WO2018055881A1 - 基板処理方法 - Google Patents

基板処理方法 Download PDF

Info

Publication number
WO2018055881A1
WO2018055881A1 PCT/JP2017/025747 JP2017025747W WO2018055881A1 WO 2018055881 A1 WO2018055881 A1 WO 2018055881A1 JP 2017025747 W JP2017025747 W JP 2017025747W WO 2018055881 A1 WO2018055881 A1 WO 2018055881A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
flash
processing method
film
substrate processing
Prior art date
Application number
PCT/JP2017/025747
Other languages
English (en)
French (fr)
Inventor
隆泰 山田
将彦 春本
田中 裕二
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to US16/318,340 priority Critical patent/US10840096B2/en
Publication of WO2018055881A1 publication Critical patent/WO2018055881A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material

Definitions

  • the present invention relates to a substrate processing method for forming a pattern on a thin plate-like precision electronic substrate (hereinafter simply referred to as “substrate”) such as a semiconductor wafer, and more specifically, a pattern using an induction self-organization technique.
  • substrate such as a semiconductor wafer
  • the present invention relates to a substrate processing method for forming a substrate.
  • photolithography has been used as a general method for forming a pattern on a substrate such as a semiconductor wafer.
  • a resist which is a photosensitive substance
  • the resist is exposed to light using a mask depicting the shape of a circuit diagram, and then the excess resist is removed by development processing to provide a circuit.
  • This is a technique for forming the pattern shown in the figure.
  • pattern miniaturization is required, and pattern miniaturization by photolithography has been realized by using a light source having a shorter wavelength during exposure processing.
  • a light source having a shorter wavelength during exposure processing for example, an ArF excimer laser (wavelength: 193 nm) is mainly used as a light source for exposure processing, but even if such a short wavelength light source is used, pattern miniaturization by photolithography is limited to about 45 nm. It is thought that there is.
  • EUV extreme ultraviolet
  • DSA Directed Self-Assembly
  • Patent Documents 1 and 2 guided self-assembly technology
  • the induced self-assembly technique utilizes the property of self-assembly so that a specific block copolymer is spherical, plate-like, or layer-like.
  • the guided self-assembly technique has a problem that many defects are likely to occur in the formed pattern.
  • a defect peculiar to the guided self-organization technique called dislocation in which the position of the pattern is shifted, has also occurred.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate processing method capable of forming a pattern with few defects using an induced self-organization technique.
  • a first aspect of the present invention is a substrate processing method for forming a pattern on a substrate, wherein a film forming step for forming a processing film made of an induced self-organizing material on the substrate, and the processing A flash irradiation step of irradiating the film with flash light from a flash lamp.
  • the second aspect further includes a preheating step of preheating the processing film at a predetermined processing temperature before the flash irradiation step in the substrate processing method according to the first aspect.
  • the third aspect is the substrate processing method according to the second aspect, wherein the processing temperature is a temperature at which the induced self-assembled material undergoes phase separation.
  • a fourth aspect is the substrate processing method according to any one of the first to third aspects, wherein in the flash irradiation step, toluene, heptane, acetone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, Flash light is irradiated in an atmosphere containing at least one solvent from the group consisting of carbon disulfide and tetrahydrofuran.
  • the line width of the pattern is controlled by the flash light irradiation time in the flash irradiation step.
  • the flash irradiation step is repeated a plurality of times.
  • the flash film is irradiated with flash light from the flash lamp onto the processing film made of the induced self-organizing material, the fluidity of the polymer constituting the processing film is increased, resulting in defects. Occurrence is suppressed, and a pattern with few defects can be formed by using an induced self-assembly technique.
  • the substrate processing method in the flash irradiation step, at least one selected from the group consisting of toluene, heptane, acetone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, carbon disulfide and tetrahydrofuran. Since the flash light is irradiated in an atmosphere containing one solvent, the treatment film can be swollen with the solvent, and a pattern with fewer defects can be formed.
  • FIG. 1 is a diagram showing a main configuration of a heat treatment apparatus 1 used in a substrate processing method according to the present invention.
  • the heat treatment apparatus 1 is a flash lamp annealing (FLA) apparatus that irradiates a substrate W with flash light.
  • FLA flash lamp annealing
  • the heat treatment apparatus 1 includes a chamber 10 that accommodates a substrate W, a holding plate 21 that places and holds the substrate W in the chamber 10, an exhaust unit 77 that exhausts the chamber 10, and a processing gas in the chamber 10. And a flash irradiation unit 60 for irradiating the substrate W with flash light. Further, the heat treatment apparatus 1 includes a control unit 90 that controls each of these units to execute flash light irradiation.
  • the chamber 10 is a housing that is provided below the flash irradiation unit 60 and can accommodate the substrate W.
  • a chamber window 69 is attached to the upper opening of the chamber 10 to close it.
  • a space surrounded by the side wall and bottom wall of the chamber 10 and the chamber window 69 is defined as a heat treatment space 65.
  • the chamber window 69 constituting the ceiling of the chamber 10 is a plate-like member made of quartz and functions as a quartz window that transmits the flash light emitted from the flash irradiation unit 60 to the heat treatment space 65.
  • a transfer opening 68 for carrying in and out the substrate W is provided on the side wall of the chamber 10.
  • the transport opening 68 can be opened and closed by a shutter (not shown).
  • the transfer opening 68 is opened, the substrate W can be carried into and out of the chamber 10 by a transfer robot (not shown).
  • the transfer opening 68 is closed, the heat treatment space 65 becomes a sealed space in which ventilation with the outside is blocked.
  • the holding plate 21 is a substantially disk-shaped member made of metal (for example, aluminum) with a built-in preheating mechanism 22, and is placed in a horizontal position (normal direction of the main surface) by placing the substrate W in the chamber 10. Is held in a posture along the vertical direction).
  • a preheating mechanism 22 for example, a resistance heating element such as a nichrome wire can be used.
  • the preheating mechanism 22 is provided with a uniform arrangement density at least in a region of the holding plate 21 facing the substrate W to be placed. For this reason, the preliminary heating mechanism 22 can uniformly heat the region.
  • the holding plate 21 functions as a hot plate.
  • a temperature sensor 23 configured using a thermocouple is disposed inside the holding plate 21.
  • the temperature sensor 23 measures the temperature near the upper surface of the holding plate 21.
  • a measurement result by the temperature sensor 23 is transmitted to the control unit 90.
  • the controller 90 controls the preheating mechanism 22 so that the temperature of the holding plate 21 measured by the temperature sensor 23 becomes a preset preheating temperature. That is, the control unit 90 feedback-controls the temperature of the holding plate 21 based on the measurement result of the temperature sensor 23.
  • a plurality of temperature sensors 23 may be provided in a region where the substrate W on which the holding plate 21 is placed faces.
  • a plurality (three or more) of proximity balls are arranged on the upper surface of the holding plate 21.
  • the proximity ball is made of a member such as alumina (Al 2 O 3 ), for example, and is arranged in a state in which the upper end protrudes from the upper surface of the holding plate 21 by a minute amount. For this reason, when the substrate W is supported by a plurality of proximity balls, a so-called proximity gap called a proximity gap is formed between the back surface of the substrate W and the upper surface of the holding plate 21.
  • a quartz susceptor may be installed on the upper surface of the holding plate 21, and the substrate W may be supported via the susceptor.
  • the holding plate 21 is provided with a plurality (three in this embodiment) of lift pins 24 that appear and disappear on the upper surface thereof.
  • the upper end height positions of the three lift pins 24 are included in the same horizontal plane.
  • the three lift pins 24 are lifted and lowered along the vertical direction by the air cylinder 25 at once.
  • Each lift pin 24 moves up and down along the inside of an insertion hole that penetrates the holding plate 21 vertically.
  • the air cylinder 25 raises the three lift pins 24, the tips of the lift pins 24 protrude from the upper surface of the holding plate 21. Further, when the air cylinder 25 lowers the three lift pins 24, the tips of the lift pins 24 are embedded in the insertion holes of the holding plate 21.
  • the gas supply unit 74 supplies a processing gas into the chamber 10.
  • the gas supply unit 74 includes a processing gas supply source 75 and a valve 76, and supplies the processing gas to the heat treatment space 65 in the chamber 10 by opening the valve 76.
  • nitrogen (N 2 ) is used as the processing gas.
  • N 2 nitrogen
  • a vapor of a solvent such as propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone, carbon disulfide, or tetrahydrofuran may be supplied.
  • the processing gas supply source 75 may be constituted by a tank and a feed pump provided in the heat treatment apparatus 1 or may use the power of a factory where the heat treatment apparatus 1 is installed. .
  • the exhaust unit 77 includes an exhaust device 78 and a valve 79, and exhausts the atmosphere in the chamber 10 by opening the valve 79.
  • the exhaust device 78 an exhaust utility of a factory where the vacuum pump or the heat treatment device 1 is installed can be used.
  • a vacuum pump is employed as the exhaust device 78 and the atmosphere of the heat treatment space 65 that is a sealed space is exhausted without supplying any gas from the gas supply unit 74, the inside of the chamber 10 can be decompressed to a vacuum atmosphere. Further, even if a vacuum pump is not used as the exhaust device 78, the inside of the chamber 10 can be decompressed to an atmospheric pressure lower than the atmospheric pressure by exhausting without supplying gas from the gas supply unit 74. it can.
  • the flash irradiation unit 60 is provided above the chamber 10.
  • the flash irradiation unit 60 includes a light source composed of a plurality of flash lamps FL, and a reflector 62 provided so as to cover the light source.
  • the flash irradiation unit 60 irradiates the substrate W held by the holding plate 21 in the chamber 10 with flash light from the flash lamp FL through the quartz chamber window 69.
  • Each of the plurality of flash lamps FL is a rod-shaped lamp having a long cylindrical shape, and the longitudinal direction of each of the flash lamps FL is along the main surface of the substrate W held by the holding plate 21 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
  • FIG. 2 is a diagram showing a driving circuit of the flash lamp FL.
  • a capacitor 93, a coil 94, a flash lamp FL, and an IGBT (insulated gate bipolar transistor) 96 are connected in series.
  • the control unit 90 includes a pulse generator 98 and a waveform setting unit 99 and is connected to the input unit 67.
  • the input unit 67 various known input devices such as a keyboard, a mouse, and a touch panel can be employed.
  • the waveform setting unit 99 sets the waveform of the pulse signal based on the input content from the input unit 67, and the pulse generator 98 generates the pulse signal according to the waveform.
  • the flash lamp FL includes a rod-shaped glass tube (discharge tube) 92 in which xenon gas is sealed and an anode and a cathode are disposed at both ends thereof, and a trigger electrode provided on the outer peripheral surface of the glass tube 92. 91.
  • a predetermined voltage is applied to the capacitor 93 by the power supply unit 95, and a charge corresponding to the applied voltage (charging voltage) is charged.
  • a high voltage can be applied to the trigger electrode 91 from the trigger circuit 97.
  • the timing at which the trigger circuit 97 applies a voltage to the trigger electrode 91 is controlled by the control unit 90.
  • the IGBT 96 is a bipolar transistor that incorporates a MOSFET (Metal Oxide Semiconductor Semiconductor Field Effector transistor) in the gate portion, and is a switching element suitable for handling a large amount of power.
  • a pulse signal is applied from the pulse generator 98 of the control unit 90 to the gate of the IGBT 96.
  • the IGBT 96 is turned on when a voltage higher than a predetermined value (High voltage) is applied to the gate of the IGBT 96, and the IGBT 96 is turned off when a voltage lower than the predetermined value (Low voltage) is applied. In this way, the drive circuit including the flash lamp FL is turned on / off by the IGBT 96.
  • the IGBT 96 is turned on / off, the connection between the flash lamp FL and the corresponding capacitor 93 is interrupted, and the current flowing through the flash lamp FL is on / off controlled.
  • the xenon gas is electrically an insulator, so that the glass is normal in the state. No electricity flows in the tube 92.
  • the trigger circuit 97 applies a high voltage to the trigger electrode 91 to break the insulation, an electric current instantaneously flows in the glass tube 92 due to the discharge between the both end electrodes, and excitation of the xenon atoms or molecules at that time Emits light.
  • the reflector 62 is provided above the plurality of flash lamps FL so as to cover all of them.
  • the basic function of the reflector 62 is to reflect the flash light emitted from the plurality of flash lamps FL toward the heat treatment space 65.
  • the reflector 62 is formed of an aluminum alloy plate, and the surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the control unit 90 controls the various operation mechanisms provided in the heat treatment apparatus 1.
  • the configuration of the control unit 90 as hardware is the same as that of a general computer. That is, the control unit 90 includes a CPU that is a circuit that performs various arithmetic processes, a ROM that is a read-only memory that stores basic programs, a RAM that is a readable and writable memory that stores various information, and control applications and data. It is configured with a magnetic disk or the like for storing.
  • the processing in the heat treatment apparatus 1 proceeds by the CPU of the control unit 90 executing a predetermined processing program.
  • FIG. 3 is a diagram showing a main configuration of the coating processing apparatus 2 used in the substrate processing method according to the present invention.
  • the coating treatment apparatus 2 applies a treatment liquid made of an induction self-organizing material to the substrate W to form a treatment film of the material.
  • the coating processing apparatus 2 includes a spin chuck 31 that holds the substrate W, a cup 37 that is provided so as to surround the spin chuck 31, and a coating nozzle 35 that discharges the processing liquid.
  • the spin chuck 31 holds the substrate W in a horizontal posture by vacuum-sucking the center portion of the lower surface of the substrate W.
  • the spin chuck 31 is rotationally driven in a horizontal plane by a drive motor 33.
  • the cup 37 receives and collects excess processing liquid scattered from the rotating substrate W.
  • the coating nozzle 35 discharges the processing liquid to the center of the upper surface of the rotating substrate W held by the spin chuck 31.
  • the application nozzle 35 discharges a processing liquid made of an induced self-organizing material used in the induced self-organizing technology onto the substrate W.
  • the processing liquid made of the induction self-organizing material is discharged to the center of the upper surface of the rotating substrate W, the processing liquid spreads on the upper surface of the substrate W by the centrifugal force and is applied.
  • a treatment film made of an induced self-organizing material is formed on the substrate W.
  • the induced self-assembled material includes a block copolymer composed of a plurality of types of polymers.
  • the plurality of types of polymers constituting the block copolymer are preferably incompatible with each other.
  • a treatment liquid made of an induction self-organizing material including a block copolymer composed of two types of polymers is discharged from the application nozzle 35.
  • examples of combinations of two types of polymers include polystyrene-polymethyl methacrylate (PS-PMMA), polystyrene-polydimethylsiloxane (PS-PDMS), polyethylene-polyferrocenyldimethylsilane (PS-PFS), and polystyrene-polyethylene oxide.
  • PS-PEO polystyrene-polyvinylpyridine
  • PS-PHOST polyethylene-polyhydroxystyrene
  • PMMA-PMAPOSS polymethyl methacrylate-polymethacrylate polyhedral oligomeric silsessesquioxane
  • FIG. 4 is a flowchart showing a processing procedure for forming a pattern on the substrate W.
  • a base layer and a guide pattern are formed on the substrate W to be processed (step S1).
  • FIG. 5 is a cross-sectional view schematically showing the substrate W on which the guide pattern is formed.
  • a base layer 51 is formed on the upper surface of the substrate W.
  • a guide pattern 52 is formed on the underlying layer 51.
  • the guide pattern 52 is formed by a known photolithography technique. That is, a resist is applied on the underlayer 51, and an exposure process is performed on the resist using a mask on which the shape of the guide pattern 52 is drawn, and then the excess resist is removed by a development process to remove the guide pattern 52. Form.
  • FIG. 6 is a cross-sectional view schematically showing a substrate W on which a treatment film of an induced self-organizing material is formed.
  • a substrate W as shown in FIG. 5 is held by the spin chuck 31 and rotated in a horizontal plane.
  • a treatment liquid of a guided self-organizing material composed of two types of polymers is discharged from the coating nozzle 35 to the center of the upper surface of the rotating substrate W.
  • a treatment film 53 made of an induced self-organizing material is formed in a region on the base layer 51 where the guide pattern 52 is not formed.
  • the substrate W on which the treatment film 53 is formed is carried into the heat treatment apparatus 1.
  • the substrate W carried into the chamber 10 of the heat treatment apparatus 1 is transferred to three lift pins 24 protruding above the upper surface of the holding plate 21.
  • the lift pins 24 that have received the substrate W are lowered and the tips of the lift pins 24 are embedded in the insertion holes of the holding plate 21, whereby the substrate W is placed on the holding plate 21.
  • the gas supply unit 74 supplies nitrogen gas into the chamber 10 and the exhaust unit 77 exhausts the interior of the chamber 10. Replace with nitrogen atmosphere.
  • the heat treatment space 65 in the chamber 10 is set to a low oxygen atmosphere (oxygen concentration of 10 ppm or less).
  • the holding plate 21 is heated to a preheating temperature set in advance by a built-in preheating mechanism 22.
  • the preheating temperature of the treatment film 53 by the holding plate 21 is a temperature at which the induced self-assembled material composed of two types of polymers is phase-separated, specifically from room temperature to 350 ° C. (in this embodiment) 250 ° C.). Depending on the combination of the two types of polymers, there may be a phase separation at room temperature.
  • the preheating mechanism 22 is provided with the holding plate 21. The preheating of the treatment film 53 is not performed without heating. Alternatively, the preheating mechanism 22 may accurately adjust the temperature of the holding plate 21 to a predetermined room temperature.
  • FIG. 7 is a cross-sectional view schematically showing the substrate W on which phase separation has occurred in the treatment film 53.
  • the treatment film 53 is made of an induced self-assembled material including a block copolymer composed of two types of polymers.
  • the two types of polymers are phase-separated to form a pattern P1 made of one polymer and the other polymer.
  • a pattern P2 is formed.
  • linear patterns P ⁇ b> 1 and linear patterns P ⁇ b> 2 are alternately formed along the guide pattern 52.
  • fine linear patterns P1 and P2 are formed in the line of the guide pattern 52 formed by a conventional photolithography technique. Therefore, by using the phase separation of the processing film 53 made of an induced self-organizing material, it becomes possible to form a pattern finer than 45 nm, which is the limit of pattern miniaturization by conventional photolithography.
  • the processing film 53 made of the induction self-organizing material is preheated, and the processing film 53 is irradiated with flash light from the flash lamp FL (step S4).
  • the flash lamp FL irradiates flash light
  • the electric power is accumulated in the capacitor 93 by the power supply unit 95 in advance.
  • a pulse signal is output from the pulse generator 98 of the control unit 90 to the IGBT 96 to drive the IGBT 96 on and off.
  • the waveform of the pulse signal can be specified by inputting from the input unit 67 a recipe in which a pulse width time (on time) and a pulse interval time (off time) are sequentially set as parameters.
  • the waveform setting unit 99 of the control unit 90 sets a pulse waveform that repeats ON / OFF accordingly.
  • the pulse generator 98 outputs a pulse signal according to the pulse waveform set by the waveform setting unit 99.
  • a pulse signal that repeatedly turns on and off is applied to the gate of the IGBT 96, and the on / off driving of the IGBT 96 is controlled.
  • the IGBT 96 is turned on when the pulse signal input to the gate of the IGBT 96 is on, and the IGBT 96 is turned off when the pulse signal is off.
  • the control unit 90 controls the trigger circuit 97 to apply a high voltage (trigger voltage) to the trigger electrode 91.
  • a pulse signal is input to the gate of the IGBT 96 in a state where electric charges are accumulated in the capacitor 93 and a high voltage is applied to the trigger electrode 91 in synchronization with the timing when the pulse signal is turned on.
  • a current always flows between both end electrodes in the glass tube 92, and light is emitted by the excitation of atoms or molecules of xenon at that time.
  • the IGBT 96 as a switching element in the circuit and outputting a pulse signal that repeatedly turns on and off to the gate
  • the supply of charge from the capacitor 93 to the flash lamp FL is intermittently performed by the IGBT 96 and the flash lamp FL is supplied.
  • the flowing current is controlled.
  • the light emission of the flash lamp FL is chopper-controlled, and the electric charge accumulated in the capacitor 93 is divided and consumed, and the flash lamp FL repeats blinking in a very short time.
  • the next pulse is applied to the gate of the IGBT 96 before the current value flowing through the flash lamp FL becomes completely “0”, the current value increases again, so that the light is emitted even while the flash lamp FL is repeatedly blinking.
  • the output is not completely “0”. Therefore, when pulse signals with relatively short intervals are output to the IGBT 96, the flash lamp FL is continuously emitting light during that time.
  • the light emission pattern (light emission output time waveform) of the flash lamp FL can be freely defined, and the light emission time and light emission intensity can be freely adjusted.
  • the on / off drive pattern of the IGBT 96 is defined by the pulse width time and the pulse interval time input from the input unit 67.
  • the light emission pattern of the flash lamp FL can be freely defined simply by appropriately setting the time of the pulse width and the time of the pulse interval input from the input unit 67. It can be done.
  • the ratio of the pulse width time to the pulse interval time input from the input unit 67 when the ratio of the pulse width time to the pulse interval time input from the input unit 67 is increased, the current flowing through the flash lamp FL increases and the emission intensity increases. Conversely, if the ratio of the pulse width time to the pulse interval time input from the input unit 67 is reduced, the current flowing through the flash lamp FL decreases and the emission intensity becomes weak. Further, if the ratio of the pulse interval time and the pulse width time input from the input unit 67 is appropriately adjusted, the light emission intensity of the flash lamp FL is kept constant. Further, by increasing the total time of the combination of the pulse width time and the pulse interval time input from the input unit 67, the current continues to flow through the flash lamp FL for a relatively long time, and the flash lamp FL emits light. The time will be longer. In the present embodiment, the light emission time of the flash lamp FL is set between 0.1 milliseconds and 100 milliseconds.
  • the flash light is irradiated from the flash lamp FL onto the surface of the substrate W including the treatment film 53 in an irradiation time of 0.1 milliseconds or more and 100 milliseconds or less.
  • Part of the flash light emitted from the flash lamp FL goes directly into the chamber 10, and the other part is once reflected by the reflector 62 and then goes into the chamber 10.
  • the surface of the substrate W including the processing film 53 irradiated with flash light is heated from the preheating temperature in an extremely short time and instantaneously reaches 200 ° C. or more and 500 ° C. or less.
  • the treatment film 53 is instantaneously heated to 200 ° C. or more and 500 ° C. or less to receive energy, and the fluidity of the polymer is increased and defects can be reduced.
  • the treatment film 53 is heated to a temperature higher than 350 ° C., the polymer may be decomposed.
  • the irradiation time of the flash light is an extremely short time of 0.1 milliseconds or more and 100 milliseconds or less.
  • the short-time treatment film 53 is heated to a temperature higher than 350 ° C., the polymer is not decomposed. Further, since the irradiation time of the flash light is an extremely short time of 0.1 to 100 milliseconds, the throughput is not lowered.
  • the processing film 53 made of the induction self-organizing material is preheated by the holding plate 21 and the processing film 53 is irradiated with flash light from the flash lamp FL, whereby two types of the processing film 53 are formed.
  • the polymer is phase-separated appropriately, and a fine pattern can be formed while suppressing the occurrence of defects.
  • the surface temperature of the substrate W rapidly decreases. Then, the three lift pins 24 are raised, and the substrate W placed on the holding plate 21 is pushed up and separated from the holding plate 21. As the substrate W is separated from the holding plate 21, the temperature of the substrate W is further lowered from the preheating temperature. Thereafter, the transfer opening 68 is opened, the substrate W is unloaded from the chamber 10, and the substrate processing in the heat treatment apparatus 1 is completed.
  • step S5 an exposure process is performed on the substrate W that has been subjected to the flash light irradiation process.
  • the exposure process is performed by a separate exposure processing apparatus different from the heat treatment apparatus 1 and the coating processing apparatus 2.
  • the exposure process in step S5 is not a pattern exposure using a mask but a uniform exposure process in a lump over the entire surface of the substrate W including the processing film 53.
  • the exposure process one of the two types of polymers constituting the treatment film 53 and the other polymer are cut, and the pattern P1 and the pattern P2 are separated.
  • the development processing is performed by a separate development processing apparatus different from the heat treatment apparatus 1 and the coating processing apparatus 2.
  • the development processing apparatus has a configuration similar to that of the coating processing apparatus 2 (FIG. 3). In the development processing, a developing solution is supplied to the surface of the substrate W including the processing film 53, and one pattern P1 is dissolved and removed.
  • FIG. 8 is a cross-sectional view schematically showing the substrate W from which one pattern P1 has been removed.
  • the other pattern P2 remains in the region where the guide pattern 52 is not formed on the substrate W. In this way, a fine pattern is finally formed on the substrate W.
  • the treatment film 53 made of an induced self-organizing material is not only heated at the phase separation temperature, but also the treatment film 53 is preheated at the phase separation temperature by the holding plate 21 and flashed onto the treatment film 53. Flash light is emitted from the lamp FL.
  • the fluidity of the polymer is increased and defects can be reduced. That is, a pattern with few defects can be formed by applying flash light irradiation to the guided self-assembly technique.
  • derivation self-organization technique a finer pattern than 45 nm can be formed.
  • the treatment film 53 is heated above the temperature at which the polymer is instantaneously decomposed by flash light irradiation, the time of heating to such a temperature is extremely short, less than 1 second. Decomposition is prevented. Further, since the irradiation time of the flash light is an extremely short time of 0.1 to 100 milliseconds, the throughput is not lowered.
  • the processing film 53 is irradiated with flash light in a state where the inside of the chamber 10 is in a low oxygen atmosphere with an oxygen concentration of 10 ppm or less.
  • the treatment film 53 is heated in the air atmosphere, deterioration due to oxidation of the polymer occurs particularly near the film surface of the treatment film 53.
  • the polymer film Pattern degradation due to oxidation can be prevented. As a result, a pattern with fewer defects can be formed.
  • the inside of the chamber 10 is a nitrogen atmosphere, but instead of this, an atmosphere containing a solvent may be formed in the chamber 10 to process the processing film 53.
  • the gas supply unit 74 temporarily substitutes the inside of the chamber 10 with a nitrogen (N 2 ) atmosphere to make a low oxygen atmosphere, and then supplies the solvent vapor.
  • the atmosphere formed in the chamber 10 includes at least one solvent selected from the group consisting of toluene, heptane, acetone, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone, carbon disulfide, and tetrahydrofuran.
  • the atmosphere By irradiating the treatment film 53 with flash light in an atmosphere containing such a solvent, the treatment film 53 made of an induced self-organizing material can be swollen by the solvent, and the phase separation is promoted to further reduce the defect. A small number of patterns can be formed.
  • the line width of the pattern may be controlled by adjusting the flash light irradiation time of the flash lamp FL.
  • the light emission time of the flash lamp FL can be freely adjusted by performing on / off control of the current flowing through the flash lamp FL by the IGBT 96.
  • the flash lamp FL cannot emit light in principle for a long time, and the flash light irradiation time of the flash lamp FL can be freely adjusted between 0.1 milliseconds and 100 milliseconds.
  • the line width of the pattern can be adjusted by a combination of the flash light irradiation time of the flash lamp FL and the preheating temperature by the holding plate 21. According to the earnest investigation by the present inventors, the line width of the pattern P2 remaining on the substrate W becomes thicker as the flash light irradiation time is longer and the preheating temperature is higher.
  • the flash light irradiation is performed once after the substrate W on which the treatment film 53 is formed is preheated.
  • the flash light irradiation by the flash lamp FL may be repeated a plurality of times after the preheating. good.
  • the combination of preliminary heating and flash light irradiation for the treatment film 53 may be repeated a plurality of times. That is, after one preliminary heating and flash light irradiation are completed, the procedure of preliminary heating and flash light irradiation is repeated again. In this case, it is preferable that the substrate W is once cooled to a temperature lower than the preheating temperature after completion of one preheating and flash light irradiation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

誘導自己組織化材料からなる処理膜が形成された基板が予備加熱機構を内蔵する保持プレート上に載置されて予備加熱される。基板の周辺は低酸素雰囲気とされる。予備加熱温度は、2種類の重合体によって構成される誘導自己組織化材料が相分離する温度である。処理膜が予備加熱されることによって2種類の重合体が相分離して微細なパターンが形成される。また、処理膜を予備加熱しつつ、当該処理膜にフラッシュランプからフラッシュ光を照射することにより、処理膜を構成する重合体の流動性が高まって欠陥の発生を抑制しつつ微細なパターンを形成することができる。

Description

基板処理方法
 本発明は、半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)上にパターンを形成する基板処理方法に関し、より具体的には、誘導自己組織化技術を利用してパターンを形成する基板処理方法に関する。
 従来より、半導体ウェハー等の基板上にパターンを形成する一般的な手法としてはフォトリソグラフィが用いられていた。フォトリソグラフィは、基板上に感光性物質であるレジストを塗布し、そのレジストに対して回路図の形状を描いたマスクを用いて露光処理を行い、その後現像処理によって余分なレジストを除去して回路図のパターンを形成する技術である。
 半導体デバイスの集積度を高めるためにはパターンの微細化が必要であり、フォトリソグラフィによるパターンの微細化は、露光処理時により短波長の光源を使用することによって実現されてきた。現在、露光処理の光源としては例えばArFエキシマレーザー(波長193nm)が主に使用されているが、このような短波長の光源を用いたとしてもフォトリソグラフィによるパターンの微細化は45nm程度が限界であると考えられている。
 45nmよりもさらに微細なパターンを形成可能なフォトリソグラフィ技術としては、EUV(極端紫外線)露光や電子線による直接描画等が提案されている。しかし、EUV露光はコストが著しく高く、また電子線による直接描画はパターン形成に長時間を要するという問題がある。
 このため、低コストかつ比較的短時間にパターンの微細化を実現する手法として、誘導自己組織化技術(DSA:Directed Self-Assembly)が研究されている(例えば、特許文献1,2)。誘導自己組織化技術は、特定のブロック共重合体が球状、板状、または層状等となるように自己組織化する性質を利用したものである。
特開2014-22570号公報 特表2016-518701号公報
 しかしながら、誘導自己組織化技術では、形成されるパターンに多くの欠陥が生じやすいという問題がある。特に、パターンの位置がずれるディスロケーション(dislocation)と称される誘導自己組織化技術特有の欠陥も発生していた。
 本発明は、上記課題に鑑みてなされたものであり、誘導自己組織化技術を用いて欠陥の少ないパターンを形成することができる基板処理方法を提供することを目的とする。
 上記課題を解決するため、この発明の第1の態様は、基板上にパターンを形成する基板処理方法において、基板上に誘導自己組織化材料からなる処理膜を形成する成膜工程と、前記処理膜にフラッシュランプからフラッシュ光を照射するフラッシュ照射工程と、を備える。
 また、第2の態様は、第1の態様に係る基板処理方法において、前記フラッシュ照射工程の前に、前記処理膜を所定の処理温度にて予備加熱する予備加熱工程をさらに備える。
 また、第3の態様は、第2の態様に係る基板処理方法において、前記処理温度は前記誘導自己組織化材料が相分離する温度である。
 また、第4の態様は、第1から第3のいずれかの態様に係る基板処理方法において、前記フラッシュ照射工程では、トルエン、ヘプタン、アセトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、二硫化炭素およびテトラヒドロフランからなる群のうち少なくとも1の溶剤を含む雰囲気中にてフラッシュ光を照射する。
 また、第5の態様は、第1から第4のいずれかの態様に係る基板処理方法において、前記フラッシュ照射工程では、フラッシュ光の照射時間によってパターンの線幅を制御する。
 また、第6の態様は、第1から第5のいずれかの態様に係る基板処理方法において、前記フラッシュ照射工程を複数回繰り返す。
 第1から第6の態様に係る基板処理方法によれば、誘導自己組織化材料からなる処理膜にフラッシュランプからフラッシュ光を照射するため、処理膜を構成する重合体の流動性が高まって欠陥の発生が抑制され、誘導自己組織化技術を用いて欠陥の少ないパターンを形成することができる。
 特に、第4の態様に係る基板処理方法によれば、フラッシュ照射工程では、トルエン、ヘプタン、アセトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、二硫化炭素およびテトラヒドロフランからなる群のうち少なくとも1の溶剤を含む雰囲気中にてフラッシュ光を照射するため、溶剤によって処理膜を膨潤させることができ、より欠陥の少ないパターンを形成することができる。
本発明に係る基板処理方法に使用する熱処理装置の要部構成を示す図である。 フラッシュランプの駆動回路を示す図である。 本発明に係る基板処理方法に使用する塗布処理装置の要部構成を示す図である。 基板上にパターンを形成する処理手順を示すフローチャートである。 ガイドパターンが形成された基板を模式的に示す断面図である。 誘導自己組織化材料の処理膜が形成された基板を模式的に示す断面図である。 処理膜に相分離が生じた基板を模式的に示す断面図である。 一方のパターンが除去された基板を模式的に示す断面図である。
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
 まず、本発明に係る基板処理方法に使用する基板処理装置について説明する。図1は、本発明に係る基板処理方法に使用する熱処理装置1の要部構成を示す図である。熱処理装置1は、基板Wに対してフラッシュ光を照射するフラッシュランプアニール(FLA)装置である。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
 熱処理装置1は、基板Wを収容するチャンバー10と、チャンバー10内にて基板Wを載置して保持する保持プレート21と、チャンバー10から排気を行う排気部77と、チャンバー10内に処理ガスを供給するガス供給部74と、基板Wにフラッシュ光を照射するフラッシュ照射部60と、を備えている。また、熱処理装置1は、これらの各部を制御してフラッシュ光照射を実行させる制御部90を備える。
 チャンバー10は、フラッシュ照射部60の下方に設けられており、基板Wを収容可能な筐体である。チャンバー10の上部開口にはチャンバー窓69が装着されて閉塞されている。チャンバー10の側壁および底壁とチャンバー窓69とによって囲まれる空間が熱処理空間65として規定される。チャンバー10の天井部を構成するチャンバー窓69は、石英により形成された板状部材であり、フラッシュ照射部60から出射されたフラッシュ光を熱処理空間65に透過する石英窓として機能する。
 チャンバー10の側壁には、基板Wの搬入および搬出を行うための搬送開口部68が設けられている。搬送開口部68は、図示を省略するシャッターによって開閉可能とされている。搬送開口部68が開放されると、図外の搬送ロボットによってチャンバー10に対する基板Wの搬入および搬出が可能となる。また、搬送開口部68が閉鎖されると、熱処理空間65が外部との通気が遮断された密閉空間となる。
 保持プレート21は、予備加熱機構22を内蔵した金属製(例えば、アルミニウム)の略円板形状の部材であり、チャンバー10内にて基板Wを載置して水平姿勢(主面の法線方向が鉛直方向に沿う姿勢)に保持する。予備加熱機構22としては、例えばニクロム線等の抵抗発熱体を用いることができる。予備加熱機構22は、少なくとも保持プレート21のうちの載置する基板Wに対向する領域には均一な配設密度にて設けられている。このため予備加熱機構22は、当該領域を均一に加熱することができる。予備加熱機構22を備えることによって保持プレート21はホットプレートとして機能する。
 また、保持プレート21の内部には熱電対を用いて構成された温度センサ23が配設されている。温度センサ23は保持プレート21の上面近傍の温度を測定する。温度センサ23による測定結果は制御部90に伝達される。温度センサ23によって測定される保持プレート21の温度が予め設定された予備加熱温度となるように、制御部90が予備加熱機構22を制御する。すなわち、制御部90は、温度センサ23の測定結果に基づいて、保持プレート21の温度をフィードバック制御する。なお、温度センサ23は、保持プレート21が載置する基板Wが対向する領域に複数設けるようにしても良い。
 保持プレート21の上面には、図示を省略する複数個(3個以上)のプロキシミティボールが配設されている。プロキシミティボールは、例えばアルミナ(Al)等の部材によって構成され、その上端が保持プレート21の上面から微少量だけ突出する状態で配設される。このため、複数個のプロキシミティボールによって基板Wを支持したときには、基板Wの裏面と保持プレート21の上面との間にいわゆるプロキシミティギャップと称される微小間隔が形成される。なお、保持プレート21の上面に石英製のサセプタを設置し、そのサセプタを介して基板Wを支持するようにしても良い。
 保持プレート21には、その上面に出没する複数本(本実施の形態では3本)のリフトピン24が設けられている。3本のリフトピン24の上端高さ位置は同一水平面内に含まれる。3本のリフトピン24はエアシリンダ25によって一括して鉛直方向に沿って昇降される。各リフトピン24は、保持プレート21に上下に貫通して設けられた挿通孔の内側に沿って昇降する。エアシリンダ25が3本のリフトピン24を上昇させると、各リフトピン24の先端が保持プレート21の上面から突出する。また、エアシリンダ25が3本のリフトピン24を下降させると、各リフトピン24の先端が保持プレート21の挿通孔の内部に埋入する。
 ガス供給部74は、チャンバー10内に処理ガスを供給する。ガス供給部74は、処理ガス供給源75とバルブ76とを備えており、バルブ76を開放することによってチャンバー10内の熱処理空間65に処理ガスを供給する。本実施形態では、処理ガスとして窒素(N)を用いるが、その他にチャンバー10内を一旦窒素(N)雰囲気に置換して低酸素雰囲気にした後、処理ガスとしてトルエン、ヘプタン、アセトン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン、二硫化炭素またはテトラヒドロフラン等の溶剤の蒸気を供給するようにしても良い。なお、処理ガス供給源75としては、熱処理装置1に設けられたタンクと送給ポンプなどによって構成するようにしても良いし、熱処理装置1が設置される工場の用力を用いるようにしても良い。
 排気部77は、排気装置78およびバルブ79を備えており、バルブ79を開放することによってチャンバー10内の雰囲気を排気する。排気装置78としては、真空ポンプや熱処理装置1が設置される工場の排気ユーティリティを用いることができる。排気装置78として真空ポンプを採用し、ガス供給部74から何らのガス供給を行うことなく密閉空間である熱処理空間65の雰囲気を排気すると、チャンバー10内を真空雰囲気にまで減圧することができる。また、排気装置78として真空ポンプを用いていない場合であっても、ガス供給部74からガス供給を行うことなく排気を行うことにより、チャンバー10内を大気圧よりも低い気圧に減圧することができる。
 フラッシュ照射部60は、チャンバー10の上方に設けられている。フラッシュ照射部60は、複数本のフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ62と、を備えて構成される。フラッシュ照射部60は、チャンバー10内にて保持プレート21に保持される基板Wに石英のチャンバー窓69を介してフラッシュランプFLからフラッシュ光を照射する。
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持プレート21に保持される基板Wの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
 図2は、フラッシュランプFLの駆動回路を示す図である。同図に示すように、コンデンサ93と、コイル94と、フラッシュランプFLと、IGBT(絶縁ゲートバイポーラトランジスタ)96とが直列に接続されている。また、図2に示すように、制御部90は、パルス発生器98および波形設定部99を備えるとともに、入力部67に接続されている。入力部67としては、キーボード、マウス、タッチパネル等の種々の公知の入力機器を採用することができる。入力部67からの入力内容に基づいて波形設定部99がパルス信号の波形を設定し、その波形に従ってパルス発生器98がパルス信号を発生する。
 フラッシュランプFLは、その内部にキセノンガスが封入されその両端部に陽極および陰極が配設された棒状のガラス管(放電管)92と、該ガラス管92の外周面上に付設されたトリガー電極91とを備える。コンデンサ93には、電源ユニット95によって所定の電圧が印加され、その印加電圧(充電電圧)に応じた電荷が充電される。また、トリガー電極91にはトリガー回路97から高電圧を印加することができる。トリガー回路97がトリガー電極91に電圧を印加するタイミングは制御部90によって制御される。
 IGBT96は、ゲート部にMOSFET(Metal Oxide Semiconductor Field effect transistor)を組み込んだバイポーラトランジスタであり、大電力を取り扱うのに適したスイッチング素子である。IGBT96のゲートには制御部90のパルス発生器98からパルス信号が印加される。IGBT96のゲートに所定値以上の電圧(Highの電圧)が印加されるとIGBT96がオン状態となり、所定値未満の電圧(Lowの電圧)が印加されるとIGBT96がオフ状態となる。このようにして、フラッシュランプFLを含む駆動回路はIGBT96によってオンオフされる。IGBT96がオンオフすることによってフラッシュランプFLと対応するコンデンサ93との接続が断続され、フラッシュランプFLに流れる電流がオンオフ制御される。
 コンデンサ93が充電された状態でIGBT96がオン状態となってガラス管92の両端電極に高電圧が印加されたとしても、キセノンガスは電気的には絶縁体であることから、通常の状態ではガラス管92内に電気は流れない。しかしながら、トリガー回路97がトリガー電極91に高電圧を印加して絶縁を破壊した場合には両端電極間の放電によってガラス管92内に電流が瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
 図1に戻り、リフレクタ62は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ62の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ62はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
 制御部90は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部90のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部90は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用アプリケーションやデータなどを記憶しておく磁気ディスク等を備えて構成される。制御部90のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
 次に、図3は、本発明に係る基板処理方法に使用する塗布処理装置2の要部構成を示す図である。塗布処理装置2は、基板Wに対して誘導自己組織化材料からなる処理液を塗布して当該材料の処理膜を形成する。
 塗布処理装置2は、基板Wを保持するスピンチャック31、スピンチャック31の周囲を取り囲むように設けられたカップ37、および、処理液を吐出する塗布ノズル35を備える。スピンチャック31は、基板Wの下面中央部を真空吸着することによって当該基板Wを水平姿勢に保持する。スピンチャック31は、駆動モータ33によって水平面内にて回転駆動される。カップ37は、回転する基板Wから飛散した余剰の処理液を受け止めて回収する。
 塗布ノズル35は、スピンチャック31によって保持されて回転する基板Wの上面中心部に処理液を吐出する。塗布ノズル35は、誘導自己組織化技術に用いられる誘導自己組織化材料からなる処理液を基板Wに吐出する。回転する基板Wの上面中心部に誘導自己組織化材料からなる処理液が吐出されると、遠心力によって当該処理液が基板Wの上面に拡がって当該処理液が塗布される。これにより、基板W上に誘導自己組織化材料からなる処理膜が形成されることとなる。誘導自己組織化材料は、複数種類の重合体によって構成されるブロック共重合体を含む。ブロック共重合体を構成する複数種類の重合体は、互いに非相溶であることが好ましい。
 本実施形態では、2種類の重合体によって構成されるブロック共重合体を含む誘導自己組織化材料からなる処理液が塗布ノズル35から吐出される。2種類の重合体の組み合わせとして、例えば、ポリスチレン-ポリメチルメタクリレート(PS-PMMA)、ポリスチレン-ポリジメチルシロキサン(PS-PDMS)、ポリエチレン-ポリフェロセニルジメチルシラン(PS-PFS)、ポリスチレン-ポリエチレンオキシド(PS-PEO)、ポリスチレン-ポリビニルピリジン(PS-PVP)、ポリエチレン-ポリヒドロキシスチレン(PS-PHOST)、およびポリメチルメタクリレート-ポリメタクリレートポリヘドラルオリゴメリックシルスセスキオキサン(PMMA-PMAPOSS)等が挙げられる。
 次に、基板W上にパターンを形成する処理手順について説明する。図4は、基板W上にパターンを形成する処理手順を示すフローチャートである。まず、本発明に係る基板処理方法に先立って、処理対象となる基板Wには下地層およびガイドパターンが形成される(ステップS1)。図5は、ガイドパターンが形成された基板Wを模式的に示す断面図である。
 基板Wの上面には下地層51が形成されている。その下地層51の上にガイドパターン52が形成される。ガイドパターン52は、公知のフォトリソグラフィの手法によって形成される。すなわち、下地層51の上にレジストを塗布し、そのレジストに対してガイドパターン52の形状を描いたマスクを用いて露光処理を行い、その後現像処理によって余分なレジストを除去してガイドパターン52を形成する。
 図5に示すようなガイドパターン52が形成された基板Wが塗布処理装置2に搬入されて誘導自己組織化材料の処理膜が成膜される(ステップS2)。図6は、誘導自己組織化材料の処理膜が形成された基板Wを模式的に示す断面図である。塗布処理装置2においては、図5に示すような基板Wがスピンチャック31に保持されて水平面内で回転される。その回転する基板Wの上面中心部に塗布ノズル35から2種類の重合体によって構成される誘導自己組織化材料の処理液が吐出される。これにより、図6に示すように、ガイドパターン52が形成されていない下地層51上の領域に誘導自己組織化材料からなる処理膜53が形成される。
 次に、処理膜53が形成された基板Wが熱処理装置1に搬入される。熱処理装置1のチャンバー10内に搬入された基板Wは保持プレート21の上面よりも上側に突き出た3本のリフトピン24に渡される。基板Wを受け取ったリフトピン24が下降してリフトピン24の先端が保持プレート21の挿通孔の内部に埋入することにより、当該基板Wは保持プレート21の上に載置される。
 また、基板Wがチャンバー10内に搬入されて熱処理空間65が密閉空間とされた後、ガス供給部74がチャンバー10内に窒素ガスを供給するとともに排気部77が排気を行ってチャンバー10内を窒素雰囲気に置換する。これにより、チャンバー10内の熱処理空間65は低酸素雰囲気(酸素濃度10ppm以下)とされる。
 保持プレート21は、内蔵する予備加熱機構22によって予め設定された予備加熱温度に加熱されている。基板Wが保持プレート21に載置されることによって、誘導自己組織化材料からなる処理膜53を含む基板Wの全体が予備加熱される(ステップS3)。保持プレート21による処理膜53の予備加熱温度は、2種類の重合体によって構成される誘導自己組織化材料が相分離する温度であり、具体的には室温から350℃である(本実施形態では250℃)。なお、2種類の重合体の組み合わせによっては、室温で相分離するものもあり、そのような重合体の誘導自己組織化材料からなる処理膜53の場合には、予備加熱機構22は保持プレート21を加熱することなく処理膜53の予備加熱は行われない。或いは、予備加熱機構22は保持プレート21を所定の室温に正確に温調するようにしても良い。
 処理膜53が形成された基板Wが保持プレート21によって予備加熱されることにより、誘導自己組織化材料からなる処理膜53のミクロ相分離が生じる。図7は、処理膜53に相分離が生じた基板Wを模式的に示す断面図である。処理膜53は、2種類の重合体によって構成されるブロック共重合体を含む誘導自己組織化材料からなる。2種類の重合体を含む処理膜53が所定の予備加熱温度で予備加熱されることによって、それら2種類の重合体が相分離し、一方の重合体からなるパターンP1と他方の重合体からなるパターンP2とが形成されるのである。図7の例では、ガイドパターン52に沿うように、線状のパターンP1と線状のパターンP2とが交互に形成される。
 これにより、従来のフォトリソグラフィの手法によって形成されたガイドパターン52の線内により微細な線状のパターンP1およびパターンP2が形成されることとなる。従って、誘導自己組織化材料からなる処理膜53の相分離を利用することにより、従来のフォトリソグラフィによるパターン微細化の限界であった45nmよりもさらに微細なパターンを形成することが可能となる。
 但し、誘導自己組織化技術では、2種類の重合体が加熱されて相分離する際に、パターンに欠陥が生じやすい。例えば、隣り合う2本のパターンP1が合流して1本となるような欠陥が生じることがある。保持プレート21による加熱のみであっても、より高温で処理膜53を加熱する、または、加熱処理時間を長時間とすることによってこのような欠陥を低減することはできる。しかしながら、350℃よりも高い温度で処理膜53を加熱すると、処理膜53を構成する重合体が分解するという問題が生じる。また、350℃以下の加熱温度で欠陥を低減するには、加熱処理時間を1時間以上とする必要があり、現実的なスループットが得られない。
 このため、本実施形態においては、誘導自己組織化材料からなる処理膜53を予備加熱しつつ、処理膜53にフラッシュランプFLからフラッシュ光を照射している(ステップS4)。フラッシュランプFLがフラッシュ光照射を行うに際しては、予め電源ユニット95によってコンデンサ93に電荷を蓄積しておく。そして、コンデンサ93に電荷が蓄積された状態にて、制御部90のパルス発生器98からIGBT96にパルス信号を出力してIGBT96をオンオフ駆動する。
 パルス信号の波形は、パルス幅の時間(オン時間)とパルス間隔の時間(オフ時間)とをパラメータとして順次設定したレシピを入力部67から入力することによって規定することができる。このようなレシピをオペレータが入力部67から制御部90に入力すると、それに従って制御部90の波形設定部99はオンオフを繰り返すパルス波形を設定する。そして、波形設定部99によって設定されたパルス波形に従ってパルス発生器98がパルス信号を出力する。その結果、IGBT96のゲートにはオンオフを繰り返すパルス信号が印加され、IGBT96のオンオフ駆動が制御されることとなる。具体的には、IGBT96のゲートに入力されるパルス信号がオンのときにはIGBT96がオン状態となり、パルス信号がオフのときにはIGBT96がオフ状態となる。
 また、パルス発生器98から出力するパルス信号がオンになるタイミングと同期して制御部90がトリガー回路97を制御してトリガー電極91に高電圧(トリガー電圧)を印加する。コンデンサ93に電荷が蓄積された状態にてIGBT96のゲートにパルス信号が入力され、かつ、そのパルス信号がオンになるタイミングと同期してトリガー電極91に高電圧が印加されることにより、パルス信号がオンのときにはガラス管92内の両端電極間で必ず電流が流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。
 このように、回路中にスイッチング素子たるIGBT96を接続してそのゲートにオンオフを繰り返すパルス信号を出力することにより、コンデンサ93からフラッシュランプFLへの電荷の供給をIGBT96によって断続してフラッシュランプFLに流れる電流を制御している。その結果、いわばフラッシュランプFLの発光がチョッパ制御されることとなり、コンデンサ93に蓄積された電荷が分割して消費され、極めて短い時間の間にフラッシュランプFLが点滅を繰り返す。但し、フラッシュランプFLに流れる電流値が完全に”0”になる前に次のパルスがIGBT96のゲートに印加されて電流値が再度増加するため、フラッシュランプFLが点滅を繰り返している間も発光出力が完全に”0”になるものではない。従って、比較的間隔の短いパルス信号がIGBT96に出力されているときには、その間フラッシュランプFLが連続して発光していることとなる。
 IGBT96によってフラッシュランプFLに流れる電流をオンオフ制御することにより、フラッシュランプFLの発光パターン(発光出力の時間波形)を自在に規定することができ、発光時間および発光強度を自由に調整することができる。IGBT96のオンオフ駆動のパターンは、入力部67から入力するパルス幅の時間とパルス間隔の時間とによって規定される。すなわち、フラッシュランプFLの駆動回路にIGBT96を組み込むことによって、入力部67から入力するパルス幅の時間とパルス間隔の時間とを適宜に設定するだけで、フラッシュランプFLの発光パターンを自在に規定することができるのである。
 具体的には、例えば、入力部67から入力するパルス間隔の時間に対するパルス幅の時間の比率を大きくすると、フラッシュランプFLに流れる電流が増大して発光強度が強くなる。逆に、入力部67から入力するパルス間隔の時間に対するパルス幅の時間の比率を小さくすると、フラッシュランプFLに流れる電流が減少して発光強度が弱くなる。また、入力部67から入力するパルス間隔の時間とパルス幅の時間の比率を適切に調整すれば、フラッシュランプFLの発光強度が一定に維持される。さらに、入力部67から入力するパルス幅の時間とパルス間隔の時間との組み合わせの総時間を長くすることによって、フラッシュランプFLに比較的長時間にわたって電流が流れ続けることとなり、フラッシュランプFLの発光時間が長くなる。本実施形態においては、フラッシュランプFLの発光時間が0.1ミリ秒~100ミリ秒の間に設定される。
 このようにしてフラッシュランプFLから処理膜53を含む基板Wの表面に0.1ミリ秒以上100ミリ秒以下の照射時間にてフラッシュ光が照射される。フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー10内へと向かい、他の一部は一旦リフレクタ62により反射されてからチャンバー10内へと向かう。
 フラッシュ光が照射された処理膜53を含む基板Wの表面は予備加熱温度から極短時間で昇温して瞬間的に200℃以上500℃以下にまで到達する。これにより、処理膜53は、瞬間的に200℃以上500℃以下に加熱されてエネルギーを受け取り、重合体の流動性が高まって欠陥を低減することができる。処理膜53を350℃よりも高い温度に加熱すると重合体が分解するおそれがあるが、フラッシュ光の照射時間は0.1ミリ秒以上100ミリ秒以下の極めて短時間であり、そのような極短時間処理膜53を350℃よりも高い温度に加熱したとしても重合体の分解は生じない。また、フラッシュ光の照射時間は0.1ミリ秒以上100ミリ秒以下の極めて短時間であるため、スループットの低下も発生しない。
 以上のように、誘導自己組織化材料からなる処理膜53を保持プレート21によって予備加熱しつつ、処理膜53にフラッシュランプFLからフラッシュ光を照射することにより、処理膜53を構成する2種類の重合体が適正に相分離し、欠陥の発生を抑制しつつ微細なパターンを形成することができる。
 フラッシュ光照射が終了すると、基板Wの表面温度が急速に降温する。そして、3本のリフトピン24が上昇し、保持プレート21に載置されていた基板Wを突き上げて保持プレート21から離間させる。基板Wが保持プレート21から離間することによって、基板Wは予備加熱温度からもさらに降温する。その後、搬送開口部68が開放され、基板Wがチャンバー10から搬出され、熱処理装置1における基板処理が完了する。
 次に、フラッシュ光照射による処理が完了した基板Wに対して露光処理が行われる(ステップS5)。露光処理は、熱処理装置1および塗布処理装置2とは異なる別途の露光処理装置によって行われる。ステップS5での露光処理は、マスクを用いてのパターン露光ではなく、処理膜53を含む基板Wの表面の全面に一括して均一な露光処理を施すものである。露光処理により、処理膜53を構成する2種類の重合体のうちの一方の重合体と他方の重合体との間が切断され、パターンP1とパターンP2とが分離される。
 その後、露光処理が終了した基板Wに対して現像処理が行われる(ステップS6)。現像処理は、熱処理装置1および塗布処理装置2とは異なる別途の現像処理装置によって行われる。現像処理装置は、塗布処理装置2と類似の構成を備える(図3)。現像処理では、処理膜53を含む基板Wの表面に現像液を供給し、一方のパターンP1を溶解して除去する。
 図8は、一方のパターンP1が除去された基板Wを模式的に示す断面図である。現像処理により一方のパターンP1が除去されることによって、基板W上のガイドパターン52が形成されていない領域には他方のパターンP2が残存することとなる。このようにして、基板Wには最終的に微細なパターンが形成される。
 本実施形態においては、誘導自己組織化材料からなる処理膜53を単に相分離温度で加熱するだけでなく、処理膜53を保持プレート21によって相分離温度で予備加熱しつつ、処理膜53にフラッシュランプFLからフラッシュ光を照射している。相分離が進行しつつある処理膜53にフラッシュ光を照射することにより、重合体の流動性が高まって欠陥を低減することができる。すなわち、誘導自己組織化技術にフラッシュ光照射を適用することにより、欠陥の少ないパターンを形成することができるのである。また、誘導自己組織化技術であれば、45nmよりもさらに微細なパターンを形成することができる。
 フラッシュ光照射によって、処理膜53は瞬間的に重合体が分解する温度以上に加熱されるものの、そのような温度に加熱されている時間は1秒未満の極めて短時間であるため、重合体の分解は防止される。また、フラッシュ光の照射時間は0.1ミリ秒以上100ミリ秒以下の極めて短時間であるため、スループットの低下も生じない。
 また、本実施形態においては、チャンバー10内が酸素濃度10ppm以下の低酸素雰囲気とされた状態にて処理膜53にフラッシュ光を照射している。大気雰囲気中で処理膜53を加熱すると、特に処理膜53の膜表面近傍にて重合体の酸化による劣化が生じるのであるが、低酸素雰囲気にて処理膜53を処理することにより、重合体の酸化に起因したパターンの劣化を防止することができる。その結果、より欠陥の少ないパターンを形成することができる。
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、チャンバー10内を窒素雰囲気としていたが、これに代えてチャンバー10内に溶剤を含む雰囲気を形成して処理膜53の処理を行うようにしても良い。チャンバー10内に溶剤を含む雰囲気を形成するときには、ガス供給部74がチャンバー10内を一旦窒素(N)雰囲気に置換して低酸素雰囲気にした後に、溶剤の蒸気を供給する。チャンバー10内に形成する雰囲気は、トルエン、ヘプタン、アセトン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン、二硫化炭素およびテトラヒドロフランからなる群のうち少なくとも1の溶剤を含む雰囲気である。このような溶剤を含む雰囲気中にて処理膜53にフラッシュ光照射を行うことにより、溶剤によって誘導自己組織化材料からなる処理膜53を膨潤させることができ、相分離を促進してより欠陥の少ないパターンを形成することができる。
 また、フラッシュランプFLのフラッシュ光照射時間を調整することによってパターンの線幅を制御するようにしても良い。上述したように、本実施形態では、IGBT96によってフラッシュランプFLに流れる電流をオンオフ制御することにより、フラッシュランプFLの発光時間を自由に調整することができる。もっとも、フラッシュランプFLは原理上長時間発光できるものではなく、フラッシュランプFLのフラッシュ光照射時間は0.1ミリ秒~100ミリ秒の間で自由に調整することができる。
 フラッシュランプFLのフラッシュ光照射時間と保持プレート21による予備加熱温度との組み合わせによって、パターンの線幅を調整することができる。本願発明者等の鋭意調査によれば、フラッシュ光照射時間が長いほど、また、予備加熱温度が高いほど基板W上に残存するパターンP2の線幅が太くなる。
 また、上記実施形態においては、処理膜53を形成した基板Wを予備加熱した後にフラッシュ光照射を1回行っていたが、予備加熱後にフラッシュランプFLによるフラッシュ光照射を複数回繰り返すようにしても良い。1回のフラッシュ光照射で処理膜53に強いエネルギーを与えると重合体が分解するおそれのある場合には、比較的弱いエネルギーのフラッシュ光照射を複数回繰り返すのが好適である。
 さらに、処理膜53に対する予備加熱とフラッシュ光照射との組み合わせ自体を複数回繰り返すようにしても良い。すなわち、1回の予備加熱およびフラッシュ光照射が完了した後に、再び予備加熱およびフラッシュ光照射の手順を繰り返すのである。この場合、1回の予備加熱およびフラッシュ光照射が完了した後に、基板Wを一旦予備加熱温度よりも低い温度に冷却するのが好ましい。
 1 熱処理装置
 2 塗布処理装置
 10 チャンバー
 21 保持プレート
 22 予備加熱機構
 31 スピンチャック
 35 塗布ノズル
 51 下地層
 52 ガイドパターン
 53 処理膜
 60 フラッシュ照射部
 65 熱処理空間
 69 チャンバー窓
 74 ガス供給部
 77 排気部
 90 制御部
 96 IGBT
 FL フラッシュランプ
 P1,P2 パターン
 W 基板

Claims (6)

  1.  基板上にパターンを形成する基板処理方法であって、
     基板上に誘導自己組織化材料からなる処理膜を形成する成膜工程と、
     前記処理膜にフラッシュランプからフラッシュ光を照射するフラッシュ照射工程と、
    を備える基板処理方法。
  2.  請求項1記載の基板処理方法において、
     前記フラッシュ照射工程の前に、前記処理膜を所定の処理温度にて予備加熱する予備加熱工程をさらに備える基板処理方法。
  3.  請求項2記載の基板処理方法において、
     前記処理温度は前記誘導自己組織化材料が相分離する温度である基板処理方法。
  4.  請求項1から請求項3のいずれかに記載の基板処理方法において、
     前記フラッシュ照射工程では、トルエン、ヘプタン、アセトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、二硫化炭素およびテトラヒドロフランからなる群のうち少なくとも1の溶剤を含む雰囲気中にてフラッシュ光を照射する基板処理方法。
  5.  請求項1から請求項4のいずれかに記載の基板処理方法において、
     前記フラッシュ照射工程では、フラッシュ光の照射時間によってパターンの線幅を制御する基板処理方法。
  6.  請求項1から請求項5のいずれかに記載の基板処理方法において、
     前記フラッシュ照射工程を複数回繰り返す基板処理方法。
PCT/JP2017/025747 2016-09-23 2017-07-14 基板処理方法 WO2018055881A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/318,340 US10840096B2 (en) 2016-09-23 2017-07-14 Method for processing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185435 2016-09-23
JP2016185435A JP6683578B2 (ja) 2016-09-23 2016-09-23 基板処理方法

Publications (1)

Publication Number Publication Date
WO2018055881A1 true WO2018055881A1 (ja) 2018-03-29

Family

ID=61690332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025747 WO2018055881A1 (ja) 2016-09-23 2017-07-14 基板処理方法

Country Status (4)

Country Link
US (1) US10840096B2 (ja)
JP (1) JP6683578B2 (ja)
TW (1) TWI657485B (ja)
WO (1) WO2018055881A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644748B2 (en) 2021-04-09 2023-05-09 Applied Materials, Inc. Multi-volume baking chamber for mask clean

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160621A (ja) * 2012-02-03 2013-08-19 Toshiba Corp 欠陥検査方法、パターン計測方法および欠陥検査装置
JP2013228492A (ja) * 2012-04-24 2013-11-07 Tokyo Electron Ltd パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2014022570A (ja) * 2012-07-18 2014-02-03 Sokudo Co Ltd 基板処理装置および基板処理方法
JP2014053558A (ja) * 2012-09-10 2014-03-20 Toshiba Corp パターン形成方法
US20140178824A1 (en) * 2012-12-26 2014-06-26 Globalfoundries Inc. Optimizing lithographic processes using laser annealing techniques
JP2015179272A (ja) * 2015-04-01 2015-10-08 東京エレクトロン株式会社 パターン形成方法、パターン形成装置及びコンピュータ可読記憶媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497288B2 (ja) 2008-12-29 2014-05-21 Hoya株式会社 フォトマスクブランクの製造方法及びフォトマスクの製造方法
JP6177958B2 (ja) * 2012-04-06 2017-08-09 東京エレクトロン株式会社 パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP5918122B2 (ja) 2012-04-06 2016-05-18 東京エレクトロン株式会社 パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP5887244B2 (ja) 2012-09-28 2016-03-16 富士フイルム株式会社 パターン形成用自己組織化組成物、それを用いたブロックコポリマーの自己組織化によるパターン形成方法、及び自己組織化パターン、並びに電子デバイスの製造方法
US8877658B2 (en) * 2012-10-17 2014-11-04 Globalfoundries Inc. Directed self-assembly of block copolymers using laser annealing
JP5823424B2 (ja) * 2013-02-15 2015-11-25 東京エレクトロン株式会社 基板処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
US9209014B2 (en) 2013-03-15 2015-12-08 Tokyo Electron Limited Multi-step bake apparatus and method for directed self-assembly lithography control
JP6241384B2 (ja) * 2014-07-17 2017-12-06 ウシオ電機株式会社 自己組織化単分子膜のパターニング装置、光照射装置及び自己組織化単分子膜のパターニング方法
JP6393148B2 (ja) * 2014-10-23 2018-09-19 株式会社Screenホールディングス 熱処理方法および熱処理装置
US10437153B2 (en) * 2014-10-23 2019-10-08 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160621A (ja) * 2012-02-03 2013-08-19 Toshiba Corp 欠陥検査方法、パターン計測方法および欠陥検査装置
JP2013228492A (ja) * 2012-04-24 2013-11-07 Tokyo Electron Ltd パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2014022570A (ja) * 2012-07-18 2014-02-03 Sokudo Co Ltd 基板処理装置および基板処理方法
JP2014053558A (ja) * 2012-09-10 2014-03-20 Toshiba Corp パターン形成方法
US20140178824A1 (en) * 2012-12-26 2014-06-26 Globalfoundries Inc. Optimizing lithographic processes using laser annealing techniques
JP2015179272A (ja) * 2015-04-01 2015-10-08 東京エレクトロン株式会社 パターン形成方法、パターン形成装置及びコンピュータ可読記憶媒体

Also Published As

Publication number Publication date
US10840096B2 (en) 2020-11-17
US20190228964A1 (en) 2019-07-25
TWI657485B (zh) 2019-04-21
JP2018049979A (ja) 2018-03-29
JP6683578B2 (ja) 2020-04-22
TW201814767A (zh) 2018-04-16

Similar Documents

Publication Publication Date Title
JP6582081B2 (ja) 電場/磁場案内された酸拡散
US9829790B2 (en) Immersion field guided exposure and post-exposure bake process
US8852966B2 (en) Heat treatment method and heat treatment apparatus of thin film
TWI668763B (zh) 熱處理方法
US9280070B2 (en) Field guided exposure and post-exposure bake process
JP2009070948A (ja) 熱処理装置
JP5116463B2 (ja) プラズマドーピング方法及び装置
TWI572996B (zh) 熱處理方法及熱處理裝置
JP2011119562A (ja) 熱処理方法および熱処理装置
JP5951209B2 (ja) 熱処理方法
WO2018055881A1 (ja) 基板処理方法
TWI650802B (zh) 結晶構造控制方法及熱處理方法
JP2016181641A (ja) 熱処理装置
JP2018146617A5 (ja)
JP2001079387A (ja) 紫外光照射装置及び方法
JP6393148B2 (ja) 熱処理方法および熱処理装置
US20050077183A1 (en) Anodic oxidation apparatus, anodic oxidation method, and panel for display device
TWI775127B (zh) 熱處理方法及熱處理裝置
JP2014011436A (ja) 熱処理装置および熱処理方法
JP2022148647A (ja) 基板処理方法
JP2023184410A (ja) 基板処理装置及び基板処理方法
TW202324635A (zh) 烘烤後冷卻基板的腔室和方法
WO2014168172A1 (ja) 焼成方法及び焼成装置
JP2016115830A (ja) 熱処理方法
JP2003229353A (ja) 表面処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852662

Country of ref document: EP

Kind code of ref document: A1