に突出している。そのため、かしめ部64およびその近傍において、磁束の流れが変化してしまい、ステータコア21の磁気特性に悪影響を及ぼす恐れがある。そのため、かしめ部64は、可能な限り小さいことが望ましい。
 複数の分割ステータ片部63において、互いにかしめ部64の位置や形状がばらつくと、図12に示す状態で、軸方向他方側の突出部641を軸方向一方側の凹穴642に挿入できなくなったり、挿入できたとしても固定ができなくなったりする恐れがある。そのため、かしめ部64の分割ステータ片部63における位置および形状は、高い精度で一致することが要求される。そして、かしめ部64の位置および形状の精度は、かしめ部64が小さいほど、高い精度が要求される。例えば、残留応力および残留ひずみが発生している部分にかしめ部64を成形すると、残留応力および(または)残留ひずみの影響によって、かしめ部64の形状および位置がずれる恐れがある。
 本実施形態の分割ステータ片部成形工程S30およびプッシュバック工程S40では、分割ステータ片部63の押出部63aの加工時に残留応力および残留ひずみが発生しにくい。そのため、分割ステータ片部63において、かしめ部64を形成可能な領域が広い。換言すると、本発明の製造方法で製造した分割ステータ片部63において、かしめ部64を成形する場所に制限が少ない。分割ステータ片23内の磁束の流れを邪魔しない、または、邪魔しにくい位置にかしめ部64を設けることが可能である。これにより、所望の磁気特性を有するステータコア21を製造することが可能である。
<2.6 外形打ち抜き工程>
 図13は、外形打ち抜き工程の一部を示す図である。図14は、外形打ち抜き工程によって形成されたステータ片の平面図である。図13に示すように、外形打ち抜き工程S60は、分割ステータ片部63のティース片部632の径方向内側を、ステータコア21の内側の円筒と同じ内径の円形状に切断する。また、分割ステータ片部63の径方向外側をステータコア21の外側の円筒形と同じ内径の円形状に切断する。換言すると、外側打ち抜き工程S60は、ティース片形成領域Sa12の内周部分に工具(刃物)を当てて、ティース片形成領域Sa12の内部を打抜く。また、ヨーク片形成領域Sa11と同じ外径の工具(刃物)を当てて、打抜く。すなわち、外形打ち抜き工程S60は、被加工材6に成形されたステータ片23となる部分63の外形を打ち抜く。また、換言すると、外形打ち抜き工程S60は、分割ステータ片部63の径方向外側の端部よりも径方向内側を打ち抜く。
 分割ステータ片部63において、押出部63aと定置部63bとの境界部分は、ヨーク片形成領域Sa11の外側に到達しているとともに、中央孔61に到達している。そして、押出部63aと定置部63bとの境界部分は、分割ステータ片部成形工程S30およびプッシュバック工程S40による変形で成形される。これにより、隣り合う分割ステータ片23に境界を有する、ステータ片230が製造される。押出部63aおよび定置部63bのいずれもが、ヨーク片形成領域Sa11の外側の端部、押出部63aと定置部63bとの境界およびティース片形成領域Sa12の内側の端部に囲まれる。すなわち、押出部63aおよび定置部63bは同形状の分割ステータ片部63となる。なお、押出部63aから形成される分割ステータ片部63と、定置部63bから形成される分割ステータ片部63とは、形状が異なっていてもよい。
<2.7 積層工程>
図15は、積層工程の一部を示す図である。図15に示すように、積層工程S70は、外形抜き工程で成形したステータ片230を、積層する工程である。積層工程S70では、ステータ片230の軸方向一方側にステータ片230を重ねる。すなわち、積層工程S70において積層方向は、軸方向である。このとき、分割ステータ片23が重なり、分割ステータ片23のかしめ部64の突出部641が軸方向一方側に積層した分割ステータ片23の凹穴642に嵌る。これにより、分割ステータ片23は、軸方向に積層される(図2参照)。すなわち、積層工程S70は、分割ヨーク片231およびティース片232を軸方向に積層して結合する。また、積層工程S70は、かしめ部64を用いてかしめるかしめ工程を含んでいる。
 積層工程にて積層された積層体は、ハウジング3に保持されるステータコア21と同形状である。上述のとおり、隣り合う分割ステータ片23の境界は、他の部分よりも弱いため、分割ステータ210に力を加えることで、分割ステータ片23同士の境界は、分離される。すなわち、ステータコア21を分割ステータ210に分割可能である。例えば、本実施形態では、省略しているが、ステータコア21のティース212は、インシュレータで被覆され、インシュレータの上から導線が巻きまわされてコイル22が形成される。コイルを形成するときには、ステータコア21を分割ステータ210に分割している方が、作業性が高い。分割ステータ210において、分割ステータ片23は、隣り合う分割ステータ片23と、例えば、レーザ溶接にて固定される。そのため、ステータコア21を分割ステータ210に分割しても、分割ステータ210が分割ステータ片23に分離されない。
 以上のように、本発明にかかる積層コアの製造方法を利用することで、折曲等による残留応力および残留ひずみが発生しにくい。これにより、かしめ部64の形成場所の調整範囲が広くなり、所望の磁気特性のステータコア21を製造することが容易である。また、残留応力および残留ひずみが発生しにくいため、これらを要因とする磁束の流れへの悪影響を抑制することが可能である。このことからも所望の磁気特性を有するステータコア21を製造可能である。また、残留応力および残留ひずみを取り除くための熱処理等が不要であるため、積層コアの製造に要する時間と手間を省くことができる。また、折曲工程が不要であるため、工具の被加工材6と接触する面が平面である。そのため、工具の製造、メンテナンス等が容易である。この点からも、積層コアの製造に要する手間および時間を削減することが可能である。
<第1実施形態の変形例1>
 本実施形態の変形例について図面を参照して説明する。図16は、本実施形態の積層コアの製造方法の他の例における分割ステータ片部成形工程およびプッシュバック工程を行った後の被加工材を示す図である。図16に示す被加工材6では、分割ステータ片部成形工程S30において、周方向に並んだ分割ステータ片部63の全てを、工具Ms1で押すとともに、押し出された分割ステータ片部63の全てをプッシュバック工程S40で押し戻す。すなわち、分割ステータ片部成形工程S30は、周方向に配列された所定数の分割ステータ片部63のそれぞれを押し出す。
 全ての分割ステータ片部63を押し出すため、分割ステータ片部63に加工工程の差がなくなる。これにより、分割ステータ片部63、すなわち、分割ステータ片23のばらつきを抑制することができる。
 なお、分割ステータ片部成形工程およびプッシュバック工程について、説明する。例えば、分割ステータ片部成形工程で1つの分割ステータ片部63を押し出した後、その分割ステータ片部63に対してプッシュバック工程でプッシュバックを行う。同様に、周方向の隣の分割ステータ片部63を成形する。以上のようにして、周方向に配された全ての分割ステータ片部63を成形してもよい。このように成形することで、例えば、ステータコア21が奇数の分割ステータ210で形成されている場合でも、本実施形態の方法を採用することが可能である。
<第1実施形態の変形例2>
 本実施形態の変形例について図面を参照して説明する。図17および図18は、本実施形態の積層コアの製造方法の他の例における分割ステータ片部成形工程およびプッシュバック工程を行った後の被加工材を示す図である。図17に示す被加工材6では、分割ステータ片部成形工程S30において、周方向に並んだ分割ステータ片部63のうち、中心を挟んで対称位置に配された4個の押出部63aを同時に押し出し、元の位置にプッシュバックする。そして、図18に示すように、4個の分割ステータ片部63それぞれと周方向に隣り合う4個の押出部63aを同時に押し出し、元の位置にプッシュバックする。このように、複数個ずつ押し出し、プッシュバックすることで、作業時間を短縮することが可能である。
 なお、本実施形態では、4個の押出部63aを同時に成形しているが、これに限定されない。分割ステータ片部63の総数の約数であれば、4に限定されない。例えば、本実施形態では、12個の分割ステータ片部63を有する。そのため、3個の押出部63aを同時に成形してもよい。
<第1実施形態の変形例3>
 本実施形態の変形例について図面を参照して説明する。図19は、本変形例で示す積層コアの製造工程のフローチャートである。図20は、図19に示すフローチャートの積層工程の一部を示す図である。図21は、図19に示すフローチャートの積層工程の一部を示す図である。
 図19に示すように、本実施形態の積層コアの製造工程は、図4に示すフローチャートに対して、積層工程S601と外形抜き工程S701の順番が逆転している。それ以外は、図4に示すフローチャートと同じであり、実質上同じ部分については、詳細な説明を省略する。
 図20に示すように、かしめ部成形工程S50で、かしめ部64を成形した後、被加工材6ごとに、積層する(積層工程S601)。分割ステータ片部63は、かしめ部64同士で固定されて軸方向に積層される。そして、図21に示すように、積層工程S601で積層した被加工材料6のステータコア21の外形を軸方向に打ち抜く(外形打ち抜き工程S701)。すなわち、外形打ち抜き工程S701は、積層工程S601で積層した後に積層体全体のステータ片210となる部分の外形を積層方向に打ち抜く。
 このように、ステータ片を形成する前に、被加工材6を積層することで、外形打ち抜き工程S701を1回にまとめることが可能である。また、外形打ち抜き工程によって、多少変形が生じる場合がある。変形の場所によっては、かしめ部64がずれてしまう恐れがある。外形打ち抜き工程S701の前に、積層工程S601を行うことで、外形打ち抜き工程によるかしめ部64のずれの影響を抑制することが可能である。
<第1実施形態の変形例4>
 図4に示す分割ステータ片部成形工程S30およびプッシュバック工程S40では、分割ステータ片部63に残留応力および残留ひずみが発生しにくい。そこで、分割ステータ片部成形工程S30の前に、かしめ部成形工程を行ってもよい。
 以上のように、かしめ部成形工程を分割ステータ片部成形工程の前に実行することで、かしめ部64の成形時に、分割ステータ片部63は形成されていないため、分割ステータ片部63の移動およびずれによるかしめ部64の形状および位置の精度の低下を抑制することができる。なお、分割ステータ片部成形工程において、押出部63aを押し出す工具には、かしめ部64と重なる部分に凹部等の、かしめ部64を避ける構成を有していてもよい。このようにすることで、かしめ部64の変形を抑制することが可能である。また、押出部63aを押し出すときに、同時にかしめ部64を成形するようにしてもよい。
<3. 第2実施形態>
 本発明にかかる例示的な第2実施形態の積層コアの製造方法について、図面を参照して説明する。図22は、本発明にかかる例示的な第2実施形態の積層コアの製造方法を示すフローチャートである。図23~図26は、図22に示すモータの製造方法における各工程の一部を示す図である。なお、第2実施形態では、プッシュバック工程の後に中央孔鵜打ち抜き工程を有している。
 図23は、図22に示す積層コアの製造方法のスロット打ち抜き工程の一部を示す図である。図22および図23に示すように、第2実施形態の積層コアの製造方法では、被加工材6の所定の位置に、スロット62を打ち抜く(スロット打ち抜き工程S11)。図24は、図22に示す積層コアの製造方法の分割ステータ片部成形工程の一部を示す図である。スロット12を打ち抜いた後、図24に示すように、分割ステータ片部63を成形する(分割ステータ片部成形工程S21)。なお、分割ステータ片部63は、図7と同様、押出部63aと定置部63bとを有する。図25は、図22に示す積層コアの製造方法のプッシュバック工程の一部を示す図である。そして、図25に示すように、押出部63aを元の位置に押し戻す(プッシュバック工程S31)。
 図26は、図22に示す積層コアの製造方法のかしめ部成形工程の一部を示す図である。その後、図26に示すように、分割ステータ片部63の所定の位置に、かしめ部64を成形する(かしめ部成形工程S41)。そして、図27に示すように、かしめ部64を成形した後に、中央孔61を打ち抜く(中央孔打ち抜き工程S51)。
 中央孔61を打ち抜いた後、外形打ち抜き工程S60を行う。以後、図4に示す積層コアの製造方法と同じ手順である。
 第2実施形態の積層体の製造工程では、かしめ部64を含む分割ステータ片63の成形が完了した後に中央孔61を打ち抜いている。このとき、中央孔61は、ティース片形成領域Sa12の径方向内側と同じ外径で打ち抜かれる。すなわち、中央孔打ち抜き工程S51を分割ステータ片部63を成形した後に行うことで、分割ステータ片部63の内側の端部の打ち抜きを1回で済ませることが可能である。これにより、製造工程を減らすことが可能である。
<第2実施形態の変形例1>
 中央孔打ち抜き工程S51で中央孔61を打ち抜いた後、図19に示す積層コアの製造方法の積層工程S601を行ってもよい。積層工程S601に進むことで、分割コア片部63を正確かつ安定して積層することが可能である。
<第2実施形態の変形例2>
 本実施形態の変形例について図面を参照して説明する。図27は、本変形例で示す積層コアの製造工程のフローチャートである。図27に示す積層コアの製造工程は、かしめ部成形工程S41の後、被加工材6を積層する積層工程S511と、積層した被加工材6の中央孔61を軸方向に打ち抜く中央孔打ち抜き工程S611を有している。すなわち、中央孔打ち抜き工程S611は、積層工程S511で積層したのちに積層体全体の中央孔を積層方向に打ち抜く。そして、中央孔打ち抜き工程S611の後、図19に示す外形打ち抜き工程S701を行う。
 図28は、図27に示す積層コアの製造方法の積層工程の一部を示す図である。図28に示すように、分割ステータ片部63にかしめ部64を成形した後、被加工材6を積層する。図29は、図27に示す積層コアの製造方法の中央孔打ち抜き工程の一部を示す図である。そして、図29に示すように、積層された被加工材6の中心軸を含む中央部分を打ち抜く(中央孔打ち抜き工程S611)。以上のように、被加工材6を積層したのちに、中央孔61を打ち抜くため、ステータコア21の内周面のばらつきが抑制される。
 以上示したように、本発明にかかる積層コアの製造方法では、スロット打ち抜き工程の後に、分割ステータ片部成形工程が行われる。そして、分割ステータ片成形工程の直後にプッシュバック工程が行われる。かしめ部成形工程は、積層工程の前に行われる。
 分割ステータ片23を折り曲げないため、分割ステータ片23の形状が打ち抜き時と変化しにくい。分割ステータ片23を周方向に連結したときに、環状のヨーク片2301の真円度を高めることができる。そして、分割ステータ片23の伸びが生じにくいため、分割ステータ片23の積層時にかしめ部同士を嵌め合せて固定することが可能である。これにより、分割ステータ片23を積層した分割ステータ210を周方向に連結したステータコア21の環状のヨーク211の外周面の真円度が高くなる。これにより、ステータコア21をハウジング3に固定するときの精度を高めることが可能である。
 また、分割ステータ片23の残留応力および残留ひずみの発生が抑えられる。これにより、分割ステータ片23内での磁束の流れが変化しにくい。また、残留応力および残留ひずみによるかしめ部64の変形、ずれが発生しにくいため、かしめ部64の配置の自由度が高くなる。これにより、かしめ部64を磁束の流れを邪魔しないまたは邪魔しにくい位置に形成することが可能である。これらのことから、ステータコア21の磁気特性のばらつきを押えることが可能である。
 さらに、被加工材6を平面状の工具(刃物)で押して、分割ステータ片部63を形成する。そのため、工具の成形やメンテナンスが容易である。
 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変形が可能である。
 本発明は、ブラシレスモータに用いられるステータコアの製造に適用可能である。
A・・・モータ、1・・・ロータ、11・・・シャフト、12・・・ロータコア、2・・・ステータ、21・・・ステータコア、210・・・分割ステータ、211・・・ヨーク、212・・・ティース、213・・・分割ヨーク、22・・・コイル、23・・・分割ステータ片、230・・・ステータ片、2301・・・ヨーク片、231・・・分割ヨーク片、232・・・ティース片、3・・・ハウジング、41・・・第1軸受、42・・・第2軸受、5・・・軸受保持部、6・・・被加工材、61・・・中央孔、62・・・スロット、63・・・分割ステータ片部、631・・・分割ヨーク片部、632・・・ティース片部、63a・・・押出部、63b・・・定置部、64・・・かしめ部、641・・・突出部、642・・・凹穴、Md・・・金型、Ms1・・・工具、Ms2・・・押上工具、Sa1・・・加工領域、Sa11・・・ヨーク片形成領域、Sa12・・・ティース片形成領域

Claims (11)

  1.  中心軸の周方向に連結することで環状のヨーク片を構成する分割ヨーク片と、前記分割ヨーク片と同一の材料で連続して形成されて前記ヨーク片の径方向内側に延びるティース片とを有する分割ステータ片を所定数有し、前記所定数の分割ステータ片を周方向に無端状に連結するとともに軸方向に積層して構成されたステータコアを製造する積層コアの製造方法であって、
     被加工材に設けられた前記ヨーク片が形成されるヨーク片形成領域と前記ティース片が形成されるティース片形成領域を含む加工領域の中央部分から前記中心軸を含む中央孔を打ち抜く中央孔打ち抜き工程と、
     前記ヨーク片形成領域および前記ティース片形成領域を前記被加工材の厚み方向に前記分割ステータ片と同じ形状で押し出し、前記中心軸を中心とする周方向に隣接して配列された所定数の分割ステータ片部を成形する分割ステータ片部成形工程と、
     前記分割ステータ片部成形工程で押し出された前記分割ステータ片部を押し戻して成形するプッシュバック工程と、
     前記被加工材に成形された前記ステータ片となる部分の外形を打ち抜く外形打ち抜き工程と、
     前記分割ヨーク片および前記ティース片を軸方向に積層して結合する積層工程と、
    を有し、
     前記分割ステータ片部成形工程は、前記分割ステータ片部を前記被加工材と平行に押し出すことを特徴とする積層コアの製造方法。
  2.  前記分割ステータ片部成形工程は、2つ以上の前記分割ステータ片部を同時に押し出す請求項1に記載の積層コアの製造方法。
  3.  前記分割ステータ片部成形工程は、周方向に配列された所定数の前記分割ステータ片部のそれぞれを押し出す請求項1または請求項2に記載の積層コアの製造方法。
  4.  前記所定数が偶数であり、
     前記分割ステータ片部成形工程は、周方向に配列された所定数の前記分割ステータ片部を1つおきに押し出す請求項1または請求項2に記載の積層コアの製造方法。
  5.  前記ティース片形成領域において、前記ティース片部の周方向に隣り合うスロットを打ち抜くスロット打ち抜き工程を、さらに有し、
     前記スロット打ち抜き工程は、前記分割ステータ片部成形工程の前に実行される請求項1から請求項4のいずれかに記載の積層コアの製造方法。
  6.  前記中央孔打ち抜き工程は、前記ステータコアの内部に回転可能に配されるロータコアの構成片を打ち抜く工程を含んでいる請求項1から請求項5のいずれかに記載の積層コアの製造方法。
  7.  前記中央孔打ち抜き工程は、前記積層工程で積層したのちに積層体全体の中央孔を積層方向に打ち抜く請求項1から請求項5のいずれかに記載の積層コアの製造方法。
  8.  前記外形打ち抜き工程は、前記積層工程で積層した後に積層体全体の前記ステータ片となる部分の外形を積層方向に打ち抜く請求項1から請求項7のいずれかに記載の積層コアの製造方法。
  9.  前記外形打ち抜き工程は、前記分割ステータ片部の径方向外側の端部よりも径方向内側を打ち抜く請求項1から請求項8のいずれかに記載の積層コアの製造方法。
  10.  前記分割ステータ片部成形工程または前記プッシュバック工程において、前記分割ステータ片部が前記被加工材から分離される請求項1から請求項9のいずれかに記載の積層コアの製造方法。
  11.  前記分割ステータ片部の分割ヨーク片部分およびティース部分の少なくとも一方にかしめ用のかしめ部を形成するかしめ部成形工程を、さらに有し、
     前記かしめ部成形工程は、前記積層工程の前段に実行され、
     前記積層工程は、かしめ部を用いてかしめるかしめ工程を含んでいる請求項1から請求項10のいずれかに記載の積層コアの製造方法。
PCT/JP2017/034191 2016-09-30 2017-09-22 積層コアの製造方法 WO2018062003A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017004947.4T DE112017004947T5 (de) 2016-09-30 2017-09-22 Herstellungsverfahren für einen laminierten Kern
CN201780060502.5A CN109804532B (zh) 2016-09-30 2017-09-22 层叠铁芯的制造方法
JP2018542496A JPWO2018062003A1 (ja) 2016-09-30 2017-09-22 積層コアの製造方法
US16/325,199 US10985637B2 (en) 2016-09-30 2017-09-22 Laminated core manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194145 2016-09-30
JP2016-194145 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062003A1 true WO2018062003A1 (ja) 2018-04-05

Family

ID=61762694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034191 WO2018062003A1 (ja) 2016-09-30 2017-09-22 積層コアの製造方法

Country Status (5)

Country Link
US (1) US10985637B2 (ja)
JP (1) JPWO2018062003A1 (ja)
CN (1) CN109804532B (ja)
DE (1) DE112017004947T5 (ja)
WO (1) WO2018062003A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182257A1 (ja) * 2022-03-24 2023-09-28 ニデック株式会社 固定子コアの製造方法、固定子コア及びモータ
WO2023182256A1 (ja) * 2022-03-24 2023-09-28 ニデック株式会社 固定子コアの製造方法、固定子コア、及び、モータ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214513A1 (de) * 2019-09-24 2021-03-25 Robert Bosch Gmbh Lamellenpaket für eine elektrische Maschine, ein Rotor oder Stator aufweisend ein Lamellenpaket, und Verfahren zum Herstellen eines solchen Lamellenpakets
JP6841975B1 (ja) * 2019-09-27 2021-03-10 三菱電機株式会社 電機子鉄心、電機子および電動機
DE102020206974A1 (de) 2020-06-04 2021-12-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines Stators, insbesondere für einen EC-Motor, sowie ein Stator und eine elektrische Maschine hergestellt nach diesem Verfahren
DE102021202679A1 (de) 2021-03-19 2022-09-22 Robert Bosch Gesellschaft mit beschränkter Haftung Statorgrundkörper für eine elektrische Maschine, sowie eine elektrische Maschine aufweisend einen Statorgrundkörper, und Verfahren zum Herstellen eines Statorgrundkörpers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179259A (ja) * 1988-12-27 1990-07-12 Gunma Nippon Denki Kk リニヤパルスモータ鉄心磁極歯形成方法
JP2004343939A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 回転電機及びその製造方法
JP2004357349A (ja) * 2003-05-27 2004-12-16 Nakamura Mfg Co Ltd 鉄心片の製造方法
JP2005073451A (ja) * 2003-08-27 2005-03-17 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2005318763A (ja) * 2004-04-30 2005-11-10 Mitsui High Tec Inc 積層鉄心の製造方法および金型装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270888B (zh) * 2006-10-13 2013-10-16 株式会社三井高科技 层叠铁芯
US9825512B2 (en) * 2011-10-06 2017-11-21 Mitsubishi Electric Corporation Laminated core manufacturing method
JP5697640B2 (ja) * 2012-10-01 2015-04-08 黒田精工株式会社 積層鉄心の製造方法および積層鉄心製造装置
US10630153B2 (en) * 2014-11-14 2020-04-21 Mitsui High-Tec, Inc. Laminated core and method for manufacturing same
WO2016098145A1 (ja) * 2014-12-18 2016-06-23 黒田精工株式会社 順送り金型装置用の逆押え装置及びこれを備えた順送り金型装置
JP6683428B2 (ja) * 2015-05-12 2020-04-22 株式会社三井ハイテック 積層鉄心用加工体の製造方法及び積層鉄心の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179259A (ja) * 1988-12-27 1990-07-12 Gunma Nippon Denki Kk リニヤパルスモータ鉄心磁極歯形成方法
JP2004343939A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 回転電機及びその製造方法
JP2004357349A (ja) * 2003-05-27 2004-12-16 Nakamura Mfg Co Ltd 鉄心片の製造方法
JP2005073451A (ja) * 2003-08-27 2005-03-17 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2005318763A (ja) * 2004-04-30 2005-11-10 Mitsui High Tec Inc 積層鉄心の製造方法および金型装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182257A1 (ja) * 2022-03-24 2023-09-28 ニデック株式会社 固定子コアの製造方法、固定子コア及びモータ
WO2023182256A1 (ja) * 2022-03-24 2023-09-28 ニデック株式会社 固定子コアの製造方法、固定子コア、及び、モータ

Also Published As

Publication number Publication date
US10985637B2 (en) 2021-04-20
JPWO2018062003A1 (ja) 2019-07-25
DE112017004947T5 (de) 2019-06-13
US20190173363A1 (en) 2019-06-06
CN109804532A (zh) 2019-05-24
CN109804532B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2018062003A1 (ja) 積層コアの製造方法
US10333360B2 (en) Iron core member with divided yoke and tooth portions with V-shaped end joint portions
JP6444497B2 (ja) 回転電機およびその製造方法
WO2011125199A1 (ja) 回転電機の積層鉄心
JP6723348B2 (ja) 固定子鉄心、及びその固定子鉄心を備えた電動機
JP2006340491A (ja) 固定子積層鉄心の製造方法
JP7047847B2 (ja) 固定子コア製造方法、固定子コアを備えたモータの製造方法、固定子コア製造装置及び積層部材の製造方法
KR102241658B1 (ko) 회전 전기 기기 코어의 제조 방법 및 회전 전기 기기 코어
JP6509373B2 (ja) コアシート、分割積層コアおよび固定子並びに分割積層コアの製造方法
JP2011254699A (ja) 積層鉄心の製造方法及び製造装置
CN210577969U (zh) 定子芯片及旋转电机
JP2008113498A (ja) 積層鉄心およびその製造方法
JP6727458B2 (ja) 固定子鉄心及びその固定子鉄心を備えた電動機
CN110366807B (zh) 旋转电机的层叠铁芯、旋转电机的层叠铁芯的制造方法、以及旋转电机
JP2015023630A (ja) ステータの製造方法及びステータ
CN111742472A (zh) 铁芯部件制造方法以及铁芯部件
JP2019176560A (ja) ステータコア及びモータ
WO2022209252A1 (ja) Ipmモータ用ロータの製造方法及びipmモータ用ロータ
JP2018074754A (ja) ロータ製造方法
JP2014193083A (ja) 回転電機のステータおよび回転電機のステータの製造方法
CN111033982B (zh) 定子铁芯制造方法
JP6366198B2 (ja) 回転電機のスロットコイルおよびスロットコイルの製造方法
KR100519114B1 (ko) 리니어 모터용 코어의 제조방법
JP2021044885A (ja) 積層鉄心の製造方法、電気機械の製造方法、積層鉄心の製造装置、及び電気機械
JP2011250602A (ja) 固定子積層鉄心およびこれを用いた回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542496

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17855957

Country of ref document: EP

Kind code of ref document: A1