WO2018030514A1 - 色素増感太陽電池およびその製造方法 - Google Patents

色素増感太陽電池およびその製造方法 Download PDF

Info

Publication number
WO2018030514A1
WO2018030514A1 PCT/JP2017/029088 JP2017029088W WO2018030514A1 WO 2018030514 A1 WO2018030514 A1 WO 2018030514A1 JP 2017029088 W JP2017029088 W JP 2017029088W WO 2018030514 A1 WO2018030514 A1 WO 2018030514A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
electrode
substrate
fine particles
sensitized solar
Prior art date
Application number
PCT/JP2017/029088
Other languages
English (en)
French (fr)
Inventor
福井 篤
智寿 吉江
恵 笠原
西村 直人
大介 豊嶋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/321,816 priority Critical patent/US10727412B2/en
Priority to EP17839578.6A priority patent/EP3499531B1/en
Priority to CN201780046929.XA priority patent/CN109564822B/zh
Priority to JP2018533561A priority patent/JP6721686B2/ja
Publication of WO2018030514A1 publication Critical patent/WO2018030514A1/ja
Priority to US16/898,108 priority patent/US11017957B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a dye-sensitized solar cell and a method for manufacturing the same.
  • Solar cells are broadly classified into three types: silicon, compound and organic. Silicon-based materials have high conversion efficiency, and solar cells using polysilicon are most widely used for power generation using sunlight.
  • One organic type is a dye-sensitized solar cell (hereinafter sometimes abbreviated as “DSC”). Although DSC has inferior conversion efficiency to silicon, DSC has the advantage of lower manufacturing costs than the use of silicon or compound inorganic semiconductors, and has been attracting attention in recent years. In addition, DSC has an advantage that high power generation efficiency can be obtained even in a low illuminance environment.
  • the effect of improving the durability of the dye-sensitized solar cell can be obtained by improving the durability of the dye. According to the study of the present inventor, the decrease in the performance of the dye-sensitized solar cell over time is caused not only by the deterioration of the dye but also by the desorption of the dye from the porous semiconductor layer.
  • an object of the present disclosure is to provide a dye-sensitized solar cell in which a decrease in short circuit current due to desorption of the dye from the porous semiconductor layer is suppressed, and a method for manufacturing the same.
  • a dye-sensitized solar cell includes a first electrode including a porous semiconductor layer carrying a dye, a second electrode serving as a counter electrode of the first electrode, the first electrode, and the first electrode.
  • the second electrode includes a counter electrode conductive layer supporting the same dye as the dye supported on the porous semiconductor layer, and the counter electrode conductive layer.
  • the number of moles of the dye supported on is 25% to 170% of the number of moles of the dye supported on the porous semiconductor layer.
  • the counter electrode conductive layer contains carbon fine particles, and the carbon fine particles contain 14% by mass or more of carbon black having a specific surface area of 800 g / m 2 or more.
  • the average particle diameter of the carbon black is, for example, 10 nm or more and 100 nm or less, and preferably 20 nm or more and 50 nm or less.
  • the average particle diameter is an arithmetic average particle diameter obtained from a transmission electron microscope (TEM) image.
  • the carbon fine particles include graphite fine particles.
  • the average particle diameter of the graphite fine particles is, for example, 1 ⁇ m or more and 10 ⁇ m or less, and preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • a mass ratio of the carbon black contained in the carbon fine particles to the graphite fine particles is about 4: 6 or more and about 6: 4 or less.
  • the average particle size of the carbon fine particles is more than 2 ⁇ m and not more than 5 ⁇ m.
  • the counter electrode conductive layer preferably has a thickness of 24 ⁇ m or more and 80 ⁇ m or less.
  • the dye-sensitized solar cell further includes a light-transmitting substrate, and the first electrode and the second electrode are formed on the substrate, and the porous insulating layer is interposed therebetween. Are arranged so as to face each other. That is, the dye-sensitized solar cell of an embodiment is a monolithic type.
  • the dye-sensitized solar cell includes a first substrate having translucency, and a second substrate disposed to face the first substrate, and the first electrode is the first electrode.
  • the second electrode is formed on the second substrate, and the first electrode and the second electrode are arranged to face each other.
  • the second substrate also preferably has translucency, but may not have translucency.
  • the dye includes, for example, a ruthenium-based metal complex dye.
  • a method for manufacturing a monolithic dye-sensitized solar cell includes a step of preparing a translucent substrate, and the first electrode, the second electrode, and the first electrode on the substrate.
  • the step c includes a step of immersing the substrate on which the first electrode, the second electrode, and the porous insulating layer are formed in a solution containing the dye.
  • a dye-sensitized solar cell in which a decrease in short-circuit current due to desorption of a dye from a porous semiconductor is suppressed and a method for manufacturing the same.
  • FIG. 1 is a schematic cross-sectional view of a DSC 100 according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a DSC 200 according to Embodiment 2.
  • FIG. (A) And (b) is a schematic diagram for demonstrating the manufacturing method of DSC100. It is a schematic diagram for demonstrating the manufacturing method of DSC200.
  • (A) And (b) is an optical image of the sample after light irradiation experiment, (a) is an optical image of the sample cell of the comparative example 1, (b) is an optical image of the sample cell of Example 1. It is.
  • a dye-sensitized solar cell includes a first electrode including a porous semiconductor layer carrying a dye, a second electrode serving as a counter electrode of the first electrode, the first electrode, and the second electrode. And an electrolytic solution filled in between.
  • the first electrode includes at least a porous semiconductor layer supporting a dye, and may further include a conductive layer.
  • the first electrode is also called a photoelectrode.
  • the second electrode is an electrode that functions as a counter electrode of the photoelectrode, and may be simply referred to as a counter electrode.
  • the counter electrode has at least a counter electrode conductive layer, and may further have a catalyst layer.
  • the counter electrode conductive layer may also serve as the catalyst layer.
  • the second electrode includes a counter electrode conductive layer supporting the same dye as the dye supported on the porous semiconductor layer, and the dye supported on the counter electrode conductive layer Is 25% to 170% of the number of moles of the dye supported on the porous semiconductor layer.
  • the dye-sensitized solar cell according to the embodiment of the present invention, even when the dye of the first electrode is desorbed from the porous semiconductor layer, the dye is supplied from the counter electrode conductive layer of the second electrode and adsorbed to the first electrode. Therefore, the fall of the short circuit current by the pigment
  • the counter electrode conductive layer contains a material that adsorbs and carries a sufficient amount of the dye (hereinafter referred to as “adsorbent”).
  • the adsorbent for the counter electrode conductive layer can also desorb the dye.
  • the adsorbent contained in the counter electrode conductive layer can adsorb and desorb the dye (depending on the concentration of the dye in the electrolyte).
  • carbon fine particles are preferable.
  • “carbon fine particles” are used to include carbon black and graphite fine particles.
  • the graphite fine particles refer to those in which 70% by volume or more of the fine particles have a graphite structure.
  • Carbon black refers to those in which less than 70% by volume of the fine particles have a graphite structure and the rest is amorphous, and typically 80% by volume or more is amorphous.
  • the structure of the dye-sensitized solar cell according to the embodiment of the present invention may be various known structures.
  • a plurality of dye-sensitized solar cells (cells) can be electrically connected in series and / or in parallel and integrated into a module.
  • FIG. 1 shows a schematic cross-sectional view of the DSC 100.
  • the DSC 100 includes a light-transmitting substrate (for example, a glass substrate) 12, a transparent conductive layer 14 formed on the substrate 12, and a porous semiconductor layer 16 ⁇ / b> A formed on the transparent conductive layer 14. .
  • the porous semiconductor layer 16A has semiconductor fine particles 16 and pores 16p, and supports a dye (not shown).
  • the DSC 100 further includes a light-transmitting substrate (for example, a glass substrate) 22, a transparent conductive layer 24 formed on the substrate 22, and a counter electrode conductive layer 28 ⁇ / b> A formed on the transparent conductive layer 24. .
  • An electrolyte solution (electrolyte solution) 42 is filled between the porous semiconductor layer 16A and the counter electrode conductive layer 28A.
  • the electrolytic solution 42 is sealed in a gap between the substrate 12 and the substrate 22 by a sealing portion 52.
  • the electrolytic solution 42 includes, for example, I ⁇ and I 3 ⁇ as mediators (redox couples).
  • the sealing portion 52 is formed using a photocurable resin or a thermosetting resin.
  • the counter electrode conductive layer 28A included in the DSC 100 according to the embodiment of the present invention carries the same dye as the dye carried on the porous semiconductor layer.
  • the adsorbent carrying the pigment is, for example, carbon fine particles.
  • the counter electrode conductive layer 28A has, for example, carbon fine particles 28L and 28S and pores 28p.
  • the carbon fine particles 28S have a smaller particle diameter than the carbon fine particles 28L.
  • the carbon fine particles 28S are, for example, carbon black having a specific surface area of 800 g / m 2 or more.
  • the counter electrode conductive layer 28A contains 14% by mass or more of carbon fine particles 28S. That is, the mass of the carbon fine particles 28S with respect to the total mass of the carbon fine particles 28S and 28L constituting the counter electrode conductive layer 28A is 14% by mass or more.
  • the average particle diameter of carbon black is, for example, 10 nm or more and 100 nm or less, and preferably 20 nm or more and 50 nm or less.
  • the carbon fine particles 28L are, for example, graphite fine particles.
  • the average particle diameter of the graphite fine particles is, for example, 1 ⁇ m or more and 10 ⁇ m or less, and preferably 3 ⁇ m or more and 8 ⁇ m or less.
  • the carbon black fine particles 28S have a high ability to adsorb the dye, and the graphite fine particles 28L have a low ability to adsorb the dye. Therefore, the ability of the counter electrode conductive layer 28A to adsorb the dye can be controlled by adjusting the ratio between the carbon fine particles 28S and the carbon fine particles 28L.
  • the mass ratio of the carbon black fine particles 28S and the graphite fine particles 28L contained in the entire carbon fine particles is about 4: 6 to 6: 4.
  • the average particle diameter of the carbon fine particles contained in the counter electrode conductive layer 28A is, for example, more than 2 ⁇ m and not more than 5 ⁇ m.
  • the thickness of the counter electrode conductive layer 28A is, for example, not less than 24 ⁇ m and not more than 80 ⁇ m.
  • FIG. 2 shows a schematic sectional view of the DSC 200.
  • the DSC 200 is a monolithic type DSC.
  • the DSC 200 includes a transparent conductive layer 14a formed on the translucent substrate 12, and a porous semiconductor layer 16B formed on the transparent conductive layer 14a.
  • the porous semiconductor layer 16B is formed on the porous semiconductor layer 16B.
  • a porous insulating layer 36B is formed so as to cover the entire structure, and a counter electrode conductive layer 28B is formed on the porous insulating layer 36B.
  • the porous semiconductor layer 16B and the counter electrode conductive layer 28B are disposed so as to face each other with the porous insulating layer 36B interposed therebetween.
  • the counter electrode conductive layer 28 ⁇ / b> B is connected to the transparent conductive layer 14 b formed on the translucent substrate 12.
  • the transparent conductive layer 14 a and the transparent conductive layer 14 b are insulated from each other on the translucent substrate 12.
  • the DSC 200 also has a structure in which the electrolytic solution 42 is sealed in the gap between the substrate 12 and the substrate 22 by the sealing portion 52.
  • the translucent substrates 12 and 22 for example, glass substrates can be used.
  • the translucent substrates 12 and 22 are only required to be formed of a material that substantially transmits light having a wavelength that has an effective sensitivity to a dye described later, and is not necessarily transparent to light in all wavelength regions. It is not necessary to have light properties.
  • the thickness of the translucent substrates 12 and 22 is, for example, not less than 0.2 mm and not more than 5.0 mm.
  • the substrate 22 may not have translucency.
  • a substrate material generally used for solar cells can be widely used.
  • a glass substrate such as soda glass, fused quartz glass, or crystal quartz glass, or a heat resistant resin plate such as a flexible film
  • a flexible film examples include tetraacetylcellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyetherimide (PEI), phenoxy resin, or Teflon. (Registered trademark) or the like can be used.
  • the transparent conductive layers 14, 14a and 14b are formed from a material having conductivity and translucency.
  • the material for example, at least one selected from the group consisting of indium tin composite oxide (ITO), tin oxide (SnO 2), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO) can be used.
  • the thickness of the transparent conductive layers 14, 14a, 14b is, for example, not less than 0.02 ⁇ m and not more than 5.00 ⁇ m.
  • the electrical resistance of the transparent conductive layer 14 is preferably low, for example, preferably 40 ⁇ / ⁇ or less.
  • the porous semiconductor layers 16A and 16B are formed from a photoelectric conversion material.
  • materials include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, and copper-indium.
  • At least one selected from the group consisting of sulfide (CuInS 2 ), CuAlO 2 and SrCu 2 O 2 can be used.
  • Titanium oxide is preferably used from the viewpoint of high stability and the size of the band gap possessed by itself.
  • titanium oxide examples include various narrowly defined titanium oxides such as anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide or hydrous titanium oxide alone, or It can be used by mixing.
  • the two types of crystalline titanium oxide, anatase type and rutile type can be in any form depending on the production method and thermal history, but generally the crystalline titanium oxide is anatase type.
  • the semiconductor crystal system may be either single crystal or polycrystalline, but is preferably polycrystalline from the viewpoints of stability, ease of crystal growth, production cost, and the like. It is preferable to use microscale semiconductor fine particles. Therefore, it is preferable to use fine particles of titanium oxide as a raw material for the porous semiconductor layers 16A and 16B.
  • the fine particles of titanium oxide can be produced, for example, by a liquid phase method such as a hydrothermal synthesis method or a sulfuric acid method, or a method such as a gas phase method. It can also be produced by high-temperature hydrolysis of chlorides developed by Degussa.
  • semiconductor fine particles a mixture of fine particles having two or more kinds of particle sizes made of the same or different semiconductor compounds may be used. It is considered that semiconductor fine particles having a large particle diameter contribute to an improvement in light capture rate by scattering incident light, and semiconductor fine particles having a small particle diameter contribute to an improvement in the amount of adsorbed dye by increasing the number of adsorption points.
  • the ratio of the average particle diameters of the fine particles is preferably 10 times or more.
  • the average particle size of the fine particles having a large particle size is, for example, 100 nm or more and 500 nm or less.
  • the average particle diameter of the fine particles having a small particle diameter is, for example, 5 nm or more and 50 nm or less.
  • the thickness of the porous semiconductor layers 16A and 16B is, for example, not less than 0.1 ⁇ m and not more than 100.0 ⁇ m.
  • the specific surface areas of the porous semiconductor layers 16A and 16B are preferably, for example, 10 m 2 / g or more and 200 m 2 / g or less.
  • Examples of the dye supported on the porous semiconductor layers 16A and 16B and the counter electrode conductive layers 28A and 28B include one or more of various organic dyes and metal complex dyes having absorption in the visible light region or the infrared light region. It can be used selectively.
  • organic dyes include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylenes. At least one selected from the group consisting of a system dye, an indigo dye and a naphthalocyanine dye can be used. In general, the extinction coefficient of an organic dye is larger than the extinction coefficient of a metal complex dye in which a molecule is coordinated to a transition metal.
  • the metal complex dye is composed of a metal coordinated to a molecule.
  • the molecule is, for example, a porphyrin dye, a phthalocyanine dye, a naphthalocyanine dye, or a ruthenium dye.
  • the metal include Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, and La. From the group consisting of W, Pt, TA, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te and Rh At least one selected.
  • the metal complex dye it is preferable to use a phthalocyanine dye or a ruthenium dye with a metal coordinated, and it is particularly preferable to use a ruthenium metal complex dye.
  • ruthenium-based metal complex dye for example, a commercially available ruthenium-based metal complex dye such as a trade name Ruthenium 535 dye, Ruthenium 535-bisTBA dye, or Ruthenium 620-1H3TBA dye manufactured by Solaronix can be used.
  • the co-adsorbent may be supported on the porous semiconductor layers 16A and 16B.
  • the coadsorbent suppresses the sensitizing dye from associating or aggregating in the porous semiconductor layers 16A and 16B.
  • the co-adsorbing material can be appropriately selected from common materials in the field according to the sensitizing dye to be combined.
  • the porous insulating layer 36B has insulating fine particles 36 and pores 36p.
  • the electrolytic solution 42 enters and is held in the pores 36p of the porous insulating layer 36B.
  • the insulating fine particles 36 can be formed of at least one selected from the group consisting of silicon oxide such as titanium oxide, niobium oxide, zirconium oxide, silica glass or soda glass, aluminum oxide, and barium titanate.
  • silicon oxide such as titanium oxide, niobium oxide, zirconium oxide, silica glass or soda glass, aluminum oxide, and barium titanate.
  • rutile type titanium oxide is preferably used as the insulating fine particles 36.
  • the average particle size of the rutile type titanium oxide is preferably 5 nm or more and 500 nm or less, and more preferably 10 nm or more and 300 nm or less.
  • the electrolytic solution 42 may be a liquid (liquid) containing an oxidation-reduction pair, and is not particularly limited as long as it is a liquid that can be used in a general battery or a dye-sensitized solar cell.
  • the electrolytic solution 42 includes a liquid composed of a redox pair and a solvent capable of dissolving the redox pair, a liquid composed of a redox pair and a molten salt capable of dissolving the redox pair, a redox pair and a solvent capable of dissolving the redox pair.
  • the electrolyte solution 42 may contain the gelatinizer and may be gelatinized.
  • the redox couple examples include I ⁇ / I 3 ⁇ , Br 2 ⁇ / Br 3 ⁇ , Fe 2+ / Fe 3+ , and quinone / hydroquinone. More specifically, the redox pair includes metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), and calcium iodide (CaI 2 ), and iodine (I 2 ).
  • metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), and calcium iodide (CaI 2 ), and iodine (I 2 ).
  • the redox couple includes tetraalkylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), tetrahexylammonium iodide (THAI) and the like, iodine It can be a combination.
  • the redox pair may be a combination of bromide with a metal bromide such as lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), calcium bromide (CaBr 2 ) and the like.
  • a combination of LiI and I 2 is preferably used.
  • the solvent of the redox couple is, for example, a solvent containing at least one selected from the group consisting of carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Is preferred.
  • a solvent it is more preferable to use a carbonate compound or a nitrile compound alone or in combination.
  • DSCs 100 and 200 can be manufactured by a known method except for the step of adsorbing and supporting the dye on the counter electrode conductive layers 28A and 28B.
  • it can be produced by the method described in International Publication No. 2014/038570.
  • the step of adsorbing and supporting the dye on the counter electrode conductive layers 28A and 28B can also be performed by a method similar to a known method of adsorbing and supporting the dye on the porous semiconductor layer.
  • the step of supporting the dye on the counter electrode conductive layer 28A and the porous semiconductor layer 16A is performed, for example, as shown in FIGS. 3 (a) and 3 (b) in the solution 62 containing the dye in the counter electrode conductive layer 28A.
  • This is performed by immersing the substrate 22 on which the substrate is formed and the substrate 12 on which the porous semiconductor layer 16A is formed and leaving it for a predetermined time.
  • different containers 60a and 60b are prepared for the substrate 22 and the substrate 12, respectively, but the substrate 22 and the substrate 12 may be immersed in the same container.
  • different dyes may be supported on the counter electrode conductive layer 28A and the porous semiconductor layer 16A.
  • the substrate 12 on which the porous semiconductor layer 16B and the counter electrode conductive layer 28B are formed is immersed in a solution 62 containing a dye in a container 60c. Therefore, DSC 200 having a monolithic structure can be manufactured more easily than DSC 100.
  • Translucent substrates 12, 22 and transparent conductive layers 14, 14a, 14b, 24 Nippon Sheet Glass Co., Ltd. (TEC A9X) glass substrate with FTO layer, thickness 4 mm, size 20 mm ⁇ 70 mm (DSC module, size 70 mm ⁇ 70 mm), electrical resistance 9 ⁇ / sq Substrate 22 (DSC200): Blue plate glass substrate (manufactured by Matsunami Glass Co., Ltd.), thickness 1 mm, size 10 mm ⁇ 70 mm
  • Porous semiconductor layers 16A, 16B Porous titanium oxide, titanium oxide paste D / SP (manufactured by Solaronix), a rectangle of 7 mm ⁇ 50 mm ⁇ thickness 24 ⁇ m, electrical resistance (10 ⁇ 13 to 10 -14 mho / cm), dye A (trade name: Ruthenium 620-1H3TBA (manufactured by Solaronix)), and the amount of the dye supported were varied.
  • Porous insulating layer 36B Porous zirconium oxide, zirconium oxide paste Zr-Nanoxide Z / SP (manufactured by Solaronix), 7.2 mm ⁇ 50.2 mm ⁇ 13 ⁇ m rectangular counter electrode conductive layer 28A, 28B: carbon fine particles The composition, the amount of dye adsorbed, and the thickness were adjusted as appropriate. Electrolyte 42: I 3 ⁇ concentration 0.05 M, solvent acetonitrile, thickness 50 ⁇ m (gap) Sealing part 52: UV curable resin (model number: 31X-101 (manufactured by ThreeBond)), seal width 1 mm
  • the irradiation time was 24 h under the conditions based on JIS C8938 (Appendix A-5, Sample surface irradiation illuminance: 255 W / m 2 , Wavelength range of irradiation light: 300-700 nm, Black panel temperature 63 ° C.)
  • JIS C8938 Appendix A-5, Sample surface irradiation illuminance: 255 W / m 2 , Wavelength range of irradiation light: 300-700 nm, Black panel temperature 63 ° C.
  • the amount of the dye supported was determined as follows. For each sample cell having a DSC100 type structure (Examples 1 to 3 and Comparative Examples 1 to 4), the substrate 12 on which the porous semiconductor layer 16A is formed and the substrate 22 on which the counter electrode conductive layer 28A is formed are respectively in an alkaline solution. Immersion was performed to remove the dye, and the amount of each dye supported on the porous semiconductor layer 16A and the counter electrode conductive layer 28A was determined from the absorption spectrum of the solution containing the dye.
  • the substrate 12 on which the porous semiconductor layer 16B, the porous insulating layer 36B, and the counter electrode conductive layer 28B were formed in an alkaline solution. It was immersed to desorb the dye, and the amount of the dye supported on the porous semiconductor layer 16B and the counter electrode conductive layer 28B was determined from the absorption spectrum of the solution containing the dye.
  • the counter electrode conductive layer 28B is scraped from the substrate 12 on which the porous semiconductor layer 16B, the porous insulating layer 36B, and the counter electrode conductive layer 28B are formed, and the substrate 12 having the porous semiconductor layer 16B and the porous insulating layer 36B is converted into an alkaline solution.
  • the amount of the dye supported on the porous semiconductor layer 16B was determined from the absorption spectrum of the solution containing the dye.
  • the dye loading amount of the counter electrode conductive layer 28B was determined by subtracting the dye loading amount of the porous semiconductor layer 16B from the separately determined dye loading amounts of the porous semiconductor layer 16B and the counter electrode conductive layer 28B. In Tables 1 and 2, the amount of dye supported on the counter electrode conductive layer is shown as a ratio (percentage) to the amount of dye supported on the porous semiconductor layer.
  • the average particle diameter of carbon black and graphite fine particles contained in the counter electrode conductive layer was determined by cutting out the cross-sectional surface of the counter electrode conductive layer of each cell of Examples 1 to 6 and Comparative Examples 1 to 7 using a glass cutting machine. It is an arithmetic average particle diameter calculated
  • FIGS. 5A and 5B show optical images of the sample after the light irradiation experiment.
  • 5A is an optical image of the sample cell of Comparative Example 1
  • FIG. 5B is an optical image of the sample cell of Example 1.
  • the Jsc change rate of the sample cell of Comparative Example 1 is ⁇ 21%, whereas the Jsc change rate of the sample cell of Example 1 is ⁇ 9.0%. It can be seen that the decrease in the short-circuit current density Jsc due to the desorption of the dye from the porous semiconductor is suppressed.
  • the rate of change of the short-circuit current density Jsc of the samples of Comparative Examples 2 to 4 is all -10.
  • the change rate of the short-circuit current density Jsc of the sample cells of Examples 2 and 3 is greater than -10.0% (change rate) while being smaller than 0% (absolute value of change rate is greater than 10%). Is 10% or less), and a decrease in the short circuit current density Jsc is suppressed. Further, the effect of suppressing the decrease in the short-circuit current density Jsc is greater as the amount of dye supported on the counter electrode conductive layer is larger.
  • the decrease in the short-circuit current density Jsc is the largest (Jsc change rate is ⁇ 9.6%).
  • the amount of the dye supported on the counter electrode conductive layer of the sample of Example 3 is 25%. Therefore, it can be said that the absolute value of the Jsc change rate can be reduced to 10% or less if the amount (mole) of the dye supported on the counter electrode conductive layer is 25% or more of the amount (mole) of the dye supported on the porous semiconductor layer.
  • the amount (molar number) of the counter electrode conductive layer is preferably less than 170%.
  • the preferred thickness of the counter conductive layer was examined. As shown in Table 1, the absolute values of the Jsc change rates of the sample cells of Examples 4 to 6 in which the thickness of the counter electrode conductive layer is 24 ⁇ m, 42 ⁇ m, and 80 ⁇ m are all 10% or less. In contrast, the absolute value of the Jsc change rate of the sample cell of Comparative Example 5 in which the thickness of the counter electrode conductive layer is 18 ⁇ m is as large as 25%.
  • the absolute value of the Jsc change rate of the sample cell of Comparative Example 6 in which the thickness of the counter electrode conductive layer is 90 ⁇ m is very small as 3%, but the initial Jsc short-circuit current density before the light irradiation experiment is also 0.051 mA / cm. 2 and small.
  • the counter electrode conductive layer 28B becomes thicker when the counter electrode conductive layer 28B and the porous semiconductor layer 16B adsorb the dye, the dye is adsorbed on the porous semiconductor layer 16B. It becomes difficult.
  • the thickness of the counter electrode conductive layer 28B is 90 ⁇ m or more, a sufficient amount of dye cannot be adsorbed to the porous semiconductor layer 16B. It can no longer be obtained. From these results, it can be said that the preferred thickness of the counter electrode conductive layer is 24 ⁇ m or more and 80 ⁇ m or less. However, the upper limit of the thickness of the counter electrode conductive layer depends on the method of adsorbing the dye and the configuration of the counter electrode conductive layer, and can be more than 80 ⁇ m.
  • Example 7 the influence of the composition (formulation) of carbon fine particles constituting the counter electrode conductive layer was examined.
  • the AC impedance measurement is performed using an autolabo measuring device with the working electrode connected to the positive electrode of the battery, the counter electrode and the reference electrode connected to the negative electrode, and an open-circuit voltage state of 10 mW / cm 2 from 0.1 Hz to 10 MHz with an amplitude of 10 mV. Measurement was performed while irradiating with solar simulator light.
  • the AC impedance of the counter electrode conductive layer of Comparative Example 7 is five times as large as that of Example 7.
  • the amount of the dye supported on the counter electrode conductive layer is less than 170% of the amount of supported color (number of moles) of the porous semiconductor layer.
  • the average particle diameter of the carbon fine particles constituting the counter electrode conductive layer is preferably more than 2 ⁇ m and not more than 5 ⁇ m.
  • a dye-sensitized solar cell in which a decrease in short-circuit current due to desorption of the dye from the porous semiconductor is suppressed, and a method for manufacturing the same.
  • Embodiments of the present invention can be widely applied to known dye-sensitized solar cells and methods for producing the same.
  • Transparent conductive layer 14a Transparent conductive layer 14b: Transparent conductive layer 16: Semiconductor fine particle 16A: Porous semiconductor layer 16B: Porous semiconductor layer 16p: Pore 24: Transparent conductive layer 28A: Counter electrode conductive layer 28B: Counter electrode conductive layer 28L: Fine particles 28S: Fine particles 28p: Pore 36: Insulator fine particles 36B: Porous insulating layer 36p: Pore 42: Electrolytic solution 52: Sealing portions 60a, 60b, 60c: Containers 100, 200: Dye-sensitized solar cell (DSC)
  • DSC Dye-sensitized solar cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

色素増感太陽電池(100)は、色素が担持された多孔質半導体層(16A)を含む第1電極と、第1電極の対極となる第2電極と、第1電極と第2電極との間に充填された電解液(42)とを備え、第2電極は、多孔質半導体層に担持されている色素と同じ色素が担持された対極導電層(28A)を含み、対極導電層(28A)に担持されている色素のモル数は、多孔質半導体層に担持されている色素のモル数の25%以上170%以下である。

Description

色素増感太陽電池およびその製造方法
 本開示は、色素増感太陽電池およびその製造方法に関する。
 太陽電池は、材料によって、シリコン系、化合物系および有機系の3つに大別される。シリコン系は、変換効率が高く、ポリシリコンを用いた太陽電池が太陽光を用いた発電に最も広く用いられている。有機系の1つに色素増感太陽電池(Dye-sensitized solar cell、以下「DSC」と略称することがある。)がある。DSCは、変換効率はシリコン系よりも劣るが、シリコン系や化合物系などの無機半導体を用いる場合よりも製造コストが低い利点を有しており、近年注目されている。また、DSCは、低照度環境下においても高い発電効率が得られる利点を有しており、この点でも注目されている。
 しかしながら、色素増感太陽電池は、耐久性に課題を有している。そこで、増感色素(以下、単に「色素」という。)の耐久性を向上させることが検討されている(例えば特許文献1)。
特開2015-135922号公報
 色素の耐久性を向上させることによって、色素増感太陽電池の耐久性を向上させる効果を得ることができる。本発明者の検討によると、色素増感太陽電池の性能の時間による低下は、色素の劣化だけでなく、色素が多孔質半導体層から脱着することにも起因している。
 そこでは、本開示は、多孔質半導体層から色素が脱着することによる短絡電流の低下が抑制された色素増感太陽電池およびその製造方法を提供することを目的とする。
 本発明のある実施形態による色素増感太陽電池は、色素が担持された多孔質半導体層を含む第1電極と、前記第1電極の対極となる第2電極と、前記第1電極と前記第2電極との間に充填された電解液とを備え、前記第2電極は、前記多孔質半導体層に担持されている前記色素と同じ色素が担持された対極導電層を含み、前記対極導電層に担持されている前記色素のモル数は、前記多孔質半導体層に担持されている前記色素のモル数の25%以上170%以下である。
 ある実施形態において、前記対極導電層は、炭素の微粒子を含み、前記炭素の微粒子は、比表面積が800g/m2以上のカーボンブラックを14質量%以上含む。前記カーボンブラックの平均粒径は、例えば10nm以上100nm以下であり、20nm以上50nm以下であることが好ましい。ここで、平均粒径は、透過型電子顕微鏡(TEM)像から求められる算術平均粒径である。
 ある実施形態において、前記炭素の微粒子は、グラファイトの微粒子を含む。前記グラファイトの微粒子の平均粒径は、例えば1μm以上10μm以下であり、2μm以上8μm以下であることが好ましい。
 ある実施形態において、前記炭素の微粒子に含まれる前記カーボンブラックと前記グラファイトの微粒子との質量比は、約4:6以上約6:4以下である。
 ある実施形態において、前記炭素の微粒子の平均粒径は、2μm超5μm以下である。
 ある実施形態において、前記対極導電層の厚さは、24μm以上80μm以下であることが好ましい。
 ある実施形態において、前記色素増感太陽電池は、透光性を有する基板をさらに有し、前記第1電極および前記第2電極は、前記基板上に形成されており、多孔質絶縁層を介して互いに対向するように配置されている。すなわち、ある実施形態の前記色素増感太陽電池は、モノリシック型である。
 ある実施形態において、前記色素増感太陽電池は、透光性を有する第1基板と、前記第1基板と対向するように配置された第2基板とを有し、前記第1電極は前記第1基板上に形成されており、前記第2電極は前記第2基板上に形成されており、前記第1電極と前記第2電極は互いに対向するように配置されている。前記第2基板も透光性を有することが好ましいが、透光性を有しなくてもよい。
 ある実施形態において、前記色素は、例えばルテニウム系金属錯体色素を含む。
 本発明の実施形態によるモノリシック型色素増感太陽電池の製造方法は、透光性を有する基板を用意する工程aと、前記基板の上に、前記第1電極、前記第2電極および前記第1電極と前記第2電極の間に配置された多孔質絶縁層を形成する工程bと、前記工程bの後に、前記第1電極および前記第2電極に同時に前記色素を担持させる工程cとを包含する。
 ある実施形態において、前記工程cは、前記第1電極、前記第2電極および前記多孔質絶縁層が形成された前記基板を前記色素を含む溶液に浸漬する工程を包含する。
 本発明の実施形態によると、多孔質半導体から色素が脱着することによる短絡電流の低下が抑制された色素増感太陽電池およびその製造方法が提供される。
実施形態1によるDSC100の模式的な断面図である。 実施形態2によるDSC200の模式的な断面図である。 (a)および(b)は、DSC100の製造方法を説明するための模式図である。 DSC200の製造方法を説明するための模式図である。 (a)および(b)は、光照射実験後のサンプルの光学像であり、(a)が比較例1のサンプルセルの光学像であり、(b)が実施例1のサンプルセルの光学像である。
 本発明の実施形態による色素増感太陽電池は、色素が担持された多孔質半導体層を含む第1電極と、第1電極の対極となる第2電極と、第1電極と前記第2電極との間に充填された電解液とを備える。第1電極は、少なくとも色素を担持した多孔質半導体層を含み、さらに導電層を含んでもよい。第1電極は光電極ともいう。第2電極は、光電極の対極として機能する電極であり、単に対極ということがある。対極は、少なくとも対極導電層を有し、さらに触媒層を有してもよい。対極導電層が触媒層を兼ねてもよい。複数の色素増感太陽電池(「単位セル」または単に「セル」ということがある。)を一体化したモジュールにおいては、例えば、互い隣接するセルが電気的に直列または並列に接続される。このとき、例えば、基板上に形成された透明導電層を共有することによって一方のセルの光電極が他方のセルの対電極に接続される。本発明の実施形態による色素増感太陽電池において、第2電極は、多孔質半導体層に担持されている色素と同じ色素が担持された対極導電層を含み、対極導電層に担持されている色素のモル数は、多孔質半導体層に担持されている色素のモル数の25%以上170%以下である。
 したがって、本発明の実施形態による色素増感太陽電池においては、第1電極の色素が多孔質半導体層から脱着しても、第2電極の対極導電層から色素が供給され、第1電極に吸着されるので、多孔質半導体から色素が脱着することによる短絡電流の低下が抑制される。対極導電層は、十分な量の色素を吸着し、担持する材料(以下、「吸着材」という。)を含んでいる。また、対極導電層の吸着材上記材料は、色素を脱着させることもできる。すなわち、対極導電層に含まれる吸着材は、(電解液中の色素の濃度に応じて)色素を吸脱着させることができる。吸着材としては、炭素の微粒子(粉末)が好ましい。ここでは、「炭素の微粒子」は、カーボンブラックおよびグラファイトの微粒子を包含する意味に用いる。なお、グラファイトの微粒子とは、微粒子の70体積%以上がグラファイト構造を有しているものを指すことにする。カーボンブラックは、微粒子の70体積%未満がグラファイト構造で残りは非晶質のものを指し、典型的には80体積%以上が非晶質である。
 本発明の実施形態による色素増感太陽電池の構造は、公知の種々の構造であってよい。また、複数の色素増感太陽電池(セル)を電気的に直列および/または並列に接続し一体化することによって、モジュールにすることもできる。
 以下、図面を参照して、実験例(実施例1~7および比較例1~7)に用いたDSC100および200の構造を説明する。
 図1にDSC100の模式的な断面図を示す。DSC100は、透光性を有する基板(例えばガラス基板)12と、基板12上に形成された透明導電層14と、透明導電層14上に形成された多孔質半導体層16Aとを有している。多孔質半導体層16Aは、半導体微粒子16と細孔16pとを有しており、色素(不図示)が担持されている。
 DSC100は、さらに、透光性を有する基板(例えばガラス基板)22と、基板22上に形成された透明導電層24と、透明導電層24上に形成された対極導電層28Aを有している。多孔質半導体層16Aと対極導電層28Aとの間には電解液(電解質溶液)42が充填されている。電解液42は、基板12と基板22との間隙に封止部52によって密閉されている。電解液42は、メディエータ(酸化還元対)として例えばI-とI3 -とを含む。封止部52は、光硬化性樹脂または熱硬化性樹脂を用いて形成される。
 本発明の実施形態によるDSC100が有する対極導電層28Aは、多孔質半導体層に担持されている色素と同じ色素を担持している。色素を担持する吸着材は、例えば、炭素の微粒子である。 対極導電層28Aは、例えば、炭素の微粒子28Lおよび28Sと細孔28pとを有している。炭素の微粒子28Sは、炭素の微粒子28Lよりも粒径が小さい。
 炭素の微粒子28Sは、例えば、比表面積が800g/m2以上のカーボンブラックである。対極導電層28Aは、炭素の微粒子28Sを14質量%以上含む。すなわち、対極導電層28Aを構成する炭素の微粒子28Sと28Lとの合計の質量に対する炭素の微粒子28Sの質量が14質量%以上である。カーボンブラックの平均粒径は、例えば10nm以上100nm以下であり、20nm以上50nm以下であることが好ましい。
 炭素の微粒子28Lは、例えば、グラファイトの微粒子である。グラファイトの微粒子の平均粒径は、例えば1μm以上10μm以下であり、3μm以上8μm以下であることが好ましい。
 カーボンブラックの微粒子28Sは色素を吸着する高い能力を有し、グラファイトの微粒子28Lは色素を吸着する能力が低い。したがって、炭素の微粒子28Sと炭素の微粒子28Lとの比率を調整することによって、対極導電層28Aの色素を吸着する能力を制御することができる。例えば、炭素の微粒子全体に含まれるカーボンブラックの微粒子28Sとグラファイトの微粒子28Lとの質量比は、約4:6以上6:4以下である。このとき、対極導電層28Aに含まれる炭素の微粒子の平均粒径は、例えば2μm超5μm以下である。対極導電層28Aの厚さは、例えば24μm以上80μm以下である。
 図2にDSC200の模式的な断面図を示す。DSC200は、モノリシックタイプのDSCである。DSC200は、透光性基板12上に形成された透明導電層14aと、透明導電層14a上に形成された多孔質半導体層16Bとを有し、多孔質半導体層16B上に多孔質半導体層16Bの全体を覆うように多孔質絶縁層36Bが形成されており、さらに多孔質絶縁層36B上に対極導電層28Bが形成されている。多孔質半導体層16Bと対極導電層28Bは、多孔質絶縁層36Bを介して互いに対向するように配置されている。対極導電層28Bは、透光性基板12上に形成された透明導電層14bに接続されている。透明導電層14aと透明導電層14bとは、透光性基板12上で互いに絶縁されている。
 DSC200も、電解液42が基板12と基板22との間隙に封止部52によって密閉されている構造を有している。
 透光性基板12、22として、例えばガラス基板を用いることができる。ただし、透光性基板12、22は、後述する色素に実効的な感度を有する波長の光を実質的に透過させる材料で形成されていればよく、必ずしもすべての波長領域の光に対して透光性を有する必要はない。透光性基板12、22の厚さは、例えば0.2mm以上5.0mm以下である。なお、基板22は、透光性を有しなくてもよい。
 基板12、22の材料として、一般に太陽電池に用いられる基板材料を広く用いることができる。例えば、ソーダガラス、溶融石英ガラス若しくは結晶石英ガラスなどのガラス基板、または可撓性フィルムなどの耐熱性樹脂板を用いることができる。可撓性フィルムとして、例えば、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂またはテフロン(登録商標)などを用いることができる。
 透明導電層14、14a、14bは、導電性および透光性を有する材料から形成される。材料として、例えば、インジウム錫複合酸化物(ITO)、酸化錫(SnO2)、フッ素ドープ酸化錫(FTO)および酸化亜鉛(ZnO)からなる群から選択される少なくとも1種を用いることができる。透明導電層14、14a、14bの厚さは、例えば0.02μm以上5.00μm以下である。透明導電層14の電気抵抗は低い方が好ましく、例えば40Ω/□以下であることが好ましい。
 多孔質半導体層16A、16Bは、光電変換材料から形成される。材料として、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2およびSrCu22からなる群から選択された少なくとも1種を用いることができる。高い安定性を有する点や自身がもつバンドギャップの大きさの点から、酸化チタンを用いることが好ましい。
 酸化チタンとしては、例えば、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の狭義の酸化チタン、水酸化チタンまたは含水酸化チタンなどを単独で、または混合して用いることができる。アナターゼ型およびルチル型の2種類の結晶系酸化チタンは、その製法および熱履歴によりいずれの形態にもなり得るが、一般的に結晶系酸化チタンはアナターゼ型である。酸化チタンとして、アナターゼ型の含有率の高い酸化チタン、例えばアナターゼ型の含有率が80%以上である酸化チタンを用いることが色素増感の観点から好ましい。
 半導体の結晶系は、単結晶または多結晶のいずれであってもよいが、安定性、結晶成長の容易さおよび製造コストなどの観点から多結晶であることが好ましく、多結晶からなるナノスケールまたはマイクロスケールの半導体微粒子を用いることが好ましい。したがって、多孔質半導体層16A、16Bの原材料としては、酸化チタンの微粒子を用いることが好ましい。酸化チタンの微粒子は、例えば、水熱合成法若しくは硫酸法などの液相法、または気相法などの方法により製造することができる。また、デグサ(Degussa)社が開発した塩化物を高温加水分解することによっても製造することができる。
 半導体微粒子としては、同一または異なる半導体化合物からなる2種類以上の粒子径の微粒子を混合したものを用いてもよい。粒子径の大きな半導体微粒子は入射光を散乱させることによって光捕捉率の向上に寄与し、粒子径の小さな半導体微粒子は吸着点をより多くすることによって色素の吸着量の向上に寄与すると考えられる。
 粒子径の異なる微粒子が混合された半導体微粒子を用いる場合、微粒子同士の平均粒径の比率が10倍以上であることが好ましい。粒子径の大きな微粒子の平均粒径は、例えば、100nm以上500nm以下である。粒子径の小さな微粒子の平均粒径は、例えば、5nm以上50nm以下である。異なる半導体化合物が混合された半導体微粒子を用いる場合、吸着作用の強い半導体化合物の粒子の径を小さくすることが有効である。
 多孔質半導体層16A、16Bの厚さは、例えば0.1μm以上100.0μm以下である。また、多孔質半導体層16A、16Bの比表面積は、例えば10m2/g以上200m2/g以下であることが好ましい。
 多孔質半導体層16A、16Bおよび対極導電層28A、28Bに担持される色素としては、可視光領域または赤外光領域に吸収を有する種々の有機色素および金属錯体色素の1種または2種以上を選択的に用いることができる。
 有機色素としては、例えば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素およびナフタロシアニン系色素からなる群から選択された少なくとも1種を用いることができる。有機色素の吸光係数は、一般に、遷移金属に分子が配位結合した形態をとる金属錯体色素の吸光係数に比べて大きくなる。
 金属錯体色素は、分子に金属が配位結合することによって構成されている。分子は、例えば、ポルフィリン系色素、フタロシアニン系色素、ナフタロシアニン系色素またはルテニウム系色素などである。金属は、例えば、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、TA、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、TeおよびRhからなる群から選択された少なくとも1種である。金属錯体色素として、フタロシアニン系色素またはルテニウム系色素に金属が配位したものを用いることが好ましく、ルテニウム系金属錯体色素を用いることが特に好ましい。
 ルテニウム系金属錯体色素として、例えば、Solaronix社製の商品名Ruthenium535色素、Ruthenium535-bisTBA色素、またはRuthenium620-1H3TBA色素などの市販のルテニウム系金属錯体色素を用いることができる。
 多孔質半導体層16A及び16Bには共吸着材が担持されてもよい。多孔質半導体層16A及び16Bに共吸着材が含まれることで、共吸着材が多孔質半導体層16A及び16B内で増感色素が会合または凝集することを抑制する。共吸着材としては、当該分野における一般的な材料の中から、組み合わせる増感色素に応じて適宜選択することができる。
 多孔質絶縁層36Bは、絶縁体微粒子36と細孔36pとを有している。電解液42は、多孔質絶縁層36Bの細孔36p内に侵入し保持される。絶縁体微粒子36は、例えば、酸化チタン、酸化ニオブ、酸化ジルコニウム、シリカガラスまたはソーダガラスなどの酸化ケイ素、酸化アルミニウムおよびチタン酸バリウムからなる群から選択された少なくとも1種から形成され得る。絶縁体微粒子36として、ルチル型酸化チタンを用いることが好ましい。また、絶縁体微粒子36にルチル型酸化チタンを用いる場合、ルチル型酸化チタンの平均粒径は5nm以上500nm以下であることが好ましく、10nm以上300nm以下であることがさらに好ましい。
 電解液42は、酸化還元対を含む液状物(液体)であればよく、一般的な電池または色素増感太陽電池などにおいて使用することができる液状物であれば特に限定されない。具体的には、電解液42は、酸化還元対とこれを溶解可能な溶剤からなる液体、酸化還元対とこれを溶解可能な溶融塩からなる液体、酸化還元対とこれを溶解可能な溶剤と溶融塩とからなる液体などである。また、電解液42は、ゲル化剤を含み、ゲル化されていてもよい。
 酸化還元対は、例えば、I-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、キノン/ハイドロキノン系などである。より具体的には、酸化還元対は、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)などの金属ヨウ化物と、ヨウ素(I2)との組み合わせであり得る。また、酸化還元対は、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩と、ヨウ素との組み合わせであり得る。さらに、酸化還元対は、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr2)などの金属臭化物と、臭素との組み合わせであってもよい。酸化還元対としては、LiIとI2との組み合わせを用いることが好ましい。
 酸化還元対の溶剤は、例えば、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水および非プロトン極性物質からなる群から選択された少なくとも1種を含む溶剤であることが好ましい。溶剤として、カーボネート化合物若しくはニトリル化合物を単独で、または混合して用いることがさらに好ましい。
 DSC100および200は、対極導電層28Aおよび28Bに色素を吸着、担持させる工程を除いて、公知の方法で製造され得る。例えば、国際公開公報第2014/038570号に記載の方法で製造することができる。なお、対極導電層28Aおよび28Bに色素を吸着、担持させる工程も、多孔質半導体層に色素を吸着、担持させる公知の方法と同様の方法で実行され得る。
 DSC100の製造方法において、色素を対極導電層28Aおよび多孔質半導体層16Aに担持させる工程は、例えば、図3(a)および(b)に示す様に、色素を含む溶液62に対極導電層28Aが形成された基板22および多孔質半導体層16Aが形成された基板12を浸漬し、所定時間放置することによって行われる。ここでは、基板22および基板12のそれぞれに対して異なる容器60aおよび60bを用意したが、同じ容器に基板22および基板12を浸漬してもよい。なお、DSC100においては、色素を対極導電層28Aと多孔質半導体層16Aとに異なる色素を担持させてもよい。
 DSC200の製造方法においては、図4に示す様に、多孔質半導体層16Bおよび対極導電層28Bが形成された基板12を容器60c内の色素を含む溶液62に浸漬することによって行われる。したがって、モノリシック構造を有するDSC200の方が、DSC100よりも簡便に製造され得る。
 以下、実験例(実施例1~7および比較例1~7)を示して、本発明をさらに詳細に説明する。
 実験には、以下の構成を有するDSC100および200を作製した。
 透光性基板12、22および透明導電層14、14a、14b、24:日本板硝子社製(TEC A9X)FTO層付きガラス基板、厚さ4mm、大きさ20mm×70mm(DSCモジュールでは、大きさ70mm×70mm)、電気抵抗値9Ω/sq
 基板22(DSC200):青板ガラス基板(松浪硝子社製)、厚さ1mm、大きさ10mm×70mm
 多孔質半導体層16A、16B:多孔質酸化チタン、酸化チタンペーストD/SP(Solaronix社製)を用いて、7mm×50mm×厚さ24μmの矩形、電気抵抗値(一般的な物性値として10-13~10-14mho/cm)、色素A(商品名:Ruthenium620-1H3TBA(Solaronix社製)、色素の担持量は変化させた。
 多孔質絶縁層36B:多孔質酸化ジルコニウム、酸化ジルコニウムペーストZr-Nanoxide Z/SP(Solaronix社製)を用いて、7.2mm×50.2mm×13μmの矩形
 対極導電層28A、28B:炭素の微粒子の組成、色素の吸着量、厚さを適宜調整
 電解液42:I3 -の濃度0.05M、溶媒アセトニトリル、厚さ50μm(ギャップ)
 封止部52:紫外線硬化樹脂(型番:31X-101(スリーボンド社製))、シール幅1mm
 各サンプルセルについて、対極導電層の色素の担持量(mol)と光照射実験の前後における短絡電流密度Jsc (mA/cm2)の変化率とを求めた。実施例の結果を表1に示し、比較例の結果を表2に示す。光照射実験は、JIS C8938(付属書A-5、試料面照射照度:255W/m2、照射光の波長範囲:300-700nm、ブラックパネル温度63℃)に準拠した条件で、照射時間を24hとし、光照射実験の前後における短絡電流密度Jscの変化率を求めた。
 色素の担持量は、以下の様にして求めた。DSC100タイプの構造を有する各サンプルセル(実施例1~3、比較例1~4)については、多孔質半導体層16Aを形成した基板12および対極導電層28Aを形成した基板22をそれぞれアルカリ溶液に浸漬し、色素を脱離させ、色素を含む溶液の吸収スペクトルから、多孔質半導体層16Aおよび対極導電層28Aのそれぞれの色素の担持量を求めた。DSC200タイプの構造を有する各サンプルセル(実施例4~7、比較例5~7)については、多孔質半導体層16B、多孔質絶縁層36Bおよび対極導電層28Bを形成した基板12をアルカリ溶液に浸漬し、色素を脱離させ、色素を含む溶液の吸収スペクトルから、多孔質半導体層16Bおよび対極導電層28Bの色素の担持量を求めた。また、多孔質半導体層16B、多孔質絶縁層36Bおよび対極導電層28Bを形成した基板12から、対極導電層28Bを削り取り、多孔質半導体層16Bおよび多孔質絶縁層36Bを有する基板12をアルカリ溶液に浸漬し、色素を脱離させ、色素を含む溶液の吸収スペクトルから、多孔質半導体層16Bの色素の担持量を求めた。別途求めた多孔質半導体層16Bおよび対極導電層28Bの色素の担持量から多孔質半導体層16Bの色素の担持量を減算することによって、対極導電層28Bの色素の担持量を求めた。表1および表2では、対極導電層の色素の担持量を、多孔質半導体層の色素の担持量に対する比率(百分率)として示している。
 以下に、実施例1~7、比較例1~7の各サンプルセルの特徴を示す。
 実施例1~7、比較例1~7 多孔質半導体層:6μm、平均粒径20nm
 実施例1~6、比較例5、6 対極導電層:炭素の微粒子の平均粒径5.1μm(1/7(カーボンブラック、平均粒径30nm)、6/7(グラファイト微粒子、平均粒径6μm))
 実施例1~3  DSC100タイプ、対極導電層:24μm、色素担持量を変化(色素溶液への浸漬時間、4時間、8時間、16時間)
 比較例1~4  DSC100タイプ、対極導電層:24μm、色素吸着能力の低い炭素の微粒子(平均粒径2μmのグラファイト粒子)を用いて色素担持量を変化(色素溶液への浸漬時間、24時間、12時間、6時間)
 実施例4~6  DSC200タイプ、対極導電層の厚さ:24μm、42μm、80μm
 比較例5、6  DSC200タイプ、対極導電層の厚さ:18μm、90μm
 実施例7  DSC200タイプ、対極導電層の厚さ:24μm、炭素の微粒子の平均粒径3.1μm(1/2(カーボンブラック、平均粒径40nm)、1/2(グラファイト微粒子、平均粒径5μm))
 比較例7  DSC200タイプ、対極導電層の厚さ:24μm、炭素の微粒子の平均粒径1.7μm(1/3(カーボンブラック、平均粒径40nm)>2/3(グラファイト微粒子、平均粒径5μm))
 対極導電層に含まれるカーボンブラックおよびグラファイト微粒子の平均粒径は、ガラス切断機を用いて実施例1~6および比較例1~7の各セルの対極導電層の断面表面を切り出し、透過型電子顕微鏡(TEM)像から求められる算術平均粒径である。
 まず、対極導電層に色素を担持させていない比較例1のサンプルセルと、対極導電層に色素を担持させた実施例1とを比較する。図5(a)および(b)に、光照射実験後のサンプルの光学像を示す。図5(a)が比較例1のサンプルセルの光学像であり、図5(b)が実施例1のサンプルセルの光学像である。図5(a)と図5(b)とを比較すると、実施例1のサンプルセルは、比較例1のサンプルセルに比べて、退色が抑制されていることがわかる。また、表1および表2に示したように、比較例1のサンプルセルのJsc変化率が-21%であるのに対し、実施例1のサンプルセルのJsc変化率は-9.0%であり、多孔質半導体から色素が脱着することによる短絡電流密度Jscの低下が抑制されていることがわかる。
 実施例2、3のサンプルセルおよび比較例2~4のサンプルセルの短絡電流密度Jscの変化率をみると、比較例2~4のサンプルの短絡電流密度Jscの変化率はいずれも-10.0%よりも小さい(変化率の絶対値が10%より大きい)のに対し、実施例2、3のサンプルセルの短絡電流密度Jscの変化率は、-10.0%よりも大きく(変化率の絶対値が10%以下)であり、短絡電流密度Jscの低下が抑制されている。また、短絡電流密度Jscの低下を抑制する効果は、対極導電層の色素担持量が多いほど大きい。実施例1~3の内で短絡電流密度Jscの低下が最も大きい(Jsc変化率が-9.6%)実施例3のサンプルの対極導電層の色素担持量は25%である。したがって、対極導電層の色素担持量(モル数)を多孔質半導体層の色素の担持量(モル数)の25%以上とすれば、Jsc変化率の絶対値を10%以下にできると言える。一方、対極導電層の色素担持量(モル数)は、170%未満であることが好ましい。
 DSC200タイプの構造を有するサンプルセルを用いて、対極導電層の好ましい厚さを検討した。表1に示したように、対極導電層の厚さが24μm、42μm、80μmの実施例4~6のサンプルセルのJsc変化率の絶対値はいずれも10%以下である。これに対し、対極導電層の厚さが18μmの比較例5のサンプルセルのJsc変化率の絶対値は25%と非常に大きい。また、対極導電層の厚さが90μmの比較例6のサンプルセルのJsc変化率の絶対値は3%と非常に小さいが、光照射実験の前における初期Jsc短絡電流密度も0.051mA/cm2と小さい。これは、図4を参照して説明したように、対極導電層28Bおよび多孔質半導体層16Bに色素を吸着させる際に、対極導電層28Bが厚くなると、多孔質半導体層16Bに色素が吸着され難くなる。比較例6のサンプルセルの様に、対極導電層28Bの厚さが90μm以上になると、多孔質半導体層16Bに十分な量の色素を吸着させることができず、その結果、十分な短絡電流が得られなくなる。これらの結果から、対極導電層の好ましい厚さは、24μm以上80μm以下と言える。ただし、対極導電層の厚さの上限は、色素の吸着のさせ方や、対極導電層の構成にも依存するので、80μm超となり得る。
 実施例7および比較例7では、対極導電層を構成する炭素の微粒子の組成(配合)の影響を検討した。
 実施例7のサンプルセルでは、実施例4のサンプルセルよりも色素の吸着能が高い炭素の微粒子(平均粒径3.1μm(1/2(カーボンブラック、平均粒径40nm)、1/2(グラファイト微粒子、平均粒径5μm)))を用いた。表1から分かるように、実施例7のサンプルセルにおける対極導電層の色素担持量は、実施例4のサンプルセルにおける対極導電層の色素担持量よりも多く、その結果、実施例7のサンプルセルのJsc変化率の絶対値は5.0%と、実施例4のサンプルセルのJsc変化率の絶対値9.8%よりも小さくなっている。
 比較例7のサンプルセルではさらに吸着能が高い炭素の微粒子(平均粒径1.7μm((カーボンブラック、平均粒径40nm)>(グラファイト微粒子、平均粒径5μm)))を用いところ、Jsc変化率の絶対値は3.0%とさらに小さくなったものの、初期の変換効率が10%低下した。これは、対極導電層の色素担持量が過多になると、対極導電層の内部抵抗(対極導電層におけるの電子移動反応の抵抗)が増大するためである。表3に対向導電層における交流インピーダンスを測定した結果を示す。交流インピーダンス測定は、Autolabo社製の測定装置を用いて、作用極を電池の正極へ、対極と基準極を負極へ接続し0.1Hz~10MHzまで10mVの振幅で開放電圧状態および10mW/cmのソーラーシミュレータ光を照射しながら測定をおこなった。表3に示す様に、比較例7の対極導電層の交流インピーダンスは実施例7の5倍も大きい。これらのことから、対極導電層の色素担持量(モル数)は多孔質半導体層の色の担持量(モル数)の170%未満であることが好ましい。また、そのためには、対極導電層を構成する炭素の微粒子の平均粒径は2μm超5μm以下であることが好ましいと言える。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 このように本発明の実施形態によると、多孔質半導体から色素が脱着することによる短絡電流の低下が抑制された色素増感太陽電池およびその製造方法が提供される。
 本発明の実施形態は、公知の色素増感太陽電池およびその製造方法に広く適用され得る。
 〔援用の記載〕
 本願は、2016年8月12日に出願された特願2016-158766号に基づく優先権を主張するものであり、この出願の開示内容の全てを本願に援用する。
12、22  :基板
14  :透明導電層
14a :透明導電層
14b :透明導電層
16  :半導体微粒子
16A :多孔質半導体層
16B :多孔質半導体層
16p :細孔
24  :透明導電層
28A :対極導電層
28B :対極導電層
28L :微粒子
28S :微粒子
28p :細孔
36  :絶縁体微粒子
36B :多孔質絶縁層
36p :細孔
42  :電解液
52  :封止部
60a、60b、60c :容器
100、200 :色素増感太陽電池(DSC)

Claims (11)

  1.  色素が担持された多孔質半導体層を含む第1電極と、
     前記第1電極の対極となる第2電極と、
     前記第1電極と前記第2電極との間に充填された電解液とを備え、
     前記第2電極は、前記多孔質半導体層に担持されている前記色素と同じまたは異なる色素が担持された対極導電層を含み、
     前記対極導電層に担持されている前記色素のモル数は、前記多孔質半導体層に担持されている前記色素のモル数の25%以上170%以下である、色素増感太陽電池。
  2.  前記対極導電層は、炭素の微粒子を含み、前記炭素の微粒子は、比表面積が800g/m2以上のカーボンブラックを14質量%以上含む、請求項1に記載の色素増感太陽電池。
  3.  前記炭素の微粒子は、グラファイトの微粒子を含む、請求項2に記載の色素増感太陽電池。
  4.  前記炭素の微粒子に含まれる前記カーボンブラックと前記グラファイトの微粒子との質量比は、4:6以上6:4以下である、請求項3に記載の色素増感太陽電池。
  5.  前記炭素の微粒子の平均粒径は、2μm超5μm以下である、請求項3または4に記載の色素増感太陽電池。
  6.  前記対極導電層の厚さは、24μm以上80μm以下である、請求項1から5のいずれかに記載の色素増感太陽電池。
  7.  透光性を有する基板をさらに有し、前記第1電極および前記第2電極は、前記基板上に形成されており、多孔質絶縁層を介して互いに対向するように配置されている、請求項1から6のいずれかに記載の色素増感太陽電池。
  8.  透光性を有する第1基板と、前記第1基板と対向するように配置された第2基板とを有し、
     前記第1電極は前記第1基板上に形成されており、前記第2電極は前記第2基板上に形成されており、前記第1電極と前記第2電極は互いに対向するように配置されている、請求項1から6のいずれかに記載の色素増感太陽電池。
  9.  前記色素は、ルテニウム系金属錯体色素を含む、請求項1から8のいずれかに記載の色素増感太陽電池。
  10.  請求項7に記載の色素増感太陽電池の製造方法であって、
     透光性を有する基板を用意する工程aと、
     前記基板の上に、前記第1電極、前記第2電極および前記第1電極と前記第2電極の間に配置された多孔質絶縁層を形成する工程bと、
     前記工程bの後に、前記第1電極および前記第2電極に同時に前記色素を担持させる工程cとを包含する、色素増感太陽電池の製造方法。
  11.  前記工程cは、前記第1電極、前記第2電極および前記多孔質絶縁層が形成された前記基板を前記色素を含む溶液に浸漬する工程を包含する、請求項10に記載の色素増感太陽電池の製造方法。
PCT/JP2017/029088 2016-08-12 2017-08-10 色素増感太陽電池およびその製造方法 WO2018030514A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/321,816 US10727412B2 (en) 2016-08-12 2017-08-10 Dye-sensitized solar cell and method for producing the same
EP17839578.6A EP3499531B1 (en) 2016-08-12 2017-08-10 Dye-sensitized solar battery and method for producing same
CN201780046929.XA CN109564822B (zh) 2016-08-12 2017-08-10 染料敏化太阳能电池及其制造方法
JP2018533561A JP6721686B2 (ja) 2016-08-12 2017-08-10 色素増感太陽電池およびその製造方法
US16/898,108 US11017957B2 (en) 2016-08-12 2020-06-10 Dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016158766 2016-08-12
JP2016-158766 2016-08-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/321,816 A-371-Of-International US10727412B2 (en) 2016-08-12 2017-08-10 Dye-sensitized solar cell and method for producing the same
US16/898,108 Continuation-In-Part US11017957B2 (en) 2016-08-12 2020-06-10 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
WO2018030514A1 true WO2018030514A1 (ja) 2018-02-15

Family

ID=61162362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029088 WO2018030514A1 (ja) 2016-08-12 2017-08-10 色素増感太陽電池およびその製造方法

Country Status (5)

Country Link
US (1) US10727412B2 (ja)
EP (1) EP3499531B1 (ja)
JP (1) JP6721686B2 (ja)
CN (1) CN109564822B (ja)
WO (1) WO2018030514A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801059B (zh) * 2021-12-23 2023-05-01 高翊凱 具隔熱及透光太陽能電池製作方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209458A (ja) * 2004-01-21 2005-08-04 Toin Gakuen 導電性被覆形成用組成物、それを用いた電極及びその電極を用いた光電池
JP2005243388A (ja) * 2004-02-26 2005-09-08 Mitsubishi Paper Mills Ltd 色素増感型太陽電池
JP2008176992A (ja) * 2007-01-17 2008-07-31 Kyocera Corp 光電変換装置及びその製造方法並びに光発電装置
JP2009110796A (ja) * 2007-10-30 2009-05-21 Sony Corp 色素増感光電変換素子モジュールおよびその製造方法ならびに電子機器
JP2009193863A (ja) * 2008-02-15 2009-08-27 Aisin Seiki Co Ltd 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2011048938A (ja) * 2009-08-25 2011-03-10 Sony Corp 色素増感型太陽電池モジュールの製造方法及びリンス装置
JP2012014849A (ja) * 2010-06-29 2012-01-19 Sony Corp 光電変換素子およびその製造方法ならびに光電変換素子モジュールおよびその製造方法
WO2014038570A1 (ja) 2012-09-07 2014-03-13 シャープ株式会社 光電変換素子、その製造方法、光電変換素子モジュールおよびその製造方法
JP2014165049A (ja) * 2013-02-26 2014-09-08 Rohm Co Ltd 色素増感太陽電池およびその製造方法、および電子機器
JP2015135922A (ja) 2014-01-20 2015-07-27 株式会社フジクラ 光増感色素及びこれを有する色素増感太陽電池
JP2016158766A (ja) 2015-02-27 2016-09-05 オムロンヘルスケア株式会社 血圧測定装置及び血圧表示制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100483A (ja) * 1998-09-22 2000-04-07 Sharp Corp 光電変換素子及びその製造方法及びこれを用いた太陽電池
US6677516B2 (en) * 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
JP5084730B2 (ja) * 2006-07-05 2012-11-28 日本化薬株式会社 色素増感太陽電池
KR100947371B1 (ko) 2008-02-26 2010-03-15 한국과학기술연구원 다파장 흡수 나노 구조 염료감응 태양전지 및 그 제조방법
CN101930850B (zh) * 2009-06-26 2012-03-28 清华大学 染料敏化太阳能电池中凝胶电解质与专用电解质及其制备方法
KR20120113107A (ko) * 2011-04-04 2012-10-12 포항공과대학교 산학협력단 다공성 박막이 형성된 금속 산화물 반도체 전극 및 이를 이용한 염료 감응 태양전지 및 그 제조 방법
CN103578780B (zh) * 2012-07-19 2016-06-22 国家纳米科学中心 一种染料敏化太阳能电池的对电极及其制备方法和应用
CN104240962A (zh) 2014-08-29 2014-12-24 电子科技大学成都研究院 一种染料敏化太阳能电池及其制备方法
CN104992842B (zh) * 2015-07-24 2017-05-31 哈尔滨汇工科技有限公司 一种多波段吸收近红外太阳光染料敏化太阳能电池光阳极材料的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209458A (ja) * 2004-01-21 2005-08-04 Toin Gakuen 導電性被覆形成用組成物、それを用いた電極及びその電極を用いた光電池
JP2005243388A (ja) * 2004-02-26 2005-09-08 Mitsubishi Paper Mills Ltd 色素増感型太陽電池
JP2008176992A (ja) * 2007-01-17 2008-07-31 Kyocera Corp 光電変換装置及びその製造方法並びに光発電装置
JP2009110796A (ja) * 2007-10-30 2009-05-21 Sony Corp 色素増感光電変換素子モジュールおよびその製造方法ならびに電子機器
JP2009193863A (ja) * 2008-02-15 2009-08-27 Aisin Seiki Co Ltd 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2011048938A (ja) * 2009-08-25 2011-03-10 Sony Corp 色素増感型太陽電池モジュールの製造方法及びリンス装置
JP2012014849A (ja) * 2010-06-29 2012-01-19 Sony Corp 光電変換素子およびその製造方法ならびに光電変換素子モジュールおよびその製造方法
WO2014038570A1 (ja) 2012-09-07 2014-03-13 シャープ株式会社 光電変換素子、その製造方法、光電変換素子モジュールおよびその製造方法
JP2014165049A (ja) * 2013-02-26 2014-09-08 Rohm Co Ltd 色素増感太陽電池およびその製造方法、および電子機器
JP2015135922A (ja) 2014-01-20 2015-07-27 株式会社フジクラ 光増感色素及びこれを有する色素増感太陽電池
JP2016158766A (ja) 2015-02-27 2016-09-05 オムロンヘルスケア株式会社 血圧測定装置及び血圧表示制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499531A4

Also Published As

Publication number Publication date
EP3499531A4 (en) 2019-08-14
US20190173012A1 (en) 2019-06-06
EP3499531A1 (en) 2019-06-19
JP6721686B2 (ja) 2020-07-15
CN109564822B (zh) 2021-06-08
EP3499531B1 (en) 2021-02-24
JPWO2018030514A1 (ja) 2019-06-13
US10727412B2 (en) 2020-07-28
CN109564822A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
JP4523549B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
US8933328B2 (en) Dye-sensitized solar cell module and method of producing the same
JP5422645B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP4863662B2 (ja) 色素増感型太陽電池モジュールおよびその製造方法
US9607772B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP3717506B2 (ja) 色素増感型太陽電池モジュール
WO2010044445A1 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5171810B2 (ja) 色素増感太陽電池モジュールおよびその製造方法
WO2011086869A1 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP6224003B2 (ja) 光電変換素子
JP4448478B2 (ja) 色素増感型太陽電池モジュール
WO2012169514A1 (ja) 光電変換素子および光電変換素子モジュール
WO2013164967A1 (ja) 光電変換素子および光電変換モジュール
WO2012141095A1 (ja) 光電変換素子および光電変換モジュール
WO2018030514A1 (ja) 色素増感太陽電池およびその製造方法
WO2021020272A1 (ja) 色素増感太陽電池
US20150122322A1 (en) Wet-type solar cell and wet-type solar cell module
WO2013094446A1 (ja) 光電変換素子
US11017957B2 (en) Dye-sensitized solar cell
WO2018003930A1 (ja) 色素増感太陽電池の製造方法、色素増感太陽電池および色素増感太陽電池モジュール
JP6062376B2 (ja) 光電変換素子
WO2015049983A1 (ja) 光電変換装置および光電変換装置の製造方法
JP2017050442A (ja) 光電変換素子、および、それを備える色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017839578

Country of ref document: EP

Effective date: 20190312