WO2018045938A1 - 一种粗品环酯纯化方法 - Google Patents

一种粗品环酯纯化方法 Download PDF

Info

Publication number
WO2018045938A1
WO2018045938A1 PCT/CN2017/100464 CN2017100464W WO2018045938A1 WO 2018045938 A1 WO2018045938 A1 WO 2018045938A1 CN 2017100464 W CN2017100464 W CN 2017100464W WO 2018045938 A1 WO2018045938 A1 WO 2018045938A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactide
cyclic ester
crude
purification
crude cyclic
Prior art date
Application number
PCT/CN2017/100464
Other languages
English (en)
French (fr)
Inventor
李弘�
张全兴
盛家业
成娜
黄伟
江伟
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to JP2019533269A priority Critical patent/JP2019529531A/ja
Publication of WO2018045938A1 publication Critical patent/WO2018045938A1/zh
Priority to US16/251,047 priority patent/US10570111B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings

Definitions

  • the invention belongs to the technical field of preparation of cyclic ester monomers for biodegradable polymer synthesis, and in particular relates to a novel process for preparing high-purity cyclic esters by purifying crude cyclic esters.
  • the purification process of crude cyclic esters is one of the key technologies that have not been completely solved in the large-scale and continuous production of commercial biodegradable polymers.
  • the rectification purification process commonly used in large-scale production has problems such as high energy consumption, complicated process and equipment, and large investment.
  • the solvent recrystallization method used in laboratory research has the disadvantages of large solvent dosage, low recovery rate, high energy consumption, and low product cyclic ester yield.
  • the solvent extraction method (or washing method) is also a research hotspot of the crude cyclic ester purification process.
  • the prior art discloses a process for contacting crude lactide with water to remove meso-lactide (meso-lactide) contained therein.
  • the process contacts lactide in molten state with water, removes most of the meso-lactide contained in the crude lactide by hydrolysis reaction, and recrystallizes it by an organic solvent (such as acetone).
  • organic solvent such as acetone
  • High purity lactide High purity lactide.
  • the disadvantage of this process is that the selectivity of the hydrolysis reaction is poor. While the meso-lactide is hydrolyzed, the target product (such as L-/D-lactide) will also undergo different degrees of hydrolysis, resulting in the yield of the target product. low. Further, a small amount of acidic impurities by-product of the hydrolysis reaction still needs to be removed by further recrystallization, resulting in a low overall yield.
  • the prior art also discloses a process for sequentially purifying crude lactide by water and organic alcohol.
  • the process uses a low boiling organic alcohol (such as: methanol, ethanol, isopropanol) as one of the detergents, because of the solubility of lactide in organic solvents, resulting in the yield of purified lactide products Lower (80-81%), lower optical purity (97% ee).
  • a low boiling organic alcohol such as: methanol, ethanol, isopropanol
  • the use of flammable and explosive organic alcohols as detergents increases the safety of the process.
  • organic solvent is used as one of the detergents in the solvent extraction method (or washing method), which reduces the complexity of the process and the safety hazard while reducing the yield of the target cyclic ester product.
  • the crude L-/D-lactide was purified by using a 1-10% aqueous solution of dilute alkali and deionized water, and the obtained L-/D-lactide product was optically pure.
  • a dilute aqueous alkali solution concentration 1-10% is used as a detergent.
  • the disadvantage is that a small amount of lactic acid or oligomeric lactic acid remaining in the crude lactide reacts with a base to form a salt.
  • the washing wastewater thus produced contains low lactate content, high recovery energy consumption, and does not meet direct discharge standards.
  • the invention aims to solve the above problems existing in the purification process of the existing crude cyclic ester, and provides a simple, high-efficiency, green crude cyclic ester purification method.
  • a crude cyclic ester purification method comprising the following steps:
  • the purification of the crude cyclic ester described in the method of the present invention is carried out in a heterogeneous form. Therefore, in order to sufficiently contact the crude cyclic ester with water, the crude cyclic ester is first granulated to have an average particle diameter of 0.05-1.00 mm. Granule
  • the water is used as a detergent to repeatedly wash the crude cyclic ester at a low temperature, and the impurities in the crude cyclic ester are quickly extracted and separated while avoiding the hydrolysis of the cyclic ester to the greatest extent;
  • the obtained granular crude cyclic ester is added to water at 0-4 ° C, and the mass ratio of water to crude cyclic ester is adjusted to be (0.5-2): 1.
  • the solid solution is appropriately stirred to make the crude cyclic ester sufficiently contact with water, and then Rapid solid-liquid separation, repeat the above operation 1-4 times;
  • the obtained cyclic ester product still contains a small amount of water after the rapid solid-liquid separation in the step (2), in order to avoid the possible hydrolysis reaction in the initial stage of the drying process, first at 0-4 ° C and absolute pressure ⁇ Dry at 10 Pa for 4-6 h and remove most of the remaining water. Then, the temperature is raised to 40-60 ° C and the absolute pressure is ⁇ 5 Pa vacuum drying for 1-2 h to completely remove the trace water contained in the cyclic ester product.
  • the water is one of deionized water or distilled water.
  • chloride ions contained in ordinary tap water have racemization effects on cyclic esters having a chiral structure (eg, L-lactide, D-lactide); on the other hand, due to cyclic esters as further
  • the monomer used in the ring opening polymerization should not contain any ions which affect the polymerization.
  • the crude cyclic ester in the process of the invention is specifically one of L-lactide, D-lactide or glycolide.
  • the prepared high-purity L-lactide content is ⁇ 99.8%, the yield is ⁇ 98.2%; the high-purity D-lactide content is ⁇ 99.8%, the yield is ⁇ 99.1%; the high purity B-crossing The ester content is ⁇ 99.9%, and the yield is ⁇ 98.8%.
  • the prepared cyclic ester product does not contain any organic solvent and has high purity
  • the process can realize continuous production, easy to implement in industrialization, and no three wastes.
  • the source of the crude cyclic ester (specifically one of L-lactide, D-lactide or glycolide) includes at least the following four types:
  • Source 1 Dehydration oligo hydroxycarboxylic acid (such as: L-lactide, D-lactic acid, glycolic acid) to oligomeric hydroxycarboxylic acid with a weight average molecular weight M w ⁇ 6000, and then in an organic cerium compound (such as creatinine)
  • An unpurified cyclic ester prepared by depolymerization of a metal (eg, tin, zinc, magnesium, etc.) powder and an organic acid salt, an inorganic acid salt, an oxide, an alkoxide or the like of these metals.
  • a metal eg, tin, zinc, magnesium, etc.
  • Source 2 Dehydration oligopolymerization of hydroxycarboxylic acid (such as: L-lactide, D-lactic acid, glycolic acid, etc.), followed by organic bismuth compounds (such as creatinine, etc.), metals (such as tin, zinc, magnesium, etc.)
  • hydroxycarboxylic acid such as: L-lactide, D-lactic acid, glycolic acid, etc.
  • organic bismuth compounds such as creatinine, etc.
  • metals such as tin, zinc, magnesium, etc.
  • An unpurified cyclic ester which is produced as a by-product of the direct condensation polymerization of a powder and an organic acid salt, an inorganic acid salt, an oxide, an alkoxide or the like of these metals into a polyhydroxycarboxylic acid.
  • Source 3 Polymer grade high purity cyclic esters in organic bismuth compounds (such as creatinine, etc.), metals (such as: tin, zinc, magnesium, etc.) powders and organic acid salts, inorganic acid salts, oxides, alkoxides of these metals A by-product of the preparation of a polyhydroxy acid by ring-opening polymerization as a by-product and a recovered, unpurified cyclic ester.
  • organic bismuth compounds such as creatinine, etc.
  • metals such as: tin, zinc, magnesium, etc.
  • Source 4 Polymerized high purity cyclic esters were prepared immediately after ring-opening polymerization to prepare polyhydroxycarboxylic acids, which were stored for more than 90 days.
  • composition of the crude cyclic ester obtained from the above four sources differs, but is generally in the range shown in Table 1, Table 2, and Table 3 below.
  • the present invention provides a simple, high-efficiency, green crude cyclic ester purification method.
  • the novel process of the present invention will be described by way of specific examples, but is not intended to limit the scope of the invention.
  • (1) granulation step using 100 kg of the above crude L-lactide as a starting material, first granulating it to prepare granules having an average particle diameter of 0.10 mm;
  • washing and separating step adding the granular crude L-lactide obtained in the step (1) to deionized water at 0 ° C, adjusting the mass ratio of deionized water to the crude L-lactide to be 0.5:1, suitably Stir the solid-liquid system, then perform rapid solid-liquid separation, and repeat the above operation twice;
  • the high-purity L-lactide was used as a raw material, and the poly L-lactic acid obtained by ring-opening polymerization had a weight average molecular weight M w of 5.5 ⁇ 10 5 , a molecular weight distribution of PDI of 1.5, and an L-lactide conversion of 100%.
  • the source of the crude L-lactide in this comparative example was identical to that of Example 1, except that the purification method was different.
  • the composition analysis results of the crude L-lactide are shown in Table 5.
  • the yield of L-lactide obtained by the above process was 85.0%, and the purity and composition analysis are shown in Table 5.
  • the high-purity L-lactide was used as a raw material, and the poly L-lactic acid obtained by ring-opening polymerization had a weight average molecular weight M w of 1.2 ⁇ 10 5 , a molecular weight distribution of PDI 2.0, and an L-lactide conversion of 98.0%.
  • (1) granulation step using 50 kg of the above crude L-lactide as a starting material, first granulating it to prepare granules having an average particle diameter of 1.00 mm;
  • washing and separating step adding the granular crude L-lactide obtained in the step (1) to the distillation at 2 ° C In water, adjust the mass ratio of distilled water to crude L-lactide to 1:1, suitably stir the solid-liquid system, then perform rapid solid-liquid separation, and repeat the above operation once;
  • the L-lactide yield obtained by the above process was 99.6%, and the purity and composition analysis are shown in Table 6.
  • the high-purity L-lactide was used as a raw material, and the poly L-lactic acid obtained by ring-opening polymerization had a weight average molecular weight M w of 4.5 ⁇ 10 5 , a molecular weight distribution of PDI of 1.7, and an L-lactide conversion of 99.8%.
  • the crude L-lactide in the present embodiment is as described in the above source 3, that is, the high-purity L-lactide prepared in Example 1 is used as a raw material, and the poly-L-lactic acid is prepared by a ring-opening polymerization process using SnOct 2 as a catalyst.
  • the by-product, recovered crude L-lactide, the composition analysis results are shown in Table 7.
  • (1) granulation step using 20 kg of the above crude L-lactide as a starting material, first granulating it to prepare granules having an average particle diameter of 0.05 mm;
  • washing and separating step adding the granular crude L-lactide obtained in the step (1) to deionized water at 2 ° C, adjusting the mass ratio of deionized water to the crude L-lactide to 1:1, and stirring appropriately a solid-liquid system, followed by rapid solid-liquid separation, repeating the above operation once;
  • the high-purity L-lactide was used as a raw material, and the poly L-lactic acid obtained by ring-opening polymerization had a weight average molecular weight M w of 4.7 ⁇ 10 5 , a molecular weight distribution of PDI 1.6, and an L-lactide conversion of 98.0%.
  • the crude L-lactide in this example is as described in Source 4, that is, the crude L-lactide obtained after storage of the high-purity L-lactide prepared in Example 1 in a vacuum desiccator for 90 days, component
  • the results of the analysis are shown in Table 8.
  • (1) granulation step using 100 kg of the above crude L-lactide as a starting material, first granulating it to prepare granules having an average particle diameter of 0.50 mm;
  • washing and separating step adding the granular crude L-lactide obtained in the step (1) to distilled water at 4 ° C, adjusting the mass ratio of distilled water to the crude L-lactide to 2:1, and appropriately stirring the solid-liquid system. , then perform rapid solid-liquid separation, repeat the above operation 4 times;
  • the high-purity L-lactide was used as a raw material, and the poly L-lactic acid obtained by ring-opening polymerization had a weight average molecular weight M w of 5.3 ⁇ 10 5 , a molecular weight distribution of PDI 1.6, and an L-lactide conversion of 99.5%.
  • (1) granulation step using 100 kg of the above crude D-lactide as a starting material, first granulating it to obtain granules having an average particle diameter of 0.50 mm;
  • washing and separating step adding the granular crude D-lactide obtained in the step (1) to deionized water at 4 ° C to adjust the mass ratio of deionized water to the crude D-lactide to 2:1, appropriate Stir the solid-liquid system, then perform rapid solid-liquid separation, and repeat the above operation 4 times;
  • D-lactide obtained by rapid solid-liquid separation in the step (2) was first dried under vacuum at 4 ° C and an absolute pressure of 8 Pa for 4 h, and then dried under vacuum at 60 ° C and an absolute pressure of 5 Pa for 1 h.
  • the poly D-lactide obtained by the ring-opening polymerization has a weight average molecular weight M w of 5.4 ⁇ 10 5 , a molecular weight distribution PDI of 1.7, and a D-lactide conversion ratio of 99.7%.
  • the crude glycolide is as described in the source 1, that is, after the raw material is 70% aqueous glycolic acid in the reaction vessel, the dehydration oligomerization phase is first carried out to obtain an oligoglycolic acid (weight average molecular weight M w 5.0 ⁇ 10 3 ). Then, an organic rhodium catalyst is added to carry out a catalytic depolymerization reaction. The distilled white or yellowish crude glycolide was collected, and the composition analysis results are shown in Table 10.
  • (1) granulation step using 100 kg of the above crude glycolide as a starting material, first granulating it to prepare granules having an average particle diameter of 0.10 mm;
  • washing and separating step adding the granular crude glycolide obtained in the step (1) to the distilled water at 0 ° C, adjusting the mass ratio of the distilled water to the crude glycolide to be 0.5:1, appropriately stirring the solid-liquid system, and then performing Rapid solid-liquid separation, repeat the above operation 2 times;
  • the polyglycolic acid obtained by the ring-opening polymerization using the above-mentioned high-purity glycolide as a raw material and having an organic ruthenium compound as a catalyst has a weight average molecular weight M w of 0.8 ⁇ 10 5 , a molecular weight distribution of PDI 1.8, and a conversion ratio of glycolide of 100%.

Abstract

一种粗品环酯纯化方法。本发明提供一种快速、高效、绿色的粗品环酯纯化方法,包括造粒、水洗与分离、干燥三道工序,仅采用水作为洗涤剂,所制得的环酯产品纯度高、产率高。本发明的优点为:所制备的高纯度环酯产品不含任何有机溶剂、纯度高;工艺操作简便、高效;工艺可实现连续化生产,易于工业化实施,无三废。

Description

一种粗品环酯纯化方法 技术领域
本发明属于生物可降解聚合物合成用环酯单体制备技术领域,具体为一种粗品环酯纯化制备高纯度环酯的新工艺。
背景技术
粗品环酯的纯化工艺是目前商品生物可降解聚合物大规模、连续化生产中尚未彻底解决的关键技术之一。一方面,大规模生产中通常采用的精馏纯化工艺存在能耗高,工艺及设备复杂,投资大等问题。另一方面,实验室研究中采用的溶剂重结晶法存在溶剂用量大、回收率低,能耗高,产品环酯产率低等缺点。除上述两种目前常用的工艺外,溶剂萃取法(或称洗涤法)也是目前粗品环酯纯化工艺的研究热点。
现有技术公开了一种将粗品丙交酯与水接触去除其中所含内消旋丙交酯(meso-丙交酯)的工艺。该工艺将熔融状态下的丙交酯与水接触,通过水解反应将粗品丙交酯中所含的大部分内消旋丙交酯去除,再通过有机溶剂(如:丙酮)重结晶的方法得到高纯度的丙交酯。该工艺的缺点在于水解反应选择性差,内消旋丙交酯在水解的同时,目标产物(如:L-/D-丙交酯)也会发生不同程度的水解,导致目标产物的产率过低。并且水解反应副产的少量酸性杂质仍需要进一步的重结晶法加以去除,导致总体产率低。
现有技术还公开了一种依次采用水、有机醇多次纯化粗品丙交酯的工艺。该工艺采用了低沸点的有机醇(如:甲醇、乙醇、异丙醇)作为洗涤剂之一,由于丙交酯在有机溶剂中具有一定的溶解度,因此导致提纯后的丙交酯产品产率较低(80-81%)、光学纯度较低(97%e.e.)。除此之外,采用易燃、易爆的有机醇作为洗涤剂增加了工艺的安全性隐患。
也有采用异丙醇和环己烷的复合溶剂对久置环酯进行提纯的工艺。该工艺采用了异丙醇和环己烷的复合溶剂作为洗涤剂,但提纯后的环酯产品产率仍较低(85-92%),并且环酯产品中仍含少量酸(0.12-0.36%)及其他杂质,无法直接用于开环聚合反应。
由上述可知,目前溶剂萃取法(或称洗涤法)中均采用有机溶剂作为洗涤剂之一,这在降低目标环酯产品产率的同时还增加了工艺的复杂性以及安全性隐患。
近来采用1-10%稀碱水溶液和去离子水对粗品L-/D-丙交酯进行提纯,所制得的L-/D-丙交酯产品均可达到光学纯。但该纯化工艺中采用稀碱水溶液(浓度1-10%)作为洗涤剂,美中不足之处在于残存于粗品丙交酯中的少量乳酸或寡聚乳酸会与碱反应生成盐, 这样生成的洗涤废水中含有的乳酸盐含量低,回收能耗高,同时也不符合直接排放标准。
发明内容
本发明旨在解决现有粗品环酯纯化工艺存在的上述问题,提供一种简易、高效、绿色的粗品环酯纯化方法。
一种粗品环酯纯化方法,包括以下工序:
(1)造粒工序:
本发明方法所述的粗品环酯的提纯是以非均相形式进行,因此为使粗品环酯与水充分接触,首先将粗品环酯进行造粒,制成平均粒径为0.05-1.00mm的颗粒;
(2)水洗与分离工序:
本发明所述的方法中,仅采用水作为洗涤剂在低温下对粗品环酯进行反复多次洗涤,在最大程度避免环酯水解的同时快速将粗品环酯中的杂质萃取分离;将工序(1)所得颗粒状粗品环酯加入0-4℃的水中,调节水与粗品环酯质量比例为(0.5-2):1,适当搅拌固液体系,使粗品环酯与水充分接触,然后进行快速固液分离,重复上述操作1-4次;
(3)干燥工序:
本发明所述的方法中,由于经工序(2)快速固液分离后所得环酯产品中仍含有少量水,为避免干燥过程初期可能发生的水解反应,首先在0-4℃及绝对压力≤10Pa真空干燥4-6h,去除其中大部分残留的水。然后升高温度至40-60℃及绝对压力≤5Pa真空干燥1-2h,完全去除环酯产品中含有的痕量水。
本发明所述的方法中,水为去离子水或蒸馏水之一。一方面,研究表明普通自来水中含有的氯离子对具有手性结构的环酯(如:L-丙交酯、D-丙交酯)具有消旋化作用;另一方面,由于环酯作为进一步开环聚合反应所用的单体,应不含有任何影响聚合反应的离子。
本发明所述的方法中粗品环酯具体为L-丙交酯、D-丙交酯或乙交酯之一。
采用本发明提供的方法,所制备的高纯度L-丙交酯含量≥99.8%,产率≥98.2%;高纯度D-丙交酯含量≥99.8%,产率≥99.1%;高纯度乙交酯含量≥99.9%,产率≥98.8%。
本发明的优点和有益效果:
1.所制备的环酯产品不含任何有机溶剂、纯度高;
2.工艺操作简便、高效;
3.工艺可实现连续化生产,易于工业化实施,无三废。
具体实施方式
目前粗品环酯(具体为L-丙交酯、D-丙交酯或乙交酯之一)的来源至少包括以下四种:
来源1:由羟基羧酸(如:L-丙交酯、D-乳酸、乙醇酸)脱水寡聚合成重均分子量Mw≤6000的寡聚羟基羧酸,然后在有机胍化合物(如:肌酐等)、金属(如:锡、锌、镁等)粉末以及这些金属的有机酸盐、无机酸盐、氧化物、烷氧化物等的催化作用下解聚制备的、未经纯化的环酯。
来源2:由羟基羧酸(如:L-丙交酯、D-乳酸、乙醇酸等)脱水寡聚合,然后在有机胍化合物(如:肌酐等)、金属(如:锡、锌、镁等)粉末以及这些金属的有机酸盐、无机酸盐、氧化物、烷氧化物等的催化作用下直接缩聚合成聚羟基羧酸时副产的、未经纯化的环酯。
来源3:聚合级高纯度环酯在有机胍化合物(如:肌酐等)、金属(如:锡、锌、镁等)粉末以及这些金属的有机酸盐、无机酸盐、氧化物、烷氧化物等的催化作用下通过开环聚合制备聚羟基酸时副产及回收的、未经纯化的环酯。
来源4:聚合级高纯度环酯在制得后,未立即用于开环聚合反应制备聚羟基羧酸,贮藏日期超过90天的久贮环酯。
由上述四种来源得到的粗品环酯的组成存在差异,但一般都在如下述表1、表2、表3所示的范围内。
表1粗品L-丙交酯主要组分质量含量
粗品L-丙交酯主要组分 组分质量含量(wt%)
L-丙交酯 ≥90.0
D-丙交酯 ≤1.0
meso-丙交酯 ≤1.0
乳酸单体、二聚体及多聚体 ≤10.0
≤5.0
表2粗品D-丙交酯主要组分质量含量
粗品D-丙交酯主要组分 组分质量含量(wt%)
D-丙交酯 ≥90.0
L-丙交酯 ≤1.0
meso-丙交酯 ≤1.0
乳酸单体、二聚体及多聚体 ≤10.0
≤5.0
表3粗品乙交酯主要组分质量含量
粗品乙交酯主要组分 组分质量含量(wt%)
乙交酯 ≥90.0
乙醇酸单体、二聚体及多聚体 ≤10.0
≤5.0
针对上述粗品环酯中主要存在的杂质,本发明提供了一种简易、高效、绿色的粗品环酯纯化方法。下面将通过具体实施例来说明本发明的新工艺,但并不用来限定本发明的范围。
实施例1:粗品L-丙交酯的纯化
本实施例中粗品L-丙交酯如来源1所述,组分分析结果见表4。
(1)造粒工序:以上述粗品L-丙交酯100kg为起始原料,首先将其造粒,制成平均粒径为0.10mm的颗粒;
(2)水洗与分离工序:将工序(1)所得颗粒状粗品L-丙交酯加入到0℃的去离子水中,调节去离子水与粗品L-丙交酯质量比例为0.5:1,适当搅拌固液体系,然后进行快速固液分离,重复上述操作2次;
(3)干燥工序:将工序(2)经快速固液分离后所得L-丙交酯首先在0℃及绝对压力5Pa真空干燥6h,然后40℃及绝对压力1Pa真空干燥2h。
通过上述工艺制得的L-丙交酯产率99.0%,纯度、组分分析见表4。
以上述高纯度L-丙交酯为原料,经开环聚合制得的聚L-乳酸重均分子量Mw5.5×105、分子量分布PDI 1.5、L-丙交酯转化率100%。
表4实施例1 L-丙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
L-丙交酯 95.3 99.8
D-丙交酯 0.5 未检出
meso-丙交酯 1.5 0.2
乳酸单体、二聚体及多聚体 1.6 未检出
1.1 未检出
对比例1粗品L-丙交酯的纯化
本对比例中粗品L-丙交酯的来源与实施例1完全相同,其区别仅在于纯化方法不同。粗品L-丙交酯的组分分析结果见表5。
以上述粗品L-丙交酯100kg为起始原料,首先用浓度1.0%的氢氧化钠水溶液洗涤,再用去离子水清洗至中性,最后20℃真空干燥24h。
通过上述工艺制得的L-丙交酯产率85.0%,纯度、组分分析见表5。
以上述高纯度L-丙交酯为原料,经开环聚合制得的聚L-乳酸重均分子量Mw1.2×105、分子量分布PDI 2.0、L-丙交酯转化率98.0%。
表5对比例1 L-丙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
L-丙交酯 95.3 99.5
D-丙交酯 0.5 未检出
meso-丙交酯 1.5 0.5
乳酸单体、二聚体及多聚体 1.6 未检出
1.1 未检出
实施例2粗品L-丙交酯的纯化
本实施例中粗品L-丙交酯如来源2所述,组分分析结果见表6。
(1)造粒工序:以上述粗品L-丙交酯50kg为起始原料,首先将其造粒,制成平均粒径为1.00mm的颗粒;
(2)水洗与分离工序:将工序(1)所得颗粒状粗品L-丙交酯加入2℃的蒸馏 水中,调节蒸馏水与粗品L-丙交酯质量比例为1:1,适当搅拌固液体系,然后进行快速固液分离,重复上述操作1次;
(3)干燥工序:将工序(2)经快速固液分离后所得L-丙交酯首先在2℃及绝对压力10Pa真空干燥5h,然后50℃及绝对压力3Pa真空干燥2h。
通过上述工艺制得的L-丙交酯产率99.6%,纯度、组分分析见表6。
以上述高纯度L-丙交酯为原料,经开环聚合制得的聚L-乳酸重均分子量Mw4.5×105、分子量分布PDI 1.7、L-丙交酯转化率99.8%。
表6实施例2 L-丙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
L-丙交酯 98.6 99.9
D-丙交酯 0.1 未检出
meso-丙交酯 0.2 0.1
乳酸单体、二聚体及多聚体 0.9 未检出
0.2 未检出
实施例3粗品L-丙交酯的纯化
本实施例中粗品L-丙交酯如上述来源3所述,即以实施例1制备的高纯度L-丙交酯为原料,以SnOct2为催化剂经开环聚合工艺制备聚L-乳酸时副产、回收的粗品L-丙交酯,组分分析结果见表7。
(1)造粒工序:以上述粗品L-丙交酯20kg为起始原料,首先将其造粒,制成平均粒径为0.05mm的颗粒;
(2)水洗与分离工序:将工序(1)所得颗粒状粗品L-丙交酯加入2℃的去离子水中,调节去离子水与粗品L-丙交酯质量比例为1:1,适当搅拌固液体系,然后进行快速固液分离,重复上述操作1次;
(3)干燥工序:将工序(2)经快速固液分离后所得L-丙交酯首先在2℃及绝对压力10Pa真空干燥5h,然后50℃及绝对压力3Pa真空干燥1h。
通过上述工艺制得的L-丙交酯产率98.5%,纯度、组分分析见表7。
以上述高纯度L-丙交酯为原料,经开环聚合制得的聚L-乳酸重均分子量Mw4.7×105、分子量分布PDI 1.6、L-丙交酯转化率98.0%。
表7实施例3 L-丙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
L-丙交酯 99.5 100.0
D-丙交酯 未检出 未检出
meso-丙交酯 0.2 未检出
乳酸单体、二聚体及多聚体 0.3 未检出
未检出 未检出
实施例4粗品L-丙交酯的纯化
本实施例中粗品L-丙交酯如来源4所述,即采用实施例1制备的高纯度L-丙交酯在真空干燥器中贮藏90天后所得到的粗品L-丙交酯,组分分析结果见表8。
(1)造粒工序:以上述粗品L-丙交酯100kg为起始原料,首先将其造粒,制成平均粒径为0.50mm的颗粒;
(2)水洗与分离工序:将工序(1)所得颗粒状粗品L-丙交酯加入4℃的蒸馏水中,调节蒸馏水与粗品L-丙交酯质量比例为2:1,适当搅拌固液体系,然后进行快速固液分离,重复上述操作4次;
(3)干燥工序:将工序(2)经快速固液分离后所得L-丙交酯首先在4℃及绝对压力8Pa真空干燥4h,然后60℃及绝对压力5Pa真空干燥1h。
通过上述工艺制得的L-丙交酯产率98.2%,纯度、组分分析见表8。
以上述高纯度L-丙交酯为原料,经开环聚合制得的聚L-乳酸重均分子量Mw5.3×105、分子量分布PDI 1.6、L-丙交酯转化率99.5%。
表8实施例4 L-丙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
L-丙交酯 97.1 99.8
D-丙交酯 0.2 未检出
meso-丙交酯 0.3 0.2
乳酸单体、二聚体及多聚体 1.8 未检出
0.6 未检出
实施例5:粗品D-丙交酯的纯化
本实施例中粗品D-丙交酯如来源1所述,组分分析结果见表9。
(1)造粒工序:以上述粗品D-丙交酯100kg为起始原料,首先将其造粒,制成平均粒径为0.50mm的颗粒;
(2)水洗与分离工序:将工序(1)所得颗粒状粗品D-丙交酯加入加入4℃的去离子水中,调节去离子水与粗品D-丙交酯质量比例为2:1,适当搅拌固液体系,然后进行快速固液分离,重复上述操作4次;
(3)干燥工序:将工序(2)经快速固液分离后所得D-丙交酯首先在4℃及绝对压力8Pa真空干燥4h,然后60℃及绝对压力5Pa真空干燥1h。
通过上述工艺制得的D-丙交酯产率99.1%,纯度、组分分析见表9。
以上述高纯度D-丙交酯为原料,经开环聚合制得的聚D-乳酸重均分子量Mw5.4×105、分子量分布PDI 1.7、D-丙交酯转化率99.7%。
表9实施例5 D-丙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
L-丙交酯 0.6 未检出
D-丙交酯 95.6 99.8
meso-丙交酯 1.8 0.2
乳酸单体、二聚体及多聚体 1.4 未检出
0.6 未检出
实施例6粗品乙交酯的纯化
本实施例中粗品乙交酯如来源1所述,即将原料70%乙醇酸水溶液反应釜中后,首先进行脱水寡聚阶段反应得到寡聚乙醇酸(重均分子量Mw 5.0×103)。然后加入有机胍催化剂,进行催化解聚反应。收集蒸出的白色或微黄色的粗品乙交酯,组分分析结果见表 10。
(1)造粒工序:以上述粗品乙交酯100kg为起始原料,首先将其造粒,制成平均粒径为0.10mm的颗粒;
(2)水洗与分离工序:将工序(1)所得颗粒状粗品乙交酯加入加入0℃的蒸馏水中,调节蒸馏水与粗品乙交酯质量比例为0.5:1,适当搅拌固液体系,然后进行快速固液分离,重复上述操作2次;
(3)干燥工序:将工序(2)经快速固液分离后所得乙交酯首先在0℃及绝对压力5Pa真空干燥6h,然后40℃及绝对压力1Pa真空干燥2h。
通过上述工艺制得的乙交酯产率98.8%,纯度、组分分析见表10。
以上述高纯度乙交酯为原料,以有机胍化合物为催化剂经开环聚合制得的聚乙醇酸重均分子量Mw 0.8×105、分子量分布PDI 1.8、乙交酯转化率100%。
表10实施例6乙交酯纯化前后纯度对比
主要组分 纯化前(wt%) 纯化后(wt%)
乙交酯 96.0 100.0
乙醇酸单体、二聚体及多聚体 2.5 未检出
1.5 未检出

Claims (8)

  1. 一种粗品环酯纯化方法,包括以下工序:
    (1)造粒工序:首先将粗品环酯进行造粒,制成平均粒径为0.05-1.00mm的颗粒;
    (2)水洗与分离工序:将工序(1)所得颗粒状粗品环酯加入0-4℃的水中,调节水与粗品环酯质量比例为(0.5-2):1,适当搅拌固液体系,使粗品环酯与水充分接触,然后进行快速固液分离,重复上述操作1-4次;
    (3)干燥工序:经工序(2)快速固液分离后所得环酯产品,首先在0-4℃及绝对压力≤10Pa真空干燥4-6h,然后升高温度至40-60℃及绝对压力≤5Pa真空干燥1-2h。
  2. 根据权利要求1所述的方法,其特征在于工序(2)中的水为去离子水或蒸馏水。
  3. 根据权利要求1或2所述的方法,其特征在于工序(1)中粗品环酯为L-丙交酯。
  4. 根据权利要求1或2所述的方法,其特征在于工序(1)中粗品环酯为D-丙交酯。
  5. 根据权利要求1或2所述的方法,其特征在于工序(1)中粗品环酯为乙交酯。
  6. 根据权利要求3所述的方法,其特征在于所述的粗品环酯在经过提纯后所得到的L-丙交酯含量≥99.8wt.%,产率≥98.2%。
  7. 根据权利要求4所述的方法,其特征在于所述的粗品环酯在经过提纯后所得到的D-丙交酯含量≥99.8wt.%,产率≥99.1%。
  8. 根据权利要求5所述的方法,其特征在于所述的粗品环酯在经过提纯后所得到的乙交酯含量≥99.9wt.%,产率≥98.8%。
PCT/CN2017/100464 2016-09-07 2017-09-05 一种粗品环酯纯化方法 WO2018045938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019533269A JP2019529531A (ja) 2016-09-07 2017-09-05 粗環状エステルの精製方法
US16/251,047 US10570111B2 (en) 2016-09-07 2019-01-17 Method of purifying cyclic ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610807374.3A CN106397388B (zh) 2016-09-07 2016-09-07 一种粗品环酯纯化制备高纯度环酯的工艺
CN201610807374.3 2016-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/251,047 Continuation-In-Part US10570111B2 (en) 2016-09-07 2019-01-17 Method of purifying cyclic ester

Publications (1)

Publication Number Publication Date
WO2018045938A1 true WO2018045938A1 (zh) 2018-03-15

Family

ID=57999329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100464 WO2018045938A1 (zh) 2016-09-07 2017-09-05 一种粗品环酯纯化方法

Country Status (4)

Country Link
US (1) US10570111B2 (zh)
JP (1) JP2019529531A (zh)
CN (1) CN106397388B (zh)
WO (1) WO2018045938A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397388B (zh) * 2016-09-07 2019-02-01 南京大学科技园发展有限公司 一种粗品环酯纯化制备高纯度环酯的工艺
CN107501537A (zh) * 2017-09-21 2017-12-22 南京大学 一种生产乙、丙交酯副产聚合物残渣再利用的工艺方法
CN114478470B (zh) * 2020-10-28 2024-04-19 中国石油化工股份有限公司 一种提纯丙交酯的方法
CN115707697A (zh) * 2021-08-20 2023-02-21 中国石油化工股份有限公司 一种粗乙交酯的提纯方法及所得乙交酯
CN114014835A (zh) * 2021-12-09 2022-02-08 内蒙古久泰新材料有限公司 一种乙交酯的纯化工艺
CN114181189A (zh) * 2021-12-16 2022-03-15 内蒙古久泰新材料有限公司 一种环状交酯的纯化方法
CN116283888B (zh) * 2022-08-30 2024-01-30 深圳市迈启生物材料有限公司 批量制备乙交酯的方法
CN116041314A (zh) * 2023-02-08 2023-05-02 新沂市永诚化工有限公司 一种粗品环酯纯化制备高纯度环酯的工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112559A (zh) * 1993-12-08 1995-11-29 株式会社武藏野化学研究所 丙交酯的提纯方法
CN1320134A (zh) * 1999-06-22 2001-10-31 三井化学株式会社 制备聚羟基羧酸的方法
CN101468978A (zh) * 2007-12-27 2009-07-01 常熟市长江化纤有限公司 丙交酯的提纯方法
CN101648938A (zh) * 2009-09-03 2010-02-17 宁波博硕倍医疗器械有限公司 用于丙交酯的重结晶纯化装置
CN101696204A (zh) * 2009-10-13 2010-04-21 常熟市长江化纤有限公司 丙交酯的提纯方法
CN101857585A (zh) * 2010-05-21 2010-10-13 常州大学 丙交酯连续高真空精馏提纯方法
CN106397388A (zh) * 2016-09-07 2017-02-15 南京大学 一种粗品环酯纯化制备高纯度环酯的工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239781A1 (de) * 1992-11-26 1994-06-01 Basf Ag Formkörper aus geschäumten Polylactiden und Verfahren zu ihrer Herstellung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112559A (zh) * 1993-12-08 1995-11-29 株式会社武藏野化学研究所 丙交酯的提纯方法
CN1320134A (zh) * 1999-06-22 2001-10-31 三井化学株式会社 制备聚羟基羧酸的方法
CN101468978A (zh) * 2007-12-27 2009-07-01 常熟市长江化纤有限公司 丙交酯的提纯方法
CN101648938A (zh) * 2009-09-03 2010-02-17 宁波博硕倍医疗器械有限公司 用于丙交酯的重结晶纯化装置
CN101696204A (zh) * 2009-10-13 2010-04-21 常熟市长江化纤有限公司 丙交酯的提纯方法
CN101857585A (zh) * 2010-05-21 2010-10-13 常州大学 丙交酯连续高真空精馏提纯方法
CN106397388A (zh) * 2016-09-07 2017-02-15 南京大学 一种粗品环酯纯化制备高纯度环酯的工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, SHOUYING: "The Study on New Green Purification Process of L-Lactide", SCIENCE-ENGINEERING (A), CHINA MASTER'S THESES, no. S2, 31 December 2011 (2011-12-31), pages 15, 35, 41, 47 - 49 *

Also Published As

Publication number Publication date
US10570111B2 (en) 2020-02-25
US20190152939A1 (en) 2019-05-23
CN106397388A (zh) 2017-02-15
JP2019529531A (ja) 2019-10-17
CN106397388B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2018045938A1 (zh) 一种粗品环酯纯化方法
CN110128397B (zh) 一种高纯度丙交酯的制备方法
CN100999516A (zh) 乙交酯的提纯方法
Yu et al. PLA bioplastic production: From monomer to the polymer
JP2016513641A (ja) 2,5−フランジカルボン酸の作製方法
CN112264090B (zh) 一种双酸型离子液体催化剂及其制备方法与应用
WO2018045941A1 (zh) 一种合成乙交酯的方法
CN108640837B (zh) 一种提升对苯二甲酸酯增塑剂反应效能的方法
CN110511205B (zh) 一种高纯度乙交酯的制备方法
JP2015535301A (ja) 薄膜蒸留と短行程蒸留を順に組み合わせて用いた高純度無水糖アルコールの製造方法
CN103524345A (zh) 一种醋酸甲酯制丙烯酸甲酯的产品分离工艺
CN101456812B (zh) 一种乳酸酯的纯化方法
CN102702143B (zh) 2-乙酰呋喃的制备方法
CN111825549B (zh) 一种羟基乙酸正丁酯的合成方法
CN103664866A (zh) 乙交酯的提纯方法
KR101886434B1 (ko) 유산으로부터 락타이드의 제조방법
EP2539332B1 (en) Improved process for the preparation of l-lactide of high chemical yield and optical purity
CN107540520B (zh) 一种由频那醇制备均苯四甲酸或偏苯三甲酸的方法
CN112574165B (zh) 一步转化生成丙交酯的方法
CN110451684B (zh) 十二碳醇酯生产工艺废水的处理方法
CN103232325B (zh) 一种由环己烯制备环己醇的方法
KR101778761B1 (ko) 폴리알킬렌 카보네이트 입자의 제조 방법
CN109603795B (zh) 固体碱催化剂及制备4-(2-呋喃基)-3-丁烯-2-酮的生产工艺
CN105130808B (zh) 一种高纯度2,5-二甲基-3,4-二羟基苯甲酸甲酯的合成方法
CN112624915A (zh) 一种制备2,5-二羟基对苯二甲酸(dhta)的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848111

Country of ref document: EP

Kind code of ref document: A1