WO2018047562A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2018047562A1
WO2018047562A1 PCT/JP2017/028664 JP2017028664W WO2018047562A1 WO 2018047562 A1 WO2018047562 A1 WO 2018047562A1 JP 2017028664 W JP2017028664 W JP 2017028664W WO 2018047562 A1 WO2018047562 A1 WO 2018047562A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
unit
vehicle
air conditioning
Prior art date
Application number
PCT/JP2017/028664
Other languages
English (en)
French (fr)
Inventor
英男 相沢
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780054442.6A priority Critical patent/CN109689404B/zh
Priority to DE112017004492.8T priority patent/DE112017004492T5/de
Publication of WO2018047562A1 publication Critical patent/WO2018047562A1/ja
Priority to US16/278,758 priority patent/US11529847B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00742Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by detection of the vehicle occupants' presence; by detection of conditions relating to the body of occupants, e.g. using radiant heat detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00064Air flow details of HVAC devices for sending air streams of different temperatures into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • B60H1/00778Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed the input being a stationary vehicle position, e.g. parking or stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00964Control systems or circuits characterised by including features for automatic and non-automatic control, e.g. for changing from automatic to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator

Definitions

  • the present disclosure relates to a vehicle air conditioner that controls air conditioning in a vehicle interior in accordance with the temperature in the vehicle interior.
  • a vehicle air conditioner has been provided in a vehicle in order to enhance passenger comfort in the vehicle cabin.
  • a vehicle air conditioner one that automatically controls air conditioning such as cooling and heating according to the inside air temperature in the passenger compartment is known.
  • the vehicle compartment has openings such as windows, doors and sunroofs. These windows and the like may be opened for the purpose of ventilation or the like even when the vehicle air conditioning is performed by the vehicle air conditioner.
  • Patent Document 1 The technique described in Patent Document 1 is known as a technique made in view of this point.
  • the vehicle air-conditioning apparatus consumes a larger amount of energy in order to reduce the influence of the inflow of outside air into the vehicle interior (that is, the fluctuation of the heat load on the vehicle interior). It is configured to perform air conditioning control with power.
  • the vehicle air conditioner It is configured to perform cooling with greater power consumption.
  • the vehicle interior when the vehicle interior is being cooled, if a large amount of high temperature outside air flows into the vehicle interior, there may be a case where the vehicle interior cannot be cooled even if the vehicle air conditioner is cooling at maximum capacity. In this case, there is a possibility that the passenger's thermal feeling may be deteriorated despite the cooling with the maximum capacity of the vehicle air conditioner.
  • the present disclosure relates to a vehicle air conditioner that controls air conditioning in a vehicle interior in accordance with the temperature in the vehicle interior, and the vehicle air conditioning that can suppress an increase in power consumption when outside air flows into the vehicle interior.
  • An object is to provide an apparatus.
  • the vehicle air conditioner according to an aspect of the present disclosure is applied to a vehicle that has an opening that is openable and closable while communicating with the outside of the vehicle interior.
  • the vehicle air conditioner includes an inside air temperature detection unit, an indoor air conditioning unit for performing air conditioning of the vehicle interior, and an air conditioning control unit.
  • the inside air temperature detection unit detects the inside air temperature in the vehicle interior.
  • the indoor air conditioning unit includes a temperature adjusting unit that adjusts the temperature of air in the vehicle interior and a blower unit that blows air into the vehicle interior.
  • the air conditioning control unit includes an auto control unit, an open signal detection unit, a thermal load determination unit, and a power saving control unit.
  • the auto control unit performs auto control for automatically changing the operation of the indoor air conditioning unit in accordance with the inside air temperature detected by the inside air temperature detecting unit.
  • the open signal detection unit detects an open signal indicating that the opening is open.
  • a thermal load determination part determines whether the change of the thermal load in a vehicle interior exceeds the air-conditioning capability by automatic control.
  • the power saving control unit Power saving control is performed to suppress an increase in power consumption by at least one of the air blowing units.
  • the air conditioning control unit normally performs automatic control of the indoor air conditioning unit, the inside air temperature detected by the inside air temperature detecting unit with respect to the vehicle interior of the vehicle having an opening is provided. Comfortable air conditioning according to the can be realized.
  • the vehicle air conditioner determines that the opening is open and the change in the thermal load on the passenger compartment exceeds the air conditioning capability by automatic control. can do.
  • the power consumption is increased by the indoor air conditioner to maximize the air conditioning capacity during auto control.
  • the warmth of the passenger in the passenger compartment is getting worse.
  • the vehicle air conditioner when the open signal is detected and it is determined that the change in the heat load on the vehicle interior exceeds the air conditioning capability by the automatic control, power saving control is performed. Even if the thermal load in the passenger compartment increases with the opening of the opening, the power consumption of the indoor air conditioning unit does not increase in order to cope with the increased thermal load.
  • the vehicle air conditioner can suppress an increase in power consumption when outside air flows into the vehicle interior when performing automatic control for controlling the air conditioning of the vehicle interior according to the temperature in the vehicle interior. it can.
  • 1 is an overall configuration diagram of a vehicle air conditioner according to a first embodiment of the present disclosure. It is a flowchart which shows the flow of the process regarding the air conditioning control which concerns on 1st Embodiment. It is explanatory drawing regarding the content of the auto control and power saving control which concern on 1st Embodiment. It is a whole block diagram of the vehicle air conditioner which concerns on 2nd Embodiment of this indication. It is a flowchart which shows the flow of the process regarding the air conditioning control which concerns on 2nd Embodiment. It is explanatory drawing regarding the content of the auto control and power saving control which concern on 2nd Embodiment.
  • FIG. 1 shows an overview of the overall configuration of the vehicle air conditioner according to the first embodiment.
  • the vehicle air conditioner according to the first embodiment is mounted on a vehicle driven by the vehicle engine E in order to adjust the vehicle interior space to an appropriate temperature.
  • windows that can be opened and closed by power by electricity or air are arranged on doors that constitute both side surfaces of the passenger compartment.
  • This power window is configured to be arbitrarily opened and closed by operating a power window switch 45 described later. That is, the power window is an example of an opening.
  • the vehicle air conditioner includes an indoor air conditioning unit 1, a refrigeration cycle apparatus 10, and an air conditioning control apparatus 30.
  • the air conditioning control device 30 may be an example of an air conditioning control unit.
  • the indoor air conditioning unit 1 is disposed inside the instrument panel (for example, an instrument panel) at the foremost part of the vehicle interior of the vehicle.
  • the indoor air conditioning unit 1 accommodates an inside / outside air switching box 5, an indoor blower 8, a heater core 15, a bypass passage 16, an air mix door 17, and the like in a casing 2 forming an outer shell thereof.
  • the indoor air conditioning unit 1 may be an example of a blower that blows air into the vehicle interior.
  • the casing 2 forms an air passage for the air blown into the passenger compartment.
  • the casing 2 is formed of a resin (for example, polypropylene) having a certain elasticity and excellent in strength.
  • an inside / outside air switching box 5 In the most upstream part of the air passage of the casing 2, an inside / outside air switching box 5 is arranged.
  • the inside / outside air switching box 5 has an inside air introduction port 3 communicating with the vehicle interior, an outside air introduction port 4 communicating with the outside of the vehicle interior, an inside / outside air switching door 6 and a servo motor 7.
  • the inside / outside air switching door 6 is rotatably arranged inside the inside / outside air switching box 5 and is driven by a servo motor 7.
  • the inside / outside air switching box 5 performs drive control of the inside / outside air switching door 6, thereby allowing the inside air mode for introducing the inside air (vehicle compartment air) from the inside air introduction port 3 and the outside air (vehicle compartment outside air) from the outside air introduction port 4. It is possible to switch between an outside air mode to be introduced and a semi-inside air mode in which inside air and outside air are simultaneously introduced.
  • An electric indoor fan 8 is disposed downstream of the inside / outside air switching box 5.
  • the indoor blower 8 is configured to drive the centrifugal multiblade fan 8a by a motor 8b to blow air toward the vehicle interior.
  • the evaporator 9 which comprises the refrigerating-cycle apparatus 10 is arrange
  • the refrigeration cycle apparatus 10 is configured as a vapor compression refrigerator, and includes a compressor 11, a condenser 12, a gas-liquid separator 13, and an expansion valve 14 in addition to the evaporator 9.
  • a chlorofluorocarbon refrigerant is used as the refrigerant. That is, the refrigeration cycle apparatus 10 constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • the refrigeration cycle apparatus 10 may be an example of a temperature adjustment unit that adjusts the temperature of air in the vehicle interior. What includes the refrigeration cycle apparatus 10 and the indoor air conditioning unit 1 may be an example of an indoor air conditioning unit for air conditioning the vehicle interior.
  • the compressor 11 sucks in the refrigerant of the refrigeration cycle apparatus 10, compresses it, and discharges it.
  • the compressor 11 is driven by the rotational power of the vehicle engine E transmitted via the electromagnetic clutch 11a, the pulley, and the belt V.
  • the compressor 11 is a variable capacity compressor that can continuously variably control the discharge capacity by a control signal from the outside.
  • the compressor 11 includes an electromagnetic capacity control valve 11b whose opening degree is displaced by a control current output from the air conditioning control device 30.
  • This compressor 11 adjusts the opening degree of the electromagnetic capacity control valve 11b, and controls the control pressure in the compressor 11, thereby changing the stroke of the piston.
  • the compressor 11 can continuously change the discharge capacity in the range of approximately 0% to 100%.
  • the condenser 12 exchanges heat between the refrigerant discharged from the compressor 11 and the air outside the vehicle (that is, outside air) blown from the cooling fan 12a, which is an outdoor blower, and condenses the refrigerant.
  • the condenser 12 functions as a so-called condenser.
  • the cooling fan 12a is an electric blower, and an operation rate (namely, rotation speed) is controlled by the control voltage input into the motor 12b from the air-conditioning control apparatus 30.
  • the gas-liquid separator 13 is a receiver that gas-liquid separates the refrigerant condensed in the condenser 12 to store surplus refrigerant and flows only the liquid-phase refrigerant downstream.
  • the expansion valve 14 is a decompression section that decompresses and expands the liquid-phase refrigerant separated by the gas-liquid separator 13, and includes a valve body and an electric actuator, and has an electric variable throttle mechanism.
  • the valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the operation of the expansion valve 14 is controlled by the control signal output from the air conditioning control device 30. That is, according to the expansion valve 14, the refrigerant is decompressed in an enthalpy manner based on a control signal from the air conditioning control device 30, and the degree of superheat of the refrigerant sucked into the compressor 11 is reduced to a predetermined value.
  • the opening degree can be controlled.
  • the refrigerant decompressed and expanded by the expansion valve 14 flows into the evaporator 9 and evaporates, and then flows into the compressor 11 again.
  • a refrigeration cycle in which the refrigerant circulates in the order of the compressor 11 ⁇ the condenser 12 ⁇ the gas-liquid separator 13 ⁇ the expansion valve 14 ⁇ the evaporator 9 ⁇ the compressor 11 is configured.
  • the above-described refrigeration cycle components evaporator 9, compressor 11 to expansion valve 14
  • a heater core 15 is disposed on the downstream side of the evaporator 9 in the indoor air conditioning unit 1.
  • the heater core 15 heats the air (cold air) that has passed through the evaporator 9 by using, as a heat source, the cooling water of the vehicle engine E that circulates in an engine cooling water circuit (not shown).
  • a bypass passage 16 is formed on the side of the heater core 15.
  • the bypass passage 16 guides the air that has passed through the evaporator 9 to the downstream side of the heater core 15 by bypassing the heater core 15.
  • An air mix door 17 is rotatably disposed on the downstream side of the air flow with respect to the evaporator 9 and on the upstream side of the air flow with respect to the heater core 15 and the bypass passage 16.
  • the air mix door 17 is driven by a servo motor 18.
  • the rotation position (opening) of the air mix door 17 can be continuously adjusted by controlling the operation of the servo motor 18 by the air conditioner control device 30.
  • the ratio of the amount of air passing through the heater core 15 (warm air amount) and the amount of air passing through the bypass passage 16 and bypassing the heater core 15 (cold air amount) depending on the opening of the air mix door 17. Can be adjusted. That is, the vehicle air conditioner can adjust the temperature of the air blown into the passenger compartment.
  • a defroster air outlet 19 is arranged at the most downstream portion of the blown air flow of the casing 2. These air outlets are formed so that the conditioned air whose temperature is adjusted by the air mix door 17 is blown out into the vehicle interior, which is the air-conditioning target space.
  • the defroster air outlet 19 is an air outlet for blowing air conditioned air toward the windshield Wf disposed on the front surface of the vehicle.
  • the face air outlet 20 is an air outlet for blowing air-conditioned air to the upper body of the passenger in the passenger compartment.
  • the foot blower outlet 21 is a blower outlet for blowing an air-conditioning wind toward a passenger
  • a defroster door 22, a face door 23, and a foot door 24 are rotatably disposed upstream of the defroster outlet 19, the face outlet 20, and the foot outlet 21, respectively.
  • the defroster door 22 is arranged so that the opening area of the defroster outlet 19 can be adjusted, and the face door 23 is arranged so that the opening area of the face outlet 20 can be adjusted.
  • the foot door 24 is arrange
  • the defroster door 22, the face door 23, and the foot door 24 are connected to a common servo motor 25 through a link mechanism or the like.
  • the operation of the servo motor 25 is controlled by a control signal output from the air conditioning control device 30. Therefore, according to the vehicle air conditioner, the air outlet control mode 30 can switch the air outlet mode by controlling the drive of the servo motor 25.
  • the air conditioning control device 30 is a control unit that controls the operation of each control target device configuring the indoor air conditioning unit 1.
  • the air conditioning control device 30 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the air conditioning control device 30 according to the first embodiment stores the control program shown in FIG. 2 in the ROM, and performs various calculations and processes based on the control program.
  • An air conditioning sensor group is connected to the input side of the air conditioning control device 30. Therefore, the air conditioning control device 30 can perform various detections based on the sensor detection signal output from the air conditioning sensor group.
  • the air conditioning sensor group includes an outside air sensor 31, an inside air sensor 32, a solar radiation sensor 33, an evaporator temperature sensor 34, a water temperature sensor 35, and the like.
  • the outside air sensor 31 detects an outside air temperature Tam which is the temperature of outside air outside the vehicle.
  • the inside air sensor 32 detects an inside temperature Tr that is the temperature inside the vehicle compartment.
  • the solar radiation sensor 33 detects the solar radiation amount Ts in the passenger compartment.
  • the evaporator temperature sensor 34 detects the temperature of the evaporator 9 body.
  • the evaporator temperature sensor 34 is attached to a fin or a tank constituting the evaporator 9.
  • the water temperature sensor 35 detects the temperature Tw of the engine coolant flowing into the heater core 15.
  • the outside air sensor 31 may be an example of an outside air temperature detection unit that detects the outside air temperature of the vehicle.
  • the inside air sensor 32 may be an example of an inside air temperature detection unit that detects the inside air temperature in the vehicle interior.
  • An operation panel 37 is connected to the input side of the air conditioning control device 30.
  • the operation panel 37 is disposed in the vicinity of the instrument panel in the front part of the vehicle interior, and includes various operation switches. Therefore, the air conditioning control device 30 can detect an operation on the operation panel 37 based on operation signals output from various operation switches of the operation panel 37.
  • the various operation switches constituting the operation panel 37 include a blowing mode switch 38, an inside / outside air switching switch 39, an air conditioner switch 40, a blower switch 41, an auto switch 42, and a temperature setting switch 43.
  • the blowing mode switch 38 is operated when manually setting the blowing mode to be switched from the above-described blowing mode door (that is, the defroster door 22 to the foot door 24).
  • the inside / outside air switching switch 39 is operated when manually setting the inside / outside air suction mode in the inside / outside air switching box 5.
  • the air conditioner switch 40 is operated when switching the operation or stop of cooling or dehumidification of the passenger compartment by the indoor air conditioning unit 1.
  • the blower switch 41 is operated when manually setting the amount of air blown from the indoor blower 8.
  • the auto switch 42 is operated when setting or canceling the air conditioning auto control.
  • a power window (not shown) is disposed on the doors constituting both side surfaces of the passenger compartment, and functions as an opening.
  • the power window is configured to open and close using a motor (not shown) as a power source.
  • a power window switch 45 is connected to the input side of the vehicle control device 44, and an operation signal of the power window switch 45 is input. And the power window switch 45 is provided in the window opening / closing operation panel arrange
  • the vehicle control device 44 can arbitrarily open and close the power window by performing drive control of the motor based on the operation signal input from the power window switch 45.
  • the power window switch 45 When the power window is opened, the power window switch 45 outputs an open signal indicating an open (ON) state.
  • the power window switch 45 When the power window is closed, the power window switch 45 outputs a close signal indicating a closed (OFF) state.
  • a power window switch 45 is connected to the input side of the air conditioning control device 30 via a vehicle control device 44. Therefore, the open signal and the close signal output from the power window switch 45 are input to the air conditioning control device 30 via the vehicle control device 44. Therefore, the air conditioning control device 30 can detect whether the power window is in the open state or the closed state based on the open signal or the close signal output from the power window switch 45.
  • control devices in the vehicle air conditioning device include an electromagnetic clutch 11 a of the compressor 11, an electromagnetic capacity control valve 11 b, a servo motor 7 constituting an electric drive unit, a servo motor 18, a servo motor 25, a motor 8 b of the indoor blower 8, and a cooling fan A motor 12b of 12a is included.
  • the operation of these control devices is controlled by the output signal of the air conditioning control device 30.
  • step S1 initialization in the vehicle air conditioner is performed. Specifically, initialization of flags, timers, and the like configured by the storage circuit of the air conditioning control device 30, and initial alignment of the stepping motors that constitute the various electric actuators described above are performed as initialization.
  • step S1 some of the flags and the calculated values are read out when the vehicle air conditioner is stopped or when the vehicle system is terminated.
  • step S2 the detection signal of the sensor group for air conditioning control, the operation signal of the operation panel 37, the signal output from the power window switch 45, etc. are read.
  • step S3 based on the detection signal, operation signal, etc. read in step S2, a target blowing temperature TAO that is a target temperature of the blown air blown into the vehicle interior is calculated.
  • the target blowing temperature TAO is calculated by the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F1)
  • Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor 32
  • Tam is the outside air temperature detected by the outside air sensor 31
  • As is a solar radiation sensor. This is the amount of solar radiation detected by 33.
  • Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
  • step S4 the operating state of the various control object apparatus in air_conditioning
  • FIG. More specifically, the refrigerant discharge capacity of the compressor 11 (that is, the discharge capacity of the compressor 11), the ventilation capacity of the indoor fan 8 (that is, the rotational speed of the indoor fan 8), the opening degree of the air mix door 17, and the expansion
  • the blower volume of the indoor blower 8 is determined by referring to the target blowing temperature TAO calculated in step S3 and a control map stored in advance in the air conditioning control device 30, and as a blower motor voltage applied to the motor 8b. Is output.
  • the inside / outside air mode in the inside / outside air switching box 5 is also determined by referring to the target blowing temperature TAO calculated in step S3 and a control map stored in advance in the air conditioning control device 30.
  • This inside / outside air mode is set to, for example, the inside air mode when the inside air temperature Tr is higher than a predetermined temperature with respect to the set temperature Tset (during cooling high load), and as the target blowing temperature TAO rises from the low temperature side to the high temperature side, It is determined so as to switch from the all inside air mode ⁇ the inside / outside air mixing mode ⁇ the all outside air mode.
  • the blowing mode in the indoor air conditioning unit 1 is also determined by referring to the target blowing temperature TAO calculated in step S3 and the control map stored in the air conditioning control device 30 in advance.
  • the blowing mode is determined so that, for example, the blowing mode is sequentially switched from the foot mode ⁇ the bi-level (B / L) mode ⁇ the face mode as the target blowing temperature TAO rises from the low temperature range to the high temperature range.
  • the target opening degree SW of the air mix door 17 is calculated by the following formula F2 based on the target blowing temperature TAO, the evaporator blowing air temperature Te, and the engine cooling water temperature Tw calculated in step S3.
  • SW [(TAO ⁇ Te) / (Tw ⁇ Te)] ⁇ 100 (%) (F2)
  • the cooling target temperature TEO of the evaporator 9 is determined by referring to the target blowing temperature TAO calculated in step S3 and the control map stored in the air conditioning control device 30 in advance.
  • This cooling target temperature TEO is a target temperature when cooling the air blown into the vehicle interior by the evaporator 9, and is a temperature necessary for adjusting the temperature and humidity of the air blown out of the vehicle interior.
  • the discharge capacity of the compressor 11 is calculated and determined as a control current supplied to the electromagnetic capacity control valve 11b.
  • This control current is obtained by calculating a deviation between the actual evaporator blowout air temperature Te and the cooling target temperature TEO of the evaporator 9 and performing a feedback control technique such as proportional integral control (PI control) based on this deviation.
  • PI control proportional integral control
  • the evaporator blown air temperature Te is calculated as a control current for bringing the evaporator blown air temperature Te close to the cooling target temperature TEO.
  • step S5 the control signal, control voltage, or control current is supplied from the air conditioning control device 30 so that the operating states of the various air conditioning control devices determined in step S4 are obtained. Is output to various air conditioning control devices.
  • step S6 the process waits for the control period ⁇ , and when it is determined that the control period ⁇ has elapsed, the process proceeds to step S7.
  • step S7 it is determined whether or not the power window is open based on the power window open signal and the close signal input from the power window switch 45 via the vehicle control device 44. If it is determined that the power window is open, the process proceeds to step S8.
  • the portion corresponding to step S7 in the air conditioning control device 30 may be an example of an open signal detection unit that detects an open signal indicating that the opening is open, and is closed indicating that the opening is closed. It may be an example of a closed signal detection unit that detects a signal.
  • step S2 the vehicle air conditioner automatically controls the air conditioning in the passenger compartment according to the inside temperature Tr and the like. That is, the control state of the various air conditioning control devices in the vehicle air conditioner in this case is changed according to the internal temperature Tr or the like.
  • step S8 it is determined whether or not the absolute value of the change rate of the internal temperature Tr is larger than the absolute value of a predetermined reference change rate ⁇ .
  • the reference change rate ⁇ is determined according to the maximum air conditioning capacity during the automatic control (ie, step S2 to step S6) of the vehicle air conditioner according to the first embodiment.
  • the reference change rate ⁇ corresponds to the maximum cooling capacity during automatic control of the vehicle air conditioner.
  • the rate of change of the internal temperature Tr is calculated based on the detection signal of the internal air sensor 32 read in step S2.
  • the change rate of the internal temperature Tr is the amount of change of the internal temperature Tr in a predetermined period (for example, the control cycle ⁇ ).
  • the part corresponding to step S8 in the air conditioning control device 30 may be an example of a thermal load determination unit that determines whether or not the change in the thermal load in the passenger compartment exceeds the air conditioning capability by automatic control.
  • step S9 When it is determined that the absolute value of the change rate of the internal temperature Tr is larger than the absolute value of the predetermined reference change rate ⁇ , power saving control is performed in step S9. On the other hand, when the absolute value of the change rate of the internal temperature Tr is equal to or less than the absolute value of the predetermined reference change rate ⁇ , the process returns to step S2 and the automatic control is continued.
  • the part corresponding to step S9 in the air conditioning control device 30 may be a power saving control unit that performs power saving control.
  • step S2 the control state of the air conditioning control device is changed in accordance with the change in the internal air temperature Tr and the like, and the vehicle interior can be appropriately air-conditioned.
  • step S9 first, referring to the detection result read in step S2 when the open signal of the power window is received and the power saving control map stored in the air conditioning control device 30 in advance, the power saving control is performed.
  • the operating states of various air conditioning control devices at the time are specified.
  • This power saving control map is configured by associating the control state of various air-conditioning control devices with the difference between the outside air temperature Tam and the inside air temperature Tr and the change rate of the inside air temperature Tr used in step S8. Control conditions of various air-conditioning control devices in the power-saving control map are not excessively deteriorated in the passenger compartment in the passenger compartment in an environment specified by the difference between the outside air temperature Tam and the inside air temperature Tr and the rate of change of the inside air temperature Tr. Is set to
  • step S ⁇ b> 9 in the first embodiment the control current related to the discharge capacity of the compressor 11, the blower motor voltage of the indoor fan 8, the target opening degree of the air mix door 17, etc.
  • the predetermined parameter X, parameter Y, parameter Z, etc. specified with reference to the difference between the internal temperature Tr, the change rate of the internal temperature Tr, and the power saving control map are determined.
  • control signals and the like are sent to various air conditioning control devices so as to maintain the control state of the various air conditioning control devices specified with reference to the power saving control map regardless of the subsequent change in the internal temperature Tr. Is output. After outputting a control signal or the like to various air conditioning control devices, the process returns to step S7.
  • step S9 the power saving control in step S9 is continuously executed when the power window is open and the absolute value of the change rate of the internal temperature Tr is larger than the absolute value of the reference change rate ⁇ . In this case, even if the inside air temperature Tr in the vehicle interior fluctuates, the operating state of various air conditioning control devices is not changed, and the state specified by the power saving control map or the like is maintained.
  • step S9 is executed through the processes in steps S7 and S8.
  • the state in which the power window is open and the absolute value of the change rate of the internal temperature Tr is larger than the absolute value of the reference change rate ⁇ is that outside air flows into the vehicle interior as the power window opens. This means that the change in the heat load in the passenger compartment due to the outside air is very severe.
  • the air conditioning of the passenger compartment is performed by automatic control
  • the operating state of various air conditioning control devices is controlled in order to suppress the intense fluctuation of the internal temperature Tr due to the inflow of outside air into the passenger compartment. Changes to a state where the power consumption is larger.
  • the air conditioning control device 30 uses the indoor air conditioning unit 1 or the refrigeration cycle device to further cool the passenger compartment according to the auto control. Increase the power consumption of 10. Specifically, the refrigerant discharge capacity of the compressor 11 in the refrigeration cycle apparatus 10 is increased, or the amount of air blown from the indoor fan 8 in the indoor air conditioning unit 1 is increased.
  • the vehicle air conditioner according to the first embodiment changes the operating state of various air conditioning control devices in accordance with fluctuations in the internal air temperature Tr and the like by power saving control in step S9 even under such an environment. Without maintaining, a predetermined control state based on the power saving control map or the like is maintained.
  • the discharge capacity of the compressor 11 specified by the power saving control map or the like, the air flow rate of the indoor blower 8 and the like are maintained, and the discharge of the compressor 11 is performed as in automatic control.
  • the power consumption is not increased by increasing the capacity, the amount of air blown from the indoor blower 8 or the like. Therefore, according to the vehicle air conditioner according to the first embodiment, it is possible to suppress an increase in power consumption that is wasted when auto-control is performed under such circumstances.
  • the operating states of the various air conditioning control devices maintained by the power saving control in step S9 include the detection results read in step S2 when the power window open signal is received, and the savings previously stored in the air conditioning control device 30. It is specified with reference to the power control map.
  • the operating states of the various air conditioning control devices in the power saving control map are such that the passenger's feeling of warmth in the passenger compartment is excessive in an environment specified by the difference between the outside air temperature Tam and the inside air temperature Tr and the rate of change of the inside air temperature Tr. It is set not to get worse.
  • the operating states of the various air conditioning control devices are set based on the environment when the power window open signal is received so that the occupant's thermal sensation in the passenger compartment is not excessively deteriorated. These operating states are maintained. That is, the vehicle air conditioner according to the first embodiment can suppress the deterioration of the occupant's warm feeling in the passenger compartment to some extent even when the power saving control is executed.
  • the vehicle air conditioner according to the first embodiment is mounted on a vehicle having a power window and performs air conditioning of the vehicle interior.
  • the vehicle air conditioner includes an indoor air conditioning unit 1, a refrigeration cycle apparatus 10, and an air conditioning control apparatus 30.
  • the vehicle air conditioner can realize comfortable air conditioning in the vehicle interior according to the detection result of the inside air sensor 32 or the like by causing the air conditioning control device 30 to perform automatic control (ie, step S2 to step S6). .
  • the vehicle air conditioner saves power in step S9.
  • Execute control In the power saving control, various air conditioning control devices are controlled so as to maintain the operation state specified by the power saving control map.
  • the vehicle air conditioner can open the air blower 8 of the indoor air conditioning unit 1 as in the case of automatic control, even when the heat load greatly fluctuates due to the opening of the power window and the outside air flowing into the vehicle interior.
  • the consumption power in the compressor 11 of the refrigeration cycle apparatus 10 is not increased, and waste of the consumption power that does not contribute to the improvement of the passenger's feeling of warmth can be suppressed.
  • the degree of change in the thermal load on the passenger compartment is determined using the rate of change of the inside air temperature Tr detected by the inside air sensor 32.
  • the inside air sensor 32 since the inside air sensor 32 is generally arranged, it is possible to detect a change in the heat load on the passenger compartment without arranging a special detection unit, and compared with the air conditioning capacity at the time of auto control. can do.
  • the operating states of various air conditioning control devices refer to the difference between the outside air temperature Tam detected by the outside air sensor 31 and the inside air temperature Tr, the change rate of the inside air temperature Tr, and the power saving control map. And the operating state is maintained. Therefore, the vehicle air conditioner can suppress the deterioration of the occupant's warm feeling in the passenger compartment to some extent even when the power saving control is executed.
  • the vehicle air conditioner executes auto control (ie, step S2 to step S6) upon detecting a power window closing signal in step S7 during power saving control.
  • auto control ie, step S2 to step S6
  • step S7 a power window closing signal
  • the vehicle air conditioner according to the second embodiment is configured to include the indoor air conditioning unit 1, the refrigeration cycle apparatus 10, and the air conditioning control apparatus 30, as in the first embodiment. Also in 2nd Embodiment, each structure of the indoor air conditioning unit 1 and the refrigerating-cycle apparatus 10 is fundamentally the same as that of 1st Embodiment.
  • the vehicle air conditioner according to the second embodiment has an infrared sensor 36 as one of the air conditioning control sensors, the determination processing when performing power saving control, and the contents of power saving control. This is different from the first embodiment.
  • the infrared sensor 36 is a so-called matrix IR sensor, and is arranged in the center of the ceiling panel in the vehicle interior so that the vehicle interior is in the temperature detection range.
  • the detection part of the infrared sensor 36 includes a sensor chip having a plurality of thermocouple parts arranged in a matrix on one side, and an infrared absorption film disposed so as to cover one side of the sensor chip. Yes.
  • the infrared absorbing film plays a role of absorbing infrared rays incident from a detection object (that is, an occupant) in the passenger compartment through a lens arranged in the case of the infrared sensor and converting it into heat.
  • a detection object that is, an occupant
  • Each of the plurality of thermocouple units is a temperature detection element that converts heat generated from the infrared absorption film into a voltage. Therefore, the infrared sensor 36 can measure the occupant's body surface temperature in the passenger compartment as the occupant surface temperature Tir by detecting the infrared rays emitted in the passenger compartment.
  • an infrared sensor 36 is connected to the input side of the air conditioning control device 30 as one of the air conditioning sensor groups. Therefore, the air conditioning control device 30 can detect the occupant surface temperature Tir in the passenger compartment based on the sensor detection signal output from the infrared sensor 36.
  • control processing executed by the air conditioning control device 30 in the vehicle air conditioning device according to the second embodiment will be described with reference to the flowchart of FIG.
  • the control program in the second embodiment is executed when the air conditioner switch 40 and the auto switch 42 are turned on while the ignition switch of the vehicle engine E is turned on, and the auto control in the cooling mode is performed. To realize.
  • the air conditioning control device 30 executes the processes from step S1 to step S6 similar to those in the first embodiment. At this time, in step S2, a detection signal from the infrared sensor 36 which is one of the sensor groups for air conditioning control is also read.
  • the auto control during cooling in the second embodiment is realized by steps S2 to S6. Therefore, according to the vehicle air conditioner according to the second embodiment, the control state of the air conditioning control device is changed according to the change in the internal temperature Tr or the like in the automatic control during cooling (ie, step S2 to step S6).
  • the vehicle interior can be appropriately air-conditioned.
  • the power window is changed based on the power window open signal and the close signal input from the power window switch 45 via the vehicle control device 44. It is determined whether it is open. When it is determined that the power window is open, the process proceeds to step S10. On the other hand, if it is determined that the power window is closed, the process returns to step S2.
  • the vehicle air conditioner according to the second embodiment automatically controls the air conditioning of the vehicle interior according to the internal temperature Tr and the like, as in the first embodiment. That is, also in the second embodiment, the control states of the various air conditioning control devices in this case are changed according to the internal temperature Tr and the like.
  • step S10 it is determined whether or not the absolute value of the change rate of the occupant surface temperature Tir is larger than the absolute value of the predetermined reference change rate ⁇ .
  • the reference change rate ⁇ in this case is determined according to the maximum air conditioning capacity during the automatic control of the vehicle air conditioner according to the second embodiment. That is, the reference change rate ⁇ according to the second embodiment corresponds to the maximum cooling capacity during the automatic control of the vehicle air conditioner.
  • step S10 first, the rate of change of the passenger surface temperature Tir is calculated based on the detection signal of the infrared sensor 36 read in step S2 of FIG.
  • the change rate of the occupant surface temperature Tir is a change amount of the occupant surface temperature Tir in a predetermined period (for example, the control cycle ⁇ ). Subsequently, it is determined whether or not the absolute value of the calculated change rate of the passenger surface temperature Tir is larger than the absolute value of the reference change rate ⁇ .
  • step S10 whether or not the change in the thermal load due to the outside air that has flowed into the vehicle interior with the opening of the power window exceeds the maximum cooling capacity during the automatic control of the vehicle air conditioner is determined. It is judged with.
  • the part corresponding to step S10 in the air conditioning control device 30 may be an example of a thermal load determination unit that determines whether or not the change in the thermal load in the vehicle interior exceeds the air conditioning capability by automatic control.
  • step S11 When it is determined that the absolute value of the change rate of the occupant surface temperature Tir is larger than the absolute value of the predetermined reference change rate ⁇ , power saving control is performed in step S11. On the other hand, when the absolute value of the change rate of the occupant surface temperature Tir is equal to or smaller than the absolute value of the predetermined reference change rate ⁇ , the process returns to step S2 and the automatic control is continued. In this case, since the influence of the inflow of outside air or the like is small, the vehicle interior is appropriately air-conditioned according to changes in the inside temperature Tr and the like.
  • the part corresponding to step S11 of the air conditioning control device 30 may be a power saving control unit that performs power saving control.
  • step S11 of the second embodiment first, the operating states of the various air conditioning control devices at the time of receiving the power window open signal are read out and specified as the operating states of the various air conditioning control devices in the power saving control. Is done. And a control signal etc. are output to various air-conditioning control equipment so that the control state of various specified air-conditioning control equipment may be maintained irrespective of the change of internal temperature Tr after that. Also in 2nd Embodiment, after outputting a control signal etc. to various air-conditioning control apparatuses, a process is returned to step S7.
  • the power saving control in step S11 is continuously executed when the power window is open and the absolute value of the change rate of the occupant surface temperature Tir is larger than the absolute value of the reference change rate ⁇ . .
  • the operating state of various air conditioning control devices is not changed, and various empty spaces when the hour window opens are opened. The operating state of the quantity control device is maintained.
  • the vehicle air conditioner according to the second embodiment does not change the operating state of various air conditioning control devices due to the fluctuation of the internal temperature Tr or the like by the power saving control in step S11.
  • the control state at the time when the power window is opened is maintained.
  • the discharge capacity of the compressor 11 and the blower amount of the indoor blower 8 when the power window is opened are maintained, and the discharge capacity of the compressor 11 and the indoor blower 8 are maintained as in automatic control.
  • the power consumption is not increased by increasing the amount of air blown. Also in the vehicle air conditioner according to the second embodiment, it is possible to suppress an increase in power consumption that is wasted when auto-control is performed under such circumstances.
  • the operating state of the various air conditioning control devices maintained by the power saving control in step S11 is the operating state of the various air conditioning control devices when the open signal of the power window is received. That is, it is possible to suppress an increase in power consumption by controlling to read the history regarding the operating state of various air conditioning control devices.
  • the air conditioner control device 30 by causing the air conditioner control device 30 to perform automatic control (ie, step S2 to step S6), Comfortable air conditioning in the passenger compartment according to the detection result of the inside air sensor 32 or the like can be realized.
  • step S11 power saving control is executed.
  • the vehicle air conditioner according to the second embodiment also has the indoor air conditioning unit 1 as in the case of automatic control even when the power window is opened and the heat load greatly fluctuates due to the outside air flowing into the vehicle interior.
  • the consumption power in the indoor blower 8 and the compressor 11 of the refrigeration cycle apparatus 10 is not increased, and waste of consumption power that does not contribute to improvement of the occupant's thermal feeling can be suppressed.
  • the degree of change in the thermal load on the passenger compartment is determined using the rate of change in the passenger surface temperature Tir detected by the infrared sensor 36. Since it is the passenger in the passenger compartment who feels comfort regarding the air conditioning in the passenger compartment, the change in the heat load due to the inflow of outside air can be appropriately determined by using the passenger surface temperature Tir.
  • the operating state of the various air conditioning control devices in the power saving control in step S11 maintains the operating state of the various air conditioning control devices when the power window is opened. Therefore, in 2nd Embodiment, the increase in power consumption can be suppressed by control which reads the log
  • the vehicle air conditioner when a power window closing signal is detected in step S7 during power saving control, the vehicle air conditioner performs auto control (ie, steps S2 to S6). That is, this vehicle air conditioner can realize comfortable air conditioning in the passenger compartment more quickly by executing auto control when the change in the thermal load in the passenger compartment becomes mild.
  • step S8 in the first embodiment and S10 in the second embodiment the determination is made based on the absolute value of the rate of change, so that appropriate determination can be made for both cooling and heating.
  • the auto control during cooling and the power saving control are switched according to the change of the thermal load in the vehicle interior in conjunction with the opening and closing of the power window.
  • the present invention is not limited to this mode.
  • the opening in the present disclosure is not limited as long as it can communicate with the interior and exterior of the vehicle and can be opened and closed. Therefore, opening and closing of the sunroof disposed on the ceiling of the passenger compartment and opening and closing of the door with respect to the passenger compartment may be performed as opening and closing of the opening.
  • the change in the thermal load in the passenger compartment is determined based on the internal air temperature Tr detected by the internal air sensor 32 and the passenger surface temperature Tir detected by the infrared sensor 36. It is not limited. For example, it may be determined by other detection results such as the evaporator blown air temperature Te detected by the evaporator temperature sensor 34 by the air conditioning sensor group. For example, like the outside temperature Tam and the inside temperature Tr, The determination may be made using a plurality of detection results.
  • the discharge capacity is changed when the refrigerant discharge capacity of the compressor 11 that is a variable capacity compressor is changed, but the invention is not limited to this mode.
  • the rotation speed of the compressor 11 may be changed, or the control temperature may be changed if it is a fixed capacity compressor.
  • the operation state of the air conditioning control device is maintained in a predetermined state.
  • the target blowing temperature TAO may be corrected according to the situation, and automatic control using the corrected target blowing temperature TAO may be performed.
  • the target blowing temperature TAO is corrected to be higher than the normal target blowing temperature TAO during cooling and lower than the normal target blowing temperature TAO during heating.
  • this disclosure can also be applied to manual air conditioners.
  • a determination regarding the thermal load in the passenger compartment is made based on the rate of change of the evaporator blown air temperature Te by the evaporator temperature sensor 34.
  • the power consumption of a vehicle air conditioner can be reduced by performing control which raises the threshold value of the evaporator blowing air temperature Te.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, but the type of refrigerant is not limited to this.
  • a refrigerant in the present disclosure a natural refrigerant such as carbon dioxide, a hydrocarbon refrigerant, or the like may be used.
  • the refrigeration cycle apparatus 10 in each embodiment described above constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant
  • the supercritical state in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant You may comprise the refrigerating cycle.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

車両用空調装置は、内気温検出部(32)と、室内空調部と、空調制御部(30)と、を有する。内気温検出部は、内気温(Tr)を検出する。室内空調部は、車室内温度を調整する温度調整部(10)と、車室内に空気を送風する送風部(1)とを備える。空調制御部は、オート制御部(S2、S3、S4、S5、S6)と、開信号検出部(S7)と、熱負荷判定部(S8、S10)と、省電力制御部(S9、S11)と、を有する。オート制御部は、検出された内気温に応じて、室内空調部の作動を自動的に変更するオート制御を行う。開信号検出部は、開口部が開いていることを示す開信号を検出する。熱負荷判定部は、車室内における熱負荷がオート制御の空調能力を超えるか否かを判定する。省電力制御部は、開信号が検出され、熱負荷がオート制御の空調能力を超えると判定された場合に、内気温に関わらず、消費動力の増大を抑制する省動力制御を行う。

Description

車両用空調装置 関連出願の相互参照
 本出願は、2016年9月7日に出願された日本出願番号2016-174240号に基づくもので、ここにその記載内容を援用する。
 本開示は、車室内の温度に応じて車室内の空調を制御する車両用空調装置に関する。
 従来、車両用空調装置は、車両の車室内における乗員の快適性を高める為に、車両に設けられている。このような車両用空調装置として、車室内の内気温に応じて、冷暖房等の空調を自動的に制御するものが知られている。
 一方、車室には、ウィンドウ、ドアやサンルーフ等の開口が設けられている。これらのウィンドウ等は、車両用空調装置による車室内の空調が行われている場合であっても、換気等を目的として開かれる場合がある。
 この場合、ウィンドウ等の開口部を介して、車室外の外気が車室内に流入する為、車室に対する熱負荷や車室内の温度や等は大きく変動することになる。即ち、車室内の乗員の温熱感は、開口部を介した外気の流入によって大きな影響を受ける。
 この点に鑑みてなされた技術として、特許文献1に記載された技術が知られている。特許文献1に記載された車両用空調装置は、ウィンドウが開いたことを検知すると、車室内に対する外気の流入の影響(即ち、車室内に対する熱負荷の変動)を緩和する為に、より大きな消費動力で空調制御を行うように構成されている。
 例えば、真夏のように外気温が高く、車室内を冷房している場合において、ウィンドウが開いたことを検知すると、この車両用空調装置は、外気の流入による内気温の上昇を緩和する為に、より大きな消費動力で冷房を行うように構成されている。
特開2010-18227号公報
 本開示の発明者らの検討によれば、特許文献1に記載された車両用空調装置においても、外気の流入による車室内に対する熱負荷の変化が激しすぎると、車両用空調装置よる空調能力を超えてしまう場合がある。
 例えば、車室内を冷房している場合に、高温の外気が大量に車室内へ流入すると、車両用空調装置が最大能力で冷房していても、車室内を冷やすことができない場合が起こりうる。この場合、車両用空調装置の最大能力で冷房しているにも関わらず、乗員の温熱感を悪化させてしまうおそれがある。
 このような場合、車室内の内気温に応じた空調制御に伴って、車両用空調制御装置の消費動力を増大させているにも拘らず、乗員の快適性が悪化してしまうのであれば、車両用空調装置の増大させた消費動力は無駄ということになる場合がある。従って、発明者らの検討によれば、特許文献1に記載された車両用空調装置は、上述のような場合における消費動力の無駄という点で改善の余地を有している。
 本開示は、上述した点に鑑み、車室内の温度に応じて車室内の空調を制御する車両用空調装置に関し、車室内に外気が流入する場合における消費動力の増大を抑制可能な車両用空調装置を提供することを目的とする。
 本開示の一態様による車両用空調装置は、車室内外を連通すると共に開閉可能に設けられた開口部を有する車両に適用される。車両用空調装置は、内気温検出部と、車室内の空調を行う為の室内空調部と、空調制御部と、を有する。内気温検出部は、車室内の内気温を検出する。室内空調部は、車室内における空気の温度を調整する温度調整部と、車室内に空気を送風する送風部とを備える。空調制御部は、オート制御部と、開信号検出部と、熱負荷判定部と、省電力制御部と、を有する。オート制御部は、内気温検出部によって検出された内気温に応じて、室内空調部の作動を自動的に変更するオート制御を行う。開信号検出部は、開口部が開いていることを示す開信号を検出する。熱負荷判定部は、車室内における熱負荷の変化がオート制御による空調能力を超えるか否かを判定する。省電力制御部は、開信号が検出され、且つ、車室内に対する熱負荷の変化がオート制御による空調能力を超えると判定された場合に、内気温に関わらず、室内空調部における温度調整部と送風部の少なくとも一方による消費動力の増大を抑制する省動力制御を行う。
 この車両用空調装置によれば、通常の場合、空調制御部によって室内空調部のオート制御が行われる為、開口部を有する車両の車室内に対して、内気温検出部によって検出された内気温に応じた快適な空調を実現することができる。
 そして、開信号検出部と熱負荷判定部を有している為、車両用空調装置は、開口部が開き、車室内に対する熱負荷の変化がオート制御による空調能力を超える状態にあることを判定することができる。
 開口部が開き、車室内に対する熱負荷の変化がオート制御による空調能力を超える状態では、室内空調部により消費動力を増大させて、オート制御時における空調能力を最大限発揮させた場合であっても、車室内における乗員の温感が悪化していく状態である。
 本開示に係る車両用空調装置によれば、開信号が検出され、且つ、車室内に対する熱負荷の変化がオート制御による空調能力を超えると判定された場合には、省動力制御が行われる為、開口部の開放に伴って車室内における熱負荷が増大したとしても、増大した熱負荷に対応する為に室内空調部の消費動力が増大することはない。
 即ち、車両用空調装置は、車室内の温度に応じて車室内の空調を制御するオート制御を実行している場合に、車室内に外気が流入する場合における消費動力の増大を抑制することができる。
本開示の第1実施形態に係る車両用空調装置の全体構成図である。 第1実施形態に係る空調制御に関する処理の流れを示すフローチャートである。 第1実施形態に係るオート制御と省動力制御の内容に関する説明図である。 本開示の第2実施形態に係る車両用空調装置の全体構成図である。 第2実施形態に係る空調制御に関する処理の流れを示すフローチャートである。 第2実施形態に係るオート制御と省動力制御の内容に関する説明図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 本開示に係る車両用空調装置を、車室内空間を適切な温度に調整するために用いられる車両用空調装置に適用した実施形態(第1実施形態)に基づいて、図面を参照しつつ詳細に説明する。図1は第1実施形態に係る車両用空調装置の全体構成の概要を示している。
 尚、第1実施形態に係る車両用空調装置は、車室内空間を適切な温度に調整する為に、車両エンジンEで駆動する車両に搭載されている。第1実施形態に係る車両には、車室の両側面を構成するドアに、電気又は空気による動力で開閉可能な窓(以下、パワーウィンドウ)が配置されている。このパワーウィンドウは、後述するパワーウィンドウスイッチ45の操作によって任意に開閉可能に構成されている。即ち、パワーウィンドウは開口部の一例である。
 図1に示すように、第1実施形態に係る車両用空調装置は、室内空調ユニット1と、冷凍サイクル装置10と、空調制御装置30とを有している。空調制御装置30は、空調制御部の一例であっても良い。
 室内空調ユニット1は、車両における車室内最前部の計器盤(例えば、インストルメントパネル)内側に配置されている。
 室内空調ユニット1は、その外殻を形成するケーシング2内に、内外気切替箱5、室内送風機8、ヒータコア15、バイパス通路16及びエアミックスドア17等を収容している。室内空調ユニット1は、車室内に空気を送風する送風部の一例であっても良い。
 そして、ケーシング2は、車室内送風空気の空気通路を形成している。このケーシング2は、一定の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。
 このケーシング2の空気通路の最上流部には、内外気切替箱5が配置されている。内外気切替箱5は、車室内と連通する内気導入口3と、車室外と連通する外気導入口4と、内外気切替ドア6及びサーボモータ7を有している。
 内外気切替ドア6は、内外気切替箱5の内部において回転自在に配置されており、サーボモータ7によって駆動される。内外気切替箱5は、内外気切替ドア6の駆動制御を行うことで、内気導入口3より内気(車室内空気)を導入する内気モードと、外気導入口4より外気(車室外空気)を導入する外気モードと、内気と外気を同時に導入する半内気モードとを切り替えることができる。
 そして、内外気切替箱5の下流側には、電動式の室内送風機8が配置されている。室内送風機8は、遠心多翼ファン8aをモータ8bにより駆動し、車室内に向かって空気を送風するように構成されている。
 室内送風機8の下流側には、冷凍サイクル装置10を構成する蒸発器9が配置されている。蒸発器9に流入した低圧の冷媒は、室内送風機8によって送風された送風空気から吸熱して蒸発する為、蒸発器9は、室内送風機8から送風された送風空気を冷却することができる。
 冷凍サイクル装置10は、蒸気圧縮式冷凍機として構成されており、蒸発器9に加え、圧縮機11、凝縮器12、気液分離器13、膨張弁14を有している。この冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いている。即ち、この冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷凍サイクル装置10は、車室内における空気の温度を調整する温度調整部の一例であっても良い。冷凍サイクル装置10と室内空調ユニット1を含むものが、車室内の空調を行う為の室内空調部の一例であっても良い。
 圧縮機11は、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。そして、圧縮機11は、電磁クラッチ11a、プーリ及びベルトVを介して伝達される車両エンジンEの回転動力により駆動される。そして、圧縮機11は、外部からの制御信号により吐出容量を連続的に可変制御できる可変容量型圧縮機である。
 具体的には、圧縮機11は、空調制御装置30から出力される制御電流によって開度が変位する電磁式容量制御弁11bを有して構成されている。この圧縮機11は、電磁式容量制御弁11bの開度を調整して、圧縮機11における制御圧を制御することで、ピストンのストロークを変化させる。これにより、圧縮機11は、吐出容量を略0%~100%の範囲で連続的に変化させることができる。
 凝縮器12は、圧縮機11から吐出された冷媒と室外送風機である冷却ファン12aから送風された車室外空気(即ち、外気)とを熱交換させて冷媒を凝縮させる。凝縮器12は、いわゆる凝縮器として機能する。
 そして、冷却ファン12aは、電動式送風機であり、空調制御装置30からモータ12bに入力される制御電圧によって稼働率(即ち、回転数)が制御される。即ち、冷却ファン12aによる送風空気量は、空調制御装置30によって適宜制御することができる。
 気液分離器13は、凝縮器12にて凝縮された冷媒を気液分離して余剰冷媒を蓄えると共に、液相冷媒のみを下流側に流すレシーバである。
 膨張弁14は、気液分離器13で分離された液相冷媒を減圧膨張させる減圧部であり、弁体と電動アクチュエータとを備え、電気式の可変絞り機構を有して構成されている。弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。
 従って、膨張弁14は、空調制御装置30から出力される制御信号によって、その作動が制御される。つまり、膨張弁14によれば、空調制御装置30からの制御信号に基づいて、冷媒を等エンタルピ的に減圧すると共に、圧縮機11に吸入される冷媒の過熱度が所定値となるように絞り開度を制御することが可能となる。
 冷凍サイクル装置10においては、膨張弁14にて減圧膨張された冷媒は、蒸発器9に流入して蒸発し、その後、再び圧縮機11に流入する。このように、圧縮機11→凝縮器12→気液分離器13→膨張弁14→蒸発器9→圧縮機11の順で冷媒が循環する冷凍サイクルが構成される。尚、上述した冷凍サイクルの構成装置(蒸発器9、圧縮機11~膨張弁14)の間は、それぞれ冷媒配管によって接続されている。
 図1に示すように、室内空調ユニット1における蒸発器9の下流側には、ヒータコア15が配置されている。ヒータコア15は、図示しないエンジン冷却水回路を循環する車両エンジンEの冷却水を熱源として用い、蒸発器9通過後の空気(冷風)を加熱する。
 そして、ヒータコア15の側方には、バイパス通路16が形成されている。バイパス通路16は、蒸発器9を通過した空気を、ヒータコア15を迂回させてヒータコア15の空気流れ下流側へ導く。
 蒸発器9に対する空気流れ下流側であって、ヒータコア15及びバイパス通路16に対して空気流れ上流側には、エアミックスドア17が回転自在に配置されている。エアミックスドア17は、サーボモータ18により駆動される。この車両用空調装置では、空調制御装置30によりサーボモータ18の作動制御を行うことで、エアミックスドア17の回転位置(開度)を連続的に調整可能になっている。
 そして、車両用空調装置では、エアミックスドア17の開度により、ヒータコア15を通る空気量(温風量)と、バイパス通路16を通過してヒータコア15をバイパスする空気量(冷風量)との割合を調節することができる。即ち、車両用空調装置は、車室内に吹き出す空気の温度を調整することができる。
 更に、ケーシング2の送風空気流れ最下流部には、デフロスタ吹出口19と、フェイス吹出口20と、フット吹出口21が配置されている。これらの吹出口は、エアミックスドア17により温度調整された空調風を、空調対象空間である車室内へ吹き出すように形成されている。
 具体的には、デフロスタ吹出口19は、車両の前面に配置されたフロントガラスWfに向けて空調風を吹き出す為の吹出口である。フェイス吹出口20は、車室内の乗員の上半身へ空調風を吹き出す為の吹出口である。又、フット吹出口21は、乗員の足元へ空調風を吹き出す為の吹出口である。
 そして、デフロスタ吹出口19、フェイス吹出口20及びフット吹出口21の上流部には、デフロスタドア22、フェイスドア23及びフットドア24が、それぞれ回転自在に配置されている。
 即ち、デフロスタドア22は、デフロスタ吹出口19の開口面積を調整可能に配置されており、フェイスドア23は、フェイス吹出口20の開口面積を調整可能に配置されている。そして、フットドア24は、フット吹出口21の開口面積を調整可能に配置されている。
 そして、デフロスタドア22、フェイスドア23及びフットドア24は、リンク機構等を介して、共通のサーボモータ25に接続されている。このサーボモータ25は、空調制御装置30から出力される制御信号によってその作動が制御される。従って、車両用空調装置によれば、空調制御装置30によって、サーボモータ25の駆動を制御することで、吹出口モードを切り替えることができる。
 次に、第1実施形態に係る車両用空調装置の制御系について説明する。空調制御装置30は、室内空調ユニット1を構成する各制御対象機器の作動を制御する制御部である。この空調制御装置30は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。第1実施形態に係る空調制御装置30は、そのROM内に図2に示す制御プログラムを記憶しており、その制御プログラムに基づいて各種演算、処理を行う。
 空調制御装置30の入力側には、空調用センサ群が接続されている。従って、空調制御装置30は、空調用センサ群から出力されたセンサ検出信号に基づいて種々の検出を行うことができる。そして、空調用センサ群は、外気センサ31、内気センサ32、日射センサ33、蒸発器温度センサ34、水温センサ35等を含んでいる。
 外気センサ31は、車両外部の外気の温度である外気温Tamを検出する。内気センサ32は、車室内の気温である内気温Trを検出する。日射センサ33は、車室内の日射量Tsを検出する。蒸発器温度センサ34は、蒸発器9本体の温度を検出する。蒸発器温度センサ34は、蒸発器9を構成するフィン又はタンクに取り付けられている。そして、水温センサ35は、ヒータコア15に流入するエンジン冷却水の温度Twを検出する。外気センサ31は、車両の外気温を検出する外気温検出部の一例であっても良い。内気センサ32は、車室内の内気温を検出する内気温検出部の一例であっても良い。
 又、空調制御装置30の入力側には、操作パネル37が接続されている。操作パネル37は、車室内前部の計器盤付近に配置されており、各種操作スイッチを有して構成されている。従って、空調制御装置30は、操作パネル37の各種操作スイッチから出力された操作信号に基づいて、操作パネル37に対する操作を検出することができる。
 操作パネル37を構成する各種操作スイッチは、吹出モードスイッチ38、内外気切替スイッチ39、エアコンスイッチ40、送風スイッチ41、オートスイッチ42、温度設定スイッチ43を含んでいる。
 吹出モードスイッチ38は、上述した吹出モードドア(即ち、デフロスタドア22~フットドア24)より切り替わる吹出モードをマニュアル設定する際に操作される。内外気切替スイッチ39は、内外気切替箱5における内外気吸込モードをマニュアル設定する際に操作される。
 エアコンスイッチ40は、室内空調ユニット1による車室内の冷房又は除湿の作動・停止を切り替える際に操作される。送風スイッチ41は、室内送風機8から送風される風量をマニュアル設定する際に操作される。オートスイッチ42は、空調のオート制御を設定又は解除する際に操作される。
 上述したように、第1実施形態に係る車両には、図示しないパワーウィンドウが車室の両側面を構成するドアに配置されており、開口部として機能する。このパワーウィンドウは、図示しないモータを動力源として開閉動作を行うように構成されている。
 車両制御装置44の入力側には、パワーウィンドウスイッチ45が接続されており、パワーウィンドウスイッチ45の操作信号が入力される。そして、パワーウィンドウスイッチ45は、車室の側面を構成する運転席側ドアに配置された窓開閉操作パネルに設けられている。
 従って、車両制御装置44は、パワーウィンドウスイッチ45から入力された操作信号に基づいて、モータの駆動制御を行うことで、パワーウィンドウを任意に開閉できる。そして、パワーウィンドウが開けられた状態になると、パワーウィンドウスイッチ45は、開(ON)状態を示す開信号を出力する。又、パワーウィンドウが閉じられた状態になると、パワーウィンドウスイッチ45は、閉(OFF)状態を示す閉信号を出力する。
 図1に示すように、空調制御装置30の入力側には、パワーウィンドウスイッチ45が車両制御装置44を介して接続されている。従って、空調制御装置30には、パワーウィンドウスイッチ45から出力された開信号及び閉信号が、車両制御装置44を介して入力される。従って、空調制御装置30は、パワーウィンドウスイッチ45から出力された開信号又は閉信号に基づいて、パワーウィンドウが開状態であるか閉状態であるかを検出することができる。
 そして、空調制御装置30の出力側には、車両用空調装置における各種の制御機器が接続されている。これらの制御機器には、圧縮機11の電磁クラッチ11a、電磁式容量制御弁11b、電気駆動部を構成するサーボモータ7、サーボモータ18、サーボモータ25、室内送風機8のモータ8b、及び冷却ファン12aのモータ12bが含まれている。そして、これらの制御機器の作動が空調制御装置30の出力信号により制御される。
 次に、第1実施形態に係る車両用空調装置において、空調制御装置30で実行される制御処理の内容について、図2のフローチャートを参照しつつ説明する。この制御プログラムは、車両エンジンEのイグニッションスイッチが投入された状態で、エアコンスイッチ40及びオートスイッチ42が投入されると実行され、冷房モードにおけるオート制御を実現する。尚、図2に示すフローチャートの各制御ステップは、空調制御装置30が有する各種の機能実現部を構成している。
 先ず、図2に示すように、ステップS1では、車両用空調装置におけるイニシャライズが行われる。具体的には、空調制御装置30の記憶回路によって構成されるフラグ、タイマ等の初期化、および上述した各種電動アクチュエータを構成するステッピングモータの初期位置合わせ等が、イニシャライズとして行われる。
 尚、ステップS1のイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置の停止時や車両システム終了時に記憶された値が読み出されるものもある。
 次に、ステップS2では、空調制御用のセンサ群の検出信号、操作パネル37の操作信号、パワーウィンドウスイッチ45から出力された信号等を読み込む。
 続くステップS3では、ステップS2にて読み込まれた検出信号、操作信号等に基づいて、車室内へ吹き出す送風空気の目標温度である目標吹出温度TAOを算出する。
 具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチ43によって設定された車室内設定温度、Trは内気センサ32によって検出された車室内温度(内気温)、Tamは外気センサ31によって検出された外気温、Asは日射センサ33によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 そして、ステップS4に移行すると、冷房モードにおける各種制御対象機器の作動状態が、内気温Tr等を用いて算出された目標吹出温度TAO等に基づいて決定される。より具体的には、圧縮機11の冷媒吐出能力(即ち、圧縮機11の吐出容量)、室内送風機8の送風能力(即ち、室内送風機8の回転数)、エアミックスドア17の開度、膨張弁14の作動状態、内外気切替箱5の作動状態、吹出口モード切替ドアの作動状態(即ち、吹出口モード)等が決定される。
 例えば、室内送風機8の送風量は、ステップS3で算出された目標吹出温度TAOと、予め空調制御装置30に記憶された制御マップとを参照することによって決定され、モータ8bに印加するブロワモータ電圧として出力される。
 又、内外気切替箱5における内外気モードも、ステップS3で算出された目標吹出温度TAOと、予め空調制御装置30に記憶された制御マップを参照することによって決定される。この内外気モードは、例えば、設定温度Tsetに対して内気温Trが所定温度以上に高いとき(冷房高負荷時)に内気モードとし、目標吹出温度TAOが低温側から高温側へ上昇するにつれて、全内気モード→内外気混入モード→全外気モードと切り替えるように決定される。
 そして、室内空調ユニット1における吹出モードも、ステップS3で算出された目標吹出温度TAOと、予め空調制御装置30に記憶された制御マップを参照することによって決定される。吹出モードは、例えば、目標吹出温度TAOが低温域から高温域へと上昇するにつれて吹出モードをフットモード→バイレベル(B/L)モード→フェイスモードへと順次切り替えるように決定される。
 又、エアミックスドア17の目標開度SWは、ステップS3で算出された目標吹出温度TAO、蒸発器吹出空気温度Te、及びエンジン冷却水の温度Twに基づいて、次の数式F2により算出される。
SW=〔(TAO-Te)/(Tw-Te)〕×100(%)…(F2)
 尚、SW=0(%)は、エアミックスドア17の最大冷房位置であり、バイパス通路16を全開し、ヒータコア15側の通風路を全閉した状態を示す。これに対し、SW=100(%)は、エアミックスドア17の最大暖房位置であり、バイパス通路16を全閉し、ヒータコア15側の通風路を全開した状態を示す。
 そして、蒸発器9の冷却目標温度TEOは、ステップS3で算出された目標吹出温度TAOと、予め空調制御装置30に記憶された制御マップを参照することによって決定される。この冷却目標温度TEOは、蒸発器9にて車室内吹出空気を冷却する際の目標温度であり、車室内吹出空気の温度調整や湿度調整を行うために必要な温度である。
 又、圧縮機11の吐出容量は、電磁式容量制御弁11bに供給する制御電流として算出されて決定される。この制御電流は、実際の蒸発器吹出空気温度Teと蒸発器9の冷却目標温度TEOとの偏差を算出し、この偏差に基づいて比例積分制御(PI制御)などによるフィードバック制御手法を行うことによって、蒸発器吹出空気温度Teを冷却目標温度TEOに近づけるための制御電流として算出される。
 各種制御対象機器の作動状態を決定した後、ステップS5では、ステップS4にて決定された各種空調制御機器の作動状態が得られるように、制御信号、制御電圧或いは制御電流が、空調制御装置30から各種空調制御機器に対して出力される。
 続くステップS6では、制御周期τの間、処理を待機し、制御周期τの経過を判定するとステップS7へ処理を移行する。
 ステップS7に移行すると、パワーウィンドウスイッチ45から車両制御装置44を介して入力されるパワーウィンドウの開信号及び閉信号に基づいて、パワーウィンドウが開いているか否かが判定される。パワーウィンドウが開いていると判定された場合、ステップS8に処理を移行する。空調制御装置30のうちステップS7に対応する部分が、開口部が開いていることを示す開信号を検出する開信号検出部の一例であっても良く、開口部が閉じていることを示す閉信号を検出する閉信号検出部の一例であっても良い。
 一方、パワーウィンドウが閉じていると判定された場合、ステップS2に戻る。この場合、ステップS2~ステップS6の処理を実行することで、車両用空調装置は、内気温Tr等に応じて、車室内の空調をオート制御する。即ち、この場合における車両用空調装置における各種空調制御機器の制御状態は、内気温Tr等に応じて変更される。空調制御装置30のうちステップS2~S6に対応する部分が、内気センサ32によって検出された内気温Trに応じて、室内空調部の作動を自動的に変更するオート制御を行うオート制御部の一例であっても良い。
 ステップS8では、内気温Trの変化率における絶対値が所定の基準変化率αの絶対値よりも大きいか否かが判定される。ここで、基準変化率αは、第1実施形態に係る車両用空調装置のオート制御(即ち、ステップS2~ステップS6)時における最大空調能力に応じて定められる。この場合、基準変化率αは、この車両用空調装置のオート制御時における最大冷房能力に対応する。
 具体的には、先ず、ステップS2で読み込んだ内気センサ32の検出信号に基づいて、内気温Trの変化率が算出される。内気温Trの変化率は、所定期間(例えば、制御周期τ)における内気温Trの変化量である。続いて、算出した内気温Trの変化率における絶対値が基準変化率αの絶対値よりも大きいか否かが判定される。即ち、このステップS8では、パワーウィンドウの開放に伴い車室内に流入した外気による熱負荷の変化が車両用空調装置のオート制御時の最大冷房能力を超えるか否かが判定される。空調制御装置30のうちステップS8に対応する部分が、車室内における熱負荷の変化がオート制御による空調能力を超えるか否かを判定する熱負荷判定部の一例であっても良い。
 内気温Trの変化率における絶対値が所定の基準変化率αの絶対値よりも大きいと判定された場合、ステップS9において省動力制御が行われる。一方、内気温Trの変化率における絶対値が所定の基準変化率αの絶対値以下である場合には、ステップS2に戻り、オート制御が継続される。空調制御装置30のうちステップS9に対応する部分が、省動力制御を行う省電力制御部であっても良い。
 例えば、パワーウィンドウが開いてはいるが、その開き具合が小さい場合には、ステップS8の判定により、ステップS2に戻る。この場合、ステップS2~ステップS6において、内気温Tr等の変化に応じて空調制御機器の制御状態が変更され、車室内を適切に空調することができる。
 ステップS9の省動力制御では、先ず、パワーウィンドウの開信号を受信した際のステップS2で読み込んだ検出結果と、予め空調制御装置30に記憶された省動力制御マップを参照して、省動力制御時における各種空調制御機器の作動状態が特定される。
 この省動力制御マップは、外気温Tamと内気温Trの差と、ステップS8で用いられる内気温Trの変化率とに対して、各種空調制御機器の制御状態を対応付けて構成されている。省動力制御マップにおける各種空調制御機器の制御状態は、外気温Tamと内気温Trの差と、内気温Trの変化率によって特定される環境において、車室内における乗員の温感が過度に悪化しないように設定されている。
 例えば、図3に示すように、第1実施形態におけるステップS9では、圧縮機11の吐出容量に係る制御電流、室内送風機8のブロワモータ電圧、エアミックスドア17の目標開度等は、外気温Tamと内気温Trの差と、内気温Trの変化率と、省動力制御マップとを参照して特定された所定のパラメータX、パラメータY、パラメータZ等に決定される。
 そして、省動力制御では、省動力制御マップを参照して特定された各種空調制御機器の制御状態を以後の内気温Trの変化に関わらず維持するように、制御信号等が各種空調制御機器に出力される。各種空調制御機器に制御信号等を出力した後、ステップS7に処理を戻す。
 従って、ステップS9の省動力制御は、パワーウィンドウが開いている状態で、且つ、内気温Trの変化率における絶対値が基準変化率αの絶対値よりも大きい場合に継続して実行される。この場合、車室内の内気温Trが変動したとしても、各種空調制御機器の作動状態は変更されることなく、省動力制御マップ等により特定された状態を維持する。
 続いて、第1実施形態における省動力制御の効果について説明する。上述したように、ステップS9の省動力制御は、ステップS7、ステップS8の処理を経て実行される。
 ここで、パワーウィンドウが開いており、且つ、内気温Trの変化率における絶対値が基準変化率αの絶対値よりも大きい状態とは、パワーウィンドウの開放に伴い車室内に外気が流入しており、外気による車室内における熱負荷の変化が非常に激しいことを意味する。
 このような環境下において、仮に、車室内の空調をオート制御で行っていた場合、車室内への外気の流入に伴う内気温Trの激しい変動を抑制する為に、各種空調制御機器の作動状態は、より消費動力が大きな状態へと変化する。
 例えば、夏季に車室内を冷房している状況で、このような環境となった場合、空調制御装置30は、オート制御に従って、車室内をより冷却する為に、室内空調ユニット1や冷凍サイクル装置10の消費動力を増大させる。具体的には、冷凍サイクル装置10における圧縮機11の冷媒吐出能力を増大させたり、室内空調ユニット1における室内送風機8の送風量を増大させたりする。
 しかしながら、このように消費動力を大きくした場合であっても、車室内における乗員の温熱感が外気によって悪化するのであれば、増大させた消費動力は快適な空調を実現する上で無駄となる。
 この点、第1実施形態に係る車両用空調装置は、このような環境下であっても、ステップS9の省動力制御によって、内気温Tr等の変動に伴い各種空調制御機器の作動状態を変更することなく、省動力制御マップ等に基づく所定の制御状態を維持する。
 図3に示すように、省動力制御では、省動力制御マップ等によって特定された圧縮機11の吐出容量や室内送風機8の送風量等を維持し、オート制御時のように圧縮機11の吐出容量や室内送風機8の送風量等を増大させて、消費動力を増大させることはない。従って、第1実施形態に係る車両用空調装置によれば、このような状況下において、オート制御を行っていた場合に無駄となる消費動力の増大を抑制することができる。
 又、ステップS9の省動力制御で維持される各種空調制御機器の作動状態は、パワーウィンドウの開信号を受信した際のステップS2で読み込んだ検出結果と、予め空調制御装置30に記憶された省動力制御マップを参照して特定される。そして、省動力制御マップにおける各種空調制御機器の作動状態は、外気温Tamと内気温Trの差と、内気温Trの変化率によって特定される環境において、車室内における乗員の温感が過度に悪化しないように設定されている。
 従って、この省動力制御時においては、各種空調制御機器の作動状態は、パワーウィンドウの開信号を受信した際の環境に基づいて、車室内における乗員の温感が過度に悪化しないように設定され、これらの作動状態が維持される。即ち、第1実施形態に係る車両用空調装置は、省動力制御を実行する場合であっても、或る程度、車室内における乗員の温感の悪化を抑制することができる。
 以上説明したように、第1実施形態に係る車両用空調装置は、パワーウィンドウを有する車両に搭載されており、車室内の空調を行う。この車両用空調装置は、室内空調ユニット1と、冷凍サイクル装置10と、空調制御装置30とを有している。車両用空調装置は、空調制御装置30にオート制御(即ち、ステップS2~ステップS6)を実行させることによって、内気センサ32等の検出結果に応じた車室内の快適な空調を実現することができる。
 そして、車両用空調装置は、パワーウィンドウスイッチ45からの開信号が検出され、且つ、車室内における熱負荷の変化がオート制御による空調能力を超えると判定された場合には、ステップS9で省動力制御を実行する。省動力制御では、省動力制御マップにより特定された作動状態を維持するように、各種空調制御機器が制御される。
 従って、車両用空調装置は、パワーウィンドウが開き、外気が車室内に流入したことによって熱負荷が大きく変動した場合であっても、オート制御時のように室内空調ユニット1の室内送風機8や、冷凍サイクル装置10の圧縮機11における消費動力を増大させることはなく、乗員の温感の改善に寄与しない消費動力の浪費を抑制できる。
 又、この車両用空調装置によれば、内気センサ32によって検出された内気温Trの変化率を用いて、車室内に対する熱負荷の変化の度合いを判定している。車両用空調装置では一般的に内気センサ32が配置されている為、特別な検知部を配置することなく、車室内に対する熱負荷の変化を検知することができ、オート制御時における空調能力と比較することができる。
 そして、ステップS9の省動力制御では、各種空調制御機器の作動状態は、外気センサ31で検出された外気温Tamと内気温Trの差、内気温Trの変化率、省動力制御マップを参照して特定され、その作動状態が維持される。従って、車両用空調装置は、省動力制御を実行する場合であっても、或る程度、車室内における乗員の温感の悪化を抑制することができる。
 又、車両用空調装置は、省動力制御時において、ステップS7でパワーウィンドウの閉信号を検出すると、オート制御(即ち、ステップS2~ステップS6)を実行する。パワーウィンドウが閉じた場合、パワーウィンドウを介した車室内への外気の流入がなくなる為、車室内における熱負荷の変化は穏やかになると想定される。このような場合に、オート制御を実行させることで、車両用空調装置は、より迅速に、車室内の快適な空調を実現することができる。
 (第2実施形態)
 続いて、上述した第1実施形態とは異なる第2実施形態について、図面を参照しつつ説明する。第2実施形態に係る車両用空調装置は、第1実施形態と同様に、室内空調ユニット1と、冷凍サイクル装置10と、空調制御装置30とを有して構成されている。第2実施形態においても、室内空調ユニット1、冷凍サイクル装置10の各構成は、第1実施形態と基本的に同様である。
 第2実施形態に係る車両用空調装置は、空調制御用のセンサ群の一つとして赤外線センサ36を有している点、省動力制御並行する際の判定処理及び省動力制御の内容の点で、第1実施形態と相違している。
 従って、以下の説明において、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 図4に示すように、赤外線センサ36は、いわゆるマトリクスIRセンサであり、車室内の天井パネル中央部において、車室内を検温範囲とするように配置されている。赤外線センサ36の検知部は、マトリクス状に配列された複数の熱電対部を一面に有するセンサチップと、センサチップの一面を覆うように配設された赤外線吸収膜とを有して構成されている。
 赤外線吸収膜は、赤外線センサのケースに配置されたレンズを介して、車室内における検出対象物(即ち、乗員)から入射される赤外線を吸収して熱に変換する役割を果たす。そして、複数の熱電対部は、それぞれ、赤外線吸収膜から発生する熱を電圧に変換する温度検出素子である。従って、赤外線センサ36は、車室内で放射された赤外線を検出することによって、車室内における乗員の体表面温度を、乗員表面温度Tirとして測定することができる。
 そして、空調制御装置30の入力側には、空調用センサ群の一つとして、赤外線センサ36が接続されている。従って、空調制御装置30は、赤外線センサ36から出力されたセンサ検出信号に基づいて、車室内における乗員表面温度Tirを検出できる。
 次に、第2実施形態に係る車両用空調装置において、空調制御装置30で実行される制御処理の内容について、図5のフローチャートを参照しつつ説明する。第2実施形態における制御プログラムは、第1実施形態と同様に、車両エンジンEのイグニッションスイッチが投入された状態で、エアコンスイッチ40及びオートスイッチ42が投入されると実行され、冷房モードにおけるオート制御を実現する。
 図5に示すように、第2実施形態においては、第1実施形態と同様のステップS1~ステップS6までの処理が、空調制御装置30によって実行される。この時、ステップS2では、空調制御用のセンサ群の一つである赤外線センサ36からの検出信号も読み込まれる。
 そして、第2実施形態における冷房時のオート制御は、このステップS2~ステップS6によって実現される。従って、第2実施形態に係る車両用空調装置によれば、冷房時におけるオート制御(即ち、ステップS2~ステップS6)において、内気温Tr等の変化に応じて空調制御機器の制御状態が変更され、車室内を適切に空調することができる。
 第2実施形態においても、制御周期τが経過してステップS7に移行すると、パワーウィンドウスイッチ45から車両制御装置44を介して入力されるパワーウィンドウの開信号及び閉信号に基づいて、パワーウィンドウが開いているか否かが判定される。パワーウィンドウが開いていると判定された場合、ステップS10に移行する。一方、パワーウィンドウが閉じていると判定された場合、ステップS2に戻る。
 ステップS2に戻ることで、第2実施形態に係る車両用空調装置は、第1実施形態と同様に、車室内の空調を内気温Tr等に応じてオート制御する。即ち、第2実施形態においても、この場合における各種空調制御機器の制御状態は、内気温Tr等に応じて変更される。
 そして、ステップS10においては、乗員表面温度Tirの変化率における絶対値が所定の基準変化率βの絶対値よりも大きいか否かが判定される。この場合における基準変化率βは、第2実施形態に係る車両用空調装置のオート制御時における最大空調能力に応じて定められる。即ち、第2実施形態に係る基準変化率βは、車両用空調装置のオート制御時における最大冷房能力に対応している。
 ステップS10では、先ず、図5のステップS2で読み込んだ赤外線センサ36の検出信号に基づいて、乗員表面温度Tirの変化率が算出される。乗員表面温度Tirの変化率は、所定期間(例えば、制御周期τ)における乗員表面温度Tirの変化量である。続いて、算出した乗員表面温度Tirの変化率における絶対値が基準変化率βの絶対値よりも大きいか否かが判定される。
 即ち、このステップS10では、パワーウィンドウの開放に伴い車室内に流入した外気による熱負荷の変化が車両用空調装置のオート制御時の最大冷房能力を超えるか否かが、乗員の温感の変化をもって判定される。空調制御装置30のうちステップS10に対応する部分が、車室内における熱負荷の変化がオート制御による空調能力を超えるか否かを判定する熱負荷判定部の一例であっても良い。
 乗員表面温度Tirの変化率における絶対値が所定の基準変化率βの絶対値よりも大きいと判定された場合、ステップS11において省動力制御が行われる。一方、乗員表面温度Tirの変化率における絶対値が所定の基準変化率βの絶対値以下である場合には、ステップS2に戻り、オート制御が継続される。この場合、外気の流入等による影響が少ない為、車室内は、内気温Tr等の変化に応じて適切に空調される。空調制御装置30のうちステップS11に対応する部分が、省動力制御を行う省電力制御部であっても良い。
 第2実施形態のステップS11における省動力制御では、先ず、パワーウィンドウの開信号を受信した時点における各種空調制御機器の作動状態が読み出され、省動力制御における各種空調制御機器の作動状態として特定される。そして、特定された各種空調制御機器の制御状態を以後の内気温Trの変化に関わらず維持するように、制御信号等が各種空調制御機器に出力される。第2実施形態においても、各種空調制御機器に制御信号等を出力した後、ステップS7に処理を戻す。
 即ち、ステップS11の省動力制御は、パワーウィンドウが開いている状態で、且つ、乗員表面温度Tirの変化率における絶対値が基準変化率βの絶対値よりも大きい場合に継続して実行される。第2実施形態においても、この状況下であれば、車室内の内気温Trが変動したとしても、各種空調制御機器の作動状態は変更されることなく、御アワーウィンドウが開いた際における各種空量制御機器の作動状態が維持される。
 続いて、第2実施形態における省動力制御の効果について説明する。第2実施形態に係る省動力制御は、第1実施形態と同様に、パワーウィンドウの開放に伴い車室内に外気が流入しており、外気による車室内における熱負荷の変化が非常に激しい状態において実行される。
 第2実施形態に係る車両用空調装置は、このような環境下であっても、ステップS11の省動力制御によって、内気温Tr等の変動に伴い各種空調制御機器の作動状態を変更することなく、パワーウィンドウが開いた時点の制御状態を維持する。
 即ち、図6に示すように、パワーウィンドウが開いた時点の圧縮機11の吐出容量や室内送風機8の送風量等を維持し、オート制御時のように圧縮機11の吐出容量や室内送風機8の送風量等を増大させて、消費動力を増大させることはない。第2実施形態に係る車両用空調装置においても、このような状況下において、オート制御を行っていた場合に無駄となる消費動力の増大を抑制することができる。
 又、ステップS11の省動力制御で維持される各種空調制御機器の作動状態は、パワーウィンドウの開信号を受信した際における各種空調制御機器の作動状態である。即ち、各種空調制御機器の作動状態に関する履歴を読み出す制御によって、消費動力の増大を抑制することができる。
 以上説明したように、第2実施形態に係る車両用空調装置によれば、第1実施形態と同様に、空調制御装置30にオート制御(即ち、ステップS2~ステップS6)を実行させることによって、内気センサ32等の検出結果に応じた車室内の快適な空調を実現することができる。
 そして、第2実施形態に係る車両用空調装置は、パワーウィンドウスイッチ45からの開信号が検出され、且つ、車室内における熱負荷の変化がオート制御による空調能力を超えると判定された場合には、ステップS11で省動力制御を実行する。
 従って、第2実施形態に係る車両用空調装置も、パワーウィンドウが開き、外気が車室内に流入したことによって熱負荷が大きく変動した場合であっても、オート制御時のように室内空調ユニット1の室内送風機8や、冷凍サイクル装置10の圧縮機11における消費動力を増大させることはなく、乗員の温感の改善に寄与しない消費動力の浪費を抑制できる。
 又、第2実施形態においては、赤外線センサ36によって検出された乗員表面温度Tirの変化率を用いて、車室内に対する熱負荷の変化の度合いを判定している。車室内の空調に関して快適性を感じるのは車室内の乗員である為、乗員表面温度Tirを用いることで、外気の流入による熱負荷の変化を適切に判定することができる。
 そして、ステップS11の省動力制御における各種空調制御機器の作動状態は、パワーウィンドウが開いた時点における各種空調制御機器の作動状態を維持している。従って、第2実施形態においては、各種空調制御機器の作動状態に関する履歴を読み出す制御によって、消費動力の増大を抑制することができる。
 又、第2実施形態においても、省動力制御時において、ステップS7でパワーウィンドウの閉信号を検出すると、車両用空調装置は、オート制御(即ち、ステップS2~ステップS6)を実行する。即ち、この車両用空調装置は、車室内における熱負荷の変化が穏やかになる場合にオート制御を実行させることで、より迅速に、車室内の快適な空調を実現することができる。
 以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良い。又、上述した実施形態を、以下のように種々変形することも可能である。
 上述した実施形態においては、冷房時におけるオート制御と省動力制御の切り替えについて説明していたが、暖房時におけるオート制御と省動力制御の切り替えにも適用することができる。本開示を暖房時に適用すれば、例えば、冬季における車室内暖房時にパワーウィンドウを開けた場合に関し、車両用空調装置の消費動力を抑制することができる。又、上述した実施形態における冷凍サイクル装置10に四方弁等を追加して、冷暖房可能に構成してもよい。第1実施形態におけるステップS8、第2実施形態におけるS10において、変化率の絶対値をもって判定している為、冷房時と暖房時の何れに対しても適切な判定を行うことができる。
 上述した実施形態では、パワーウィンドウの開閉に連動した車室内の熱負荷の変化に応じて、冷房時におけるオート制御と、省動力制御を切り替えていたが、この態様に限定されるものではない。本開示における開口部とは、車室内外を連通可能で、且つ、開閉可能であればよい。従って、車室の天井に配置されたサンルーフの開閉や、車室に対するドアの開閉を、開口部の開閉としてもよい。
 又、上述した実施形態においては、車室内の熱負荷の変化を、内気センサ32によって検出される内気温Trや赤外線センサ36によって検出される乗員表面温度Tirによって判定していたが、この態様に限定されるものではない。空調用のセンサ群による例えば、蒸発器温度センサ34によって検出される蒸発器吹出空気温度Teなどの他の検出結果によって判定しても良いし、例えば、外気温Tamと内気温Trのように、複数の検出結果を用いて判定してもよい。
 そして、本開示における省動力制御として、可変容量型圧縮機である圧縮機11の冷媒吐出能力を変更する際に吐出容量を変更していたが、この態様に限定されるものではない。圧縮機11の回転数を変更しても良いし、固定容量型圧縮機であれば制御温度を変更しても良い。
 又、上述した実施形態における省動力制御では、空調制御機器の作動状態を、所定の状態で維持しておく構成であったが、車両用空調装置における消費動力を低減することができれば、種々の態様を採用することができる。例えば、省動力制御においては、状況に応じて目標吹出温度TAOを補正し、補正した目標吹出温度TAOを用いたオート制御を行っても良い。この場合の目標吹出温度TAOは、冷房時には通常時の目標吹出温度TAOよりも高く、暖房時には通常時の目標吹出温度TAOよりも低く補正される。
 そして、本開示を、マニュアルエアコンに適用することも可能である。この場合、パワーウィンドウが開いたこと及び内気循環に切り替わっていることを検知すると、蒸発器温度センサ34による蒸発器吹出空気温度Teの変化率によって、車室内における熱負荷に関する判定が行われる。そして、省動力制御としては、蒸発器吹出空気温度Teの閾値を上げる制御を行うことで、車両用空調装置の消費動力を低減することができる。
 上述した各実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではない。本開示における冷媒として、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
 また、上述した各実施形態における冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  車室内外を連通すると共に開閉可能に設けられた開口部を有する車両に適用される車両用空調装置であって、
     前記車室内の内気温(Tr)を検出する内気温検出部(32)と、
     前記車室内における空気の温度を調整する温度調整部(10)と、前記車室内に空気を送風する送風部(1)とを備える、前記車室内の空調を行う為の室内空調部と、
     空調制御部(30)と、を有し、
     前記空調制御部(30)は、
      前記内気温検出部によって検出された前記内気温に応じて、前記室内空調部の作動を自動的に変更するオート制御を行うオート制御部(S2、S3、S4、S5、S6)と、
      前記開口部が開いていることを示す開信号を検出する開信号検出部(S7)と、
      前記車室内における熱負荷の変化が前記オート制御による空調能力を超えるか否かを判定する熱負荷判定部(S8、S10)と、
      前記開信号が検出され、且つ、前記車室内に対する熱負荷の変化が前記オート制御による空調能力を超えると判定された場合に、前記内気温(Tr)に関わらず、前記室内空調部における前記温度調整部と前記送風部の少なくとも一方による消費動力の増大を抑制する省動力制御を行う省電力制御部(S9、S11)と、を有する車両用空調装置。
  2.  前記省電力制御部(S9、S11)は、前記省動力制御の実行に際し、前記室内空調部における前記温度調整部(10)の消費動力を、前記内気温(Tr)に関わらず維持する請求項1に記載の車両用空調装置。
  3.  前記省電力制御部(S9、S11)は、前記省動力制御の実行に際し、前記室内空調部における前記送風部(1)の送風量を、前記内気温(Tr)に関わらず維持する請求項1又は2に記載の車両用空調装置。
  4.  前記熱負荷判定部(S8)は、
     前記内気温検出部(32)によって検出された前記内気温(Tr)の単位時間当たりの変化率が所定の基準変化率(α)よりも大きい場合に、前記車室内に対する熱負荷の変化が前記オート制御による空調能力を超えると判定する請求項1ないし3の何れか1つに記載の車両用空調装置。
  5.  前記車室内における乗員の表面温度(Tir)を検出する赤外線センサ(36)を有し、
     前記熱負荷判定部(S10)は、
     前記赤外線センサ(36)によって検出された前記乗員の表面温度に関する変化量が所定の基準変化量(β)よりも大きい場合に、前記車室内に対する熱負荷の変化が前記オート制御による空調能力を超えると判定する請求項1ないし3の何れか1つに記載の車両用空調装置。
  6.  車両の外気温を検出する外気温検出部(31)を有し、
     前記省電力制御部(S9)は、
     前記内気温検出部(32)によって検出された前記内気温(Tr)及び前記外気温検出部(31)によって検出された前記外気温(Tam)との差と、前記内気温の単位時間当たりの変化率に基づいて、前記室内空調部の作動状態を特定し、
     前記省動力制御として、前記室内空調部における前記温度調整部(10)と前記送風部(1)の少なくとも一方の作動状態を、前記内気温(Tr)に関わらず前記特定された作動状態で維持する請求項1ないし5の何れかに1つに記載の車両用空調装置。
  7.  前記省電力制御部(S11)は、
     前記開信号検出部(S7)によって前記開信号を検出した時点における前記室内空調部の作動状態を特定し、
     前記省動力制御として、前記室内空調部における前記温度調整部(10)と前記送風部(1)の少なくとも一方の作動状態を、前記内気温(Tr)に関わらず前記特定された作動状態で維持する請求項1ないし5の何れか1つに記載の車両用空調装置。
  8.  前記開口部が閉じていることを示す閉信号を検出する閉信号検出部を有し、
     前記オート制御部(S2、S3、S4、S5、S6)は、
     前記省動力制御時において、前記閉信号検出部によって前記閉信号を検出した場合に、前記室内空調部の前記オート制御を行う請求項1ないし7の何れか1つに記載の車両用空調装置。
PCT/JP2017/028664 2016-09-07 2017-08-08 車両用空調装置 WO2018047562A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780054442.6A CN109689404B (zh) 2016-09-07 2017-08-08 车辆用空调装置
DE112017004492.8T DE112017004492T5 (de) 2016-09-07 2017-08-08 Fahrzeugklimatisierungseinrichtung
US16/278,758 US11529847B2 (en) 2016-09-07 2019-02-19 Vehicular air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016174240A JP6583195B2 (ja) 2016-09-07 2016-09-07 車両用空調装置
JP2016-174240 2016-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/278,758 Continuation US11529847B2 (en) 2016-09-07 2019-02-19 Vehicular air-conditioning device

Publications (1)

Publication Number Publication Date
WO2018047562A1 true WO2018047562A1 (ja) 2018-03-15

Family

ID=61562624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028664 WO2018047562A1 (ja) 2016-09-07 2017-08-08 車両用空調装置

Country Status (5)

Country Link
US (1) US11529847B2 (ja)
JP (1) JP6583195B2 (ja)
CN (1) CN109689404B (ja)
DE (1) DE112017004492T5 (ja)
WO (1) WO2018047562A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640112B1 (en) * 2017-06-12 2021-11-17 Mitsubishi Electric Corporation Vehicular air-conditioning apparatus and air-conditioning method of vehicular air-conditioning apparatus
KR20200074321A (ko) * 2018-12-14 2020-06-25 현대자동차주식회사 차량의 공조시스템 및 그 제어방법
KR20210077047A (ko) * 2019-12-16 2021-06-25 현대자동차주식회사 자율주행차량의 공조기를 제어하는 탈부착 가능한 원격제어기 및 원격제어방법
JP6974779B1 (ja) * 2020-09-30 2021-12-01 ダイキン工業株式会社 空気調和装置
CN113085475B (zh) * 2021-03-25 2022-10-28 青岛海尔空调器有限总公司 车载顶置式空调器及其控制方法、车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538926A (ja) * 1991-08-05 1993-02-19 Nippondenso Co Ltd 車両用空調装置
JP2000142080A (ja) * 1998-11-05 2000-05-23 Sanden Corp 建設車両用空調装置
JP2007093138A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 空調管理システム
JP2010018227A (ja) * 2008-07-14 2010-01-28 Sanden Corp 車両用空調装置
JP2013095347A (ja) * 2011-11-04 2013-05-20 Suzuki Motor Corp 車両の空調制御装置
US20130332013A1 (en) * 2012-06-07 2013-12-12 Ford Global Technologies, Llc Utilization of vehicle portal states to assess interior comfort and adjust vehicle operation to provide additional fuel economy

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484619A (en) * 1979-06-18 1984-11-27 Eaton Corporation Vehicle temperature control system
JPS57134319A (en) * 1981-02-12 1982-08-19 Nippon Denso Co Ltd Cooling power controller for car air conditioner
JPH01119412A (ja) * 1987-10-31 1989-05-11 Nec Corp 自動車用空調制御装置
JP2928517B2 (ja) * 1988-03-31 1999-08-03 日産自動車株式会社 車両用空調装置
US6430951B1 (en) * 1991-04-26 2002-08-13 Denso Corporation Automotive airconditioner having condenser and evaporator provided within air duct
JP3334275B2 (ja) * 1993-09-21 2002-10-15 日産自動車株式会社 車両用空調装置
JPH07212902A (ja) * 1993-12-02 1995-08-11 Nippondenso Co Ltd 電気自動車の空調装置制御システム
JP3433843B2 (ja) * 1994-07-06 2003-08-04 サンデン株式会社 車両用空気調和装置
JP3855571B2 (ja) * 1999-12-24 2006-12-13 株式会社豊田自動織機 内燃機関の出力制御方法
WO2002090844A1 (en) * 2001-05-09 2002-11-14 Maersk Container Industri A/S Cooling unit and container with this unit
JP3948355B2 (ja) * 2001-12-06 2007-07-25 株式会社デンソー 車両用空調装置
JP3918546B2 (ja) * 2001-12-14 2007-05-23 株式会社デンソー 車両用空調装置
JP2003326936A (ja) * 2002-05-09 2003-11-19 Denso Corp 車両用防曇装置
JP2004155262A (ja) * 2002-11-05 2004-06-03 Denso Corp 車両用空調装置
JP2004345480A (ja) * 2003-05-21 2004-12-09 Honda Motor Co Ltd 車両用空調装置
US7556090B2 (en) * 2004-03-03 2009-07-07 Denso Corporation Vehicular air-conditioner providing a comfortable condition for a passenger
CN1740540A (zh) * 2005-01-21 2006-03-01 项永忠 汽车开空调增力节油系统
JP2007131232A (ja) * 2005-11-11 2007-05-31 Valeo Thermal Systems Japan Corp 車両用空調制御装置
BRPI0601967B1 (pt) * 2006-06-01 2021-03-23 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. Sistema e método de controle de operação de um sistema de refrigeração
JP2008068794A (ja) * 2006-09-15 2008-03-27 Denso Corp 車両用空調装置
JP2010030452A (ja) * 2008-07-29 2010-02-12 Denso Corp 車両用空調装置
US8859938B2 (en) * 2009-01-26 2014-10-14 Nissan North America, Inc. Vehicle cabin heating system
JP2011068156A (ja) 2009-09-22 2011-04-07 Denso Corp 車両用空調装置
JP2011218975A (ja) * 2010-04-09 2011-11-04 Honda Motor Co Ltd 車両用空調装置
JP5250011B2 (ja) * 2010-10-26 2013-07-31 三菱電機株式会社 空気調和機
JP5477329B2 (ja) * 2011-04-19 2014-04-23 株式会社デンソー 車両用空調装置
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
JP5445514B2 (ja) * 2011-05-30 2014-03-19 株式会社デンソー 車両用空調装置
EP2722206A4 (en) * 2011-06-15 2016-04-20 Toyota Motor Co Ltd DEVICE FOR CONTROLLING VEHICLE HEATING AND METHOD AND PROGRAM THEREFOR
US9840129B2 (en) * 2011-09-29 2017-12-12 Subaru Corporation Vehicle, cooling apparatus, and cooling method
JP5492857B2 (ja) * 2011-10-25 2014-05-14 カルソニックカンセイ株式会社 車両用空調制御装置
JP5949522B2 (ja) * 2012-03-07 2016-07-06 株式会社デンソー 温調装置
CN103423836B (zh) * 2012-04-24 2018-03-13 杭州三花研究院有限公司 车辆空调系统过热度控制方法及车辆空调系统
DE102012208970A1 (de) * 2012-05-29 2013-12-05 Manitowoc Crane Group France Sas Automatisierte Führerkabinen-Klimaregelung
JP2014113962A (ja) 2012-12-11 2014-06-26 Denso Corp 機器用制御装置
WO2014112320A1 (ja) * 2013-01-17 2014-07-24 三菱電機株式会社 車両用空調制御装置
CN203349470U (zh) * 2013-05-31 2013-12-18 上海汽车集团股份有限公司 汽车和汽车空调系统
JP5962601B2 (ja) * 2013-07-02 2016-08-03 株式会社デンソー 車両用空調装置
JP2015089710A (ja) * 2013-11-06 2015-05-11 株式会社デンソー 車両用空調装置
JP6319047B2 (ja) 2013-11-19 2018-05-09 株式会社デンソー 車両用空調システム及びその起動方法
DE102015214594A1 (de) * 2014-08-20 2016-02-25 Ford Global Technologies, Llc Regelung einer Klimaanlage für Kraftfahrzeuge
KR101575253B1 (ko) * 2014-08-27 2015-12-07 현대자동차 주식회사 공조 장치 제어용 메인 반도체 장치 및 이를 포함하는 차량용 공조 장치
JP2016060429A (ja) 2014-09-19 2016-04-25 矢崎総業株式会社 車両用救援装置
CN204354764U (zh) * 2014-12-23 2015-05-27 宁波精华电子科技股份有限公司 汽车空调风门执行器
JP2016174240A (ja) 2015-03-16 2016-09-29 株式会社東芝 半導体スイッチ
CN105667250B (zh) * 2016-02-16 2018-04-20 创驱(上海)新能源科技有限公司 一种电动汽车用自动空调控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538926A (ja) * 1991-08-05 1993-02-19 Nippondenso Co Ltd 車両用空調装置
JP2000142080A (ja) * 1998-11-05 2000-05-23 Sanden Corp 建設車両用空調装置
JP2007093138A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 空調管理システム
JP2010018227A (ja) * 2008-07-14 2010-01-28 Sanden Corp 車両用空調装置
JP2013095347A (ja) * 2011-11-04 2013-05-20 Suzuki Motor Corp 車両の空調制御装置
US20130332013A1 (en) * 2012-06-07 2013-12-12 Ford Global Technologies, Llc Utilization of vehicle portal states to assess interior comfort and adjust vehicle operation to provide additional fuel economy

Also Published As

Publication number Publication date
US20190184789A1 (en) 2019-06-20
JP6583195B2 (ja) 2019-10-02
CN109689404A (zh) 2019-04-26
DE112017004492T5 (de) 2019-06-19
US11529847B2 (en) 2022-12-20
JP2018039341A (ja) 2018-03-15
CN109689404B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US7140427B2 (en) Vehicle air conditioner with defrosting operation in exterior heat exchanger
US20110167850A1 (en) Air conditioner for vehicle
WO2018047562A1 (ja) 車両用空調装置
EP2962878B1 (en) Vehicle air conditioner
CN107709067B (zh) 车用空调装置
US8256238B2 (en) Control system for a variable-capacity compressor in air conditioner
US10533786B2 (en) Refrigerating cycle apparatus
JP5533637B2 (ja) 車両用空調装置
US20180201088A1 (en) Air conditioning device for vehicle
JP2004142646A (ja) 車両用空調装置
US9573439B2 (en) Air conditioner for vehicle
US20170174045A1 (en) Air-conditioning device for vehicle
JP2013121740A (ja) 車両用空調装置
JP5625878B2 (ja) 車両用空調装置
JP6020264B2 (ja) 冷凍サイクル装置
JP2010030435A (ja) 車両用空調装置
JP2006224705A (ja) 車両用空調装置
JP5954059B2 (ja) 車両用空調装置
JP4196681B2 (ja) 冷凍サイクル制御装置
JP2014172479A (ja) 車両用空調システム
JP2007001337A (ja) 車両用空調装置および車両用空調制御プログラム
US11498390B2 (en) Vehicular air conditioner
JP5888126B2 (ja) 車両用空調装置
JP6280480B2 (ja) 車両用空調装置
JP5251741B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848506

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17848506

Country of ref document: EP

Kind code of ref document: A1