WO2018036542A1 - 发光器件的制作方法、发光器件及混合发光器件 - Google Patents

发光器件的制作方法、发光器件及混合发光器件 Download PDF

Info

Publication number
WO2018036542A1
WO2018036542A1 PCT/CN2017/098811 CN2017098811W WO2018036542A1 WO 2018036542 A1 WO2018036542 A1 WO 2018036542A1 CN 2017098811 W CN2017098811 W CN 2017098811W WO 2018036542 A1 WO2018036542 A1 WO 2018036542A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
mask
hydrophobic
quantum dot
substrate
Prior art date
Application number
PCT/CN2017/098811
Other languages
English (en)
French (fr)
Inventor
甄常刮
顾辛艳
Original Assignee
纳晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610738773.9A external-priority patent/CN106252528B/zh
Priority claimed from CN201610747047.3A external-priority patent/CN106696501B/zh
Priority claimed from CN201610742776.XA external-priority patent/CN106158916B/zh
Application filed by 纳晶科技股份有限公司 filed Critical 纳晶科技股份有限公司
Priority to JP2019531517A priority Critical patent/JP2019525446A/ja
Priority to US16/328,290 priority patent/US10943781B2/en
Priority to KR1020197007403A priority patent/KR102387760B1/ko
Publication of WO2018036542A1 publication Critical patent/WO2018036542A1/zh
Priority to US17/012,086 priority patent/US20230276685A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to the field of optical technologies, and in particular to a method for fabricating a light emitting device, a light emitting device, and a hybrid light emitting device.
  • QLED quantum dot light-emitting diode
  • display is considered to be the most representative display in the future with its high color purity, color saturation and wide color gamut. technology.
  • QLED devices are mainly fabricated by a solution process, such as inkjet printing, screen printing, spin coating, slit coating, spray coating, etc. Since the pixels displayed are very small, the current sub-pixel coating generally utilizes an inkjet printing process. Selective coating is performed, that is, the R, G, and B quantum dot material inks are sequentially printed by the nozzles in the RGB sub-pixel grooves constructed by the pixel isolation structure.
  • the conventional blue light of the LED and the OLED is relatively mature, so the RG light of the quantum dot can be combined with the LED or the OLED. Electro-induced blue light to achieve RGB display mode, can be achieved in a short time.
  • the droplets ejected by the nozzle are very unstable, and many fine droplets are often observed around the main droplet, and the dispersed droplets are easily deviated from the original position and fall into the position.
  • the material falling into each sub-pixel has a different amount of color or color mixing problem, thereby affecting the final performance of the light-emitting device or generating chromatic aberration, and reducing the yield of the product.
  • the OLED usually adopts an evaporation method to prepare the above electroluminescent device, that is, a mask is covered on the substrate and a plurality of vacuum thermal evaporation is performed to prepare RGB pixels. For example, when the R pixel is evaporated, the position corresponding to the GB pixel is masked. The template is covered so as not to be vapor-deposited. In the above method, the utilization rate of the material is low, which leads to extremely high cost. Based on the above-mentioned shortcomings, the current solution method for fabricating the above-mentioned OLED electroluminescent device with RGB pixels has been extensively studied, with a view to The solution process is known for its long QLED electroluminescent device.
  • the QLED device has a wide color gamut, precise color control, etc. It is considered to be the best display technology for the next generation. Whether it is constantly capturing the OLED display in the traditional LCD display market, or developing a QLED display that is booming to replace the OLED and make the display technology directly transition from LCD to QLED, the solution process is the key to current research.
  • the black matrix or pixel isolation structure fabricated by the yellow light process is complicated and expensive, and the precision inkjet printing device is equally expensive, which increases the difficulty for the promotion of new technology.
  • a main object of the present invention is to provide a method for fabricating a light-emitting device, a light-emitting device, and a hybrid light-emitting device to solve the problem of chromatic aberration caused by color mixing of the light-emitting device in the prior art.
  • a method of fabricating a light emitting device comprising the steps of: step S1, disposing a mask having a plurality of hollow portions on a substrate; and step S2, using a solution method
  • the ink is disposed on the surface of the substrate through the hollow portion; in step S3, the ink on the surface of the substrate is dried or solidified to form a light-emitting layer or a functional layer.
  • the ink is a quantum dot material ink
  • the manufacturing method further includes repeating the processes of the steps S1 to S3 at least once.
  • the hollow portion of the mask plate used corresponds to different regions of the substrate, and the ink used is illuminated. The color is also different.
  • the mask in step S1 has a modified surface including a side surface of the mask plate away from the substrate, the modified surface having hydrophilicity or hydrophobicity; the ink used in step S2 and the modified surface have Different pro-hydrophobicity.
  • the modified surface further includes a side surface of the mask near the substrate.
  • the manufacturing method further includes a process of forming a modified surface: in step S01, the mask is immersed in a solution having a hydrophobic material to fix the hydrophobic material on the surface of the mask.
  • the hydrophobic material is a fluorine-containing silane coupling agent; in step S02, the mask plate to which the hydrophobic material is fixed is separated from the solution, and the mask is dried to form a hydrophobic modified surface.
  • the manufacturing method further includes a process of pretreating the mask, and the pre-processing comprises: performing ultraviolet ozone photodeoxidation on the surface of the mask to completely expose the hydrophilic surface of the mask.
  • the substrate in step S1 has a pixel isolation structure, and the pixel isolation structure has a plurality of mutually separated sub-pixel regions, and the hollow portion is disposed corresponding to each sub-pixel region; and step S2 causes the ink to enter the corresponding sub-pixel region through the hollow portion. .
  • the surface of the substrate in the step S1 has a hydrophilic region and a hydrophobic region, and the hollow portion is disposed corresponding to the hydrophilic region or the hydrophobic region; in step S2, the hydrophobic ink enters the hydrophobic region through the hollow portion, or is hydrophilic. The ink enters the hydrophilic region through the hollow.
  • the ink is any one of a hole injecting material ink, a hole transporting material ink, an electron injecting material ink, and an electron transporting material ink, and in step S3, drying the ink to form a corresponding hole injecting layer,
  • the hole transport layer, the electron injection layer or the electron transport layer; or the ink is a quantum dot material ink or an organic light-emitting material ink, and in step S3, the ink is dried to form a corresponding quantum dot light-emitting layer or organic light-emitting layer.
  • the ink is an electrode material ink, and in the step S3, the ink is dried to form a corresponding electrode layer.
  • the ink is any one of a hole injection material ink, a hole transport material ink, an electron injection material ink, an electrode material ink, and an electron transport material ink, and in the step S3, the ink is cured.
  • the ink is a quantum dot material
  • the ink or organic luminescent material ink is solidified in the step S3 to form a corresponding quantum dot luminescent layer or organic luminescent layer.
  • a spraying process or an inkjet printing process is employed to cause the ink to be disposed on the surface of the substrate through the hollow portion, and the spraying process is preferably ultrasonic spraying.
  • a light-emitting device which is prepared by the above-described fabrication method, and the light-emitting device is an electroluminescence device or a photoluminescence device.
  • a hybrid light emitting device comprising an electroluminescent device and a photoluminescent device, an electroluminescent device and/or a photoluminescent device disposed on a light exiting side of the electroluminescent device Prepared for the production method.
  • a surface-modified reticle having a plurality of hollow portions, the surface-modified reticle having a modified surface, the modified surface including the first modified surface and a second modified surface, the first modified surface surrounds the hollow portion, and the modified surface other than the first modified surface is a second modified surface, and the first modified surface and the second modified surface are different and are respectively selected from the second modified surface One of a hydrophilic surface and a hydrophobic surface.
  • a surface modification method for a mask comprising the steps of: modifying a surface of a mask having a plurality of hollow portions to form a modified surface, wherein the modified surface comprises a first modified surface and a second modified surface, the first modified surface surrounds the hollow portion, the modified surface other than the first modified surface is the second modified surface, and the first modified surface The surface is different from the second modified surface and is hydrophilic or hydrophobic, respectively.
  • the surface modification method comprises: step S01', immersing the mask in a solution having a hydrophobic material to fix the hydrophobic material to the surface of the mask, preferably the hydrophobic material is a fluorine-containing silane coupling agent; Step S02', separating the mask plate to which the hydrophobic material is fixed from the solution, and performing a drying process or a curing process on the mask plate; in step S03', the first mask is disposed on the first surface of the mask plate, the first light
  • the cover is composed of a plurality of first shielding portions and a first light transmitting portion connecting the first shielding portions, the first shielding portions are in one-to-one correspondence with the hollow portions, and the area of each of the first shielding portions is greater than the corresponding hollow portions.
  • the first surface of the mask is subjected to ultraviolet ozone photodeoxidation through the first mask, and the second surface of the mask opposite to the first surface is subjected to ultraviolet ozone photodeoxidation to form a hydrophilic portion.
  • a second modified surface the remaining surface of the reticle forming a first modified surface having hydrophobicity; or a second reticle disposed on the reticle, the second reticle comprising a plurality of second light transmitting portions and connecting each The second shielding portion of the two light transmitting portions is composed, and the second light transmitting portion is in one-to-one correspondence with the hollow portion, and the area of each of the second light transmitting portions is larger than the area of each corresponding hollow portion, and the mask plate is subjected to ultraviolet ozone light.
  • the oxidation is deactivated so that the surface of the corresponding second light transmitting portion of the mask forms a first modified surface having hydrophilicity, and the remaining surface of the mask forms a second modified surface having hydrophobicity.
  • step S1 ′ providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having a plurality of mutual The isolated sub-pixel region
  • step S2' the surface modification mask is disposed on a side of the first electrode substrate having a pixel isolation structure, and the first modified surface of the surface modification mask is disposed away from the first electrode substrate
  • step S3' is performed by using a solution method
  • the ink having the same hydrophilicity of the first modified surface of the modified mask enters the corresponding sub-pixel region through the hollow portion; in step S4', the ink in the sub-pixel region is dried or solidified to form a light-emitting layer or a functional layer.
  • the ink is any one of a hole injecting material ink, a hole transporting material ink, an electron injecting material ink, and an electron transporting layer material ink, and in step S4', the ink is dried to form a corresponding hole injecting.
  • the manufacturing method further includes repeating the processes of the steps S2′ to S4′ at least once, and the hollow portions of the surface modification mask used in the respective repetition processes correspond to different sub-pixels. In the area, the color of the ink used is different.
  • step S3' a spraying process or an inkjet printing process is employed in step S3' to pass the ink through the hollow portion into the sub-pixel region, and the spraying process is preferably ultrasonic spraying.
  • ultrasonic spraying uses an ultrasonic frequency of 45 kHz to 180 kHz.
  • the manufacturing method further includes the following steps: Step S5 ′, when the luminescent layer is formed in the step S4 ′, the second electrode is disposed on a side of the luminescent layer away from the first electrode substrate, or the step S5', when the functional layer is formed in step S4', the functional layer is a first injection layer or a first transmission layer, and a light-emitting layer is disposed on a side of the first injection layer or the first transmission layer away from the first electrode substrate, And providing a second electrode on a side of the light emitting layer remote from the first electrode substrate.
  • the manufacturing method further includes the following process: repeating steps S2' to S4 before the process of setting the light-emitting layer ', to provide a first transport layer on the surface of the first implant layer; after the process of disposing the light-emitting layer, repeat steps S2' to S4' to provide a second transport layer on the surface of the light-emitting layer; and set the second transfer After the process of the layer, steps S2' to S4' are repeated to provide a second injection layer on the surface of the second transfer layer.
  • a method for fabricating a quantum dot film comprising the steps of: step a, forming a hydrophilic region and a hydrophobic region on the first surface of the transparent substrate Step b, disposing a surface modification mask having a plurality of hollow portions on the first surface of the light transmissive substrate, and setting the hollow portion in the surface modification mask to a hydrophilic region or a hydrophobic region, and modifying the surface
  • the reticle has a modified surface including a first modified surface and a second modified surface, the first modified surface surrounding the hollow portion, and the modified surface outside the first modified surface is the second modified surface
  • the first modified surface and the second modified surface are different and are respectively selected from one of a hydrophilic surface and a hydrophobic surface, and the first modified surface is located at a first distance from the transparent substrate of the surface modification mask
  • the first modified surface is a hydrophobic surface, such that the hydropho
  • the step a includes: step S001, disposing a raw material including a first reaction raw material on a surface of the transparent substrate; and step S002, covering the first reaction raw material located in the first region, and covering the first reaction raw material located in the second region Performing ultraviolet light irradiation, the first reaction raw material forms a second covering region in the second region; in step S003, removing the first reaction of the first region a second reaction raw material is disposed on the first region and the second covering region; in step S004, the second reaction raw material located in the second covering region is covered, and the second reaction raw material located in the first region is irradiated with ultraviolet light, The second reaction raw material forms a first covering region in the first region, and then removes the second reaction raw material on the second covering region, wherein the first reaction raw material and the second reaction raw material are respectively selected from the group consisting of a hydrophilic reactant and a hydrophobic reactant One of them, and the hydrophilic and hydrophobic properties of the two are opposite, the first covering region and
  • the manufacturing method further includes a process of preparing a surface-modified mask: step S01, immersing the mask in a solution having a hydrophobic material to fix the hydrophobic material to the surface of the mask, preferably the hydrophobic material is fluorine-containing a silane coupling agent; in step S02, separating the mask plate to which the hydrophobic material is fixed from the solution, and drying or curing the mask; and step S03, placing the first mask on the first surface of the mask
  • the first reticle is composed of a plurality of first shielding portions and a first light transmitting portion connecting the first shielding portions, the first shielding portion and the hollow portion are in one-to-one correspondence, and the area of each of the first shielding portions is greater than the corresponding
  • the area of each hollow portion is subjected to ultraviolet ozone photodeoxidation through the first mask, and the second surface of the mask opposite to the first surface is subjected to ultraviolet ozone photodeoxidation to form a hydrophilic layer.
  • a second modified surface the remaining surface of the reticle forming a first modified surface having hydrophobicity; or a second reticle disposed on the reticle, the second reticle comprising a plurality of second light transmissive portions and a second shielding portion of each of the second light transmitting portions is formed, and the second light transmitting portion is in one-to-one correspondence with the hollow portion, and the area of each of the corresponding second light transmitting portions is larger than the area of each hollow portion, and the mask is Ultraviolet ozone photolysis is performed to form a surface of the corresponding second light transmissive portion of the mask to form a first modified surface having hydrophilicity, and the remaining surface of the mask sheet constitutes a second modified surface having hydrophobicity.
  • step c employs a spray process or an inkjet printing process to pass the quantum dot ink through the hollow into the hydrophilic or hydrophobic region.
  • the spraying process is ultrasonic spraying.
  • a plurality of hydrophilic regions and a plurality of hydrophobic regions are formed on the first surface, and each of the hydrophilic regions and each of the hydrophobic regions are alternately arranged.
  • the hydrophilic quantum dot ink comprises a hydrophilic quantum dot, and the hydrophilic quantum dot is a quantum dot having a hydrophilic group on the surface ligand; the hydrophobic quantum dot ink includes a hydrophobic quantum dot and is hydrophobic The quantum dot is a quantum dot with a hydrophobic group on the surface ligand.
  • the quantum dots in the quantum dot ink are red quantum dots and/or green quantum dots.
  • a display device comprising an electroluminescent device and a quantum dot film disposed on a light exiting side of the electroluminescent device, the quantum dot film being the quantum dot film described above.
  • a method for fabricating a light-emitting device is provided. The method is provided by disposing a mask having a plurality of hollow portions on a substrate, and then applying a solution to the substrate through a hollow portion by a solution method.
  • the surface then dries or solidifies the ink on the surface of the substrate to form a light-emitting layer or a functional layer, thereby blocking the dispersion of the ink to other color regions by using the mask, effectively avoiding the problem of color mixing, and improving the color accuracy of the light-emitting device. .
  • FIG. 1 is a schematic flow chart of a method for fabricating a light emitting device according to an embodiment of the present invention
  • FIG. 2 is a schematic top plan view of a surface modified mask provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart showing a method of fabricating an electroluminescent device according to an embodiment of the present invention
  • step S1306 is performed in Embodiment 13 of the present invention.
  • FIG. 5 is a schematic flow chart showing a method of fabricating a quantum dot film provided by an embodiment of the present invention.
  • the quantum dot material ink in the present application may also be referred to as a quantum dot ink, which includes a water-like ink having a small viscosity, and a gel ink having a relatively high viscosity.
  • hydrophilicity and hydrophobicity in the present application refers to a molecule having a polar group in the ink, which has a large affinity for water, can attract water molecules, or dissolve in water.
  • a hydrophilic surface refers to the surface of a solid material formed of such a polar group-containing molecule, which is easily wetted by water. The property of having such water-friendly properties is the hydrophilicity of the substance.
  • Hydrophobicity, in chemistry refers to the physical property of a molecule (hydrophobic substance) repelling water.
  • Hydrophobic ink refers to a molecule containing physical properties that are mutually exclusive with water. Hydrophobic surface refers to this.
  • a surface of a solid material formed by molecules of physical properties that are mutually exclusive with water. For example, if droplets (water) diffuse, wetting a large area, contact When the angle is less than 90 degrees, the surface is said to be hydrophilic. If the droplet forms a sphere with little contact to the surface, the droplet contact angle is greater than 90 degrees and the surface is said to be hydrophobic or hydrophobic.
  • the method includes the following steps: Step S1, a mask having a plurality of hollow portions is disposed on a substrate; Step S2 The solution is applied to the surface of the substrate through the hollow portion by a solution method; in step S3, the ink on the surface of the substrate is dried to form a light-emitting layer or a functional layer.
  • the inventor of the present application has also proposed a method for fabricating a light emitting device, further comprising the steps of: step S1, disposing a mask having a plurality of hollow portions on the substrate; and step S2, using the solution method to set the ink through the hollow portion The surface of the substrate; in step S3, the ink on the surface of the substrate is cured to form a light-emitting layer or a functional layer.
  • the non-target region on the substrate can correspond to the hollow portion of the mask or can be masked.
  • the non-hollow portion of the template is further disposed on the surface of the substrate through the hollow portion by a solution method, and then the ink on the surface of the substrate is dried or solidified to form a light-emitting layer or a functional layer, thereby blocking the ink to other color regions by using the mask.
  • Dispersion, especially quantum dot ink diffuses to other adjacent regions, effectively avoiding the problem of color mixing and improving the color accuracy of the light emitting device.
  • the above solution method is selected from one or more of ink jet printing, screen printing, spin coating, slit coating, and spray coating, wherein the spraying includes ultrasonic spraying.
  • the above ink may include a gelatinous substance having a large viscosity, or may be a small substance, and it is preferred that the ink has a viscosity of 50 cps or less.
  • the ink in the present application may be any one of a hole injection material ink, a hole transport material ink, an electron injection material ink, an electrode material ink, and an electron transport material ink, and in step S3, the ink is dried or solidified to Forming a corresponding hole injection layer, hole transport layer, electron injection layer, electrode layer or electron transport layer; the ink in the present application may be a quantum dot material ink or an organic light-emitting material ink, and in step S3, the ink is dried or Curing to form a corresponding quantum dot luminescent layer or organic luminescent layer.
  • the quantum dots in the quantum dot material ink are independently selected from any one or more of a red quantum dot, a blue quantum dot, and a green quantum dot.
  • the manufacturing method may further include repeating the processes of the steps S1 to S3 at least once.
  • the hollow portion of the mask plate used corresponds to different regions of the substrate.
  • the color of the ink used is also different. Adjusting the final luminescent color of the illuminating device by setting quantum dot material inks of different illuminating colors on the target area of the substrate and drying or curing; and, by arranging red quantum dots, blue quantum dots, and at different positions on the surface of the substrate Green quantum dots to achieve full color display of RGB.
  • the above ink can be classified into a hydrophilic ink and a hydrophobic ink.
  • the hydrophilic ink comprises a hydrophilic quantum dot
  • the hydrophilic quantum dot is a quantum dot having a hydrophilic group on the surface ligand, preferably a hydrophilic group.
  • the group is a carboxyl group, an amino group, a hydroxyl group or a sulfhydryl group; when the above quantum dot material ink is a hydrophobic ink, the hydrophobic ink comprises a hydrophobic quantum dot, and the hydrophobic quantum dot is a quantum dot having a hydrophobic group on the surface ligand, preferably The hydrophobic group is an alkane chain or an ester group.
  • the above-mentioned hydrophilic or hydrophobic quantum dot material ink may further include a curable resin or a monomer thereof and a solvent (or a dispersant).
  • the solvent may be selected from a mixture of a long-chain hydrocarbon having a boiling point of 40 to 250 ° C, an alcohol, an ester, and an ether as an organic solvent.
  • the hydrocarbon is a linear or branched alkane, for example, the hydrocarbon is a C6-10 alkane.
  • the organic solvent may be chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, alkylbenzene, nitrobenzene, n-hexane, cyclohexane, n-Heptane, cycloheptane, dioxane, dichloromethane, chloroform, dichloroethane, chloroform, chlorobenzene, 1,4 dioxane, 1,2 dichloroethane, 1 1,1-trichloroethane, 1,1,2,2-tetrachloroethane, tetrahydronaphthalene, decalin, N,N-dimethylformamide, N,N-dimethylacetamide, Dimethyl sulfoxide chloroform, tetrahydrofuran, dichloromethane, toluene
  • the curable resin is selected from the group consisting of an epoxy resin, an acrylic resin, a silicone resin, or a corresponding monomer crosslinked to form a curable resin.
  • the above hydrophilic and hydrophobic quantum dot inks may further include a crosslinking agent having a double bond, a photocuring agent or a thermosetting agent.
  • the mask in step S1 has a modified surface including a side surface of the mask away from the substrate, the modified surface having hydrophilicity or hydrophobicity; used in step S2
  • the ink has a different hydrophilicity to the modified surface.
  • the modifying surface further includes a side surface of the mask near the substrate.
  • the side of the reticle close to the substrate also having a modified surface, and the modified surface has different hydrophilic and hydrophobic properties to the ink, it is possible to prevent the ink having hydrophilicity or hydrophobicity from adhering close when passing through the hollow portion.
  • the substrate On one side of the substrate.
  • the prior art generally uses a metal material or other hydrophilic UV-resistant material to prepare a mask. Since the oxide layer on the metal surface is in good affinity with water, most of the metal surface can be made hydrophilic, so that the hydrophobic ink can be disposed at a corresponding position on the substrate through the hollow portion of the mask. It does not adhere to the surface modification mask, thereby improving the guiding properties of the hydrophobic material.
  • the above manufacturing method further includes a process of forming a modified surface on the mask: Step S01, immersing the mask in a solution having a hydrophobic material to make hydrophobic The material is fixed to the surface of the mask; in step S02, the mask plate to which the hydrophobic material is fixed is separated from the solution, and the mask is dried or cured to form a hydrophobic modified surface.
  • the hydrophilic ink can be disposed on the corresponding position on the substrate through the hollow portion of the mask, without adhering to the surface modification mask, thereby improving The guiding properties of hydrophilic materials.
  • the hydrophobic material be a fluorine-containing silane coupling agent.
  • the process of forming the modified surface includes: performing ultraviolet ozone photodeoxidation on the surface of the mask to form a modified surface having hydrophilicity.
  • the surface of the mask is subjected to ultraviolet ozone photodeoxidation to remove various oil stains and chemicals remaining on the surface of the mask sheet to expose the hydrophilic metal surface.
  • the hydrophobic fluorine-containing silane is used.
  • the coupling agent removes the hydrophilic metal surface to obtain a mask having a hydrophilic modified surface.
  • the process conditions of the above ultraviolet ozone photodeoxidation can be set by those skilled in the art according to the prior art.
  • a spraying process or an inkjet printing process may be employed in the above step S2 to allow the ink to be disposed on the surface of the substrate through the hollow portion.
  • the viscosity of the hydrophilic ink or the hydrophobic ink is ⁇ 50 cps, so as to ensure that the nozzle of the device can control the ink discharge well; and, in order to ensure that the nozzle can effectively atomize the ink, preferably, the spraying process is ultrasonic.
  • ultrasonic spraying employs an ultrasonic frequency of 45 kHz to 180 kHz, preferably a hydrophilic ink or a hydrophobic ink having a viscosity of ⁇ 10 cps.
  • the substrate in step S1 has a pixel isolation structure, and the pixel isolation structure has a plurality of mutually separated sub-pixel regions, and the hollow portion is disposed corresponding to each sub-pixel region; and step S2 causes the ink to enter through the hollow portion.
  • the pixel isolation structure described above can effectively prevent ink color mixing between different sub-pixel regions and improve color accuracy.
  • the above-mentioned mask may have a pixel isolation structure with the substrate.
  • the side surface contact is disposed; and, in order to allow the hydrophilic ink or the hydrophobic ink to more accurately enter the sub-pixel region of the pixel isolation structure through the hollow portion of the mask, preferably, the area of the hollow portion is equal to or smaller than the corresponding sub-pixel More preferably, the hollow portion has the same shape as the corresponding sub-pixel region.
  • the exposed surface of the pixel isolation structure comprises a hydrophilic surface or a hydrophobic surface.
  • the hydrophobic ink is disposed on the surface of the substrate through the hollow portion; when the exposed surface of the pixel isolation structure is a hydrophobic surface, in step S2
  • the hydrophilic ink can be disposed on the surface of the substrate through the hollow portion, so that the surface of the pixel isolation structure and the ink have different hydrophilicity and hydrophobicity, so that the ink does not remain in the step of forming the light-emitting layer or the functional layer.
  • On the upper surface or sidewall of the pixel isolation structure it flows back into the pixel region under the action of gravity, thereby effectively preventing color mixture between adjacent pixel regions.
  • the surface of the substrate in step S1 has a hydrophilic region and a hydrophobic region, and the hollow portion corresponds to a hydrophilic region or a hydrophobic region.
  • Step S2 causes the hydrophobic ink to enter the hydrophobic region through the hollow portion, or allows the hydrophilic ink to enter the hydrophilic region through the hollow portion.
  • the hydrophilic region and the hydrophobic region can form a plurality of separated sub-pixel regions on the surface of the transparent substrate, and the hydrophilic quantum dot ink enters the hydrophilic region, and the hydrophobic region serves as an isolation structure or is hydrophobic.
  • the quantum dot ink enters the hydrophobic region, and the hydrophilic region serves as an isolation structure, thereby effectively preventing the quantum dot ink mixing between different sub-pixel regions, thereby improving Color accuracy; and, compared to the method of fabricating the pixel isolation structure on the transparent substrate, the above preferred embodiment can not only inject the ink into the desired sub-pixel region, but also reduce the fabrication of the photoluminescence device. cost.
  • a plurality of hydrophilic regions and a plurality of hydrophobic regions are formed on the surface of the substrate, and each of the hydrophilic regions and each of the hydrophobic regions are alternately arranged.
  • a plurality of mutually separated sub-pixel regions can be formed on the surface of the light-transmitting substrate, so that the quantum dots are colored in the blue by separately entering the quantum dot inks of different colors into different sub-pixel regions.
  • a light-emitting array can be formed, thereby producing a photo-luminescence device to realize full-color display of RGB.
  • the hollow portion of the mask in order to allow the hydrophilic ink or the hydrophobic ink to more accurately enter the hydrophilic or hydrophobic sub-pixel region of the substrate through the hollow portion of the mask, more preferably, the hollow portion of the mask.
  • the area of the mask is less than or equal to the area of the corresponding hydrophilic or hydrophobic region; the hollow portion of the mask conforms to the shape of the corresponding hydrophilic or hydrophobic region.
  • the method for preparing a substrate having a hydrophilic region and a hydrophobic region may include the following steps: Step S001, providing a raw material including a first reaction raw material on a surface of the substrate; and step S002, covering the first reaction raw material located in the first region, and The first reaction raw material located in the second region is irradiated with ultraviolet light, and the first reaction raw material forms a second covering region in the second region; in step S003, the first reaction raw material in the first region is removed, in the first region and the second covering region Providing a second reaction raw material thereon; step S004, covering a second reaction raw material located in the second covering region, and irradiating the second reaction raw material located in the first region with ultraviolet light, and forming a first covering material in the first region a region, and then removing the second reaction raw material on the second covering region, wherein the first reaction raw material and the second reaction raw material select the hydrophilic reactant and the hydrophobic reactant, and the affinity of the two is opposite, the first covering region
  • the above-mentioned raw material including the first reaction raw material may further include a solvent, a coupling agent, and an initiator.
  • the above step S001 includes the following steps: A, mixing the coupling agent and the initiator in a solvent to form a substrate processing liquid; B, placing at least one side surface of the substrate in the substrate processing liquid to make a coupling agent bond Fixing on the surface of the transparent substrate and forming a bonding surface; C, placing the first reaction material on the bonding surface.
  • the first reaction raw material and the coupling agent are grafted under ultraviolet irradiation by ultraviolet irradiation of the first reaction raw material located in the second region, thereby forming the second covering region;
  • the first reaction material is formed by subjecting the second reaction material in the first region to ultraviolet light irradiation to carry out a graft reaction between the second reaction material and the coupling agent under ultraviolet irradiation.
  • the process of removing the first reaction raw material of the first region may include: washing the first reaction raw material on the first region with a solvent, and then drying or solidifying the surface of the substrate; similarly, The process of removing the second reaction raw material on the second covering area comprises: washing off the second reaction raw material on the second covering area with a solvent, and then drying or solidifying the surface of the substrate.
  • Those skilled in the art can set according to the above-mentioned cleaning process and the drying or curing process conditions of the prior art.
  • the above coupling agent has the formula (X 1 -X 2 -X 3 - Si-Y, wherein Y is a group having a vinyl group or a hydrocarbon group having an SH group at the end, and X 1 , X 2 and X 3 are each independently selected from the group consisting of Cl, CH 3 , OCH 3 , OCH 2 CH 3 and Any one of CH 2 CH 3 , and X 1 , X 2 and X 3 are not simultaneously a hydrocarbon group; the first reaction raw material and the second reaction raw material have the general formula AB, wherein A is a group having a vinyl group a group, where Y is a hydrocarbon group having an SH group at the terminal, or A is a hydrocarbon group having a SH group at the terminal, wherein Y is a group having a vinyl group, and B is a residue having a hydrophilic group, and the first is
  • the above fabrication method of the present invention can also be used to fabricate any one or more of the light-emitting layer or the functional layer of the electroluminescent device.
  • the substrate is the first electrode substrate, and when formed in the above step S3
  • the manufacturing method further comprises the step S4: disposing the second electrode on a side of the light-emitting layer away from the first electrode substrate.
  • an electroluminescent device having a structure of a first electrode substrate/light emitting layer/second electrode can be formed; when the functional layer is formed in step S3, preferably, after step S3, the manufacturing method further includes steps S4: the functional layer is a first injection layer or a first transmission layer, and a light-emitting layer is disposed on a side of the first injection layer or the first transmission layer away from the first electrode substrate, and a light-emitting layer is away from the first electrode substrate.
  • the second electrode is disposed on the side.
  • the fabrication method further includes the following process: repeating the process of setting the luminescent layer Steps S1 to S3 to provide a first transport layer on the surface of the first implant layer; after the process of disposing the light-emitting layer, repeat steps S1 to S3 to provide a second transport layer on the surface of the light-emitting layer; and to provide a light-emitting layer After the process, steps S1 to S3 are repeated to provide a second injection layer on the surface of the second transfer layer.
  • an electroluminescent device having a structure of a first electrode substrate / a first injection layer / a first transport layer / a light-emitting layer / a second transport layer / a second injection layer / a second electrode can be formed.
  • the first injection layer is a hole injection layer
  • the first transmission layer is a hole transport layer
  • the second injection layer is electron injection.
  • a layer, the second transport layer is an electron transport layer; and when the first electrode is a cathode and the second electrode is an anode, the first implant layer is an electron injection layer, the first transport layer is an electron transport layer, and the second implant layer is empty
  • the hole is injected into the layer, and the second transport layer is a hole transport layer to form an inverse type electroluminescent device.
  • each layer in the electroluminescent device is not limited to the above preferred embodiments, and those skilled in the art can prepare other layers of the electroluminescent device in combination with conventional processes in the prior art.
  • a light-emitting device prepared by the above-described fabrication method, the light-emitting device being an electroluminescent device or a photoluminescence device. Since the above electroluminescent device and/or the above photoluminescent device are prepared by the above-described manufacturing method, and the manufacturing method is performed by disposing a mask having a plurality of hollow portions on the substrate, the ink is applied by a solution method.
  • the hollow portion is disposed on the surface of the substrate, and then the ink on the surface of the substrate is dried or solidified to form a light-emitting layer or a functional layer, thereby blocking the dispersion of the ink to other color regions by using the mask, thereby effectively avoiding the problem of color mixing and improving The color accuracy of a light emitting device having an electroluminescent device and/or a photoluminescent device.
  • a hybrid light emitting device comprising an electroluminescent device and a photoluminescent device disposed on the light exiting side of the electroluminescent device, an electroluminescent device and/or a photoinduced device
  • the light-emitting device is prepared by the above-described manufacturing method.
  • the fabrication method is performed by disposing a mask having a plurality of hollow portions On the substrate, the solution is applied to the surface of the substrate through the hollow portion by a solution method, and then the ink on the surface of the substrate is dried or solidified to form a light-emitting layer or a functional layer, thereby blocking the dispersion of the ink to other color regions by using the mask, effectively The occurrence of color mixing problems is avoided, and the color accuracy of the hybrid light emitting device having the electroluminescent device and/or the photoluminescent device is improved.
  • the surface modification mask has a plurality of hollow portions 10, and the surface modification mask has a modified surface 20, modified
  • the surface 20 includes a first modified surface 210 and a second modified surface 220, the first modified surface 210 surrounding the hollow portion 10, and the modified surface 20 outside the first modified surface 210 is the second modified surface 220, and
  • the first modified surface 210 and the second modified surface 220 are a hydrophilic surface and a hydrophobic surface, respectively.
  • the surface-modified reticle has a modified surface including a first modified surface and a second modified surface, the first modified surface surrounding the hollow portion, and the modified surface other than the first modified surface is the second
  • the surface is modified, and the first modified surface and the second modified surface are respectively a hydrophilic surface and a hydrophobic surface, so that when the light-emitting device is prepared by using the above surface-modified mask, the hydrophilic or hydrophobic ink can be made Entering into the corresponding sub-pixel region by a hollow portion surrounding the hydrophobic surface, or passing the hydrophilic ink into the corresponding sub-pixel region through the hollow portion surrounding the hydrophilic surface without adhering to the surface modification
  • the mask plate is used to improve the guiding property of the material, thereby not only making the pixel by the spraying process in the solution method, but also making the pixel by using the ink jet printing device with lower precision, and finally reducing the precision spraying.
  • the cost of ink printing equipment is used to improve the guiding property of the material
  • a surface modification method of a mask is also provided, and the obtained surface modification mask is as shown in FIG. 2, and the surface modification method includes the following steps: having a plurality of hollow portions 10
  • the surface of the reticle is provided with a modified surface 20 comprising a first modified surface 210 and a second modified surface 220, the first modified surface 210 surrounding the hollow portion 10, outside the first modified surface 210
  • the modified surface 20 is the second modified surface 220, and the first modified surface 210 and the second modified surface 220 are hydrophilic and hydrophobic, respectively.
  • the modified surface since the modified surface is provided on the surface of the mask, the modified surface includes a first modified surface 210 and a second modified surface 220, and the first modified surface surrounds the hollow portion 10, first The modified surface other than the modified surface 210 is the second modified surface 220, and the first modified surface 210 and the second modified surface 220 are respectively a hydrophilic surface and a hydrophobic surface, thereby utilizing the above surface modification
  • the quantum dot film layer can be made to pass the hydrophobic ink into the corresponding sub-pixel region through the hollow portion 10 surrounding the hydrophobic surface, or the hydrophilic ink can enter through the hollow portion surrounding the hydrophilic surface.
  • Corresponding sub-pixel regions do not adhere to the surface modification reticle, thereby effectively preventing uneven amount of ink entering the sub-pixel regions due to adhesion of the ink to the reticle, thereby effectively The problem of reduced color accuracy due to uneven ink amount in each sub-pixel region is avoided.
  • the above mask is generally made of a metal material. Since the oxide layer on the metal surface is in good affinity with water, most of the metal surface is hydrophilic, and here preferably a hydrophilic metal material or other hydrophilic resistance. UV aging materials.
  • the step of disposing the surface of the mask sheet with the modifying surface 20 includes: step S01', immersing the mask sheet in a solution having a hydrophobic material to fix the hydrophobic material to the surface of the mask sheet Step S02', separating the mask plate with the hydrophobic material fixed from the solution, and drying or curing the mask; and step S03', placing the first mask on the first surface of the mask, the first light
  • the cover is composed of a plurality of first shielding portions and a first light transmission connecting the first shielding portions
  • the first shielding portion has a one-to-one correspondence with the hollow portion 10, and the area of each of the first shielding portions is larger than the area of each of the corresponding hollow portions 10, and the first surface of the mask is subjected to ultraviolet
  • the second mask is composed of a plurality of second transparent portions and a second shielding portion connecting the second transparent portions, and
  • the two light transmitting portions are in one-to-one correspondence with the hollow portion 10, and the area of each of the second light transmitting portions corresponding to each other is larger than the area of each hollow portion 10, and the mask is subjected to ultraviolet ozone photodeoxidation to make the corresponding portion of the mask
  • the surface of the second light transmitting portion forms a first modified surface 210 having hydrophilicity, and the remaining surface of the mask sheet constitutes a second modified surface 220 having hydrophobicity.
  • the hydrophobic material be a fluorine-containing silane coupling agent.
  • the ultraviolet ray photo-deoxidation of the hydrophobic material to remove the hydrophobic fluorine-containing silane coupling agent to expose the hydrophilic metal surface, the process conditions of the above ultraviolet ozone photodeoxidation can be carried out according to the prior art by those skilled in the art. set up.
  • a method for fabricating an electroluminescent device includes the following steps: Step S1', providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having a plurality of mutually separated sub-pixel regions; step S2', the surface modification mask is disposed on a side of the first electrode substrate having a pixel isolation structure, and the first modified surface of the surface modification mask is away from the first electrode substrate One side, and one or more hollow portions of the surface modification mask are disposed corresponding to each sub-pixel region in at least a portion of the sub-pixel regions; in step S3', the first modification of the surface modification mask is performed by a solution method The ink having the same hydrophilicity on the surface enters the corresponding sub-pixel region through the hollow portion; in step S4', the ink in the sub-pixel region is dried to form a light-emitting layer or a functional layer.
  • step S1 ′ providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having a plurality of mutual The isolated sub-pixel region
  • step S2' the surface modification mask is disposed on a side of the first electrode substrate having the pixel isolation structure, and the first modified surface of the surface modification mask is away from the side of the first electrode substrate
  • step S3' is performed by using a solution method to have the same surface as the first modified surface of the surface modification mask
  • the hydrophilic ink enters the corresponding sub-pixel region through the hollow portion; in step S4', the ink in the sub-pixel region is solidified to form a light-emitting layer or a functional layer.
  • the pixel isolation structure has a plurality of mutually separated sub-pixel regions
  • the modified mask is disposed on the first electrode substrate with a pixel isolation structure.
  • the surface modification mask has a modified surface
  • the modified surface includes a first modified surface and a second modified surface
  • the first modified surface surrounds the hollow portion
  • the modified surface other than the first modified surface is a second modified surface
  • the first modified surface and the second modified surface are a hydrophilic surface and a hydrophobic surface, respectively, thereby improving the guiding property of the material by combining the pixel isolation structure and the mask sheet, thereby not only Pixels can be fabricated using the spray process in solution, and pixels can be fabricated using less accurate inkjet printing equipment, ultimately reducing the cost of using precision inkjet printing equipment.
  • Fig. 2 An exemplary embodiment of a method of fabricating an electroluminescent device according to the present invention will be described in more detail below with reference to Fig. 2.
  • the exemplary embodiments may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. It should be understood that these implementations are provided The manner in which the disclosure of the present application is made thorough and complete, and the concepts of these exemplary embodiments are fully conveyed to those of ordinary skill in the art.
  • step S1' is performed: providing a first electrode substrate having a pixel isolation structure having a plurality of mutually separated sub-pixel regions.
  • the above pixel isolation structure is for preventing ink color mixing between different sub-pixel regions.
  • the exposed surface of the pixel isolation structure comprises a hydrophilic surface or a hydrophobic surface.
  • step S2 ′ is performed: the surface modification mask is disposed on a side of the first electrode substrate having a pixel isolation structure, and the modified surface 20 of the surface modification mask is located on the surface modification mask One side away from the first electrode substrate, and one or more hollow portions of the surface modification mask are disposed corresponding to each of the sub-pixel regions in at least a portion of the sub-pixel regions.
  • the surface modification mask may be combined with the first electrode.
  • the surface contact of the substrate is disposed; and, in order to allow the hydrophilic ink or the hydrophobic ink to more accurately enter the sub-pixel region of the pixel isolation structure through the hollow portion of the surface modification mask, preferably, the area of the hollow portion is less than or equal to More preferably, the area of the corresponding sub-pixel area coincides with the shape of the corresponding sub-pixel area.
  • the step S3' is performed: the ink having the same hydrophilicity as the first modified surface 210 of the surface-modified mask is passed through the hollow portion into the corresponding sub-pixel region by a solution method.
  • the above solution method may be a spraying process or a low-precision inkjet printing process, thereby adopting a spraying process or an inkjet printing process to pass the hydrophilic ink or the hydrophobic ink through the hollow portion. In the pixel area.
  • the viscosity of the hydrophilic ink or the hydrophobic ink is ⁇ 50 cps, so as to ensure that the nozzle of the device can control the ink discharge well; and, in order to ensure that the nozzle can effectively atomize the ink, preferably, the spraying process is ultrasonic.
  • spraying and in order to improve the spraying effect of the preferred hydrophilic ink or hydrophobic ink, it is preferred that ultrasonic spraying employs an ultrasonic frequency of 45 kHz to 180 kHz, preferably a hydrophilic ink or a hydrophobic ink having a viscosity of ⁇ 10 cps.
  • the ink may be any one of a hole injecting material ink, a hole transporting material ink, an electron injecting material ink, and an electron transporting layer material ink, or may be any one of a quantum dot material ink and an organic light emitting material ink.
  • the ink includes a hydrophilic ink and a hydrophobic ink, when hydrophilic
  • the hydrophilic ink includes a hydrophilic quantum dot
  • the hydrophilic quantum dot is a quantum dot having a hydrophilic group on the surface ligand, and preferably the hydrophilic group is a carboxyl group.
  • the above hydrophobic ink comprises a hydrophobic quantum dot
  • the hydrophobic quantum dot is a quantum dot having a hydrophobic group on the surface ligand, and preferably the hydrophobic group is an alkane chain or an ester group.
  • the hydrophilic quantum dot and the hydrophobic quantum dot are independently selected from any one of a red quantum dot, a blue quantum dot, and a green quantum dot.
  • step S3' When the exposed surface of the pixel isolation structure in the above step S1' is a hydrophilic surface, in step S3', the hydrophobic ink is passed through the hollow portion into the sub-pixel region; when the exposed surface of the pixel isolation structure is In the case of a hydrophobic surface, in step S3', the hydrophilic ink is passed through the hollow portion into the sub-pixel region.
  • the hydrophilic ink is passed through the hollow portion into the sub-pixel region.
  • the pixel isolation structure of the hydrophobic exposed surface enables the hydrophilic ink or the hydrophobic ink to reflow into the pixel region under the force of gravity without remaining on the upper surface or the sidewall of the pixel isolation structure, thereby effectively preventing adjacent pixels The color mixture between the areas.
  • step S4' is performed: drying or solidifying the ink in the sub-pixel region to form a light-emitting layer or a functional layer.
  • the process conditions of the above ink drying can be set according to the prior art by those skilled in the art; and when the ink is a hole injecting material ink, a hole transporting material ink, an electron injecting material ink or an electron transporting layer material ink, In step S4', the ink is dried or solidified to form a corresponding hole injecting layer, hole transporting layer, electron injecting layer or electron transporting layer; when the ink is a quantum dot material ink or an organic light emitting material ink, in step S4 In the ink, the ink is dried or solidified to form a corresponding quantum dot light-emitting layer or organic light-emitting layer.
  • the manufacturing method further includes repeating the processes of the steps S2' to S4' at least once, and the surface modification mask used in each repetition process
  • the hollow portion corresponds to different sub-pixel regions, and the ink illuminating colors of different sub-pixel regions are different from each other, and the quantum dot ink used may be a hydrophilic ink or a hydrophobic ink.
  • each sub-pixel is made A hydrophilic ink or a hydrophobic ink of different illuminating colors is set in the region and dried or solidified to enable the electroluminescent device to achieve full color display; and, by respectively, red quantum dots, blue quantum are disposed in different sub-pixel regions Dots and green quantum dots also enable the electroluminescent device to achieve a wider display color gamut.
  • step S5' providing a second electrode on a side of the light-emitting layer remote from the first electrode substrate.
  • an electroluminescent device having a structure of a first electrode substrate/light emitting layer/second electrode can be formed; when the functional layer is formed in step S4', preferably, after step S4', the manufacturing method is further Including step S5': when the functional layer is formed in step S4', the functional layer is a first injection layer or a first transmission layer, and a light is disposed on a side of the first injection layer or the first transmission layer away from the first electrode substrate And forming a second electrode on a side of the light-emitting layer remote from the first electrode substrate.
  • an electroluminescent device having a functional layer can be formed.
  • the manufacturing method further includes the following process: repeating step S2 before the process of setting the light-emitting layer 'to S4' to provide a first transport layer on the surface of the first implant layer; after the process of disposing the light-emitting layer, repeat steps S2' to S4' to provide a second transport layer on the surface of the light-emitting layer; After the process of emitting the light layer, steps S2' to S4' are repeated to provide a second injection layer on the surface of the second transfer layer.
  • an electroluminescent device having a structure of a first electrode substrate / a first injection layer / a first transport layer / a light-emitting layer / a second transport layer / a second injection layer / a second electrode can be formed.
  • the first injection layer is a hole injection layer
  • the first transmission layer is a hole transport layer
  • the second injection layer is electron injection.
  • the second transport layer is an electron transport layer
  • the first electrode is a cathode and the second electrode is an anode
  • the first implant layer is an electron injection layer
  • the first transport layer is an electron transport layer
  • the second implant layer is empty
  • the hole is injected into the layer, and the second transport layer is a hole transport layer to form an inverse type electroluminescent device.
  • each layer in the electroluminescent device is not limited to the above preferred embodiment, and the above fabrication method of the present invention can be used to fabricate any of the light-emitting layer or the functional layer of the electroluminescent device.
  • Layers or layers, other layers of the electroluminescent device can be prepared by those skilled in the art in connection with conventional processes in the prior art.
  • a method for fabricating a quantum dot film includes the following steps: Step a, forming a hydrophilic region and a hydrophobic region on a first surface of the transparent substrate; Step b, disposing a surface modification mask having a plurality of hollow portions on the first surface of the light transmissive substrate, and setting the hollow portion in the surface modification mask to a hydrophilic region or a hydrophobic region, and modifying the surface
  • the reticle has a modified surface including a first modified surface and a second modified surface, the first modified surface surrounding the hollow portion, and the modified surface outside the first modified surface is a second modified surface,
  • the first modified surface and the second modified surface are different and are respectively selected from one of a hydrophilic surface and a hydrophobic surface, and the first modified surface is located at a first distance from the transparent substrate of the surface modification mask
  • the first modified surface is a hydrophobic surface, such that the hydro
  • the light-transmitting substrate is light having a wavelength of between 400 nm and 700 nm, and the light-transmitting substrate as a whole has a light transmittance of 50% or more, and preferably has a light transmittance of 90% or more.
  • a method for fabricating a quantum dot film comprising the steps of: forming a hydrophilic region and a hydrophobic region on a first surface of the light transmissive substrate;
  • a surface modification mask having a plurality of hollow portions is disposed on the first surface of the light transmissive substrate, and the hollow portion in the surface modification mask is disposed corresponding to the hydrophilic region or the hydrophobic region, and the surface modification mask has The modified surface comprises a first modified surface and a second modified surface, the first modified surface surrounds the hollow portion, and the modified surface other than the first modified surface is the second modified surface, the first modification The surface is different from the second modified surface and is respectively selected from one of a hydrophilic surface and a hydrophobic surface, and the first modified surface is located at a surface of the surface modification mask away from the first surface of the transparent substrate Side; step c, the first modified surface is a hydrophobic surface, such that the hydrophobic quantum dot material ink enters the
  • a hydrophilic region and a hydrophobic region are formed on the first surface of the light-transmitting substrate, and the surface-modified mask is disposed on the first surface of the light-transmitting substrate to make the hollow portion Corresponding to the hydrophilic region or the hydrophobic region, so that not only the different quantum dot inks can be entered into different pixel regions through the surface modification mask, but also the transparent region and the hydrophobic region on the transparent substrate can be passed through the transparent substrate.
  • the surface forms a plurality of separated sub-pixel regions, such that the hydrophilic quantum dot ink enters the hydrophilic region, the hydrophobic region serves as an isolation structure, or the hydrophobic quantum dot ink enters the hydrophobic region, and the hydrophilic region serves as an isolation structure. Therefore, the quantum dot ink color mixing between different sub-pixel regions is effectively prevented, thereby effectively solving the problem of color mixing of quantum dot inks in different sub-pixel regions and reducing color accuracy; and, compared with setting pixels on a transparent substrate
  • the manufacturing method of the isolation structure the above-described fabrication method of the present application can not only inject the ink into the desired sub-pixel region While reducing the manufacturing cost of the quantum dot film.
  • step a is performed: forming a hydrophilic region and a hydrophobic region on the first surface of the light-transmitting substrate.
  • a plurality of hydrophilic regions and a plurality of hydrophobic regions are formed on the first surface, and each of the hydrophilic regions and each of the hydrophobic regions are alternately arranged.
  • a plurality of mutually separated sub-pixel regions can be formed on the first surface of the transparent substrate, so that quantum dot inks of different colors respectively enter different sub-pixel regions and have the quantum dots.
  • the film can form a light-emitting array under the illumination of the blue backlight, thereby producing a quantum dot color film to realize full-color display of RGB.
  • the step a includes: step S001, providing a raw material including a first reaction raw material on a surface of the transparent substrate; and step S002, covering the first reaction raw material located in the first region, and located in the second
  • the first reaction raw material of the region is irradiated with ultraviolet light, and the first reaction raw material forms a second covering region in the second region; in step S003, the first reaction raw material in the first region is removed, and the first region and the second covering region are disposed on the first region.
  • step S004 covering a second reaction raw material located in the second covering region, and irradiating the second reaction raw material located in the first region with ultraviolet light, and the second reactive raw material forms a first covering region in the first region, and then Removing the second reaction raw material on the second covering region, wherein the first reaction raw material and the second reaction raw material select a hydrophilic reactant and a hydrophobic reactant, and the affinity properties of the two are opposite, the first covering region and the second The covered area corresponds to a hydrophilic area and a hydrophobic area.
  • the above-mentioned raw material including the first reaction raw material may further include a solvent, a coupling agent, and an initiator.
  • the above step S001 includes the following processes: A, mixing the coupling agent and the initiator in a solvent to form a substrate processing liquid; B, placing at least one side surface of the light-transmitting substrate in the substrate processing liquid to make coupling The agent is bonded and fixed on the surface of the light-transmitting substrate and forms a bonding surface; C. The first reaction material is disposed on the bonding surface.
  • the first reaction raw material and the coupling agent are grafted under ultraviolet irradiation by ultraviolet irradiation of the first reaction raw material located in the second region, thereby forming the second covering region;
  • the first reaction material is formed by subjecting the second reaction material in the first region to ultraviolet light irradiation to carry out a graft reaction between the second reaction material and the coupling agent under ultraviolet irradiation.
  • the process of removing the first reaction raw material of the first region may include: washing the first reaction raw material on the first region with a solvent, and then drying or solidifying the surface of the transparent substrate;
  • the process of removing the second reaction raw material on the second covering area comprises: washing off the second reaction raw material on the second covering area with a solvent, and then drying or solidifying the surface of the transparent substrate.
  • the above coupling agent has the formula (X 1 -X 2 -X 3 - Si-Y, wherein Y is a group having a vinyl group or a hydrocarbon group having an SH group at the end, and X 1 , X 2 and X 3 are each independently selected from the group consisting of Cl, CH 3 , OCH 3 , OCH 2 CH 3 and Any one of CH 2 CH 3 , and X 1 , X 2 and X 3 are not simultaneously a hydrocarbon group; the first reaction raw material and the second reaction raw material have the general formula AB, wherein A is a group having a vinyl group a group, where Y is a hydrocarbon group having an SH group at the terminal, or A is a hydrocarbon group having a SH group at the terminal, wherein Y is a group having a vinyl group, and B is a residue having a hydrophilic group, and the first is
  • step b disposing the surface modification mask described above on the first surface of the light transmissive substrate, and the hollow portion 10 in the surface modification mask is disposed corresponding to the hydrophilic region or the hydrophobic region, the surface
  • the modified reticle has a modified surface 20 comprising a first modified surface 210 and a second modified surface 220, the first modified surface 210 surrounding the hollow portion 10, the modification of the first modified surface 210
  • the surface 20 is the second modified surface 220, and the first modified surface 210 and the second modified surface 220 are hydrophilic and hydrophobic, respectively, and the surface modified mask is as shown in FIG.
  • the surface modification mask In order to pass the hydrophilic ink or the hydrophobic ink through the hollow portion 10 of the surface modification mask more accurately into the hydrophilic or hydrophobic sub-pixel region of the light-transmitting substrate in the subsequent step c, preferably, the surface modification mask
  • the area of the hollow portion 10 in the template is ⁇ the area of the corresponding hydrophilic region or hydrophobic region, and more preferably, the hollow portion 10 conforms to the shape of the corresponding hydrophilic region or hydrophobic region.
  • the above manufacturing method further includes the process of preparing the surface modification mask: step S01, immersing the mask in a solution having a hydrophobic material to fix the hydrophobic material on the surface of the mask Step S02, separating the mask plate with the hydrophobic material fixed from the solution, and drying the mask plate; in step S03, the first mask is disposed on the first surface of the mask, and the first mask is composed of a plurality of a first shielding portion and a first light transmitting portion connecting the first shielding portions, wherein the first shielding portion and the hollow portion 10 are in one-to-one correspondence, and an area of each of the first shielding portions is larger than an area of each of the hollow portions 10 corresponding thereto.
  • the remaining surface of the mask constitutes a first modified surface 210 having hydrophobicity; or a second mask is disposed on the mask, the second mask is composed of a plurality of second light transmitting portions and connecting a second shielding portion of the second light transmitting portion is formed, and the second light transmitting portion is in one-to-one correspondence with the hollow portion 10, and the area of each of the second corresponding light transmitting portions is larger than the area of each hollow portion 10, and the mask is Ultraviolet ozone photolysis is performed to form a surface of the corresponding second light transmissive portion of the mask to form a first modified surface 210 having hydrophilicity, and the remaining surface of the mask sheet constitutes a second modified surface 220 having hydrophobicity.
  • the above manufacturing method further includes the process of preparing the surface modification mask: step S01, immersing the mask in a solution having a hydrophobic material to fix the hydrophobic material to the mask. a surface; step S02, separating the mask plate with the hydrophobic material fixed from the solution, and curing the mask; and step S03, placing the first mask on the first surface of the mask, the first mask being a first shielding portion and a first light transmitting portion connecting the first shielding portions, the first shielding portion and the hollow portion 10 are in one-to-one correspondence, and an area of each of the first shielding portions is larger than an area of each of the hollow portions 10 corresponding thereto Performing ultraviolet ozone photodeoxidation on the first surface of the mask through the first mask, and performing ultraviolet ozone photodeoxidation on the second surface of the mask opposite to the first surface to form a second hydrophilic layer.
  • the modified surface 220, the remaining surface of the mask forms a first modified surface 210 having hydrophobicity; or the second mask is disposed on the mask, the second mask is composed of a plurality of second transparent portions and the connection a second shielding portion of each of the second light transmitting portions is formed, and the second light transmitting portion is in one-to-one correspondence with the hollow portion 10, and an area of each of the corresponding second light transmitting portions is larger than an area of each hollow portion 10,
  • the template is subjected to ultraviolet ozone photolysis to form a surface of the corresponding second light transmissive portion of the mask to form a first modified surface 210 having hydrophilicity, and the remaining surface of the mask sheet constitutes a second modified surface 220 having hydrophobicity.
  • the mask is generally made of a metal material, and since the oxide layer of the metal surface is in good affinity with water, most of the metal surface is hydrophilic, and it is preferred here.
  • the fluorine-containing silane coupling agent removes the hydrophilic metal surface, and the above-mentioned ultraviolet ozone photodeoxidation process conditions can be set by those skilled in the art according to the prior art.
  • step c is performed: the first modified surface 210 is a hydrophobic surface, the hydrophobic quantum dot ink is introduced into the hydrophobic region through the hollow portion 10, or the first modified surface 210 is a hydrophilic surface.
  • the hydrophilic quantum dot ink is introduced into the hydrophilic region through the hollow portion 10.
  • a spraying process or an inkjet printing process may be employed to cause the quantum dot ink to enter the hydrophilic region or the hydrophobic region through the hollow portion 10, preferably the viscosity of the above quantum dot ink is ⁇ 50 cps, so that the quantum dot ink is better dispersed and the ink falls into the ink.
  • the above spraying process is ultrasonic spraying, and in order to improve the spraying effect of the quantum dot ink, it is preferred that the ultrasonic frequency used for ultrasonic spraying is 45 kHz. ⁇ 180 kHz, preferably the viscosity of the quantum dot ink is ⁇ 10 cps.
  • the hydrophilic ink includes a hydrophilic quantum dot, and the hydrophilic quantum dot is a quantum dot having a hydrophilic group on the surface ligand, and preferably the hydrophilic group is a carboxyl group, an amino group, a hydroxyl group or a sulfhydryl group; and the above hydrophobic ink includes a hydrophobic quantum dot, and the hydrophobic quantum dot is a quantum dot having a hydrophobic group on the surface ligand, and preferably the hydrophobic group is an alkane chain or an ester group; in order to enable the electrophotoinduced light-emitting device to be fully colored, preferably the above
  • the quantum dots in the quantum dot ink are red quantum dots and green quantum dots.
  • the above hydrophilic and hydrophobic quantum dot inks may further include a curable resin or a monomer thereof and a solvent (or a dispersant).
  • the solvent may be selected from a mixture of a long-chain hydrocarbon having a boiling point of 40 to 250 ° C, an alcohol, an ester, and an ether as an organic solvent.
  • the hydrocarbon is a linear or branched alkane, for example, the hydrocarbon is a C6-10 alkane.
  • the above organic solvent may be chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, alkylbenzene, nitrobenzene, n-hexane, cyclohexane.
  • the curable resin is selected from the group consisting of an epoxy resin, an acrylic resin, a silicone resin, or a corresponding monomer crosslinked to form a curable resin.
  • the above hydrophilic and hydrophobic quantum dot inks may further include a crosslinking agent having a double bond, a photocuring agent or a thermosetting agent.
  • step d is performed: drying the quantum dot ink in the hydrophilic region or the hydrophobic region.
  • the process conditions for drying the above quantum dot ink can be set by those skilled in the art according to the prior art.
  • the manufacturing method further comprises repeating the processes of steps b to d at least once, wherein the hollow portions of the surface-modified mask used in each repetition process correspond to a hydrophilic region or a hydrophobic region,
  • the quantum dot ink has different luminescent colors.
  • the final luminescent color of the electroluminescent device is adjusted by setting quantum dot inks of different luminescent colors in each sub-pixel region and drying or curing; and, by being in different sub-pixel regions, respectively.
  • the red quantum dots and the green quantum dots are arranged, and under the illumination of the blue backlight, the quantum dot film can realize red and green photoluminescence, thereby realizing full color display of RGB.
  • the quantum dot film fabricated by the above-described fabrication method. Since the quantum dot film is formed by forming a hydrophilic region and a hydrophobic region on the first surface of the light-transmitting substrate, and providing the surface-modified mask described above on the first surface of the light-transmitting substrate, the hollow portion is correspondingly hydrophilic.
  • the region or the hydrophobic region is formed so as not only to enable different quantum dot inks to enter different sub-pixel regions through the surface modification mask, but also to transmit light through the hydrophilic region and the hydrophobic region on the transparent substrate.
  • the surface of the substrate forms a plurality of separated sub-pieces
  • the hydrophilic quantum dot ink enters the hydrophilic region
  • the hydrophobic region serves as an isolation structure
  • the hydrophobic quantum dot ink enters the hydrophobic region
  • the hydrophilic region serves as an isolation structure, thereby effectively preventing different sub-members in the quantum dot film.
  • the quantum dots between the pixel regions are mixed; and the quantum dot film can have a lower manufacturing cost than the quantum dot film formed by providing the pixel isolation structure on the transparent substrate.
  • a display device comprising an electroluminescent device and the above quantum dot film disposed on a light exiting side of the electroluminescent device. Since the quantum dot film in the above display device is formed by forming a hydrophilic region and a hydrophobic region on the first surface of the light-transmitting substrate, and disposing the surface-modified mask described above on the first surface of the light-transmitting substrate, hollowing out The portion is formed corresponding to the hydrophilic region or the hydrophobic region, thereby effectively improving the color accuracy of the display device having the quantum dot film by preventing color mixing of quantum dots between different pixel regions in the quantum dot film.
  • the second modification of the light-transmitting substrate in the quantum dot film is opposite to the first modified surface.
  • a black matrix is disposed on the surface of the blue backlight and the light-emitting side of the blue backlight.
  • Step S101 immersing a mask plate prepared from a nickel alloy into a solution having a hydrophobic material, the hydrophobic material being heptadecafluorodecyltrimethoxysilane, so that the hydrophobic material is fixed on the surface of the mask;
  • step S102 the mask plate to which the hydrophobic material is fixed is separated from the solution, and the mask is dried or solidified to obtain a surface-modified mask having hydrophobicity.
  • the coupling agent and the initiator are mixed in a solvent to form a substrate treatment liquid, and one surface of the light-transmitting substrate is placed in the substrate treatment liquid, and the coupling agent is bonded and fixed on the surface of the light-transmitting substrate to form a bond.
  • the first reaction raw material is disposed on the bonding surface, covering the first reaction raw material located in the first region, and irradiating the first reaction raw material located in the second region with ultraviolet light to make the first reaction raw material and the coupling agent Grafting reaction is carried out under ultraviolet irradiation to form a hydrophobic region, the first reaction raw material of the first region is removed, and a second reaction raw material is disposed on the first region and the second covering region to cover the second reaction in the second covering region a raw material, and irradiating the second reaction raw material in the first region with ultraviolet light, so that the second reaction raw material and the coupling agent are grafted under ultraviolet irradiation to form a hydrophilic region, thereby obtaining a surface-modified substrate;
  • the transparent substrate is glass
  • the coupling agent is chlorine (dimethyl)vinylsilane
  • the initiator is 4-dimethylpyridine
  • the first reaction raw material is 1H, 1H, 2H, 2H-perfluoroantimonyl
  • the second reaction starting material, mercaptoethylamine has a hydrophobic second region corresponding to two sets of 96 x 64 microarray patterns.
  • Step S301 providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having 96 ⁇ 64 mutually isolated sub-pixel regions, the first electrode substrate being a substrate having an anode layer, and the anode layer being an ITO anode;
  • Step S302 the surface modification mask provided in Embodiment 1 is disposed on a side of the first electrode substrate having a pixel isolation structure, and the hollow portion of the mask plate corresponds to the sub-pixel region;
  • Step S303 using an inkjet printing (model Dimatix Materials Printer DMP-2831) process, the aqueous solution of PEDOT:PSS as the hole injection layer ink enters the corresponding sub-pixel region through the hollow portion;
  • Step S304 drying or solidifying the hole injection layer ink in the sub-pixel region to form a hole injection layer
  • step S305 steps S302 to S304 are performed again.
  • a mask plate made of a nickel alloy is used, and a hole transport layer ink is used in step S303 of the above-mentioned repeating process, and a hole transport layer is used.
  • the ink is a toluene solution of poly(9-vinyl)carbazole (PVK) to form a hole transport layer in step S304;
  • Step S306 performing steps S302 to S304 again, in step S302 of the above-mentioned repeating process, using a mask plate prepared from a nickel alloy, using green quantum dot material ink in step S303 of the above-mentioned repeating process, and quantum dot material ink a decane solution of CdSe/CdS to form a green quantum dot light-emitting region in step S304;
  • Step S307 performing steps S302 to S304 again, in step S302 of the above-mentioned repeating process, using a mask plate prepared from a nickel alloy, using red quantum dot material ink in step S303 of the above-mentioned repeating process, and quantum dot material ink a decane solution of CdSe/ZnS to form a red quantum dot light-emitting region in step S304;
  • Step S308 performing steps S302 to S304 again, in step S302 of the above-mentioned repeating process, using the surface modification mask provided in Embodiment 1, using the electron transport layer ink and the electron injection layer ink in step S303 of the above repeating process
  • the electron transport layer ink and the electron injection layer ink are a butanol solution of ZnO to form an electron transport and injection layer in step S304;
  • step S309 the second electrode is evaporated on the side of the electron injection layer away from the first electrode substrate, and the material forming the cathode layer is Ag.
  • the manufacturing method provided by this embodiment differs from Embodiment 3 in that:
  • the electron transport and injection layer ink, the quantum dot material ink, the hole transport layer ink and the hole injection layer ink are respectively introduced into the sub-pixel region by ultrasonic spraying, and the ultrasonic frequency in the ultrasonic spraying process is 120 kHz.
  • the manufacturing method provided by this embodiment differs from Embodiment 4 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 180 kHz.
  • the manufacturing method provided by this embodiment differs from Embodiment 4 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 45 kHz.
  • the manufacturing method provided by this embodiment differs from Embodiment 4 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 90 kHz.
  • Step S801 a mask plate prepared from a nickel alloy is disposed on the surface of the surface-modified substrate in Embodiment 2, and 96 ⁇ 64 hollow portions of the mask plate correspond to one set of 96 ⁇ 64 microarray patterns of the hydrophobic region. ;
  • Step S802 using a inkjet printing (Model Dimatix Materials Printer DMP-2831) process to make a hydrophobic red quantum dot ink enter the hydrophobic region through the hollow portion;
  • Step S803 drying or solidifying the quantum dot ink in the hydrophobic region
  • Step S804 the mask is disposed on the surface of the surface modification mask, and 96 ⁇ 64 hollow portions of the mask correspond to another set of 96 ⁇ 64 microarray patterns of the hydrophobic region;
  • Step S805 using a process of inkjet printing (Model Dimatix Materials Printer DMP-2831) to make the hydrophobic green quantum dot ink enter the hydrophobic region through the hollow portion;
  • Step S806 drying or solidifying the quantum dot ink in the hydrophobic region.
  • the red and green quantum dot inks have a viscosity of 15 cps
  • the red quantum dot material is CdSe/ZnS
  • the green quantum dot material is CdSe/CdS
  • the hydrophobic ligands on both surfaces are oleic acid.
  • Embodiment 8 The manufacturing method provided by this embodiment differs from Embodiment 8 in that:
  • the red and green quantum dot inks used in inkjet printing have a viscosity of 5 cps.
  • Embodiment 8 The manufacturing method provided by this embodiment differs from Embodiment 8 in that:
  • Ultrasonic spraying is used to pass the hydrophobic red quantum dot ink and the green quantum dot ink into the hydrophobic region through the hollow portion, and the ultrasonic frequency in the above ultrasonic spraying process is 120 kHz.
  • Step S1101 immersing the mask in a solution having a hydrophobic material, the hydrophobic material being heptadecafluorodecyltrimethoxysilane, so that the hydrophobic material is fixed on the surface of the mask;
  • Step S1102 separating a mask plate to which a hydrophobic material is fixed, and drying or curing the mask;
  • the first mask is disposed on the first surface of the mask having 96 ⁇ 64 hollow portions, and the first mask is composed of 96 ⁇ 64 first shielding portions and the first transparent portion connecting the first shielding portions.
  • the light portion is composed of a first shielding portion corresponding to the hollow portion, and the area of each of the first shielding portions corresponding to each other is larger than the area of each hollow portion, and ultraviolet light of 185 nm and 254 nm wavelength is emitted by the UV lamp and the ultraviolet light is passed.
  • the first mask performs 5 minutes of ultraviolet ozone photodeoxidation on the first surface of the mask, and then uses UV light to emit ultraviolet light of 185 nm and 254 nm wavelength to the second surface of the mask opposite to the first surface of the mask. Ultraviolet ozone photolysis was performed for 5 minutes to form a hydrophilic surface on the surface to which the light was irradiated, and the remaining surface of the mask formed a hydrophobic surface, and the hydrophobic surface surrounds the hollow portion.
  • Step S1201 immersing the mask in a solution having a hydrophobic material, the hydrophobic material being heptafluorodecyltrimethoxysilane, so that the hydrophobic material is fixed on the surface of the mask;
  • Step S1202 separating the mask plate to which the hydrophobic material is fixed from the solution, and drying or curing the mask;
  • Step S1203 the second mask is disposed on the mask plate having 96 ⁇ 64 hollow portions, and the second mask is composed of 96 ⁇ 64 second light transmitting portions and a second shielding portion connecting the second light transmitting portions.
  • the second light transmitting portion is in one-to-one correspondence with the hollow portion, and the area of each of the second light transmitting portions corresponding to each other is larger than the area of each hollow portion, and ultraviolet light of 185 nm and 254 nm wavelength is emitted by the UV lamp and the ultraviolet light is passed through
  • the mask is subjected to ultraviolet ozone photodeoxidation for 5 minutes to form a hydrophilic surface on the surface of the corresponding second light transmitting portion of the mask, and the remaining surface of the mask forms a hydrophobic surface, and the hydrophilic surface surrounds the hollow surface. unit.
  • Step S1301 providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having 96 ⁇ 64 mutually isolated sub-pixel regions, the first electrode substrate being a substrate having an anode layer, and the anode layer being an ITO anode;
  • Step S1302 the surface modification mask provided in Embodiment 12 is disposed on a side of the first electrode substrate having a pixel isolation structure, and the hollow portion of the surface modification mask corresponds to the sub-pixel region, and the surface modification mask is a modified surface comprising a hydrophilic surface and a hydrophobic surface, the hydrophilic surface surrounding the hollow portion, and the modified surface other than the hydrophilic surface being a hydrophobic surface;
  • Step S1303 using an inkjet printing (model Dimatix Materials Printer DMP-2831) process, the aqueous solution of PEDOT:PSS as the hole injection layer ink enters the corresponding sub-pixel region through the hollow portion;
  • Step S1304 drying or solidifying the hole injection layer ink in the sub-pixel region to form a hole injection layer
  • Step S1305 performing steps S1302 to S1304 again, in step S1302 of the above-mentioned repeating process, using the surface-modified mask provided in Embodiment 11, using the hole transport layer ink in the step S1303 of the above-mentioned repeating process, and the cavity
  • the transport layer ink is a toluene solution of poly(9-vinyl)carbazole (PVK) to form a hole transport layer in step S1304;
  • Step S1306 performing steps S1302 to S1304 again, in step S1302 of the above-mentioned repeating process, using the surface-modified mask provided in Embodiment 11, using quantum dot material ink in the step S1303 of the above-mentioned repeating process, and the quantum dot material
  • the ink is a decane solution of CdSe/CdS to form a light-emitting layer in step S1304;
  • Step S1307 performing steps S1302 to S1304 again, in step S1302 of the above-mentioned repeating process, using the surface-modified mask provided in Embodiment 12, using the electron transport layer ink and the electron-injecting layer ink in step S1303 of the above-mentioned repeating process
  • the electron transport layer ink and the electron injection layer ink are a butanol solution of ZnO to form an electron transport and injection layer in step S1304;
  • step S1308 the second electrode is evaporated on the side of the electron injection layer away from the first electrode substrate, and the material forming the cathode layer is Ag.
  • the manufacturing method provided by this embodiment differs from Embodiment 13 in that:
  • the electron transport and injection layer ink, the quantum dot material ink, the hole transport layer ink and the hole injection layer ink are respectively introduced into the sub-pixel region by ultrasonic spraying, and the ultrasonic frequency in the ultrasonic spraying process is 120 kHz.
  • the manufacturing method provided by this embodiment differs from the embodiment 14 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 180 kHz.
  • the manufacturing method provided by this embodiment differs from the embodiment 14 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 45 kHz.
  • the manufacturing method provided by this embodiment differs from the embodiment 14 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 90 kHz.
  • the coupling agent and the initiator are mixed in a solvent to form a substrate treatment liquid, and one surface of the light-transmitting substrate is placed in the substrate treatment liquid, and the coupling agent is bonded and fixed on the surface of the light-transmitting substrate to form a bond.
  • a surface the first reaction raw material is disposed on the bonding surface, covering the first reaction raw material located in the first region, and performing purple on the first reaction raw material located in the second region External irradiation, so that the first reaction raw material and the coupling agent are grafted under ultraviolet irradiation to form a hydrophobic region, the first reaction raw material in the first region is removed, and the second region is disposed on the first region and the second covering region.
  • the reaction raw material covers the second reaction raw material located in the second covering region, and irradiates the second reaction raw material located in the first region with ultraviolet light, so that the second reaction raw material and the coupling agent are grafted under ultraviolet irradiation, thereby Forming a hydrophilic region;
  • the transparent substrate is glass
  • the coupling agent is chlorine (dimethyl)vinylsilane
  • the initiator is 4-dimethylpyridine
  • the first reaction raw material is 1H, 1H, 2H, 2H-perfluoroantimonyl
  • the second reaction starting material, mercaptoethylamine has a hydrophobic second region corresponding to two sets of 96 x 64 microarray patterns.
  • the method for fabricating the quantum dot film provided in this embodiment adopts the surface modified mask in the embodiment 11 and the surface modified transparent substrate in the embodiment 18, and the manufacturing method comprises the following steps:
  • Step S1901 the surface modification mask is disposed on the first surface, and the surface modified 96 ⁇ 64 hollow portions correspond to one of the 96 ⁇ 64 microarray patterns of the hydrophobic region;
  • Step S1902 using a inkjet printing (Model Dimatix Materials Printer DMP-2831) process to make a hydrophobic red quantum dot ink enter the hydrophobic region through the hollow portion;
  • Step S1903 drying or solidifying the quantum dot ink in the hydrophobic region
  • Step S1904 the surface modification mask is disposed on the first surface, and the surface modified 96 ⁇ 64 hollow portions correspond to another set of 96 ⁇ 64 microarray patterns of the hydrophobic region;
  • Step S1905 using a process of inkjet printing (Model Dimatix Materials Printer DMP-2831) to make a hydrophobic green quantum dot ink enter the hydrophobic region through the hollow portion;
  • Step S1906 drying or solidifying the quantum dot ink in the hydrophobic region
  • the red and green quantum dot inks have a viscosity of 15 cps
  • the red quantum dot material is CdSe/ZnS
  • the green quantum dot material is CdSe/CdS
  • the hydrophobic ligands on both surfaces are oleic acid.
  • the manufacturing method provided by this embodiment differs from Embodiment 19 in that:
  • the red and green quantum dot inks used in inkjet printing have a viscosity of 5 cps.
  • the manufacturing method provided by this embodiment differs from Embodiment 19 in that:
  • Ultrasonic spraying is used to pass the hydrophobic red quantum dot ink and the green quantum dot ink into the hydrophobic region through the hollow portion, and the ultrasonic frequency in the above ultrasonic spraying process is 120 kHz.
  • the manufacturing method provided by this embodiment differs from the embodiment 21 in that:
  • the ultrasonic frequency in the ultrasonic spray process is 45 kHz.
  • the steps of the method for fabricating the electroluminescent device provided by the present comparative example include:
  • Step Sd101 providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having 96 ⁇ 64 mutually isolated sub-pixel regions, and the first electrode substrate is a substrate having an anode layer;
  • Step Sd102 using inkjet printing (model Dimatix Materials Printer DMP-2831) to inject the hole injection layer into the sub-pixel region;
  • Step Sd103 drying or solidifying the hole injection layer in the sub-pixel region to form a hole injection layer
  • step Sd104 steps Sd102 to Sd103 are repeated, and hole transport layer ink, quantum dot material ink, and electron transport layer ink are respectively used in step Sd103 of the above-mentioned repeating process to sequentially form a hole transport layer, a light emitting layer, and the like in step Sd104.
  • Electron transport layer ink is respectively used in step Sd103 of the above-mentioned repeating process to sequentially form a hole transport layer, a light emitting layer, and the like in step Sd104.
  • Step Sd105 providing a second electrode on a side of the electron transport layer remote from the first electrode substrate,
  • the electron injection layer ink, the electron transport layer ink, the quantum dot material ink, the hole transport layer ink, and the hole injection layer ink were the same as in the third embodiment.
  • the steps of the method for fabricating the photoluminescent device provided by the present comparative example include:
  • Step Sd201 coating a photoresist on the first surface of the transparent substrate, and then performing exposure and development in sequence to form a pixel isolation structure, the pixel isolation structure having two sets of 96 ⁇ 64 mutually isolated sub-pixel regions, and pixels
  • the exposed surface of the isolation structure is a hydrophilic surface.
  • adjacent sidewalls of the isolation substrate are perpendicular to the substrate, and the isolation substrate between adjacent sidewalls is a spacer strip, and a side surface of the spacer strip away from the substrate Plane
  • Step Sd202 spin-coating a red quantum dot material on a light-transmissive substrate having a pixel isolation structure, and then sequentially performing a baking process, an exposure process, a development process, and a drying process on the light-transmissive substrate provided with the red quantum dot material to obtain 96 ⁇ . 64 red quantum dot arrays;
  • Step Sd203 spin-coating the green quantum dot material on the substrate, and then sequentially baking, exposing, developing, and drying the transparent substrate provided with the green quantum dot material to obtain 96 ⁇ 64 green quantum dot arrays.
  • the transparent substrate is glass
  • the material forming the exposed surface is polyimide
  • the red quantum dot material ink comprises CdSe/ZnS
  • the green quantum dot material comprises CdSe/CdS
  • the quantum dot material ink has a viscosity of 15 cps.
  • the steps of the method for fabricating the electroluminescent device provided by the present comparative example include:
  • Step Sd301 providing a first electrode substrate having a pixel isolation structure, the pixel isolation structure having 96 ⁇ 64 mutually isolated sub-pixel regions, and the first electrode substrate is a substrate having an anode layer;
  • Step Sd302 using a precision inkjet printing device (Jetlab II high-precision nano material deposition inkjet printing system) to make the hole injection layer ink enter the sub-pixel region;
  • Step Sd303 drying the hole injection layer in the sub-pixel region to form a hole injection layer
  • step Sd304 steps Sd302 to Sd303 are repeated, and hole transport layer ink, quantum dot material ink, and electron transport layer ink are respectively used in step Sd303 of the above-mentioned repeating process to sequentially form a hole transport layer, a light emitting layer, and the like in step Sd304.
  • Electron transport layer ink is respectively used in step Sd303 of the above-mentioned repeating process to sequentially form a hole transport layer, a light emitting layer, and the like in step Sd304.
  • Step Sd305 providing a second electrode on a side of the electron transport layer remote from the first electrode substrate,
  • the electron injecting layer ink, the electron transporting layer ink, the quantum dot material ink, the hole transporting layer ink, and the hole injecting layer ink were the same as in the thirteenth embodiment.
  • the electroluminescent experiments were carried out on the electroluminescent devices of Examples 3 to 7 and Comparative Example 1, and the control circuit only caused the red sub-pixels or the green sub-pixels to emit light separately, and uniformly distributed on the electroluminescent device by a spectral scanning luminance meter (PR670). Select each position to test its color coordinates. The test results are shown in Table 1.
  • Example 3 0.6750, 0.3222 0.6751, 0.3223 0.1875, 0.7415 0.1888, 0.7431
  • Example 4 0.6752, 0.3220 0.6755, 0.3224 0.1898, 0.7435 0.1885, 0.7431
  • Example 5 0.6755, 0.3221 0.6753, 0.3229 0.1936, 0.7425 0.1945, 0.7418
  • Example 6 0.6749, 0.3225 0.6754, 0.3220 0.1882, 0.7418 0.1877, 0.7434
  • Example 7 0.6751, 0.3224 0.6748, 0.3225 0.1910, 0.7410 0.1900, 0.7435 Comparative example 1 0.6032, 0.3026 0.6147, 0.3004 0.3117, 0.5616 0.3097, 0.5775
  • the electroluminescent device obtained by the conventional inkjet printing combined with the mask plate or the ultrasonic spraying combined with the mask plate has good color coordinate consistency;
  • the change of the color coordinate is very large, and it is obvious from the value of the color coordinate that there is a significant color mixing phenomenon.
  • the sealing protective layer to the photoluminescent device of the above-mentioned Embodiments 8 to 10 and Comparative Example 2, respectively, it is disposed on the light-emitting side of the blue electroluminescent device (BOLED), and the control circuit only makes the red sub-pixel or the green color.
  • the blue backlight corresponding to the sub-pixel emits light alone.
  • the corresponding red quantum dot or green quantum dot photoluminescence, and the spectral scanning luminance meter (PR670) is used to uniformly select two positions on the light-emitting surface to test Its color coordinates, test results are shown in Table 2.
  • Example 8 0.6755, 0.3219 0.6752, 0.3225 0.1898, 0.7454 0.1878, 0.7424
  • Example 9 0.6751, 0.3220 0.6751, 0.3225 0.1870, 0.7473 0.1904, 0.7427
  • Example 10 0.6745, 0.3222 0.6755, 0.3214 0.1941, 0.7429 0.1936, 0.7425 Comparative example 2 0.6748, 0.3225 0.6754, 0.3230 0.1895, 0.7447 0.1889, 0.7456
  • the photoluminescence device obtained by the combination of ordinary inkjet printing and mask bonding or ultrasonic spraying combined with the masking plate has good color coordinate consistency, and is utilized in the above Comparative Example 2.
  • Conventional exposure development produces a photoluminescent device that is comparable, but reduces the cost of fabrication.
  • the electroluminescent device obtained by the conventional inkjet printing combined with the mask or the combination of the ultrasonic coating and the mask is optically responsive to the electroluminescent device prepared by precision inkjet printing.
  • the photoelectric performance is equivalent.
  • the steps of the method for fabricating the photoinduced quantum dot film provided by the present comparative example include:
  • Step Sd401 coating a photoresist on the first surface of the transparent substrate, and then performing exposure and development in sequence to form a pixel isolation structure, the pixel isolation structure having two sets of 96 ⁇ 64 mutually isolated sub-pixel regions, and pixels
  • the exposed surface of the isolation structure is a hydrophilic surface.
  • adjacent sidewalls of the isolation substrate are perpendicular to the substrate, and the isolation substrate between adjacent sidewalls is a spacer strip, and a side surface of the spacer strip away from the substrate Plane
  • Step Sd402 the surface modified mask is disposed on the first surface, and the 96 ⁇ 64 hollow portions of the mask correspond to a set of sub-pixel regions;
  • Step Sd403 using an inkjet printing process to make a hydrophobic red quantum dot ink enter the hydrophobic region through the hollow portion;
  • Step Sd404 drying the red quantum dot ink in the hydrophobic region
  • Step Sd405 the surface-modified mask is disposed on the first surface, and 96 ⁇ 64 hollow portions of the mask correspond to another group of sub-pixel regions;
  • Step Sd406 using an inkjet printing process to make the hydrophobic green quantum dot ink enter the hydrophobic region through the hollow portion;
  • Step Sd407 drying the green quantum dot ink in the hydrophobic region
  • the transparent substrate is glass
  • the material forming the exposed surface is polyimide
  • the red quantum dot material ink comprises CdSe/ZnS
  • the green quantum dot material comprises CdSe/CdS
  • the quantum dot material ink has a viscosity of 15 cps.
  • the preparation method provided by the present comparative example is different from that of Comparative Example 4 in that a red and green quantum dot film is obtained by spin coating red and green quantum dot materials respectively, and the specific steps are as follows:
  • Step Sd501 spin-coating a red quantum dot material on a transparent substrate having a pixel isolation structure, and then sequentially performing a baking process, an exposure process, a development process, and a drying process on the light-transmissive substrate provided with the red quantum dot material;
  • Step Sd502 spin-coating a green quantum dot material on the substrate, and then sequentially performing a baking process, an exposure process, a development process, and a drying process on the light-transmissive substrate provided with the green quantum dot material.
  • step Sd501 and step Sd502 respectively obtain 96 ⁇ 64 red quantum dot arrays and 96 ⁇ 64 green quantum dot arrays.
  • the sealing protective layer After applying the sealing protective layer to the quantum dot films of the above-described Embodiments 19 to 22 and Comparative Examples 4 to 5, respectively, they are disposed on the light-emitting side of the blue electroluminescent device (BLED), and the electroluminescent device comprises a sequential laminated epoxy resin.
  • the electroluminescent device comprises a sequential laminated epoxy resin.
  • the photoluminescence spectra of the red and green quantum dots were integrated by the integrating sphere to obtain the photoluminescence efficiencies of the red and green quantum as shown in Table 4 below:
  • the illuminating layer or the functional layer is formed by using a technical scheme combining a mask plate and a solution method, and the dispersion of the ink to other color regions is blocked by the mask plate, thereby effectively avoiding the problem of color mixing and improving the color accuracy of the light emitting device;
  • the pixels isolation structure and the mask By combining the pixel isolation structure and the mask, not only can the pixels be fabricated by the spray process in the solution method, but also the pixels with lower precision inkjet printing devices can be used, thereby reducing the use of precision inkjet printing devices. The cost required;
  • Using a mask having a modified surface enables inks having different hydrophilicity to enter the corresponding sub-pixel regions accurately, and the pixel isolation structure prevents ink mixing between different sub-pixel regions, since the mask is placed on
  • the upper end of the pixel isolation structure is used to make a large-area panel, and the surrounding portion of the hollow portion is not easily deformed due to the support of the pixel isolation structure, thereby effectively solving the chromatic aberration caused by different ink injection amount or injection deviation in different sub-pixel regions or Other performance issues;
  • the above-described fabrication method of the present application can not only inject the ink into the desired sub-pixel region, but also reduce the fabrication cost of the quantum dot film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

一种发光器件的制作方法、发光器件及混合发光器件。该制作方法包括以下步骤:步骤S1,将具有多个镂空部的掩模板设置于基板上;步骤S2,采用溶液法使墨水通过镂空部设置于基板的表面;步骤S3,将基板表面的墨水干燥或固化,形成发光层或功能层。由于该制作方法是通过将具有多个镂空部的掩模板设置于基板上,再采用溶液法使墨水通过镂空部设置于基板的表面,然后将基板表面的墨水干燥或固化,形成发光层或功能层,从而利用掩模板阻挡了墨水向其他颜色区域的分散,有效地避免了混色问题的产生,提高了发光器件的色彩精确度。

Description

发光器件的制作方法、发光器件及混合发光器件 技术领域
本发明涉及光学技术领域,具体而言,涉及一种发光器件的制作方法、发光器件及混合发光器件。
背景技术
随着科学技术的不断发展,人们对显示器画质的要求不断提升,QLED(量子点发光二极管)显示以其高的色彩纯度、色饱和度和广色域被认为是未来最具代表性的显示技术。目前QLED器件主要利用溶液法制程来制作,如喷墨打印、丝网印刷、旋涂、狭缝涂布、喷涂等,由于显示的像素非常小,目前子像素的涂布一般利用喷墨打印工艺来进行选择性涂布,即在有像素隔离结构构筑的RGB子像素凹槽内,利用喷嘴依次打印R、G、B量子点材料墨水。由于目前蓝光QLED器件的效率较低,直接利用量子点构筑RGB显示的QLED器件还有一定难度,而传统的LED与OLED的蓝光发展较为成熟,因此可以利用量子点的RG光致结合LED或者OLED电致蓝光来实现RGB显示的方式,短期内可以较快实现。
然而,在上述喷墨打印工艺中,喷嘴喷出的液滴形态非常不稳定,常常在主液滴周围能观察到很多细小的液滴,分散出来的小液滴容易偏离原来的位置,落入到邻近子像素区域中,从而导致各子像素内材料落入量不同或混色问题的产生,进而影响了发光器件最终的性能或产生色差,降低了产品的良率。
OLED通常采用蒸镀法来制备上述电致发光器件,即在基板上方覆盖掩模板并进行多次真空热蒸镀以制备RGB像素,如在蒸镀R像素时,将GB像素对应的位置用掩模板遮盖从而不被蒸镀,上述方法中由于材料的利用率较低,从而导致成本极高,基于上述不足,目前溶液法来制作上述具有RGB像素的OLED电致发光器件被广泛研究,以期与溶液法制程见长的QLED电致发光器件抗衡,QLED器件有着广色域、色彩精准可控等而被认为是下一代最佳的显示技术。无论是不断抢占传统LCD显示市场的OLED显示,还是蓬勃发展以期取代OLED而使显示技术直接从LCD过渡到QLED的QLED显示,溶液法制程都是目前研究的关键。
然而,对于溶液法中的喷涂工艺而言,由于喷涂设备的材料导向性较低,使其仅适合区域涂布,不适用于点涂布;而对于溶液法制备工艺中的喷墨打印工艺,为了保证墨水的注入精度通常需要采用精密的喷墨打印设备,从而导致设备投入太过昂贵。
制备光致量子点彩膜时,利用黄光工艺制作的黑色矩阵或像素隔离结构工艺复杂、造价昂贵,而精密的喷墨打印设备投入同样高昂,为新技术的推广增加了难度。
发明内容
本发明的主要目的在于提供一种发光器件的制作方法、发光器件及混合发光器件,以解决现有技术中的发光器件由于混色而导致色差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种发光器件的制作方法,包括以下步骤:步骤S1,将具有多个镂空部的掩模板设置于基板上;步骤S2,采用溶液法使墨水通过镂空部设置于基板的表面;步骤S3,将基板表面的墨水干燥或固化,形成发光层或功能层。
进一步地,墨水为量子点材料墨水,制作方法还包括至少重复一次步骤S1至S3的过程,各次重复过程中,所采用的掩模板的镂空部对应基板的不同区域,所采用的墨水的发光颜色也不同。
进一步地,步骤S1中的掩模板具有改性表面,改性表面包括掩模板的远离基板的一侧表面,改性表面具有亲水性或疏水性;步骤S2所使用的墨水与改性表面具有不同亲疏水性。
进一步地,改性表面还包括掩模板的靠近基板的一侧表面。
进一步地,改性表面为疏水性表面时,制作方法还包括形成改性表面的过程:步骤S01,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面,优选疏水性材料为含氟的硅烷偶联剂;步骤S02,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行干燥处理,以形成具有疏水性的改性表面。
进一步地,制作方法还包括对掩模板进行预处理的过程,预处理的过程包括:对掩模板的表面进行紫外线臭氧光解氧化,以使掩模板的亲水性表面完全裸露。
进一步地,步骤S1中的基板具有像素隔离结构,且像素隔离结构具有多个相互隔离的子像素区域,镂空部对应各子像素区域设置;步骤S2使墨水通过镂空部进入对应的子像素区域中。
进一步地,步骤S1中的基板的表面具有亲水区域和疏水区域,镂空部对应亲水区域或疏水区域设置;步骤S2使疏水性的墨水通过镂空部进入疏水区域中,或使亲水性的墨水通过镂空部进入亲水区域中。
进一步地,墨水为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水和电子传输材料墨水中的任一种,在步骤S3中,将墨水干燥,以形成对应的空穴注入层、空穴传输层、电子注入层或电子传输层;或墨水为量子点材料墨水或有机发光材料墨水,在步骤S3中,将墨水干燥,以形成对应的量子点发光层或有机发光层。
进一步地,所述墨水为电极材料墨水,在所述步骤S3中,将所述墨水干燥,以形成对应的电极层。
进一步地,所述墨水为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水、电极材料墨水和电子传输材料墨水中的任一种,在所述步骤S3中,将所述墨水固化,以形成对应的空穴注入层、空穴传输层、电子注入层、电极层或电子传输层;或所述墨水为量子点材 料墨水或有机发光材料墨水,在所述步骤S3中,将所述墨水固化,以形成对应的量子点发光层或有机发光层。
进一步地,步骤S2中采用喷涂工艺或喷墨打印工艺以使墨水通过镂空部设置于基板的表面,喷涂工艺优选为超声喷涂。
根据本发明的另一方面,提供了一种发光器件,发光器件由上述制作方法制备而成,发光器件为电致发光器件或光致发光器件。
根据本发明的另一方面,还提供了一种混合发光器件,发光器件包括电致发光器件以及设置于电致发光器件出光侧的光致发光器件,电致发光器件和/或光致发光器件为制作方法制备而成。
根据本发明的另一方面,还提供了一种表面改性掩模板,表面改性掩模板具有多个镂空部,表面改性掩模板具有改性表面,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,且第一改性表面和第二改性表面不同且分别选自亲水性表面和疏水性表面中的一种。
根据本发明的另一方面,还提供了一种掩模板的表面改性方法,该表面改性方法包括以下步骤:对具有多个镂空部的掩模板的表面进行改性,形成改性表面,其中,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,且第一改性表面和第二改性表面不同且分别具有亲水性或疏水性。
进一步地,表面改性方法包括:步骤S01’,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面,优选疏水性材料为含氟的硅烷偶联剂;步骤S02’,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行干燥处理或固化处理;步骤S03’,将第一光罩设置于掩模板的第一表面上,第一光罩由多个第一遮挡部以及连接各第一遮挡部的第一透光部组成,第一遮挡部与镂空部一一对应,且各第一遮挡部的面积大于与其对应的各镂空部的面积,通过第一光罩对掩模板的第一表面进行紫外线臭氧光解氧化,再对掩模板的与其第一表面相对的第二表面进行紫外线臭氧光解氧化,以形成具有亲水性的第二改性表面,掩模板的其余表面构成具有疏水性的第一改性表面;或将第二光罩设置于掩模板上,第二光罩由多个第二透光部以及连接各第二透光部的第二遮挡部组成,且第二透光部与镂空部一一对应,且各第二透光部的面积大于与其对应的各镂空部的面积,对掩模板进行紫外线臭氧光解氧化,以使掩模板的对应第二透光部的表面形成具有亲水性的第一改性表面,掩模板的其余表面构成具有疏水性的第二改性表面。
根据本发明的另一方面,还提供了一种电致发光器件的制作方法,该制作方法包括以下步骤:步骤S1’,提供具有像素隔离结构的第一电极基板,像素隔离结构具有多个相互隔离的子像素区域;步骤S2’,将上述的表面改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,表面改性掩模板的第一改性表面远离第一电极基板设置,且表面改性掩模板的一个或多个镂空部对应至少部分子像素区域中的各子像素区域设置;步骤S3’,采用溶液法使与表面 改性掩模板的第一改性表面具有相同亲疏水性的墨水通过镂空部进入对应的子像素区域中;步骤S4’,将子像素区域中的墨水干燥或固化,形成发光层或功能层。
进一步地,墨水为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水和电子传输层材料墨水中的任一种,在步骤S4’中,将墨水干燥,以形成对应的空穴注入层、空穴传输层、电子注入层或电子传输层;或墨水为量子点材料墨水和有机发光材料墨水中的任一种,在步骤S4’中,将墨水干燥,以形成对应的量子点发光层或有机发光层。
进一步地,当墨水为量子点材料墨水时,制作方法还包括至少重复一次步骤S2’至S4’的过程,各次重复过程中,所采用的表面改性掩模板的镂空部对应不同的子像素区域,所采用的墨水的发光颜色也不同。
进一步地,步骤S3’中采用喷涂工艺或喷墨打印工艺以使墨水通过镂空部进入子像素区域中,喷涂工艺优选为超声喷涂。
进一步地,超声喷涂采用的超声频率为45kHz~180kHz。
进一步地,在步骤S4’之后,制作方法还包括以下步骤:步骤S5’,当在步骤S4’中形成发光层时,在发光层的远离第一电极基板的一侧设置第二电极,或步骤S5’,当在步骤S4’中形成功能层时,功能层为第一注入层或第一传输层,在第一注入层或第一传输层的远离第一电极基板的一侧设置发光层,并在发光层的远离第一电极基板的一侧设置第二电极。
进一步地,当在步骤S4’中形成功能层,且功能层为第一注入层时,在步骤S5’中,制作方法还包括以下过程:在设置发光层的过程之前,重复步骤S2’至S4’,以在第一注入层的表面设置第一传输层;在设置发光层的过程之后,重复步骤S2’至S4’,以在发光层的表面设置第二传输层;以及在设置第二传输层的过程之后,重复步骤S2’至S4’,以在第二传输层的表面设置第二注入层。
根据本发明的另一方面,还提出了一种量子点膜的制作方法,该量子点膜的制作方法包括以下步骤:步骤a,在透光基板的第一表面上形成亲水区域和疏水区域;步骤b,将具有多个镂空部的表面改性掩模板设置于该透光基板的第一表面上,并使表面改性掩模板中的镂空部对应亲水区域或疏水区域设置,表面改性掩模板具有改性表面,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,第一改性表面和第二改性表面不同且分别选自亲水性表面和疏水性表面中的一种,且第一改性表面位于表面改性掩模板的远离该透明基板的第一表面的一侧;步骤c,第一改性表面为疏水性表面,使疏水性的量子点墨水通过镂空部进入疏水区域中,或第一改性表面为亲水性表面,使亲水性的量子点墨水通过镂空部进入亲水区域中;步骤d,将亲水区域或疏水区域中的量子点墨水干燥。上述量子点墨水即为上述量子点材料墨水。
进一步地,步骤a包括:步骤S001,在透光基板的表面设置包括第一反应原料的原料;步骤S002,遮盖位于第一区域的第一反应原料,并对位于第二区域的第一反应原料进行紫外光照射,第一反应原料在第二区域形成第二遮盖区域;步骤S003,去除第一区域的第一反应 原料,在第一区域和第二遮盖区域上设置第二反应原料;步骤S004,遮盖位于第二遮盖区域的第二反应原料,并对位于第一区域的第二反应原料进行紫外光照射,第二反应原料在第一区域形成第一遮盖区域,然后去除第二遮盖区域上的第二反应原料,其中,第一反应原料和第二反应原料分别选自亲水性反应物和疏水性反应物中的一种,且二者的亲疏水性能相反,第一遮盖区域和第二遮盖区域对应形成亲水区域和疏水区域。
进一步地,制作方法还包括制备表面改性掩模板的过程:步骤S01,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面,优选疏水性材料为含氟的硅烷偶联剂;步骤S02,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行干燥处理或固化处理;步骤S03,将第一光罩设置于掩模板的第一表面上,第一光罩由多个第一遮挡部以及连接各第一遮挡部的第一透光部组成,第一遮挡部与镂空部一一对应,且各第一遮挡部的面积大于与其对应的各镂空部的面积,通过第一光罩对第一表面进行紫外线臭氧光解氧化,再对掩模板的与第一表面相对的第二表面进行紫外线臭氧光解氧化,以形成具有亲水性的第二改性表面,掩模板的其余表面构成具有疏水性的第一改性表面;或将第二光罩设置于掩模板上,第二光罩由多个第二透光部以及连接各第二透光部的第二遮挡部组成,且第二透光部与镂空部一一对应,且一一对应的各第二透光部的面积大于各镂空部的面积,对掩模板进行紫外线臭氧光解氧化,以使掩模板的对应第二透光部的表面形成具有亲水性的第一改性表面,掩模板的其余表面构成具有疏水性的第二改性表面。
进一步地,步骤c采用喷涂工艺或喷墨打印工艺以使量子点墨水通过镂空部进入亲水区域或疏水区域中。
进一步地,喷涂工艺为超声喷涂。
进一步地,在第一表面上形成多个亲水区域和多个疏水区域,且各亲水区域和各疏水区域交替排列。
进一步地,亲水性的量子点墨水包括亲水性量子点,且亲水性量子点为表面配体含亲水基团的量子点;疏水性的量子点墨水包括疏水性量子点,且疏水性量子点为表面配体含疏水基团的量子点。
进一步地,量子点墨水中的量子点为红色量子点和/或绿色量子点。
根据本发明的另一方面,还提供了一种量子点膜,量子点膜由上述的制作方法制作而成。
根据本发明的另一方面,还提供了一种显示器件,显示器件包括电致发光器件以及设置于电致发光器件出光侧的量子点膜,量子点膜为上述的量子点膜。应用本发明的技术方案,提供了一种发光器件的制作方法,由于该制作方法是通过将具有多个镂空部的掩模板设置于基板上,再采用溶液法使墨水通过镂空部设置于基板的表面,然后将基板表面的墨水干燥或固化,形成发光层或功能层,从而利用掩模板阻挡了墨水向其他颜色区域的分散,有效地避免了混色问题的产生,提高了发光器件的色彩精确度。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施方式所提供的发光器件的制作方法的流程示意图;
图2示出了本发明实施方式所提供的一种表面改性掩模板的俯视结构示意图;
图3示出了本发明实施方式所提供的电致发光器件的制作方法的流程示意图;
图4示出了本发明实施例13中执行完步骤S1306后子像素区域的光学显微镜照片;以及
图5示出了本发明实施方式所提供的量子点膜的制作方法的流程示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中的量子点材料墨水又可以称为量子点墨水,该墨水除了包括粘度较小的水状墨水,也包括粘度较大的胶状墨水。
本申请中的亲水和疏水的含义是:亲水性的墨水是指墨水中带有极性基团的分子,对水有大的亲和能力,可以吸引水分子,或溶解于水。亲水性的表面是指由这种带有极性基团的分子形成的固体材料的表面,其易被水所润湿。而具有这种易被水亲润的特性都是物质的亲水性。疏水性,在化学里指的是一个分子(疏水物)与水相排斥的物理性质,疏水性墨水是指墨水中含有与水相互排斥的物理性质的分子,疏水性的表面是指由这种与水相互排斥的物理性质的分子形成的固体材料的表面。例如,如果液滴(水的)扩散,润湿较大面积,接触 角小于90度,则称表面是亲水性的。如果液滴形成一个球体,几乎不触及表面,液滴接触角大于90度,且表面称是疏水性的,或憎水的。
正如背景技术中所介绍的,现有喷墨打印工艺中由于喷嘴喷出后墨水液滴分散,分散出来的小液滴容易偏离原来的位置,落入其他颜色的区域中,从而导致混色问题的产生,进而影响了发光器件最终的颜色而产生色差。本申请的发明人针对上述问题进行研究,提出了一种发光器件的制作方法,如图1所示,包括以下步骤:步骤S1,将具有多个镂空部的掩模板设置于基板上;步骤S2,采用溶液法使墨水通过镂空部设置于基板的表面;步骤S3,将基板表面的墨水干燥,形成发光层或功能层。
本申请发明人还提出了一种发光器件的制作方法,还包括以下步骤:步骤S1,将具有多个镂空部的掩模板设置于基板上;步骤S2,采用溶液法使墨水通过镂空部设置于基板的表面;步骤S3,将基板表面的墨水固化,形成发光层或功能层。
本发明的上述制作方法,通过将具有多个镂空部的掩模板设置于基板上,并使镂空部对应基板上的目标区域,基板上的非目标区域可以对应掩模板的镂空部也可以对应掩模板的非镂空部,再采用溶液法使墨水通过镂空部设置于基板的表面,然后将基板表面的墨水干燥或固化,形成发光层或功能层,从而利用掩模板阻挡了墨水向其他颜色区域的分散,尤其是量子点墨水向其他邻近区域扩散,有效地避免了混色问题的产生,提高了发光器件的色彩精确度。
上述的溶液法选自喷墨打印、丝网印刷、旋涂、狭缝涂布、喷涂中的一种或多种组合,其中,喷涂包括超声喷涂。上述的墨水可以包括粘度较大的胶水状物质,也可以较小的物质,优选上述墨水的粘度在50cps及以下。
下面将更详细地描述根据本发明提供的发光器件的制作方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。
本申请中的墨水可以为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水、电极材料墨水和电子传输材料墨水中的任一种,在步骤S3中,将墨水干燥或固化,以形成对应的空穴注入层、空穴传输层、电子注入层、电极层或电子传输层;本申请中的墨水可以为量子点材料墨水或有机发光材料墨水,在步骤S3中,将墨水干燥或固化,以形成对应的量子点发光层或有机发光层。并且,为了使发光器件能够具有多种颜色的出射光,优选上述量子点材料墨水中的量子点独立地选自红色量子点、蓝色量子点和绿色量子点中的任一种或多种。
当上述墨水为量子点材料墨水时,在执行步骤S3之后,制作方法还可以包括至少重复一次步骤S1至S3的过程,各次重复过程中,所采用的掩模板的镂空部对应基板的不同区域,所采用的墨水的发光颜色也不同。通过在基板的目标区域上设置不同发光颜色的量子点材料墨水并干燥或固化,以调整发光器件最终的发光颜色;并且,通过在基板表面的不同位置上设置红色量子点、蓝色量子点和绿色量子点,从而实现RGB的全彩显示。
并且,根据材料种类的不同,上述墨水可以分为亲水性墨水和疏水性墨水。其中,当上述量子点材料墨水为亲水性墨水时,上述亲水性墨水包括亲水性量子点,且亲水性量子点为表面配体含亲水基团的量子点,优选亲水基团为羧基、氨基、羟基或巯基;当上述量子点材料墨水为疏水性墨水时,上述疏水性墨水包括疏水性量子点,且疏水性量子点为表面配体含疏水基团的量子点,优选疏水基团为烷烃链或酯基。
上述具有亲水性或疏水性的量子点材料墨水还可以包括可固化树脂或其单体以及溶剂(或称作分散剂)。其中,溶剂可以选自沸点为40~250℃之间的长链烃、醇、酯和醚的混合物作为有机溶剂。优选地,烃为直链或支链烷烃,例如,烃为C6-10烷烃。有机溶剂可以为氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、烷基苯、硝基苯、正己烷、环己烷、正庚烷、环庚烷、二氧六环、二氯甲烷、三氯甲烷、二氯乙烷、氯仿、氯苯、1,4二氧杂环己烷、1,2二氯乙烷、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、四氢萘、萘烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜氯仿、四氢呋喃、二氯甲烷、甲苯、正己烷、甲醇、乙醇、丙醇、丁醇、丙酮、二氧六环、二甲基甲酰胺和二甲基亚砜。其中,可固化树脂选自环氧树脂、丙烯酸树脂、有机硅树脂,或者对应的单体交联形成可固化树脂。上述亲水性和疏水性量子点墨水中还可以包括带双键的交联剂,光固化剂或热固化剂等。
在一种优选的实施方式中,步骤S1中的掩模板具有改性表面,改性表面包括掩模板的远离基板的一侧表面,改性表面具有亲水性或疏水性;步骤S2所使用的墨水与改性表面具有不同亲疏水性。通过使疏水性墨水通过具有亲水性改性表面的掩模板的镂空部设置于基板上的对应位置,或使亲水性墨水通过具有疏水性改性表面的掩模板的镂空部设置于基板上的对应位置,能够使墨水不会粘附在掩模板上,从而提高了材料的导向性,进而不仅能够利用溶液法中的喷涂工艺来制作像素,还能够利用精度较低的喷墨打印设备来制作像素,降低了采用精密喷墨打印设备所需的成本。
在上述优选的实施方式中,为了利用掩模板进一步提高材料的导向性,更为优选地,改性表面还包括掩模板的靠近基板的一侧表面。通过使掩模板的靠近基板的一侧也具有改性表面,且改性表面与墨水具有不同亲疏水性,能够使具有亲水性或疏水性的墨水在从镂空部通过时不会粘附在靠近基板的一侧表面上。
现有技术一般采用金属材料或其他亲水性耐紫外老化的材料制备掩模板。由于金属表面的氧化层与水能很好的亲和,从而能够使大部分金属表面都是亲水的,进而能够使疏水性墨水能够通过上述掩模板的镂空部设置于基板上的对应位置,而不会粘附在表面改性掩模板上,进而提高了疏水性材料的导向性。
为了得到具有疏水性改性表面的掩模板,优选地,上述制作方法还包括在掩模板上形成改性表面的过程:步骤S01,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面;步骤S02,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行干燥或固化处理,以形成具有疏水性的改性表面。通过上述优选的实施方式能够使亲水性墨水通过上述掩模板的镂空部设置于基板上的对应位置,而不会粘附在表面改性掩模板上,进而提高 了亲水性材料的导向性。为了使制备而成的掩模板具有更好的疏水性,优选疏水性材料为含氟的硅烷偶联剂。
此外,为了充分利用掩模板的亲水性,优选地,形成改性表面的过程包括:对掩模板表面进行紫外线臭氧光解氧化,以形成具有亲水性的改性表面。通过对掩模板表面进行紫外线臭氧光解氧化,以将掩模板表面残留的各种油污、化学物质去除露出亲水性的金属表面,在上述可选的实施例中,以将疏水的含氟硅烷偶联剂去除露出亲水性的金属表面,从而得到具有亲水性改性表面的掩模板。上述紫外线臭氧光解氧化的工艺条件本领域技术人员可以根据现有技术进行设定。
由于采用了具有改性表面的掩模板或掩模板的表面完全裸露,因此上述步骤S2中可以采用喷涂工艺或喷墨打印工艺以使墨水通过镂空部设置于基板的表面。优选上述亲水性墨水或疏水性墨水的粘度≤50cps,以保证设备喷头能很好的控制墨水出液;并且,为了保证喷头能有效的将墨水雾化开,优选地,上述喷涂工艺为超声喷涂,而为了提高优选亲水性墨水或疏水性墨水的喷涂效果,优选超声喷涂采用的超声频率为45kHz~180kHz,优选亲水性墨水或疏水性墨水的粘度≤10cps。
在一种优选的实施方式中,步骤S1中的基板具有像素隔离结构,且像素隔离结构具有多个相互隔离的子像素区域,镂空部对应各子像素区域设置;步骤S2使墨水通过镂空部进入对应的子像素区域中。上述像素隔离结构能够有效地防止不同子像素区域间的墨水混色,提高了色彩精准性。
为了降低由于大面积制备发光器件时掩模板形变而导致墨水落入对应子像素区的量或位置发生偏差从而对色彩精准性带来的影响,上述掩模板可以与基板的具有像素隔离结构的一侧表面接触设置;并且,为了使亲水性墨水或疏水性墨水通过掩模板的镂空部更准确地进入像素隔离结构的子像素区域中,优选地,上述镂空部的面积小于等于对应的子像素区域的面积,更为优选地,镂空部与对应的子像素区域的形状一致。
更为优选地,像素隔离结构的裸露表面包括亲水性表面或疏水性表面。当上述像素隔离结构的裸露表面为亲水性表面时,在步骤S2中,使疏水性墨水通过镂空部设置于基板的表面;当上述像素隔离结构的裸露表面为疏水性表面时,在步骤S2中,在使亲水性墨水通过镂空部设置于基板的表面,从而通过使上述像素隔离结构的表面与墨水具有不同的亲疏水性,在形成发光层或功能层的步骤中能够使墨水不会残留在像素隔离结构的上表面或者侧壁,而是在重力作用下回流到像素区域中,进而有效地防止相邻像素区域之间的混色。
当采用本发明的上述制作方法制作光致发光器件时,在另一种优选的实施方式中,步骤S1中的基板的表面具有亲水区域和疏水区域,镂空部对应亲水区域或疏水区域设置;步骤S2使疏水性的墨水通过镂空部进入疏水区域中,或使亲水性的墨水通过镂空部进入亲水区域中。上述亲水区域和疏水区域能够使透光基板的表面上形成多个被分隔开的子像素区域,使亲水性量子点墨水进入亲水区域,疏水区域作为隔离结构,或使疏水性的量子点墨水进入疏水区域,亲水区域作为隔离结构,从而有效地防止了不同子像素区域间的量子点墨水混色,提高 了色彩精准性;并且,相比在透明基板上设置像素隔离结构的制作方法,上述优选的实施方式不仅能够同样地使墨水注入所需的子像素区域,同时还降低了光致发光器件的制作成本。
更为优选地,在基板的表面上形成多个亲水区域和多个疏水区域,且各亲水区域和各疏水区域交替排列。采用上述优选的实施方式同样能够在透光基板的表面上形成多个相互隔离的子像素区域,从而通过将不同颜色的量子点墨水分别进入到不同的子像素区域中,使上述量子点在蓝色背光的照射下能够形成发光阵列,进而制得光致发光器件实现RGB的全彩显示。
在上述优选的实施方式中,为了使亲水性墨水或疏水性墨水通过掩模板的镂空部更准确地进入基板的亲水性或疏水性子像素区域中,更为优选地,掩模板的镂空部的面积小于等于对应的亲水区域或疏水区域的面积;掩模板的镂空部与对应的亲水区域或疏水区域的形状一致。
上述具有亲水区域和疏水区域的基板的制备方法可以包括以下步骤:步骤S001,在基板的表面设置包括第一反应原料的原料;步骤S002,遮盖位于第一区域的第一反应原料,并对位于第二区域的第一反应原料进行紫外光照射,第一反应原料在第二区域形成第二遮盖区域;步骤S003,去除第一区域的第一反应原料,在第一区域和第二遮盖区域上设置第二反应原料;步骤S004,遮盖位于第二遮盖区域的第二反应原料,并对位于第一区域的第二反应原料进行紫外光照射,第二反应原料在第一区域形成第一遮盖区域,然后去除第二遮盖区域上的第二反应原料,其中,第一反应原料和第二反应原料选择亲水性反应物和疏水性反应物,且二者的亲疏性能相反,第一遮盖区域和第二遮盖区域对应亲水区域和疏水区域。
在上述基板的制备方法中,上述包括第一反应原料的原料还可以包括溶剂、偶联剂和引发剂。此时,上述步骤S001包括以下过程:A、将偶联剂和引发剂在溶剂中混合,形成基板处理液;B、将基板的至少一侧表面放置于基板处理液中,使偶联剂键合固定在透光基板的表面上并形成键合表面;C、将第一反应原料设置于键合表面。在上述步骤S002中,通过对位于第二区域的第一反应原料进行紫外光照射,以使第一反应原料与偶联剂在紫外照射下进行接枝反应,从而形成上述第二遮盖区域;在上述步骤S004中,通过对位于第一区域的第二反应原料进行紫外光照射,以使第二反应原料与偶联剂在紫外照射下进行接枝反应,从而形成上述第一遮盖区域。
在上述基板的制备方法中,去除第一区域的第一反应原料的过程可以包括:用溶剂洗去第一区域上的第一反应原料,然后对基板的表面进行干燥或固化处理;同样地,去除第二遮盖区域上的第二反应原料的过程包括:用溶剂洗去第二遮盖区域上的第二反应原料,然后对基板的表面进行干燥或固化处理。本领域技术人员可以根据现有技术上述清洗工艺和干燥或固化处理的工艺条件进行设定。
为了使第一反应原料与偶联剂之间以及第二反应原料与偶联剂更好地进行接枝反应,优选地,上述偶联剂的通式为(X1-X2-X3-)Si-Y,其中,Y为带有乙烯基的基团或末端带SH基的烃基,X1、X2和X3分别独立地选自Cl、CH3、OCH3、OCH2CH3和CH2CH3中的任一种,且X1、X2和X3不同时为烃基;上述第一反应原料和第二反应原料的通式为A-B,其中,A为带 有乙烯基的基团,此时Y为末端带SH基的烃基,或A为末端带SH基的烃基,此时Y为带有乙烯基的基团,B为带亲水基团的残基,此时第一反应原料或第二反应原料为亲水性反应物,优选亲水基团为磺酸基、胺基、羟基、羧基和氨基中的任一种或多种,或B为带疏水基团的残基,此时第一反应原料或第二反应原料为疏水性反应物,优选亲水基团为烃基、酯基、卤素和硝基中的任一种或多种。
本发明的上述制作方法也可以用来制作电致发光器件的发光层或功能层中的任一层或多层,此时,上述基板为第一电极基板,并且,当在上述步骤S3中形成发光层时,优选地,在步骤S3之后,制作方法还包括步骤S4:在发光层的远离第一电极基板的一侧设置第二电极。采用上述优选的实施方式能够形成结构为第一电极基板/发光层/第二电极的电致发光器件;当在步骤S3中形成功能层时,优选地,在步骤S3之后,制作方法还包括步骤S4:功能层为第一注入层或第一传输层,在第一注入层或第一传输层的远离第一电极基板的一侧设置发光层,并在发光层的远离第一电极基板的一侧设置第二电极。采用上述优选的实施方式能够形成具有功能层的电致发光器件。
在上述优选的实施方式中,当在步骤S3中形成的功能层为第一注入层时,更为优选地,在步骤S4中,制作方法还包括以下过程:在设置发光层的过程之前,重复步骤S1至S3,以在第一注入层的表面设置第一传输层;在设置发光层的过程之后,重复步骤S1至S3,以在发光层的表面设置第二传输层;以及在设置发光层的过程之后,重复步骤S1至S3,以在第二传输层的表面设置第二注入层。采用上述优选的实施方式能够形成结构为第一电极基板/第一注入层/第一传输层/发光层/第二传输层/第二注入层/第二电极的电致发光器件。
在上述电致发光器件中,当第一电极为阳极时,第二电极为阴极时,第一注入层为空穴注入层,第一传输层为空穴传输层,第二注入层为电子注入层,第二传输层为电子传输层;而当第一电极为阴极,第二电极为阳极时,第一注入层为电子注入层,第一传输层为电子传输层,第二注入层为空穴注入层,第二传输层为空穴传输层,以形成反型电致发光器件。
但是需要注意的是,电致发光器件中各层的制备工艺并不局限于上述优选的实施方式,本领域技术人员可以结合现有技术中的常规工艺制备电致发光器件的其它各层。
根据本申请的另一个方面,还提供了一种由上述制作方法制备而成的发光器件,所述发光器件为电致发光器件或光致发光器件。由于上述电致发光器件和/或上述光致发光器件是通过上述制作方法制备而成的,且该制作方法是通过将具有多个镂空部的掩模板设置于基板上,再采用溶液法使墨水通过镂空部设置于基板的表面,然后将基板表面的墨水干燥或固化,形成发光层或功能层,从而利用掩模板阻挡了墨水向其他颜色区域的分散,有效地避免了混色问题的产生,提高了具有电致发光器件和/或光致发光器件的发光器件的色彩精确度。
根据本申请的再一个方面,还提供了一种混合发光器件,该混合发光器件包括电致发光器件以及设置于电致发光器件出光侧的光致发光器件,电致发光器件和/或光致发光器件为上述的制作方法制备而成。由于上述混合发光器件中的电致发光器件和/或光致发光器件是通过上述发光器件的制作方法制备而成的,该制作方法是通过将具有多个镂空部的掩模板设置于 基板上,再采用溶液法使墨水通过镂空部设置于基板的表面,然后将基板表面的墨水干燥或固化,形成发光层或功能层,从而利用掩模板阻挡了墨水向其他颜色区域的分散,有效地避免了混色问题的产生,提高了具有电致发光器件和/或光致发光器件的混合发光器件的色彩精确度。
根据本申请另一方面,还提出了另一种表面改性掩模板,如图2所示,表面改性掩模板具有多个镂空部10,表面改性掩模板具有改性表面20,改性表面20包括第一改性表面210和第二改性表面220,第一改性表面210围绕镂空部10,第一改性表面210之外的改性表面20为第二改性表面220,且第一改性表面210和第二改性表面220分别为亲水性表面和疏水性表面。
表面改性掩模板由于具有改性表面,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,且第一改性表面和第二改性表面分别为亲水性表面和疏水性表面,从而利用上述表面改性掩模板制备发光器件时,能够使具有亲水性或疏水性墨水通过围绕有疏水性表面的镂空部进入对应的子像素区域中,或使亲水性墨水通过围绕有亲水性表面的镂空部进入对应的子像素区域中,而不会粘附在表面改性掩模板上,从而利用掩模板提高了材料的导向性,进而不仅能够利用溶液法中的喷涂工艺来制作像素,还能够利用精度较低的喷墨打印设备来制作像素,最终降低了采用精密喷墨打印设备所需的成本。
根据本申请的另一方面,还提出了一种掩模板的表面改性方法,得到的表面改性掩模板如图2所示,该表面改性方法包括以下步骤:在具有多个镂空部10的掩模板的表面设置改性表面20,改性表面20包括第一改性表面210和第二改性表面220,第一改性表面210围绕镂空部10,第一改性表面210之外的改性表面20为第二改性表面220,且第一改性表面210和第二改性表面220分别具有亲水性和疏水性。
上述掩模板的表面改性方法中由于在掩模板的表面设置改性表面,改性表面包括第一改性表面210和第二改性表面220,第一改性表面围绕镂空部10,第一改性表面210之外的改性表面为第二改性表面220,且第一改性表面210和第二改性表面220分别为亲水性表面和疏水性表面,从而利用上述表面改性后的掩模板制备量子点膜层时,能够使疏水性墨水通过围绕有疏水性表面的镂空部10进入对应的子像素区域中,或使亲水性墨水通过围绕有亲水性表面的镂空部进入对应的子像素区域中,而不会粘附在表面改性掩模板上,从而有效地防止了由于墨水粘附在掩模板上而导致进入各子像素区域中的墨水量不均,进而有效地避免了由于各子像素区域中的墨水量不均而导致的色彩精准性降低的问题。
上述掩模板一般由金属材料制成,由于金属表面的氧化层与水能很好的亲和,所以大部分金属表面都是亲水的,此处优选亲水的金属材料或其他亲水性耐紫外老化的材料。在一种优选的实施方式中,上述掩模板的表面设置改性表面20的步骤包括:步骤S01’,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面;步骤S02’,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行干燥或固化处理;步骤S03’,将第一光罩设置于掩模板的第一表面上,第一光罩由多个第一遮挡部以及连接各第一遮挡部的第一透光 部组成,第一遮挡部与镂空部10一一对应,且各第一遮挡部的面积大于与其对应的各镂空部10的面积,通过第一光罩对掩模板的第一表面进行紫外线臭氧光解氧化,再对掩模板的与该掩模板的第一表面相对的第二表面进行紫外线臭氧光解氧化,以形成具有亲水性的第二改性表面220,掩模板的其余表面构成具有疏水性的第一改性表面210;或将第二光罩设置于掩模板上,第二光罩由多个第二透光部以及连接各第二透光部的第二遮挡部组成,且第二透光部与镂空部10一一对应,且一一对应的各第二透光部的面积大于各镂空部10的面积,对掩模板进行紫外线臭氧光解氧化,以使掩模板的对应第二透光部的表面形成具有亲水性的第一改性表面210,掩模板的其余表面构成具有疏水性的第二改性表面220。
在上述设置改性表面20的步骤中,为了使制备而成的表面改性掩模板具有更好的疏水性,优选疏水性材料为含氟的硅烷偶联剂。通过对疏水性材料进行紫外线臭氧光解氧化,以将疏水的含氟硅烷偶联剂去除露出亲水性的金属表面,上述紫外线臭氧光解氧化的工艺条件本领域技术人员可以根据现有技术进行设定。
根据本申请的另一个方面,还提供了一种电致发光器件的制作方法,如图3所示,包括以下步骤:步骤S1’,提供具有像素隔离结构的第一电极基板,像素隔离结构具有多个相互隔离的子像素区域;步骤S2’,将表面改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,表面改性掩模板的第一改性表面远离第一电极基板的一侧,且表面改性掩模板的一个或多个镂空部对应至少部分子像素区域中的各子像素区域设置;步骤S3’,采用溶液法使与表面改性掩模板的第一改性表面具有相同亲疏水性的墨水通过镂空部进入对应的子像素区域中;步骤S4’,将子像素区域中的墨水干燥,形成发光层或功能层。
根据本申请的另一个方面,还提供了一种电致发光器件的制作方法,该制作方法包括以下步骤:步骤S1’,提供具有像素隔离结构的第一电极基板,像素隔离结构具有多个相互隔离的子像素区域;步骤S2’,将表面改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,表面改性掩模板的第一改性表面远离第一电极基板的一侧,且表面改性掩模板的一个或多个镂空部对应至少部分子像素区域中的各子像素区域设置;步骤S3’,采用溶液法使与表面改性掩模板的第一改性表面具有相同亲疏水性的墨水通过镂空部进入对应的子像素区域中;步骤S4’,将子像素区域中的墨水固化,形成发光层或功能层。
本发明的制作方法中由于提供了具有像素隔离结构的第一电极基板,像素隔离结构具有多个相互隔离的子像素区域,将改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,上述表面改性掩模板具有改性表面,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,且第一改性表面和第二改性表面分别为亲水性表面和疏水性表面,从而通过将上述像素隔离结构和掩模板相结合提高了材料的导向性,进而不仅能够利用溶液法中的喷涂工艺来制作像素,还能够利用精度较低的喷墨打印设备来制作像素,最终降低了采用精密喷墨打印设备所需的成本。
上述表面改性掩模板如图2所示,下面将结合图2更详细地描述根据本发明提供的电致发光器件的制作方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施 方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。
首先,执行步骤S1’:提供具有像素隔离结构的第一电极基板,像素隔离结构具有多个相互隔离的子像素区域。上述像素隔离结构用于防止不同子像素区域间的墨水混色。更为优选地,像素隔离结构的裸露表面包括亲水性表面或疏水性表面。通过使上述像素隔离结构的表面与墨水具有不同的亲疏水性,在形成发光层或功能层的步骤中能够使墨水不会残留在像素隔离结构的上表面或者侧壁,而是在重力作用下回流到像素区域中,进而有效地防止相邻像素区域之间的混色,提高了色彩精准性。
在执行步骤S1’之后,执行步骤S2’:将上述表面改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,表面改性掩模板的改性表面20位于表面改性掩模板的远离第一电极基板的一侧,且表面改性掩模板的一个或多个镂空部对应至少部分子像素区域中的各子像素区域设置。为了降低由于大面积制备电致发光器件时掩模板形变而导致墨水落入对应子像素区的量或位置发生偏差从而对色彩精准性带来的影响,上述表面改性掩模板可以与第一电极基板的表面接触设置;并且,为了使亲水性墨水或疏水性墨水通过表面改性掩模板的镂空部更准确地进入像素隔离结构的子像素区域中,优选地,上述镂空部的面积小于等于对应的子像素区域的面积,更为优选地,镂空部与对应的子像素区域的形状一致。
在执行步骤S2’之后,执行步骤S3’:采用溶液法使与表面改性掩模板的第一改性表面210具有相同亲疏水性的墨水通过镂空部进入对应的子像素区域中。由于采用了表面改性掩模板,因此上述溶液法可以为喷涂工艺或低精度的喷墨打印工艺,从而采用喷涂工艺或喷墨打印工艺以使亲水性墨水或疏水性墨水通过镂空部进入子像素区域中。优选上述亲水性墨水或疏水性墨水的粘度≤50cps,以保证设备喷头能很好的控制墨水出液;并且,为了保证喷头能有效的将墨水雾化开,优选地,上述喷涂工艺为超声喷涂,而为了提高优选亲水性墨水或疏水性墨水的喷涂效果,优选超声喷涂采用的超声频率为45kHz~180kHz,优选亲水性墨水或疏水性墨水的粘度≤10cps。
上述墨水可以为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水和电子传输层材料墨水中的任一种,也可以为量子点材料墨水和有机发光材料墨水中的任一种,通过使上述不同种类的墨水进入对应的子像素区域中,以在后续的步骤S4’中形成发光层或不同种类的功能层;并且,墨水包括亲水性墨水和疏水性墨水,当亲水性墨水或疏水性墨水为量子点材料墨水时,上述亲水性墨水包括亲水性量子点,且亲水性量子点为表面配体含亲水基团的量子点,优选亲水基团为羧基、氨基、羟基或巯基;上述疏水性墨水包括疏水性量子点,且疏水性量子点为表面配体含疏水基团的量子点,优选疏水基团为烷烃链或酯基。为了使电致发光器件能够具有各种颜色的出射光,优选上述亲水性量子点和上述疏水性量子点独立地选自红色量子点、蓝色量子点和绿色量子点中的任一种。
当上述步骤S1’中的像素隔离结构的裸露表面为亲水性表面时,在步骤S3’中,使疏水性墨水通过镂空部进入子像素区域中的步骤中;当上述像素隔离结构的裸露表面为疏水性表面时,在步骤S3’中,在使亲水性墨水通过镂空部进入子像素区域中的步骤中。上述具有亲 疏水性裸露表面的像素隔离结构能够使亲水性墨水或疏水性墨水在重力作用下回流到像素区域中,而不会残留在像素隔离结构的上表面或者侧壁,进而有效地防止相邻像素区域之间的混色。
在执行步骤S3’之后,执行步骤S4’:将子像素区域中的墨水干燥或固化,形成发光层或功能层。上述墨水干燥的工艺条件本领域技术人员可以根据现有技术进行设定;并且,当上述墨水为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水或电子传输层材料墨水时,在步骤S4’中,将墨水干燥或固化,以形成对应的空穴注入层、空穴传输层、电子注入层或电子传输层;当上述墨水为量子点材料墨水或有机发光材料墨水,在步骤S4’中,将墨水干燥或固化,以形成对应的量子点发光层或有机发光层。
当上述墨水为量子点材料墨水时,在一种优选的实施方式中,制作方法还包括至少重复一次步骤S2’至S4’的过程,各次重复过程中,所采用的表面改性掩模板的镂空部对应不同的子像素区域,不同子像素区域的墨水发光颜色彼此不同,所采用的量子点墨水可以为亲水性墨水或疏水性墨水,在上述优选地实施方式中,通过使各子像素区域中设置不同发光颜色的亲水性墨水或疏水性墨水并干燥或固化,以使电致发光器件实现全彩显示;并且,通过分别在不同的子像素区域中设置红色量子点、蓝色量子点和绿色量子点,还能够使电致发光器件实现更广的显示色域。
当在步骤S4’中形成发光层时,优选地,在步骤S4之后,制作方法还包括步骤S5’:在发光层的远离第一电极基板的一侧设置第二电极。采用上述优选的实施方式能够形成结构为第一电极基板/发光层/第二电极的电致发光器件;当在步骤S4’中形成功能层时,优选地,在步骤S4’之后,制作方法还包括步骤S5’:当在步骤S4’中形成功能层时,功能层为第一注入层或第一传输层,在第一注入层或第一传输层的远离第一电极基板的一侧设置发光层,并在发光层的远离第一电极基板的一侧设置第二电极。采用上述优选的实施方式能够形成具有功能层的电致发光器件。
当在步骤S4’中形成的功能层为第一注入层时,在一种优选的实施方式中,在步骤S5’中,制作方法还包括以下过程:在设置发光层的过程之前,重复步骤S2’至S4’,以在第一注入层的表面设置第一传输层;在设置发光层的过程之后,重复步骤S2’至S4’,以在发光层的表面设置第二传输层;以及在设置发光层的过程之后,重复步骤S2’至S4’,以在第二传输层的表面设置第二注入层。采用上述优选的实施方式能够形成结构为第一电极基板/第一注入层/第一传输层/发光层/第二传输层/第二注入层/第二电极的电致发光器件。在上述电致发光器件中,当第一电极为阳极时,第二电极为阴极时,第一注入层为空穴注入层,第一传输层为空穴传输层,第二注入层为电子注入层,第二传输层为电子传输层;而当第一电极为阴极,第二电极为阳极时,第一注入层为电子注入层,第一传输层为电子传输层,第二注入层为空穴注入层,第二传输层为空穴传输层,以形成反型电致发光器件。
但是需要注意的是,电致发光器件中各层的制备工艺并不局限于上述优选的实施方式,本发明的上述制作方法可以用来制作电致发光器件的发光层或功能层中的任一层或多层,电致发光器件的其它各层本领域技术人员可以结合现有技术中的常规工艺制备。
根据本发明的另一方面,还提出了一种量子点膜的制作方法,如图5所示,包括以下步骤:步骤a,在透光基板的第一表面上形成亲水区域和疏水区域;步骤b,将具有多个镂空部的表面改性掩模板设置于该透光基板的第一表面上,并使表面改性掩模板中的镂空部对应亲水区域或疏水区域设置,表面改性掩模板具有改性表面,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,第一改性表面和第二改性表面不同且分别选自亲水性表面和疏水性表面中的一种,且第一改性表面位于表面改性掩模板的远离该透光基板的第一表面的一侧;步骤c,第一改性表面为疏水性表面,使疏水性的量子点材料墨水通过镂空部进入疏水区域中,或第一改性表面为亲水性表面,使亲水性的量子点材料墨水通过镂空部进入亲水区域中;步骤d,将亲水区域或疏水区域中的量子点材料墨水干燥。
上述透光基板为可以透过波长为400nm到700nm之间的光,该透光基板整体的透光率在50%以上,优选的透光率在90%以上。
根据本发明的又一方面,还提出了一种量子点膜的制作方法,该制作方法包括以下步骤:步骤a,在透光基板的第一表面上形成亲水区域和疏水区域;步骤b,将具有多个镂空部的表面改性掩模板设置于该透光基板的第一表面上,并使表面改性掩模板中的镂空部对应亲水区域或疏水区域设置,表面改性掩模板具有改性表面,改性表面包括第一改性表面和第二改性表面,第一改性表面围绕镂空部,第一改性表面之外的改性表面为第二改性表面,第一改性表面和第二改性表面不同且分别选自亲水性表面和疏水性表面中的一种,且第一改性表面位于表面改性掩模板的远离该透光基板的第一表面的一侧;步骤c,第一改性表面为疏水性表面,使疏水性的量子点材料墨水通过镂空部进入疏水区域中,或第一改性表面为亲水性表面,使亲水性的量子点材料墨水通过镂空部进入亲水区域中;步骤d,将亲水区域或疏水区域中的量子点材料墨水固化。
本发明的上述量子点膜的制作方法中由于在透光基板的第一表面上形成亲水区域和疏水区域,并将表面改性掩模板设置于透光基板的第一表面上,使镂空部对应亲水区域或疏水区域设置,从而不仅能够通过表面改性掩模板使不同的量子点墨水进入到不同的像素区域中,还能够通过透光基板上的亲水区域和疏水区域在透光基板的表面形成多个被分隔开的子像素区域,使亲水性量子点墨水进入亲水区域,疏水区域作为隔离结构,或使疏水性的量子点墨水进入疏水区域,亲水区域作为隔离结构,从而有效地防止了不同子像素区域间的量子点墨水混色,进而也有效地解决了不同子像素区域内量子点墨水混色而降低色彩精准性的问题;并且,相比在透明基板上设置像素隔离结构的制作方法,本申请的上述制作方法不仅能够同样地使墨水注入所需的子像素区域,同时还降低了量子点膜的制作成本。
下面将更详细地描述根据本发明提供的量子点膜的制作方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。
首先,执行步骤a:在透光基板的第一表面上形成亲水区域和疏水区域。在一种优选的实施方式中,在第一表面上形成多个亲水区域和多个疏水区域,且各亲水区域和各疏水区域交替排列。采用上述优选的实施方式能够在透光基板的第一表面上形成多个相互隔离的子像素区域,从而使不同颜色的量子点墨水分别进入到不同的子像素区域中,并使具有该量子点的膜在蓝色背光的照射下能够形成发光阵列,从而制得量子点彩膜实现RGB的全彩显示。
在一种优选的实施方式中,步骤a包括:步骤S001,在透光基板的表面设置包括第一反应原料的原料;步骤S002,遮盖位于第一区域的第一反应原料,并对位于第二区域的第一反应原料进行紫外光照射,第一反应原料在第二区域形成第二遮盖区域;步骤S003,去除第一区域的第一反应原料,在第一区域和第二遮盖区域上设置第二反应原料;步骤S004,遮盖位于第二遮盖区域的第二反应原料,并对位于第一区域的第二反应原料进行紫外光照射,第二反应原料在第一区域形成第一遮盖区域,然后去除第二遮盖区域上的第二反应原料,其中,第一反应原料和第二反应原料选择亲水性反应物和疏水性反应物,且二者的亲疏性能相反,第一遮盖区域和第二遮盖区域对应亲水区域和疏水区域。
在上述优选的实施方式中,上述包括第一反应原料的原料还可以包括溶剂、偶联剂和引发剂。此时,上述步骤S001包括以下过程:A、将偶联剂和引发剂在溶剂中混合,形成基板处理液;B、将透光基板的至少一侧表面放置于基板处理液中,使偶联剂键合固定在透光基板的表面上并形成键合表面;C、将第一反应原料设置于键合表面。在上述步骤S002中,通过对位于第二区域的第一反应原料进行紫外光照射,以使第一反应原料与偶联剂在紫外照射下进行接枝反应,从而形成上述第二遮盖区域;在上述步骤S004中,通过对位于第一区域的第二反应原料进行紫外光照射,以使第二反应原料与偶联剂在紫外照射下进行接枝反应,从而形成上述第一遮盖区域。
在上述优选的实施方式中,去除第一区域的第一反应原料的过程可以包括:用溶剂洗去第一区域上的第一反应原料,然后对透光基板的表面进行干燥或固化处理;同样地,去除第二遮盖区域上的第二反应原料的过程包括:用溶剂洗去第二遮盖区域上的第二反应原料,然后对透光基板的表面进行干燥或固化处理。本领域技术人员可以根据现有技术上述清洗工艺和干燥或固化处理的工艺条件进行设定。
为了使第一反应原料与偶联剂之间以及第二反应原料与偶联剂更好地进行接枝反应,优选地,上述偶联剂的通式为(X1-X2-X3-)Si-Y,其中,Y为带有乙烯基的基团或末端带SH基的烃基,X1、X2和X3分别独立地选自Cl、CH3、OCH3、OCH2CH3和CH2CH3中的任一种,且X1、X2和X3不同时为烃基;上述第一反应原料和第二反应原料的通式为A-B,其中,A为带有乙烯基的基团,此时Y为末端带SH基的烃基,或A为末端带SH基的烃基,此时Y为带有乙烯基的基团,B为带亲水基团的残基,此时第一反应原料或第二反应原料为亲水性反应物,优选亲水基团为磺酸基、胺基、羟基、羧基和氨基中的任一种或多种,或B为带疏水基团的残基,此时第一反应原料或第二反应原料为疏水性反应物,优选亲水基团为烃基、酯基、卤素和硝基中的任一种或多种。
在执行步骤a之后,执行步骤b:将上述的表面改性掩模板设置于该透光基板的第一表面上,表面改性掩模板中的镂空部10对应亲水区域或疏水区域设置,表面改性掩模板具有改性表面20,改性表面20包括第一改性表面210和第二改性表面220,第一改性表面210围绕镂空部10,第一改性表面210之外的改性表面20为第二改性表面220,且第一改性表面210和第二改性表面220分别具有亲水性和疏水性,上述表面改性掩模板如图2所示。为了在后续步骤c中使亲水性墨水或疏水性墨水通过表面改性掩模板的镂空部10更准确地进入透光基板的亲水性或疏水性子像素区域中,优选地,表面改性掩模板中镂空部10的面积≤对应的亲水区域或疏水区域的面积,更为优选地,镂空部10与对应的亲水区域或疏水区域的形状一致。
在一种优选的实施方式中,上述制作方法还包括制备上述表面改性掩模板的过程:步骤S01,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面;步骤S02,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行干燥处理;步骤S03,将第一光罩设置于掩模板的第一表面上,第一光罩由多个第一遮挡部以及连接各第一遮挡部的第一透光部组成,第一遮挡部与镂空部10一一对应,且各第一遮挡部的面积大于与其对应的各镂空部10的面积,通过第一光罩对掩模板的第一表面进行紫外线臭氧光解氧化,再对掩模板的与其第一表面相对的第二表面进行紫外线臭氧光解氧化,以形成具有亲水性的第二改性表面220,掩模板的其余表面构成具有疏水性的第一改性表面210;或将第二光罩设置于掩模板上,第二光罩由多个第二透光部以及连接各第二透光部的第二遮挡部组成,且第二透光部与镂空部10一一对应,且一一对应的各第二透光部的面积大于各镂空部10的面积,对掩模板进行紫外线臭氧光解氧化,以使掩模板的对应第二透光部的表面形成具有亲水性的第一改性表面210,掩模板的其余表面构成具有疏水性的第二改性表面220。
在另一种优选的实施方式中,上述制作方法还包括制备上述表面改性掩模板的过程:步骤S01,将掩模板浸入具有疏水性材料的溶液中,以使疏水性材料固定于掩模板的表面;步骤S02,将固定有疏水性材料的掩模板与溶液分离,并对掩模板进行固化处理;步骤S03,将第一光罩设置于掩模板的第一表面上,第一光罩由多个第一遮挡部以及连接各第一遮挡部的第一透光部组成,第一遮挡部与镂空部10一一对应,且各第一遮挡部的面积大于与其对应的各镂空部10的面积,通过第一光罩对掩模板的第一表面进行紫外线臭氧光解氧化,再对掩模板的与其第一表面相对的第二表面进行紫外线臭氧光解氧化,以形成具有亲水性的第二改性表面220,掩模板的其余表面构成具有疏水性的第一改性表面210;或将第二光罩设置于掩模板上,第二光罩由多个第二透光部以及连接各第二透光部的第二遮挡部组成,且第二透光部与镂空部10一一对应,且一一对应的各第二透光部的面积大于各镂空部10的面积,对掩模板进行紫外线臭氧光解氧化,以使掩模板的对应第二透光部的表面形成具有亲水性的第一改性表面210,掩模板的其余表面构成具有疏水性的第二改性表面220。
在上述制备表面改性掩模板的步骤中,掩模板一般由金属材料制成,由于金属表面的氧化层与水能很好的亲和,所以大部分金属表面都是亲水的,此处优选亲水的金属材料或其他亲水性耐紫外老化的材料;并且,为了使制备而成的表面改性掩模板具有更好的疏水性,优选疏水性材料为含氟的硅烷偶联剂。通过对疏水性材料进行紫外线臭氧光解氧化,以将疏水 的含氟硅烷偶联剂去除露出亲水性的金属表面,上述紫外线臭氧光解氧化的工艺条件本领域技术人员可以根据现有技术进行设定。
在执行步骤b之后,执行步骤c:第一改性表面210为疏水性表面,使疏水性的量子点墨水通过镂空部10进入疏水区域中,或第一改性表面210为亲水性表面,使亲水性的量子点墨水通过镂空部10进入亲水区域中。可以采用喷涂工艺或喷墨打印工艺以使量子点墨水通过镂空部10进入亲水区域或疏水区域中,优选上述量子点墨水的粘度≤50cps,从而使量子点墨水更好地分散出墨落入子像素区域中;并且,为了保证喷头能有效的将量子点墨水雾化开,优选地,上述喷涂工艺为超声喷涂,而为了提高量子点墨水的喷涂效果,优选超声喷涂采用的超声频率为45kHz~180kHz,优选量子点墨水的粘度≤10cps。
上述亲水性墨水包括亲水性量子点,且亲水性量子点为表面配体含亲水基团的量子点,优选亲水基团为羧基、氨基、羟基或巯基;上述疏水性墨水包括疏水性量子点,且疏水性量子点为表面配体含疏水基团的量子点,优选疏水基团为烷烃链或酯基;为了使电致光致结合的发光器件能够全彩显示,优选上述量子点墨水中的量子点为红色量子点和绿色量子点。
上述亲水性和疏水性量子点墨水还可以包括可固化树脂或其单体以及溶剂(或称作分散剂)。其中,溶剂可以选自沸点为40~250℃之间的长链烃、醇、酯和醚的混合物作为有机溶剂。优选地,烃为直链或支链烷烃,例如,烃为C6-10烷烃。上述有机溶剂可以为氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、烷基苯、硝基苯、正己烷、环己烷、正庚烷、环庚烷、二氧六环、二氯甲烷、三氯甲烷、二氯乙烷、氯仿、氯苯、1,4二氧杂环己烷、1,2二氯乙烷、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、四氢萘、萘烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜氯仿、四氢呋喃、二氯甲烷、甲苯、正己烷、甲醇、乙醇、丙醇、丁醇、丙酮、二氧六环、二甲基甲酰胺和二甲基亚砜。其中,可固化树脂选自环氧树脂、丙烯酸树脂、有机硅树脂,或者对应的单体交联形成可固化树脂。上述亲水性和疏水性量子点墨水中还可以包括带双键的交联剂,光固化剂或热固化剂等。
在执行步骤c之后,执行步骤d:将亲水区域或疏水区域中的量子点墨水干燥。对上述量子点墨水干燥的工艺条件本领域技术人员可以根据现有技术进行设定。在一种优选的实施方式中,制作方法还包括至少重复一次步骤b至d的过程,各次重复过程中,所采用的表面改性掩模板的镂空部对应亲水区域或疏水区域,所采用的量子点墨水的发光颜色也不同。在上述优选地实施方式中,通过使各子像素区域中设置不同发光颜色的量子点墨水并干燥或固化,以调整电致发光器件最终的发光颜色;并且,通过分别在不同的子像素区域中设置红色量子点和绿色量子点,在蓝色背光的照射下,该量子点膜能实现红色和绿色的光致发光,从而实现RGB的全彩显示。
根据本申请的另一个方面,还提供了一种量子点膜,该量子点膜由上述的制作方法制作而成。由于上述量子点膜是通过在透光基板的第一表面上形成亲水区域和疏水区域,并将上述的表面改性掩模板设置于透光基板的第一表面上,使镂空部对应亲水区域或疏水区域设置而形成的,从而不仅能够通过表面改性掩模板使不同的量子点墨水进入到不同的子像素区域中,还能够通过透光基板上的亲水区域和疏水区域在透光基板的表面形成多个被分隔开的子 像素区域,使亲水性量子点墨水进入亲水区域,疏水区域作为隔离结构,或使疏水性的量子点墨水进入疏水区域,亲水区域作为隔离结构,有效地防止了量子点膜中不同子像素区域间的量子点混色;并且,相比在透明基板上设置像素隔离结构而形成的量子点膜,上述量子点膜能够具有更低的制作成本。
根据本申请的另一个方面,还提供了一种显示器件,显示器件包括电致发光器件以及设置于电致发光器件出光侧的上述量子点膜。由于上述显示器件中的量子点膜是通过在透光基板的第一表面上形成亲水区域和疏水区域,并将上述的表面改性掩模板设置于透光基板的第一表面上,使镂空部对应亲水区域或疏水区域设置而形成的,从而通过防止量子点膜中不同像素区域间的量子点混色,有效地提高了具有该量子点膜的显示器件色彩精准性的问题。
为了防止在电致发光器件照射量子点膜时量子点膜中相邻子像素区域间的混光,优选地,在量子点膜中的透光基板的与第一改性表面相对的第二改性表面或与第二改性表面贴合的蓝色背光出光侧上设置黑色矩阵,当亲水性的量子点墨水进入亲水区域中时,黑色矩阵与疏水区域对应设置,当疏水性的量子点墨水进入疏水区域中时,黑色矩阵与亲水区域对应设置。
下面将结合实施例进一步说明本发明提供的发光器件及其制作方法。
实施例1
本实施例提供的具有表面改性的掩模板的制作方法的步骤包括:
步骤S101,将由镍合金制备而成的掩模板浸入具有疏水性材料的溶液中,上述疏水性材料为十七氟癸基三甲氧基硅烷,以使疏水性材料固定于掩模板的表面;
步骤S102,将固定有疏水性材料的掩模板与溶液分离,并将掩模板干燥或固化,得到具有疏水性的表面改性掩模板。
实施例2
本实施例提供的表面具有亲水区域和疏水区域的基板的制作方法的步骤包括:
将偶联剂和引发剂在溶剂中混合,形成基板处理液,将透光基板的一侧表面放置于基板处理液中,使偶联剂键合固定在透光基板的表面上并形成键合表面,将第一反应原料设置于键合表面上,遮盖位于第一区域的第一反应原料,并对位于第二区域的第一反应原料进行紫外照射,以使第一反应原料与偶联剂在紫外照射下进行接枝反应,从而形成疏水区域,去除第一区域的第一反应原料,在第一区域和第二遮盖区域上设置第二反应原料,遮盖位于第二遮盖区域的第二反应原料,并对位于第一区域的第二反应原料进行紫外照射,以使第二反应原料与偶联剂在紫外照射下进行接枝反应,从而形成亲水区域,进而得到表面改性基板;
其中,透光基板为玻璃,偶联剂为氯(二甲基)乙烯基硅烷,引发剂为4-二甲基吡啶,第一反应原料1H,1H,2H,2H-全氟癸硫醇,第二反应原料巯基乙胺,疏水性的第二区域对应两组96×64的微阵列图案。
实施例3
本实施例提供的电致发光器件的制作方法包括以下步骤:
步骤S301,提供具有像素隔离结构的第一电极基板,像素隔离结构具有96×64个相互隔离的子像素区域,第一电极基板为有阳极层的基板,且阳极层为ITO阳极;
步骤S302,将实施例1中提供的表面改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,掩模板的镂空部与子像素区域对应;
步骤S303,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)工艺使作为空穴注入层墨水的PEDOT:PSS的水溶液通过镂空部进入对应的子像素区域中;
步骤S304,将子像素区域中的空穴注入层墨水干燥或固化,形成空穴注入层;
步骤S305,再次执行步骤S302至S304,在上述重复过程的步骤S302中,采用由镍合金制备而成的掩模板,在上述重复过程的步骤S303中采用空穴传输层墨水,且空穴传输层墨水为聚(9-乙烯基)咔唑(PVK)的甲苯溶液,以在步骤S304中形成空穴传输层;
步骤S306,再次执行步骤S302至S304,在上述重复过程的步骤S302中,采用由镍合金制备而成的掩模板,在上述重复过程的步骤S303中采用绿色量子点材料墨水,且量子点材料墨水为CdSe/CdS的癸烷溶液,以在步骤S304中形成绿色量子点发光区域;
步骤S307,再次执行步骤S302至S304,在上述重复过程的步骤S302中,采用由镍合金制备而成的掩模板,在上述重复过程的步骤S303中采用红色量子点材料墨水,且量子点材料墨水为CdSe/ZnS的癸烷溶液,以在步骤S304中形成红色量子点发光区域;
步骤S308,再次执行步骤S302至S304,在上述重复过程的步骤S302中,采用实施例1中提供的表面改性掩模板,在上述重复过程的步骤S303中采用电子传输层墨水和电子注入层墨水,且电子传输层墨水和电子注入层墨水为ZnO的丁醇溶液,以在步骤S304中形成电子传输及注入层;
步骤S309,在电子注入层的远离第一电极基板的一侧蒸镀第二电极,形成阴极层的材料为Ag。
实施例4
本实施例提供的制作方法与实施例3的区别在于:
分别采用超声喷涂使电子传输及注入层墨水、量子点材料墨水、空穴传输层墨水和空穴注入层墨水分别进入子像素区域中,上述超声喷涂工艺中的超声频率为120kHz。
实施例5
本实施例提供的制作方法与实施例4的区别在于:
超声喷涂工艺中的超声频率为180kHz。
实施例6
本实施例提供的制作方法与实施例4的区别在于:
超声喷涂工艺中的超声频率为45kHz。
实施例7
本实施例提供的制作方法与实施例4的区别在于:
超声喷涂工艺中的超声频率为90kHz。
实施例8
本实施例提供的光致发光器件的制作方法包括以下步骤:
步骤S801,将由镍合金制备而成的掩模板设置于实施例2中表面改性基板的表面上,掩模板的96×64个镂空部与疏水区域的其中一组96×64个微阵列图案对应;
步骤S802,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)工艺使疏水性的红色量子点墨水通过镂空部进入疏水区域中;
步骤S803,将疏水区域中的量子点墨水干燥或固化;
步骤S804,将上述掩模板设置于上述表面改性掩模板的表面上,掩模板的96×64个镂空部与疏水区域的另一组96×64个微阵列图案对应;
步骤S805,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)工艺使疏水性的绿色量子点墨水通过镂空部进入疏水区域中;
步骤S806,将疏水区域中的量子点墨水干燥或固化,
其中,红色与绿色量子点墨水的粘度均为15cps,红色量子点材料为CdSe/ZnS,绿色量子点材料为CdSe/CdS,两者表面的疏水配体都为油酸。
实施例9
本实施例提供的制作方法与实施例8的区别在于:
喷墨打印采用的红色和绿色量子点墨水的粘度为5cps。
实施例10
本实施例提供的制作方法与实施例8的区别在于:
采用超声喷涂使疏水性的红色量子点墨水和绿色量子点墨水通过镂空部进入疏水区域中,上述超声喷涂工艺中的超声频率为120kHz。
实施例11
本实施例提供的表面改性掩模板的制作方法的步骤包括:
步骤S1101,将掩模板浸入具有疏水性材料的溶液中,上述疏水性材料为十七氟癸基三甲氧基硅烷,以使疏水性材料固定于掩模板的表面;
步骤S1102,将固定有疏水性材料的掩模板与溶液分离,并将掩模板干燥或固化;
步骤S1103,将第一光罩设置于具有96×64个镂空部的掩模板的第一表面上,第一光罩由96×64个第一遮挡部以及连接各第一遮挡部的第一透光部组成,第一遮挡部与镂空部一一对应,且一一对应的各第一遮挡部的面积大于各镂空部的面积,采用UV灯发出185nm和254nm波长的紫外光并使紫外光通过第一光罩对该掩模板的第一表面进行5min的紫外线臭氧光解氧化,再采用UV灯发出185nm和254nm波长的紫外光对掩模板的与该掩模板的第一表面相对的第二表面进行5min的紫外线臭氧光解氧化,以将光照射到的表面形成亲水性表面,掩模板的其余表面构成疏水性表面,疏水性表面围绕镂空部。
实施例12
本实施例提供的表面改性掩模板的制作方法的步骤包括:
步骤S1201,将掩模板浸入具有疏水性材料的溶液中,上述疏水性材料为十七氟癸基三甲氧基硅烷,以使疏水性材料固定于掩模板的表面;
步骤S1202,将固定有疏水性材料的掩模板与溶液分离,并将掩模板干燥或固化;
步骤S1203,将第二光罩设置于具有96×64个镂空部的掩模板上,第二光罩由96×64个第二透光部以及连接各第二透光部的第二遮挡部组成,第二透光部与镂空部一一对应,且一一对应的各第二透光部的面积大于各镂空部的面积,采用UV灯发出185nm和254nm波长的紫外光并使紫外光通过第二光罩对掩模板进行5min的紫外线臭氧光解氧化,以使掩模板的对应第二透光部的表面形成亲水性表面,掩模板的其余表面构成疏水性表面,亲水性表面围绕镂空部。
实施例13
本实施例提供的电致发光器件的制作方法包括以下步骤:
步骤S1301,提供具有像素隔离结构的第一电极基板,像素隔离结构具有96×64个相互隔离的子像素区域,第一电极基板为有阳极层的基板,且阳极层为ITO阳极;
步骤S1302,将实施例12中提供的表面改性掩模板设置于第一电极基板的具有像素隔离结构的一侧,表面改性掩模板的镂空部与子像素区域对应,表面改性掩模板的具有包括亲水性表面和疏水性表面的改性表面,亲水性表面围绕镂空部,亲水性表面之外的改性表面为疏水性表面;
步骤S1303,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)工艺使作为空穴注入层墨水的PEDOT:PSS的水溶液通过镂空部进入对应的子像素区域中;
步骤S1304,将子像素区域中的空穴注入层墨水干燥或固化,形成空穴注入层;
步骤S1305,再次执行步骤S1302至S1304,在上述重复过程的步骤S1302中,采用实施例11中提供的表面改性掩模板,在上述重复过程的步骤S1303中采用空穴传输层墨水,且空穴传输层墨水为聚(9-乙烯基)咔唑(PVK)的甲苯溶液,以在步骤S1304中形成空穴传输层;
步骤S1306,再次执行步骤S1302至S1304,在上述重复过程的步骤S1302中,采用实施例11中提供的表面改性掩模板,在上述重复过程的步骤S1303中采用量子点材料墨水,且量子点材料墨水为CdSe/CdS的癸烷溶液,以在步骤S1304中形成发光层;
步骤S1307,再次执行步骤S1302至S1304,在上述重复过程的步骤S1302中,采用实施例12中提供的表面改性掩模板,在上述重复过程的步骤S1303中采用电子传输层墨水和电子注入层墨水,且电子传输层墨水和电子注入层墨水为ZnO的丁醇溶液,以在步骤S1304中形成电子传输及注入层;
步骤S1308,在电子注入层的远离第一电极基板的一侧蒸镀第二电极,形成阴极层的材料为Ag。
实施例14
本实施例提供的制作方法与实施例13的区别在于:
分别采用超声喷涂使电子传输及注入层墨水、量子点材料墨水、空穴传输层墨水和空穴注入层墨水分别进入子像素区域中,上述超声喷涂工艺中的超声频率为120kHz。
实施例15
本实施例提供的制作方法与实施例14的区别在于:
超声喷涂工艺中的超声频率为180kHz。
实施例16
本实施例提供的制作方法与实施例14的区别在于:
超声喷涂工艺中的超声频率为45kHz。
实施例17
本实施例提供的制作方法与实施例14的区别在于:
超声喷涂工艺中的超声频率为90kHz。
实施例18
本实施例提供的表面改性透光基板的制作方式如下:
将偶联剂和引发剂在溶剂中混合,形成基板处理液,将透光基板的一侧表面放置于基板处理液中,使偶联剂键合固定在透光基板的表面上并形成键合表面,将第一反应原料设置于键合表面上,遮盖位于第一区域的第一反应原料,并对位于第二区域的第一反应原料进行紫 外照射,以使第一反应原料与偶联剂在紫外照射下进行接枝反应,从而形成疏水区域,去除第一区域的第一反应原料,在第一区域和第二遮盖区域上设置第二反应原料,遮盖位于第二遮盖区域的第二反应原料,并对位于第一区域的第二反应原料进行紫外照射,以使第二反应原料与偶联剂在紫外照射下进行接枝反应,从而形成亲水区域;
其中,透光基板为玻璃,偶联剂为氯(二甲基)乙烯基硅烷,引发剂为4-二甲基吡啶,第一反应原料1H,1H,2H,2H-全氟癸硫醇,第二反应原料巯基乙胺,疏水性的第二区域对应两组96×64的微阵列图案。
实施例19
本实施例提供的量子点膜的制作方法,采用实施例11中的表面改性掩模板和实施例18中的表面改性透光基板,制作方法包括以下步骤:
步骤S1901,将表面改性掩模板设置于第一表面上,表面改性的96×64个镂空部与疏水区域的其中一组96×64个微阵列图案对应;
步骤S1902,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)工艺使疏水性的红色量子点墨水通过镂空部进入疏水区域中;
步骤S1903,将疏水区域中的量子点墨水干燥或固化,
步骤S1904,将表面改性掩模板设置于第一表面上,表面改性的96×64个镂空部与疏水区域的另一组96×64个微阵列图案对应;
步骤S1905,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)工艺使疏水性的绿色量子点墨水通过镂空部进入疏水区域中;
步骤S1906,将疏水区域中的量子点墨水干燥或固化,
其中,红色与绿色量子点墨水的粘度均为15cps,红色量子点材料为CdSe/ZnS,绿色量子点材料为CdSe/CdS,两者表面的疏水配体都为油酸。
实施例20
本实施例提供的制作方法与实施例19的区别在于:
喷墨打印采用的红色和绿色量子点墨水的粘度为5cps。
实施例21
本实施例提供的制作方法与实施例19的区别在于:
采用超声喷涂使疏水性的红色量子点墨水和绿色量子点墨水通过镂空部进入疏水区域中,上述超声喷涂工艺中的超声频率为120kHz。
实施例22
本实施例提供的制作方法与实施例21的区别在于:
超声喷涂工艺中的超声频率为45kHz。
对比例1
本对比例提供的电致发光器件的制作方法的步骤包括:
步骤Sd101,提供具有像素隔离结构的第一电极基板,像素隔离结构具有96×64个相互隔离的子像素区域,第一电极基板为有阳极层的基板;
步骤Sd102,采用喷墨打印(型号为Dimatix Materials Printer DMP-2831)使空穴注入层墨水进入子像素区域中;
步骤Sd103,将子像素区域中的空穴注入层墨水干燥或固化,形成空穴注入层;
步骤Sd104,重复步骤Sd102至Sd103,在上述重复过程的步骤Sd103中分别采用空穴传输层墨水、量子点材料墨水、电子传输层墨水,以在步骤Sd104中顺序形成空穴传输层、发光层、电子传输层;
步骤Sd105,在电子传输层的远离第一电极基板的一侧设置第二电极,
其中,电子注入层墨水、电子传输层墨水、量子点材料墨水、空穴传输层墨水和空穴注入层墨水与实施例3相同。
对比例2
本对比例提供的光致发光器件的制作方法的步骤包括:
步骤Sd201,在透光基板的第一表面上涂覆光刻胶,然后依次进行曝光和显影,以形成像素隔离结构,像素隔离结构具有两组96×64个相互隔离的子像素区域,且像素隔离结构的裸露表面为亲水性表面,像素隔离结构中隔离基体的相邻侧壁与基板垂直,相邻的侧壁之间的隔离基体为隔离条,且隔离条的远离基板的一侧表面为平面;
步骤Sd202,在有像素隔离结构的透光基板上旋涂红色量子点材料,然后对设置有红色量子点材料的透光基板依次进行烘烤处理、曝光处理、显影处理和干燥处理,得到96×64个红色量子点阵列;
步骤Sd203,在上述基板上旋涂绿色量子点材料,然后对设置有绿色量子点材料的透光基板依次进行烘烤处理、曝光处理、显影处理和干燥处理,得到96×64个绿色量子点阵列,
其中,透光基板为玻璃,形成上述裸露表面的材料为聚酰亚胺,红色量子点材料墨水包括CdSe/ZnS,绿色量子点材料包括CdSe/CdS,量子点材料墨水的粘度为15cps。
对比例3
本对比例提供的电致发光器件的制作方法的步骤包括:
步骤Sd301,提供具有像素隔离结构的第一电极基板,像素隔离结构具有96×64个相互隔离的子像素区域,第一电极基板为有阳极层的基板;
步骤Sd302,采用精密喷墨打印设备(JetlabII高精度纳米材料沉积喷墨打印系统)使空穴注入层墨水进入子像素区域中;
步骤Sd303,将子像素区域中的空穴注入层墨水干燥,形成空穴注入层;
步骤Sd304,重复步骤Sd302至Sd303,在上述重复过程的步骤Sd303中分别采用空穴传输层墨水、量子点材料墨水、电子传输层墨水,以在步骤Sd304中顺序形成空穴传输层、发光层、电子传输层;
步骤Sd305,在电子传输层的远离第一电极基板的一侧设置第二电极,
其中,电子注入层墨水、电子传输层墨水、量子点材料墨水、空穴传输层墨水和空穴注入层墨水与实施例13相同。
对上述实施例3至7和对比例1中电致发光器件进行通电实验,控制电路只让红色子像素或者绿色子像素单独发光,并用光谱扫描式亮度计(PR670)在电致发光器件上均匀选取各两个位置来测试其色坐标,测试结果如表1所示。
表1
实施例 R1(x,y) R2(x,y) G1(x,y) G2(x,y)
实施例3 0.6750,0.3222 0.6751,0.3223 0.1875,0.7415 0.1888,0.7431
实施例4 0.6752,0.3220 0.6755,0.3224 0.1898,0.7435 0.1885,0.7431
实施例5 0.6755,0.3221 0.6753,0.3229 0.1936,0.7425 0.1945,0.7418
实施例6 0.6749,0.3225 0.6754,0.3220 0.1882,0.7418 0.1877,0.7434
实施例7 0.6751,0.3224 0.6748,0.3225 0.1910,0.7410 0.1900,0.7435
对比例1 0.6032,0.3026 0.6147,0.3004 0.3117,0.5616 0.3097,0.5775
通过上述测试结果可以明显看出,上述实施例3至7中采用普通喷墨打印与掩模板结合或超声喷涂与掩模板结合的制作工艺得到的电致发光器件,色坐标的一致性较好;而上述对比例1中仅采用普通喷墨打印的制作工艺得到的电致发光器件,色坐标的变化非常大,且从色坐标的值上可以看出有明显的混色现象。
并且,分别将上述实施例8至10和对比例2中的光致发光器件施加密封保护层后,设置于蓝色电致发光器件(BOLED)的出光侧,控制电路只让红色子像素或者绿色子像素相对应的蓝色背光单独发光,在蓝光的激发下,相应的红色量子点或者绿色量子点光致发光,用光谱扫描式亮度计(PR670)在出光面上均匀选取两个位置来测试其色坐标,测试结果如表2所示。
表2
实施例 R1(x,y) R2(x,y) G1(x,y) G2(x,y)
实施例8 0.6755,0.3219 0.6752,0.3225 0.1898,0.7454 0.1878,0.7424
实施例9 0.6751,0.3220 0.6751,0.3225 0.1870,0.7473 0.1904,0.7427
实施例10 0.6745,0.3222 0.6755,0.3214 0.1941,0.7429 0.1936,0.7425
对比例2 0.6748,0.3225 0.6754,0.3230 0.1895,0.7447 0.1889,0.7456
通过上述测试结果可以明显看出,采用普通喷墨打印与掩模板结合或超声喷涂与掩模板结合的制作工艺得到的光致发光器件,色坐标的一致性较好,与上述对比例2中利用常规的曝光显影制备得到的光致发光器件相当,但降低了制备的成本。
采用光学显微镜获取实施例13中执行完步骤S1306后子像素区域的光学显微镜图,在黑暗环境下,用365nm波长的UV灯照射使量子点光致发光,如图4所示,从图中可以看出红色量子点墨水基本都在子像素区,形状规整,不相关的区域无墨水残留;并且,采用光谱扫描式亮度计(PR670)对上述实施例13至17和对比例3中电致发光器件的光电性能进行测试,测试结果如下表3所示:
表3
Figure PCTCN2017098811-appb-000001
从上述测试结果可以看出,采用普通喷墨打印与掩模板结合或超声喷涂与掩模板结合的制作工艺得到的电致发光器件,其光电性能与通过精密喷墨打印制备的电致发光器件的光电性能相当。
对比例4
本对比例提供的光致量子点膜的制作方法的步骤包括:
步骤Sd401,在透光基板的第一表面上涂覆光刻胶,然后依次进行曝光和显影,以形成像素隔离结构,像素隔离结构具有两组96×64个相互隔离的子像素区域,且像素隔离结构的裸露表面为亲水性表面,像素隔离结构中隔离基体的相邻侧壁与基板垂直,相邻的侧壁之间的隔离基体为隔离条,且隔离条的远离基板的一侧表面为平面;
步骤Sd402,将表面改性的掩模板设置于第一表面上,掩模板的96×64个镂空部与一组子像素区域对应;
步骤Sd403,采用喷墨打印工艺使疏水性的红色量子点墨水通过镂空部进入疏水区域中;
步骤Sd404,将疏水区域中的红色量子点墨水干燥;
步骤Sd405,表面改性的掩模板设置于第一表面上,掩模板的96×64个镂空部与另一组子像素区域对应;
步骤Sd406,采用喷墨打印工艺使疏水性的绿色量子点墨水通过镂空部进入疏水区域中;
步骤Sd407,将疏水区域中的绿色量子点墨水干燥,
其中,透光基板为玻璃,形成上述裸露表面的材料为聚酰亚胺,红色量子点材料墨水包括CdSe/ZnS,绿色量子点材料包括CdSe/CdS,量子点材料墨水的粘度为15cps。
对比例5
本对比例提供的制作方法与对比例4的区别在于,通过分别旋涂红色、绿色量子点材料,多次曝光显影得到红色绿色相间的量子点膜,具体步骤为:
步骤Sd501,在有像素隔离结构的透光基板上旋涂红色量子点材料,然后对设置有红色量子点材料的透光基板依次进行烘烤处理、曝光处理、显影处理和干燥处理;
步骤Sd502,在上述基板上旋涂绿色量子点材料,然后对设置有绿色量子点材料的透光基板依次进行烘烤处理、曝光处理、显影处理和干燥处理,
其中,步骤Sd501和步骤Sd502分别得到96×64个红色量子点阵列和96×64个绿色量子点阵列。
分别将上述实施例19至22和对比例4至5中的量子点膜施加密封保护层后,设置于蓝色电致发光器件(BLED)的出光侧,电致发光器件包括顺序层叠环氧树脂封装的蓝色LED灯珠和光扩散板。利用积分球对红色和绿色量子点的光致发光光谱面积进行积分,得到红色和绿色量子的光致发光效率分别如下表4所示:
表4
实施例编号 红色量子点光致效率 绿色量子点光致效率
实施例19 41% 32%
实施例20 46% 36%
实施例21 45% 37%
实施例22 43% 33%
对比例4 44% 35%
对比例5 42% 31%
从上述测试结果可以看出,本发明的实施方式得到的红色量子点和绿色量子点膜的光致发光效率与传统工艺相当,甚至还有所提高,但制造成本却大为降低。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1、采用掩模板与溶液法结合的技术方案形成发光层或功能层,利用掩模板阻挡了墨水向其他颜色区域的分散,有效地避免了混色问题的产生,提高了发光器件的色彩精确度;
2、通过将像素隔离结构和掩模板相结合,不仅能够利用溶液法中的喷涂工艺来制作像素,还能够利用精度较低的喷墨打印设备来制作像素,从而降低了采用精密喷墨打印设备所需的成本;
3、利用具有改性表面的掩模板能够使具有不同亲疏水性的墨水精确地进入到对应的子像素区域中,并利用像素隔离结构防止不同子像素区域间的墨水混色,由于掩模板是放置于像素隔离结构上端使用的,制作大面积面板时,镂空部周围由于有像素隔离结构的支撑而不易形变,从而有效地解决了不同子像素区域内墨水注入量不同或注入偏差而造成的色差或是其他性能问题;
4、通过透光基板上的亲水区域和疏水区域在透光基板的表面形成多个被分隔开的子像素区域,使亲水性量子点墨水进入亲水区域,疏水区域作为隔离结构,或使疏水性的量子点墨水进入疏水区域,亲水区域作为隔离结构,从而有效地防止了不同子像素区域间的量子点墨水混色,进而也有效地解决了不同子像素区域内量子点墨水混色而降低色彩精准性的问题;
5、相比在透明基板上设置像素隔离结构的制作方法,本申请的上述制作方法不仅能够同样地使墨水注入所需的子像素区域,同时还降低了量子点膜的制作成本。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种发光器件的制作方法,其特征在于,包括以下步骤:
    步骤S1,将具有多个镂空部的掩模板设置于基板上;
    步骤S2,采用溶液法使墨水通过所述镂空部设置于所述基板的表面;
    步骤S3,将所述基板表面的所述墨水干燥或固化,形成发光层或功能层。
  2. 根据权利要求1所述的制作方法,其特征在于,所述墨水为量子点材料墨水,所述制作方法还包括至少重复一次所述步骤S1至S3的过程,各次重复过程中,所采用的掩模板的镂空部对应所述基板的不同区域,所采用的墨水的发光颜色也不同。
  3. 根据权利要求1或2所述的制作方法,其特征在于,
    所述步骤S1中的所述掩模板具有改性表面,所述改性表面包括所述掩模板的远离所述基板的一侧表面,所述改性表面具有亲水性或疏水性;
    所述步骤S2所使用的所述墨水与所述改性表面具有不同亲疏水性。
  4. 根据权利要求3所述的制作方法,其特征在于,所述改性表面还包括所述掩模板的靠近所述基板的一侧表面。
  5. 根据权利要求4所述的制作方法,其特征在于,所述改性表面为疏水性表面时,所述制作方法还包括形成所述改性表面的过程:
    步骤S01,将掩模板浸入具有疏水性材料的溶液中,以使所述疏水性材料固定于所述掩模板的表面,优选所述疏水性材料为含氟的硅烷偶联剂;
    步骤S02,将固定有所述疏水性材料的所述掩模板与所述溶液分离,并对所述掩模板进行干燥处理,以形成具有疏水性的所述改性表面。
  6. 根据权利要求1或2所述的制作方法,其特征在于,所述制作方法还包括对所述掩模板进行预处理的过程,所述预处理的过程包括:
    对所述掩模板的表面进行紫外线臭氧光解氧化,以使所述掩模板的亲水性表面完全裸露。
  7. 根据权利要求1或2所述的制作方法,其特征在于,
    所述步骤S1中的所述基板具有像素隔离结构,且所述像素隔离结构具有多个相互隔离的子像素区域,所述镂空部对应各所述子像素区域设置;
    所述步骤S2使所述墨水通过所述镂空部进入对应的所述子像素区域中。
  8. 根据权利要求1或2所述的制作方法,其特征在于,
    所述步骤S1中的所述基板的表面具有亲水区域和疏水区域,所述镂空部对应所述亲 水区域或所述疏水区域设置;
    所述步骤S2使疏水性的所述墨水通过所述镂空部进入所述疏水区域中,或使亲水性的所述墨水通过所述镂空部进入所述亲水区域中。
  9. 根据权利要求1所述的制作方法,其特征在于,
    所述墨水为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水和电子传输材料墨水中的任一种,在所述步骤S3中,将所述墨水干燥,以形成对应的空穴注入层、空穴传输层、电子注入层或电子传输层;或
    所述墨水为量子点材料墨水或有机发光材料墨水,在所述步骤S3中,将所述墨水干燥,以形成对应的量子点发光层或有机发光层。
  10. 根据权利要求1所述的制作方法,其特征在于,
    所述墨水为电极材料墨水,在所述步骤S3中,将所述墨水干燥,以形成对应的电极层。
  11. 根据权利要求1所述的制作方法,其特征在于,
    所述墨水为空穴注入材料墨水、空穴传输材料墨水、电子注入材料墨水、电极材料墨水和电子传输材料墨水中的任一种,在所述步骤S3中,将所述墨水固化,以形成对应的空穴注入层、空穴传输层、电子注入层、电极层或电子传输层;或
    所述墨水为量子点材料墨水或有机发光材料墨水,在所述步骤S3中,将所述墨水固化,以形成对应的量子点发光层或有机发光层。
  12. 根据权利要求1或2所述的制作方法,其特征在于,所述步骤S2中采用喷涂工艺或喷墨打印工艺以使所述墨水通过所述镂空部设置于所述基板的表面,所述喷涂工艺优选为超声喷涂。
  13. 一种发光器件,其特征在于,所述发光器件由权利要求1至12中任一项所述制作方法制备而成,所述发光器件为电致发光器件或光致发光器件。
  14. 一种混合发光器件,所述混合发光器件包括电致发光器件以及设置于所述电致发光器件出光侧的光致发光器件,其特征在于,所述电致发光器件和/或光致发光器件为权利要求1至12中任一项所述制作方法制备而成。
PCT/CN2017/098811 2016-08-26 2017-08-24 发光器件的制作方法、发光器件及混合发光器件 WO2018036542A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019531517A JP2019525446A (ja) 2016-08-26 2017-08-24 発光素子の製造方法、発光素子及びハイブリッド発光素子
US16/328,290 US10943781B2 (en) 2016-08-26 2017-08-24 Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
KR1020197007403A KR102387760B1 (ko) 2016-08-26 2017-08-24 발광 디바이스의 제조 방법, 발광 디바이스 및 하이브리드 발광 디바이스
US17/012,086 US20230276685A9 (en) 2016-08-26 2020-09-04 Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610747047.3 2016-08-26
CN201610738773.9A CN106252528B (zh) 2016-08-26 2016-08-26 发光器件的制作方法、发光器件及混合发光器件
CN201610747047.3A CN106696501B (zh) 2016-08-26 2016-08-26 表面改性掩模板、其制作方法、电致发光器件的制作方法
CN201610742776.XA CN106158916B (zh) 2016-08-26 2016-08-26 量子点膜、其制作方法及显示器件
CN201610738773.9 2016-08-26
CN201610742776.X 2016-08-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/328,290 A-371-Of-International US10943781B2 (en) 2016-08-26 2017-08-24 Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
US17/012,086 Continuation US20230276685A9 (en) 2016-08-26 2020-09-04 Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device

Publications (1)

Publication Number Publication Date
WO2018036542A1 true WO2018036542A1 (zh) 2018-03-01

Family

ID=61246394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098811 WO2018036542A1 (zh) 2016-08-26 2017-08-24 发光器件的制作方法、发光器件及混合发光器件

Country Status (4)

Country Link
US (1) US10943781B2 (zh)
JP (1) JP2019525446A (zh)
KR (1) KR102387760B1 (zh)
WO (1) WO2018036542A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289362A (zh) * 2019-06-27 2019-09-27 京东方科技集团股份有限公司 量子点显示基板及其制作方法、显示装置
CN111886931A (zh) * 2018-03-22 2020-11-03 夏普株式会社 显示设备及其制造方法
US20210222065A1 (en) * 2018-10-29 2021-07-22 Boe Technology Group Co., Ltd. Quantum Dot Layer and Manufacturing Method Thereof, Quantum Dot Color Filter, Color Filter Substrate, Display Panel, and Display Device
CN113383433A (zh) * 2018-12-20 2021-09-10 艾利迪公司 包括光致发光块阵列的光电装置及其制作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230276685A9 (en) * 2016-08-26 2023-08-31 Najing Technology Corporation Limited Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
US10453907B2 (en) * 2017-08-21 2019-10-22 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED device and method for fabricating the same
CN110137208A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构、高精度金属掩模板及显示装置
CN108550707B (zh) * 2018-04-12 2022-11-08 京东方科技集团股份有限公司 量子点发光二极管、液晶显示设备
CN109786431B (zh) * 2019-02-25 2021-10-22 京东方科技集团股份有限公司 显示基板及其制备方法、和显示装置
EP4184601B1 (en) 2021-11-18 2024-07-17 IMEC vzw A method and an apparatus for applying thin film material onto a substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868041A (ja) * 1981-10-20 1983-04-22 Tokyo Supply:Kk 印刷方法
CN1404624A (zh) * 2000-12-22 2003-03-19 精工爱普生株式会社 图案形成方法、装置及半导体器件、电路、显示体模件和发光元件
CN101207185A (zh) * 2006-12-22 2008-06-25 群康科技(深圳)有限公司 有机电激发光显示器的制造方法
CN103241025A (zh) * 2013-04-28 2013-08-14 京东方科技集团股份有限公司 一种有机薄膜的喷墨打印方法
CN104617130A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 一种oled像素单元、oled显示面板及显示装置
CN105789484A (zh) * 2016-03-09 2016-07-20 纳晶科技股份有限公司 发光器件及其制作方法
CN106158916A (zh) * 2016-08-26 2016-11-23 纳晶科技股份有限公司 量子点膜、其制作方法及显示器件
CN106252528A (zh) * 2016-08-26 2016-12-21 纳晶科技股份有限公司 发光器件的制作方法、发光器件及混合发光器件
CN106696501A (zh) * 2016-08-26 2017-05-24 纳晶科技股份有限公司 表面改性掩模板、其制作方法、电致发光器件的制作方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9601049D0 (en) 1996-01-18 1996-03-20 Xaar Ltd Methods of and apparatus for forming nozzles
JP2003058077A (ja) * 2001-08-08 2003-02-28 Fuji Photo Film Co Ltd ミクロファブリケーション用基板、その製造方法および像状薄膜形成方法
GB0316926D0 (en) 2003-07-18 2003-08-27 Eastman Kodak Co Method of coating
JP2005078911A (ja) * 2003-08-29 2005-03-24 Sharp Corp パターニングが施された基板およびその製造方法、並びに有機エレクトロルミネッセンス表示装置およびその製造方法
JP2006313652A (ja) 2005-05-06 2006-11-16 Casio Comput Co Ltd 表示装置の製造方法
GB0517195D0 (en) * 2005-08-23 2005-09-28 Cambridge Display Tech Ltd Molecular electronic device structures and fabrication methods
JP4211804B2 (ja) 2006-05-19 2009-01-21 セイコーエプソン株式会社 デバイス、膜形成方法及びデバイスの製造方法
KR101001248B1 (ko) * 2007-08-09 2010-12-17 주식회사 엘지화학 표면특성을 이용한 금속패턴 형성방법 및 이에 따라 형성된금속패턴
JP2009064727A (ja) * 2007-09-07 2009-03-26 Casio Comput Co Ltd 成膜用マスク及び有機エレクトロルミネッセンス表示装置の製造方法
JP2011048915A (ja) * 2009-08-25 2011-03-10 Casio Computer Co Ltd 発光パネルの製造装置及び発光パネルの製造方法、並びに電子機器
WO2012041847A1 (en) * 2010-09-27 2012-04-05 The Technical University Of Denmark Improved electron transport layer
JP5677448B2 (ja) * 2010-10-15 2015-02-25 パナソニック株式会社 有機発光パネルとその製造方法、および有機表示装置
KR101777136B1 (ko) * 2011-07-13 2017-09-12 엘지디스플레이 주식회사 양자 발광 소자 및 이의 제조 방법
JP2014225328A (ja) * 2011-11-25 2014-12-04 シャープ株式会社 発光デバイス、表示装置、及び照明装置
JP6079118B2 (ja) * 2012-10-10 2017-02-15 コニカミノルタ株式会社 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス
CN103151461A (zh) 2013-02-27 2013-06-12 京东方科技集团股份有限公司 一种有机薄膜晶体管及其制备方法和制备装置
JP6287121B2 (ja) 2013-11-28 2018-03-07 株式会社リコー 電気−機械変換膜の製造方法、電気−機械変換素子、液体吐出ヘッド、インクジェット記録装置
FR3023067B1 (fr) * 2014-06-26 2017-10-20 Commissariat Energie Atomique Cellules tandem multifils
KR102220427B1 (ko) 2014-10-17 2021-02-26 삼성디스플레이 주식회사 마스크 어셈블리, 표시 장치의 제조 장치 및 표시 장치의 제조 방법
KR20160053001A (ko) 2014-10-30 2016-05-13 삼성디스플레이 주식회사 투명 표시 기판, 투명 표시 장치 및 투명 표시 장치의 제조 방법
CN104409650A (zh) * 2014-12-01 2015-03-11 京东方科技集团股份有限公司 一种发光器件及其制作方法、显示装置、光检测装置
CN104733505B (zh) 2015-03-19 2017-11-24 京东方科技集团股份有限公司 发光显示器的像素界定层及其制作方法
CN104795426A (zh) 2015-04-07 2015-07-22 京东方科技集团股份有限公司 一种阵列基板、在其上喷墨印刷的方法及相关装置
CN105118845B (zh) 2015-07-23 2018-01-26 京东方科技集团股份有限公司 有机电致发光显示基板及制备方法、显示面板、显示装置
CN105667085B (zh) 2016-01-14 2017-08-11 福州大学 一种实现图形化喷墨打印精细障壁阵列及其制造方法
CN105870157B (zh) 2016-05-30 2019-03-12 深圳市华星光电技术有限公司 用于打印成膜的凹槽结构及其制作方法
CN107994117B (zh) * 2017-12-08 2021-01-12 京东方科技集团股份有限公司 制备oled显示器件的方法、oled显示器件和oled显示设备
CN108054184B (zh) * 2017-12-11 2020-12-25 京东方科技集团股份有限公司 一种阵列基板及制备方法、显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868041A (ja) * 1981-10-20 1983-04-22 Tokyo Supply:Kk 印刷方法
CN1404624A (zh) * 2000-12-22 2003-03-19 精工爱普生株式会社 图案形成方法、装置及半导体器件、电路、显示体模件和发光元件
CN101207185A (zh) * 2006-12-22 2008-06-25 群康科技(深圳)有限公司 有机电激发光显示器的制造方法
CN103241025A (zh) * 2013-04-28 2013-08-14 京东方科技集团股份有限公司 一种有机薄膜的喷墨打印方法
CN104617130A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 一种oled像素单元、oled显示面板及显示装置
CN105789484A (zh) * 2016-03-09 2016-07-20 纳晶科技股份有限公司 发光器件及其制作方法
CN106158916A (zh) * 2016-08-26 2016-11-23 纳晶科技股份有限公司 量子点膜、其制作方法及显示器件
CN106252528A (zh) * 2016-08-26 2016-12-21 纳晶科技股份有限公司 发光器件的制作方法、发光器件及混合发光器件
CN106696501A (zh) * 2016-08-26 2017-05-24 纳晶科技股份有限公司 表面改性掩模板、其制作方法、电致发光器件的制作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886931A (zh) * 2018-03-22 2020-11-03 夏普株式会社 显示设备及其制造方法
CN111886931B (zh) * 2018-03-22 2023-08-22 夏普株式会社 显示设备及其制造方法
US20210222065A1 (en) * 2018-10-29 2021-07-22 Boe Technology Group Co., Ltd. Quantum Dot Layer and Manufacturing Method Thereof, Quantum Dot Color Filter, Color Filter Substrate, Display Panel, and Display Device
US12012539B2 (en) * 2018-10-29 2024-06-18 Boe Technology Group Co., Ltd. Quantum dot layer and manufacturing method thereof, quantum dot color filter, color filter substrate, display panel, and display device
CN113383433A (zh) * 2018-12-20 2021-09-10 艾利迪公司 包括光致发光块阵列的光电装置及其制作方法
JP2022513307A (ja) * 2018-12-20 2022-02-07 アルディア 光輝性ブロックのアレイを備えた光電子デバイス、及びこの光電子デバイスを製造する方法
JP7038261B2 (ja) 2018-12-20 2022-03-17 アルディア 光輝性ブロックのアレイを備えた光電子デバイス、及びこの光電子デバイスを製造する方法
CN113383433B (zh) * 2018-12-20 2022-06-21 艾利迪公司 包括光致发光块阵列的光电装置及其制作方法
CN110289362A (zh) * 2019-06-27 2019-09-27 京东方科技集团股份有限公司 量子点显示基板及其制作方法、显示装置
US11335875B2 (en) 2019-06-27 2022-05-17 Boe Technology Group Co., Ltd. Quantum dot display substrate, method for manufacturing the same and display device

Also Published As

Publication number Publication date
US10943781B2 (en) 2021-03-09
KR20190039772A (ko) 2019-04-15
US20190214604A1 (en) 2019-07-11
JP2019525446A (ja) 2019-09-05
KR102387760B1 (ko) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2018036542A1 (zh) 发光器件的制作方法、发光器件及混合发光器件
TW514592B (en) Method of manufacturing optical element
JP4024172B2 (ja) 電気泳動表示装置および製造方法
US10505138B2 (en) Organic light-emitting diode structure
CN106696501B (zh) 表面改性掩模板、其制作方法、电致发光器件的制作方法
CN106158916B (zh) 量子点膜、其制作方法及显示器件
US10333036B2 (en) Absorptive color conversion film
CN106252528B (zh) 发光器件的制作方法、发光器件及混合发光器件
CN113088279B (zh) 量子点材料、发光二极管基板及制作方法、显示装置
CN109239967B (zh) 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置
CN110459691B (zh) 显示基板及其制作方法、和显示装置
US11430923B2 (en) Micro light emitting diode array and manufacturing method thereof
WO2020216237A1 (zh) 阵列基板及其制作方法、显示面板和显示装置
JP5037145B2 (ja) カラーフィルタ製造方法
JP2007044582A (ja) 表面処理方法、電気光学装置の製造方法及び電気光学装置
US20210217815A1 (en) Display Substrate and Manufacturing Method Thereof, and Display Device
JP2002148429A (ja) 光学素子とその製造方法、該光学素子を用いた液晶素子
JP2002139614A (ja) 光学素子とその製造方法、該製造方法に用いる転写フィルム、該光学素子を用いた液晶素子
JP2004362818A (ja) 薄膜パターンの製造方法、有機電界発光素子の製造方法、カラーフィルタの製造方法、プラズマディスプレイパネルの製造方法、液晶表示パネルの製造方法及び電子機器
US20230276685A9 (en) Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
JP2002139613A (ja) 光学素子とその製造方法、該製造方法に用いる転写フィルム、該光学素子を用いた液晶素子
JP6136400B2 (ja) カラーフィルタの製造方法
JP2002055222A (ja) 光学素子とその製造方法、液晶素子
US20080266350A1 (en) Apparatus to print printing patterns using inkjet technique and method thereof
JP2002055218A (ja) 光学素子とその製造方法、液晶素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531517

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197007403

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17842964

Country of ref document: EP

Kind code of ref document: A1