WO2013164967A1 - 光電変換素子および光電変換モジュール - Google Patents

光電変換素子および光電変換モジュール Download PDF

Info

Publication number
WO2013164967A1
WO2013164967A1 PCT/JP2013/062039 JP2013062039W WO2013164967A1 WO 2013164967 A1 WO2013164967 A1 WO 2013164967A1 JP 2013062039 W JP2013062039 W JP 2013062039W WO 2013164967 A1 WO2013164967 A1 WO 2013164967A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
conductive layer
insulating layer
conversion element
Prior art date
Application number
PCT/JP2013/062039
Other languages
English (en)
French (fr)
Inventor
福井 篤
古宮 良一
山中 良亮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP13784534.3A priority Critical patent/EP2846396A4/en
Publication of WO2013164967A1 publication Critical patent/WO2013164967A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element and a photoelectric conversion module.
  • Patent Document 1 proposes a photoelectric conversion element that applies photoinduced electron transfer of a metal complex as a new type of solar cell.
  • a photoelectric conversion layer composed of a photoelectric conversion material and an electrolyte material that adsorbs a dye and has an absorption spectrum in the visible light region is sandwiched between two electrodes, and each of the electrodes is made of glass.
  • a transparent conductive film is formed on the surface of the substrate.
  • the basic structure of the photoelectric conversion element described in Patent Document 1 is a form in which an electrolytic solution is injected between opposing glass substrates with a transparent conductive film. Therefore, even if trial manufacture of the said photoelectric conversion element of a small area is possible, it is difficult to apply the photoelectric conversion element of patent document 1 to a large area solar cell like a 1 square meter. That is, when the area of one solar cell is increased, the generated current increases because it is proportional to the area, but the voltage drop in the in-plane direction of the transparent conductive film used for the electrode portion increases, and as a result, the internal series as a solar cell increases. Resistance increases. As a result, the FF (curve factor) in the current-voltage characteristics at the time of photoelectric conversion is lowered, and further, a short circuit current is lowered and the photoelectric conversion efficiency is lowered.
  • FF curve factor
  • Patent Documents 2 and 3 propose a dye-sensitized solar cell module in which a plurality of solar cells are connected in series on a single glass substrate with a transparent conductive film.
  • this dye-sensitized solar cell module individual solar cells are arranged on a transparent substrate (glass substrate) in which a transparent conductive film (electrode) is patterned into a strip shape.
  • a photoelectric conversion layer A porous semiconductor layer (porous titanium oxide layer), a porous insulating layer (intermediate porous insulating layer), and a counter electrode (catalyst layer) are sequentially stacked.
  • the transparent conductive film of one solar cell of adjacent solar cells and the counter electrode of the other solar cell are in contact with each other, whereby one solar cell and the other solar cell are in contact with each other.
  • the battery is connected in series.
  • Japanese Patent Publication Japanese Laid-Open Patent Publication No. 01-220380 (published on September 4, 1989)”
  • International Publication No. 1997/016838 Pamphlet published on May 9, 1997)
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2002-367686 (published on December 20, 2002)”
  • a photoelectric conversion element such as a dye-sensitized solar cell has a problem that durability is lowered by an external environmental factor such as light, heat, or humidity. Thereby, the fall of photoelectric conversion efficiency presumed that the increase in reverse current is a cause is recognized.
  • a monolithic type wet solar cell wet solar cell module
  • performance degradation that is caused by an increase in reverse current becomes significant.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a photoelectric conversion element in which an increase in reverse current is suppressed and thus photoelectric conversion efficiency is improved.
  • a photoelectric conversion element includes a support made of a light-transmitting material, a conductive layer provided in order on the support, a photoelectric conversion layer including a porous semiconductor layer, a porous insulating layer, and a counter electrode conductive material. And a layer.
  • a carrier transport material is filled in each of the void portions of the porous semiconductor layer, the porous insulating layer, and the counter electrode conductive layer.
  • the first region in which the photoelectric conversion layer is provided on the conductive layer and the second region in which the photoelectric conversion layer is not provided on the conductive layer are configured without the conductive layer being provided on the support. It exists across the scribe line.
  • An inter-cell insulating layer is provided on the scribe line portion.
  • the counter electrode conductive layer extends from the first region over the inter-cell insulating layer to the second region, and is connected to the conductive layer in the second region.
  • the line width of the scribe line portion is 60 ⁇ m or more, preferably 500 ⁇ m or less.
  • “the counter electrode conductive layer extends from the first region through the inter-cell insulating layer to the second region.” Means that the counter electrode conductive layer extends from the first region to the upper surface of the inter-cell insulating layer.
  • the width D1 ( ⁇ m) of the inter-cell insulating layer preferably satisfies the relational expression of D1> D2 + 100 ⁇ m using the line width D2 ( ⁇ m) of the scribe line portion.
  • the carrier transport material is preferably an electrolytic solution.
  • the porous insulating layer is preferably in contact with the inter-cell insulating layer, not the scribe line portion. Further, the pore diameter of the porous insulating layer is preferably 50 ⁇ m or more.
  • the inter-cell insulating layer preferably contains at least silicon oxide. Moreover, it is preferable that the pore diameter of the insulating layer between cells is 100 nm or less.
  • the photoelectric conversion module of the present invention includes the photoelectric conversion element of the present invention.
  • a photoelectric conversion layer including a porous semiconductor layer, a porous insulating layer, and a counter electrode conductive layer are sequentially provided.
  • An insulating member that prevents the carrier transport material from moving is provided between the conductive layer.
  • the inter-cell insulating layer constitutes a part of the insulating member.
  • FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element 10 according to the present invention.
  • the conductive layer 2 is provided on the support 1
  • the photoelectric conversion layer 4 the porous insulating layer 5, the counter electrode conductive layer 6, and the carrier transport layer are sequentially provided on the conductive layer 2. It has been.
  • the photoelectric conversion layer 4 includes a porous semiconductor layer, and a carrier transport material is filled in the respective void portions of the porous semiconductor layer, the porous insulating layer 5 and the counter electrode conductive layer 6.
  • the scribe line portion 3 is configured without the conductive layer 2 being provided on the support 1.
  • An inter-cell insulating layer 9 is provided on the scribe line portion 3.
  • the counter electrode conductive layer 6 extends from the first region through the inter-cell insulating layer 9 to the second region, and is electrically connected to the conductive layer 2 in the second region. Therefore, if the photoelectric conversion layer 4, the porous insulating layer 5, the counter electrode conductive layer 6, and the carrier transport layer are formed in this order on the conductive layer 2 in the second region, a photoelectric conversion module 20 described later can be manufactured. .
  • the inter-cell insulating layer 9 on the scribe line portion 3 without the photoelectric conversion layer 4 and the porous insulating layer 5 interposed therebetween. It is preferable to provide the counter electrode conductive layer 6 on the inter-cell insulating layer 9.
  • the photoelectric conversion layer and the porous insulating layer are formed on the scribe line portion, it is necessary to increase the line width of the scribe line portion, and thus the photoelectric conversion element may be elongated in the width direction.
  • the line width D2 of the scribe line portion 3 is 60 ⁇ m or more.
  • the scribe line portion is preferably formed by one-time processing from the viewpoint of production tact.
  • an interval is formed in order to form a scribe line portion by one processing or to suppress a decrease in yield due to a short circuit.
  • Several scribe line portions are formed in parallel with a space. Thereby, a normal short circuit can be sufficiently suppressed.
  • the line width of the conventional scribe line part is about 50 micrometers.
  • a monolithic photoelectric conversion element (photoelectric conversion module according to the present invention) is produced by connecting in series two or more photoelectric conversion elements having a line width of about 50 ⁇ m in the scribe line portion on one substrate. If a monolithic photoelectric conversion element is subjected to a heat resistance test (addition of thermal stress) at, for example, 85 ° C., even if a plurality of scribe line portions are formed in parallel at intervals, the monolithic photoelectric conversion element The photoelectric conversion efficiency of the conversion element is significantly reduced. The cause is not clear, but it is thought to be caused by an increase in reverse current between the regions separated by the scribe line portion.
  • the line width D2 of the scribe line portion 3 is set to 60 ⁇ m or more, and the inter-cell insulating layer 9 is provided on the scribe line portion 3.
  • an inter-cell insulating layer 9 is provided on the scribe line portion 3. Therefore, if the line width D2 of the scribe line portion 3 is set to 60 ⁇ m or more, it is divided by the scribe line portion 3 when an external environmental factor such as heat is applied (hereinafter, sometimes referred to as “during heat load”). An increase in the reverse current flowing between the regions can be suppressed. Therefore, it is possible to improve the photoelectric conversion efficiency against external environmental factors such as heat without significantly reducing the light receiving area on the upper surface of the support 1.
  • each structure of the photoelectric conversion element 10 is shown.
  • the material which comprises the support body 1 will not be specifically limited if it is a material which can generally be used for the support body of a photoelectric conversion element, and can exhibit the effect of this invention.
  • the support 1 is preferably made of a light-transmitting material because the support 1 needs to be light-transmitting at the portion that becomes the light-receiving surface of the photoelectric conversion element 10.
  • the support 1 may be a glass substrate such as soda glass, fused silica glass, or crystal quartz glass, and may be a heat resistant resin plate such as a flexible film.
  • the support 1 substantially transmits light having a wavelength having effective sensitivity to at least a dye described later (the light transmittance is, for example, 80% or more). (Preferably 90% or more), and need not necessarily be transparent to light of all wavelengths.
  • film examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate (PA). ), Polyetherimide (PEI), phenoxy resin, or polytetrafluoroethylene (PTFE).
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PA polyarylate
  • PEI Polyetherimide
  • PTFE polytetrafluoroethylene
  • the material of the above-mentioned film is used.
  • the support 1 can be used when the completed photoelectric conversion element 10 is attached to another structure. That is, the peripheral part of the support body 1 such as a glass substrate can be easily attached to another support body using a metal processed part and a screw.
  • the thickness of the support 1 is not particularly limited, but is preferably about 0.2 mm to 5 mm in consideration of light transmittance and the like.
  • the material which comprises the conductive layer 2 will not be specifically limited if it is a material which can generally be used for the conductive layer of a photoelectric conversion element, and can exhibit the effect of this invention.
  • the conductive layer 2 serves as the light receiving surface of the photoelectric conversion element 10, it requires light transparency, and is preferably made of a light transmissive material.
  • the conductive layer 2 may be indium tin composite oxide (ITO), tin oxide doped with fluorine (FTO), zinc oxide (ZnO), or the like.
  • the conductive layer 2 substantially transmits light having a wavelength having effective sensitivity to at least the dye described later (the light transmittance is, for example, 80% or more, preferably 90% or more). ), And need not be transparent to light of all wavelengths.
  • the film thickness of the conductive layer 2 is not particularly limited, but is preferably about 0.02 to 5 ⁇ m.
  • the film resistance of the conductive layer 2 is preferably as low as possible, and is preferably 40 ⁇ / sq or less.
  • the conductive layer 2 may be provided with a metal lead wire to reduce resistance.
  • the metal lead wire material include platinum, gold, silver, copper, aluminum, nickel, and titanium.
  • the thickness of the metal lead wire is not particularly limited, but if the metal lead wire is too thick, the amount of incident light from the light receiving surface may be reduced. Therefore, the thickness of the metal lead wire is preferably about 0.1 to 4 mm.
  • a structure in which the conductive layer 2 is laminated on the support 1 may be referred to as a transparent electrode substrate 11.
  • a transparent electrode substrate 11 examples include a transparent electrode substrate in which a conductive layer 2 made of FTO is laminated on a support 1 made of soda-lime float glass, and is preferably used in the present invention.
  • the line width D2 of the scribe line portion 3 is 60 ⁇ m or more, preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more. As the line width D2 of the scribe line portion 3 increases, an increase in reverse current between the regions delimited by the scribe line portion 3 can be suppressed, so that the photoelectric conversion efficiency against external environmental factors such as heat improves.
  • the line width D2 of the scribe line part 3 is preferably 500 ⁇ m or less. This is because when the line width D2 of the scribe line portion 3 exceeds 500 ⁇ m, the photoelectric conversion layer 4 and the like are reduced, and thus the photoelectric conversion efficiency may be reduced.
  • the effect of the present invention is particularly prominent when a part of the scribe line portion 3 (preferably the entire scribe line portion 3) is in contact with the electrolytic solution held by the porous insulating layer 5 or the like.
  • the electrolytic solution is an example of a carrier transport material to be described later, and the composition thereof is as shown below.
  • the formation method of the scribe line part 3 is not particularly limited.
  • the portion that becomes the scribe line portion 3 of the conductive layer may be removed by a laser scribing method or the like.
  • the conductive layer 2 is formed in the part where the masks etc. are not provided in the upper surface of the support body 1, and then The mask may be removed.
  • the photoelectric conversion layer 4 is configured by adsorbing a dye or quantum dots on a porous semiconductor layer and filling a carrier transport material.
  • porous semiconductor layer examples include a bulk, a layer containing a particulate semiconductor material, and a film formed with a large number of micropores, but a film formed with a large number of micropores. It is preferable. As a result, it is possible to sufficiently ensure the adsorption amount of the dye and the filling amount of the carrier transport material.
  • the porosity of the porous semiconductor layer means that the porosity is 20% or more, and the specific surface area is 0.5 to 300 m 2 / g. From the viewpoint of ensuring a sufficient amount of adsorbed dye, the specific surface area of the porous semiconductor layer is preferably about 10 to 200 m 2 / g.
  • the porosity of the porous semiconductor layer is determined by calculation from the thickness (film thickness) of the porous semiconductor layer, the mass of the porous semiconductor layer, and the density of the semiconductor fine particles.
  • the specific surface area of the porous semiconductor layer is determined by the BET method which is a gas adsorption method.
  • the semiconductor material constituting the porous semiconductor layer is not particularly limited as long as it is generally used for a photoelectric conversion material.
  • examples of such materials include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, nickel oxide, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, Examples include copper-indium sulfide (CuInS 2 ), CuAlO 2 , or SrCu 2 O 2 . These compounds may be used alone, or these compounds may be used in combination. Among these compounds, it is preferable to use titanium oxide, zinc oxide, tin oxide, or niobium oxide. Titanium oxide is preferably used from the viewpoint of photoelectric conversion efficiency, stability, and safety.
  • the titanium oxide when used as a material constituting the porous semiconductor layer, the titanium oxide is variously narrowly defined as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, or orthotitanic acid. It may be titanium oxide, titanium hydroxide, or hydrous titanium oxide. These may be used alone or in combination. Anatase-type titanium oxide and rutile-type titanium oxide can be in either form depending on the production method or thermal history, but anatase-type titanium oxide is common.
  • the average particle size of the semiconductor material is not particularly limited, and is preferably set as appropriate in consideration that the light scattering property of the photoelectric conversion layer 4 can be adjusted by the average particle size of the semiconductor material. Specifically, it cannot be said unconditionally because of the formation conditions of the photoelectric conversion layer 4, but when the photoelectric conversion layer 4 includes a porous semiconductor layer formed of a semiconductor material having a large average particle diameter, the incident It contributes to the improvement of the light capture rate by scattering light. On the other hand, when the photoelectric conversion layer 4 includes a porous semiconductor layer formed of a semiconductor material having a small average particle diameter, the photoelectric conversion layer 4 is not excellent in light scattering property, so that the adsorption point of the dye is increased, and thus the adsorption amount of the dye.
  • the porous semiconductor layer may be a single layer made of a semiconductor material having substantially the same average particle diameter, but is made of a semiconductor material having a relatively small average particle diameter and a semiconductor material having a relatively large average particle diameter.
  • the layers may be laminated.
  • the semiconductor material having a relatively small average particle diameter preferably has an average particle diameter of 5 nm or more and less than 50 nm, and more preferably 10 nm or more and 30 nm or less.
  • the semiconductor material having a relatively large average particle diameter preferably has an average particle diameter of 50 nm or more, more preferably has an average particle diameter of 50 nm or more and 600 nm or less, and an average of 50 nm or more and 100 nm or less. More preferably, it has a particle size. In terms of effective use of incident light for photoelectric conversion, it is preferable that the average particle size of the semiconductor material is uniform to some extent as in a commercially available semiconductor material.
  • the semiconductor material is preferably titanium oxide having an average particle size of 50 nm or more, and more preferably titanium oxide having an average particle size of 50 nm to 100 nm. .
  • the film thickness of the photoelectric conversion layer 4 is not particularly limited, but is preferably about 0.5 to 50 ⁇ m from the viewpoint of photoelectric conversion efficiency.
  • the photoelectric conversion layer 4 includes a porous semiconductor layer made of a semiconductor material having an average particle size of 50 nm or more, it preferably has a thickness of 0.1 to 40 ⁇ m, more preferably 5 to It has a film thickness of 20 ⁇ m.
  • the photoelectric conversion layer 4 preferably has a thickness of 0.1 to 50 ⁇ m, more preferably 10 to It has a film thickness of 40 ⁇ m.
  • the counter electrode is conductive on a photoelectric conversion layer including a porous semiconductor layer made of a semiconductor material having a large average particle size (average particle size of about 100 nm to 500 nm).
  • a layer or a conductive layer (single layer) may be formed.
  • the average particle size of the semiconductor material constituting the portion in contact with the counter electrode conductive layer in the photoelectric conversion layer is large, the mechanical strength of the photoelectric conversion layer is reduced, and thus a problem occurs in the structure of the photoelectric conversion element.
  • a semiconductor material having a small average particle diameter is blended with a semiconductor material having a large average particle diameter, for example, a semiconductor material having a small average particle diameter is blended at a ratio of 10% by weight or less of the whole material, The mechanical strength of the photoelectric conversion layer may be enhanced.
  • the dye that functions as a photosensitizer by being adsorbed on the porous semiconductor layer include organic dyes or metal complex dyes having absorption in at least one of the visible light region and the infrared light region. These pigments may be used alone or in combination of two or more.
  • organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylene dyes.
  • the extinction coefficient of the organic dye is generally larger than the extinction coefficient of the metal complex dye.
  • the metal complex dye is constituted by coordination of a molecule (ligand) to a transition metal.
  • Transition metals are, for example, Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, or Rh.
  • the metal complex dye include phthalocyanine-based metal complex dyes and ruthenium-based metal complex dyes. Ruthenium-based metal complex dyes are preferable, and ruthenium-based metal complex dyes represented by the following chemical formulas (1) to (3) are more preferable.
  • the dye has a carboxylic acid group, a carboxylic acid anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group in the molecule, or It preferably has an interlock group such as a phosphonyl group, and more preferably has a carboxylic acid group or a carboxylic anhydride group.
  • the interlock group provides an electrical bond that facilitates the transfer of electrons between the excited state of the dye and the conduction band of the semiconductor material.
  • the amount of adsorption of such a photosensitizer is preferably 1 ⁇ 10 ⁇ 8 mol / cm 2 or more and 1 ⁇ 10 ⁇ 6 mol / cm 2 or less, preferably 5 ⁇ 10 ⁇ 8 mol / cm 2 or more and 5 ⁇ . More preferably, it is 10 ⁇ 7 mol / cm 2 . If the adsorption amount of the photosensitizer is less than 1 ⁇ 10 ⁇ 8 mol / cm 2 , the photoelectric conversion efficiency may be lowered. On the other hand, when the adsorption amount of the photosensitizer exceeds 1 ⁇ 10 ⁇ 6 mol / cm 2 , there may be a problem that the open circuit voltage is lowered.
  • a typical example of the method for adsorbing the photosensitizer on the porous semiconductor layer is a method of immersing the porous semiconductor layer in a solution in which a dye is dissolved (dye adsorption solution). At this time, it is preferable to heat the dye adsorbing solution in that the dye adsorbing solution penetrates to the back of the micropores of the porous semiconductor layer.
  • the carrier transport material filled in the porous semiconductor layer is as described in ⁇ Carrier transport layer> described later.
  • the porosity of the porous insulating layer 5 means that the porosity is 20% or more, and the specific surface area is 10 to 100 m 2 / g.
  • the pore diameter of the porous insulating layer 5 is preferably 50 ⁇ m or more, and more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the porous insulating layer 5 is preferably composed of particles having an average particle diameter of 5 to 500 nm, and more preferably composed of particles having an average particle diameter of 10 to 300 nm.
  • the porous insulating layer 5 can hold
  • the pore diameter of the porous insulating layer 5 is preferably measured, for example, according to the BET method.
  • Each method for measuring the porosity of the porous insulating layer 5 and the average particle diameter of the particles constituting the porous insulating layer 5 is preferably the method described in the above ⁇ photoelectric conversion layer>.
  • the material of the porous insulating layer 5 is not particularly limited, and may be glass, or an insulating material having a high conduction band level such as zirconium oxide, silicon oxide, aluminum oxide, niobium oxide, or strontium titanate. Also good.
  • the porous insulating layer 5 contains zirconium oxide or titanium oxide having an average particle diameter of 100 nm or more.
  • the film thickness of the porous insulating layer 5 is not particularly limited, but is preferably 2 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less from the viewpoint of insulation.
  • Such a porous insulating layer 5 is preferably in contact with the inter-cell insulating layer 9 instead of the scribe line portion 3 as shown in FIG.
  • an external environmental factor such as heat
  • the reverse current flowing between the conductive layer 2 in the first region and the conductive layer 2 in the second region via the scribe line portion 3 increases. This can be suppressed.
  • the counter electrode conductive layer 6 may be configured by laminating a catalyst layer and a conductive layer, a catalyst layer (single layer) having high conductivity, or a conductive layer having catalytic ability. (Single layer) may be used. Further, the present invention includes an aspect in which a catalyst layer is further provided separately from the counter electrode conductive layer 6.
  • the counter electrode conductive layer 6 has a laminated structure of a catalyst layer and a conductive layer
  • a catalyst layer is usually formed on the porous insulating layer 5 and a conductive layer is formed on the catalyst layer.
  • the catalyst layer formed on the porous insulating layer is not so strong as when the catalyst layer (platinum layer or the like) is formed by vapor deposition, the conductive layer is formed on the catalyst layer formed on the porous insulating layer. If formed, the conductive layer may be peeled off from the catalyst layer. In this case, it is preferable to provide a conductive layer on the porous insulating layer 5 and provide a catalyst layer on the conductive layer.
  • the material constituting the conductive layer of the counter electrode conductive layer 6 is not particularly limited, and is preferably a material that can generally be used for the conductive layer of the photoelectric conversion element and can exhibit the effects of the present invention.
  • the material of the conductive layer may be a metal oxide such as a composite oxide of indium and tin (ITO), tin oxide doped with fluorine (FTO), or zinc oxide (ZnO), titanium, It may be a metal material such as tungsten, gold, silver, copper, or nickel. Considering the film strength of the conductive layer, the material constituting the conductive layer is most preferably titanium.
  • the conductive layer of the counter electrode conductive layer 6 When the conductive layer of the counter electrode conductive layer 6 is formed by a vapor deposition method, the conductive layer itself becomes porous. Therefore, it is not necessary to separately form holes in the conductive layer for moving the dye solution or the carrier transport material.
  • the hole diameter of the holes automatically formed in the conductive layer is about 1 nm to 20 nm. Even when the catalyst layer is formed on the conductive layer, the material constituting the catalyst layer passes through the inside of the hole formed in the conductive layer, and further the porous insulating layer 5 and further the porous semiconductor layer (photoelectric conversion layer 4). It is confirmed that there is no risk of reaching.
  • the catalyst layer of the counter electrode conductive layer 6 when the catalyst layer of the counter electrode conductive layer 6 is formed by a coating method using a fine particle dispersion paste made of platinum or carbon, the fine particles constituting the catalyst layer may penetrate the conductive layer of the counter electrode conductive layer 6.
  • the conductive layer of the counter electrode conductive layer 6 is preferably a dense layer, and after the catalyst layer of the counter electrode conductive layer 6 is formed, the conductive layer of the counter electrode conductive layer 6 and the catalyst layer of the counter electrode conductive layer 6 are formed. It is only necessary to form a hole at the same time.
  • the material of the conductive layer of the counter electrode conductive layer 6 is, for example, a metal such as a composite oxide (ITO) of indium and tin, tin oxide doped with fluorine (FTO), or zinc oxide (ZnO). It may be an oxide or a metal material such as titanium, tungsten, gold, silver, copper, or nickel.
  • a metal such as a composite oxide (ITO) of indium and tin, tin oxide doped with fluorine (FTO), or zinc oxide (ZnO). It may be an oxide or a metal material such as titanium, tungsten, gold, silver, copper, or nickel.
  • the hole is intentionally formed in the counter electrode conductive layer 6, for example, it is preferable to partially evaporate the counter electrode conductive layer 6 by irradiating a laser beam.
  • the diameter of such holes is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m.
  • the interval between the holes is preferably 1 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m.
  • the film thickness of the counter electrode conductive layer 6 is not particularly limited. However, if the thickness of the counter electrode conductive layer 6 is too thin, the resistance of the counter electrode conductive layer 6 is increased, and if the thickness of the counter electrode conductive layer 6 is too thick, the movement of the carrier transport material is hindered. In consideration of these, the thickness of the counter electrode conductive layer 6 is preferably selected as appropriate, and the thickness of the counter electrode conductive layer 6 is preferably about 50 nm to 5 ⁇ m.
  • the material constituting the catalyst layer of the counter electrode conductive layer 6 is not particularly limited as long as it is a material that can generally be used for the catalyst layer of the photoelectric conversion element and can exert the effects of the present invention.
  • a material for example, platinum or carbon is preferable.
  • As the form of carbon carbon black, graphite, glass carbon, amorphous carbon, hard carbon, soft carbon, carbon whisker, carbon nanotube, fullerene, or the like is preferable.
  • the counter electrode conductive layer 6 is provided with an extraction electrode (not shown) as necessary. A current can be taken out from the photoelectric conversion element by the take-out electrode.
  • the material of the extraction electrode is not particularly limited as long as it is a material that can generally be used for a photoelectric conversion element and can exhibit the effects of the present invention.
  • the cover layer 7 is provided for the purpose of preventing volatilization of the electrolytic solution and preventing water and the like from entering the battery.
  • the material which comprises the cover layer 7 will not be specifically limited if it is a material which can generally be used for the cover layer of a photoelectric conversion element, and can exhibit the effect of this invention. Examples of such a material include soda lime glass, lead glass, borosilicate glass, fused silica glass, and crystal quartz glass, and soda lime float glass is preferable.
  • the insulating member 8 prevents the electrolyte from volatilizing, prevents water and the like from entering the battery, absorbs the impact (stress) of falling objects that act on the support 1, and acts on the support 1 during long-term use. It is provided for the purpose of absorbing deflection.
  • a carrier transport material for example, an electrolytic solution
  • the conductive layer 2, the photoelectric conversion layer 4, the porous insulating layer 5, and the counter electrode conductive layer 6 are sequentially provided on the support 21 (see FIG. 2). And a carrier transport layer.
  • the material constituting the insulating member 8 is not particularly limited as long as it is a material that can generally be used for an insulating member of a photoelectric conversion element and can exhibit the effects of the present invention.
  • a material may be, for example, a silicone resin, an epoxy resin, or a polyisobutylene resin, a hot melt resin such as a polyamide resin, a polyolefin resin, or an ionomer resin, and a glass frit. It may be.
  • two or more materials may be mixed, or a layer made of each material may be laminated.
  • the material constituting the insulating member 8 may be a silicone resin, a hot melt resin, a polyisobutylene resin, or a glass frit. preferable.
  • the inter-cell insulating layer 9 is provided on the scribe line portion 3.
  • the material constituting the inter-cell insulating layer 9 is preferably at least one of, for example, silicon oxide, aluminum oxide, and magnesium oxide, and more preferably silicon oxide.
  • the inter-cell insulating layer 9 is preferably a denser layer than the porous insulating layer 5.
  • the carrier transport material can be prevented from entering the inter-cell insulating layer 9 from the porous insulating layer 5, so that the insulating property of the inter-cell insulating layer 9 and the conductive layer 2 in the first region and the second region can be reduced. High insulation with the conductive layer 2 can be maintained. Accordingly, an increase in reverse current between the regions delimited by the scribe line unit 3 is further suppressed, so that further improvement in photoelectric conversion efficiency against external environmental factors such as heat can be achieved. Therefore, the change in photoelectric conversion efficiency with time can be further prevented.
  • the inter-cell insulating layer 9 is a dense layer means that the porosity is 50% or less and the specific surface area is 50 m 2 / g or less.
  • the pore diameter of such an inter-cell insulating layer 9 is preferably 100 nm or less, and more preferably 5 nm or more and 50 nm or less.
  • the inter-cell insulating layer 9 is preferably composed of particles having an average particle diameter of 5 to 50 nm, and is preferably composed of particles having an average particle diameter of 5 to 30 nm.
  • grains which comprise the insulating layer 9 between cells was described by the above ⁇ photoelectric converting layer>.
  • a method is preferred.
  • the pore diameter of the inter-cell insulating layer 9 is preferably measured according to the same method as the measuring method of the pore diameter of the porous insulating layer 5.
  • the inter-cell insulating layer 9 is a dense layer, the strength of the inter-cell insulating layer 9 can be ensured. Therefore, as shown in FIG. 1, the insulating member 8 can be provided on the inter-cell insulating layer 9 with the counter electrode conductive layer 6 interposed therebetween. In other words, a part of the insulating member 8 can be constituted by the inter-cell insulating layer 9. Thereby, size reduction of the photoelectric conversion element 10 can be achieved and it contributes to the improvement of the light-receiving area rate of the photoelectric conversion element in the photoelectric conversion module 20 shown in FIG.
  • the size of the inter-cell insulating layer 9 is not particularly limited, but the width D1 ( ⁇ m) of the inter-cell insulating layer 9 preferably satisfies the following formula (1). Thereby, since the increase in the reverse current between the areas delimited by the scribe line unit 3 is further suppressed, the photoelectric conversion efficiency with respect to external environmental factors such as heat can be further improved. Therefore, the change in photoelectric conversion efficiency with time can be further prevented.
  • the width D1 ( ⁇ m) of the inter-cell insulating layer 9 satisfies the following formula (2). Thereby, the enlargement (decrease in the light receiving area ratio) of the photoelectric conversion element 10 due to the provision of the inter-cell insulating layer 9 can be prevented.
  • the “carrier transport layer” is configured by injecting a carrier transport material into a region located inside the insulating member 8 and sandwiched between the conductive layer 2 and the cover layer 7. Accordingly, at least the photoelectric conversion layer 4 and the porous insulating layer 5 are also filled with the carrier transport material.
  • the carrier transport material is preferably a conductive material capable of transporting ions, such as a liquid electrolyte, a solid electrolyte, a gel electrolyte, or a molten salt gel electrolyte.
  • the liquid electrolyte is preferably a liquid containing redox species, and is not particularly limited as long as it can be generally used in a battery or a solar battery.
  • the liquid electrolyte includes a redox species and a solvent capable of dissolving the redox species, a redox species and a molten salt capable of dissolving the redox species, or the redox species and the above-mentioned It is preferable that it consists of a solvent and the said molten salt.
  • the redox species include I ⁇ / I 3 ⁇ , Br 2 ⁇ / Br 3 ⁇ , Fe 2+ / Fe 3+ , or quinone / hydroquinone.
  • the redox species include metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), or calcium iodide (CaI 2 ) and iodine (I 2 ). It may be a combination.
  • the redox species includes tetraalkylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), or tetraalkylammonium iodide (THAI) and iodine It may be a combination.
  • the redox species may be a combination of bromide with a metal bromide such as lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), or calcium bromide (CaBr 2 ). Among these, a combination of LiI and I 2 is particularly preferable.
  • Examples of the solvent capable of dissolving the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds or nitrile compounds are particularly preferable. Two or more kinds of these solvents can be mixed and used.
  • the solid electrolyte is preferably a conductive material that can transport electrons, holes, or ions, can be used as an electrolyte of a photoelectric conversion element, and has no fluidity.
  • a solid electrolyte includes a hole transport material such as polycarbazole, an electron transport material such as tetranitrofluororenone, a conductive polymer such as polyroll, a polymer electrolyte obtained by solidifying a liquid electrolyte with a polymer compound, iodine Examples thereof include p-type semiconductors such as copper halide and copper thiocyanate, or electrolytes obtained by solidifying liquid electrolytes containing molten salts with fine particles.
  • Gel electrolyte usually consists of electrolyte and gelling agent.
  • the electrolyte may be, for example, the liquid electrolyte or the solid electrolyte.
  • the gelling agent examples include polymer gels such as cross-linked polyacrylic resin derivatives, cross-linked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, or polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. And the like.
  • the molten salt gel electrolyte is usually composed of the above gel electrolyte and a room temperature molten salt.
  • room temperature molten salt examples include nitrogen-containing heterocyclic quaternary ammonium salts such as pyridinium salts or imidazolium salts.
  • the above electrolyte preferably contains the following additives as required.
  • the additive may be a nitrogen-containing aromatic compound such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide ( It may be an imidazole salt such as EMII), ethylimidazole iodide (EII), or hexylmethylimidazole iodide (HMII).
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • HMII hexylmethylimidazole iodide
  • the concentration of the electrolyte is preferably in the range of 0.001 to 1.5 mol / liter, particularly preferably in the range of 0.01 to 0.7 mol / liter.
  • incident light passes through the electrolyte solution in the carrier transport layer, and the porous semiconductor layer (into the porous semiconductor layer). The dye is adsorbed) and the carrier is excited.
  • the performance of the photoelectric conversion element may depend on the concentration of the electrolyte. In consideration of this point, it is preferable to set the concentration of the electrolyte.
  • the conductive layer 2 is formed on the support 1.
  • the formation method of the conductive layer 2 is not particularly limited, and for example, a known sputtering method or a known spray method is preferable.
  • a metal lead wire (not shown) is provided on the conductive layer 2
  • the metal lead wire is formed on the support 1 by a known sputtering method or a known vapor deposition method, for example.
  • the conductive layer 2 may be formed on the support 1 including the metal lead, or the metal lead may be formed on the conductive layer 2 after the conductive layer 2 is formed on the support 1.
  • a part of the conductive layer 2 is cut by a laser scribe method to form a scribe line portion 3.
  • a porous semiconductor layer is formed on the conductive layer 2.
  • the method for forming the porous semiconductor layer is not particularly limited, and a paste containing a particulate semiconductor material may be applied onto the conductive layer 2 by a screen printing method or an ink jet method, and then fired or fired. Alternatively, a sol-gel method or an electrochemical redox reaction may be used. Among these methods, a screen printing method using a paste is particularly preferable from the viewpoint that a thick porous semiconductor layer can be formed at low cost.
  • a method for forming a porous semiconductor layer when titanium oxide is used as the semiconductor material will be specifically described below.
  • 125 mL of titanium isopropoxide (manufactured by Kishida Chemical Co., Ltd.) is dropped into 750 mL of a 0.1 M nitric acid aqueous solution (manufactured by Kishida Chemical Co., Ltd.) and hydrolyzed, and then heated at 80 ° C. for 8 hours. Thereby, a sol liquid is prepared.
  • the obtained sol solution is heated at 230 ° C. for 11 hours in a titanium autoclave to grow titanium oxide particles, subjected to ultrasonic dispersion for 30 minutes, and contains titanium oxide particles having an average particle size (average primary particle size) of 15 nm.
  • Prepare a colloidal solution To the obtained colloid solution, ethanol twice the volume of the colloid solution is added, and this is centrifuged at a rotational speed of 5000 rpm. Thereby, titanium oxide particles are obtained.
  • the obtained titanium oxide particles are washed. Thereafter, the titanium oxide particles are mixed with ethyl cellulose and terpineol dissolved in absolute ethanol and stirred. Thereby, the titanium oxide particles are dispersed. Thereafter, the mixed solution is heated under vacuum to evaporate ethanol to obtain a titanium oxide paste.
  • each concentration is adjusted so that the titanium oxide solid concentration is 20 wt%, the ethyl cellulose concentration is 10 wt%, and the terpineol concentration is 64 wt%.
  • a glyme solvent such as ethylene glycol monomethyl ether, an alcohol solvent such as isopropyl alcohol, a mixed solvent such as isopropyl alcohol / toluene, or water is used.
  • an alcohol solvent such as isopropyl alcohol
  • a mixed solvent such as isopropyl alcohol / toluene
  • water water
  • solvents can also be used when preparing a paste containing semiconductor particles other than titanium oxide.
  • drying conditions and firing conditions for example, conditions such as temperature, time, or atmosphere, are appropriately adjusted depending on the material of the support or the semiconductor material to be used.
  • the firing is preferably performed, for example, in the range of about 50 to 800 ° C. for about 10 seconds to 12 hours in an air atmosphere or an inert gas atmosphere.
  • each of drying and baking may be performed once at a single temperature, or may be performed twice or more at different temperatures.
  • an inter-cell insulating layer 9 is provided on the scribe line portion 3. It does not specifically limit as a formation method of the insulating layer 9 between cells, A well-known method is mentioned. Specifically, it may be a method in which a paste containing an insulating material constituting the inter-cell insulating layer 9 is applied on the scribe line portion 3 by a screen printing method or an ink jet method, and then fired. Instead, a sol-gel method or an electrochemical redox reaction may be used. Among these methods, a screen printing method using a paste is particularly preferable from the viewpoint that the inter-cell insulating layer 9 can be formed at low cost.
  • the porous insulating layer 5 is formed on the porous semiconductor layer. It does not specifically limit as a formation method of the porous insulating layer 5, A well-known method is mentioned. Specifically, it may be a method in which a paste containing an insulating material constituting the porous insulating layer 5 is applied onto the porous semiconductor layer by a screen printing method or an ink jet method, and then fired. Instead, a sol-gel method or a method using an electrochemical oxidation-reduction reaction may be performed. Among these methods, a screen printing method using a paste is particularly preferable from the viewpoint that the porous insulating layer 5 can be formed at a low cost.
  • a counter electrode conductive layer 6 is formed on the porous insulating layer 5.
  • the method for forming the counter electrode conductive layer 6 is not particularly limited as long as it is a vapor deposition method or a printing method.
  • the counter electrode conductive layer 6 is produced by the vapor deposition method, the counter electrode conductive layer 6 itself becomes porous. Therefore, it is not necessary to separately form a hole through which the dye solution or the carrier transport material can move in the counter electrode conductive layer 6.
  • the dye is adsorbed on the porous semiconductor layer.
  • the dye adsorption method include a method of immersing the porous semiconductor layer in a solution in which the dye is dissolved (dye adsorption solution).
  • the solvent for dissolving the dye is preferably a solvent capable of dissolving the dye. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen such as acetonitrile, and the like.
  • halogenated aliphatic hydrocarbons such as chloroform
  • aliphatic hydrocarbons such as hexane
  • aromatic hydrocarbons such as benzene
  • esters such as ethyl acetate
  • water Two or more of these solvents may be mixed and used.
  • the dye concentration in the dye adsorption solution can be appropriately adjusted depending on the kind of dye and solvent used. However, in order to improve the function of adsorbing the dye to the porous semiconductor layer, the dye concentration is preferably as high as possible, for example, 5 ⁇ 10 ⁇ 4 mol / liter or more.
  • the insulating member 8 is provided at a predetermined position. Specifically, first, the periphery of the laminate formed on the support 1 (the laminate is configured by laminating the photoelectric conversion layer 4, the porous insulating layer 5, and the counter electrode conductive layer 6) is surrounded.
  • the insulating member 8 is produced by cutting out a heat-sealing film or an ultraviolet curable resin into a shape.
  • silicone resin, epoxy resin, or glass frit is used as the material of the insulating member 8
  • the pattern of the insulating member 8 can be formed by a dispenser.
  • hot melt resin is used as the material of the insulating member 8, the insulating member 8 can be formed by opening a patterned hole in a sheet member made of hot melt resin.
  • the insulating member 8 formed in this manner is disposed between the transparent electrode substrate 11 and the cover layer 7 so that the transparent electrode substrate 11 and the cover layer 7 are bonded together. Then, the insulating member 8, the transparent electrode substrate 11, and the cover layer 7 are fixed by heating or ultraviolet irradiation.
  • a carrier transport material is injected from an injection hole previously provided in the cover layer 7.
  • the carrier transport material is filled inside the insulating member 8 and sandwiched between the conductive layer 2 and the cover layer 7, the injection hole is sealed with an ultraviolet curable resin.
  • a carrier transport layer is formed on the counter electrode conductive layer 6, and the carrier transport material is held in the photoelectric conversion layer 4 and the porous insulating layer 5. Thereby, the photoelectric conversion element 10 shown in FIG. 1 is manufactured.
  • FIG. 2 is a schematic sectional view of a part of the photoelectric conversion module according to the present invention.
  • three photoelectric conversion elements are connected in series. Specifically, three conductive layers 2 are provided on a single support 21 with a scribe line portion 3 therebetween, whereby a transparent electrode substrate 31 is configured. On each conductive layer 2, a photoelectric conversion layer 4, a porous insulating layer 5, a counter electrode conductive layer 6, and a carrier transport layer configured by adsorbing a dye or the like on a porous semiconductor layer are provided.
  • the counter electrode conductive layer 6 of one of the adjacent photoelectric conversion elements extends through the inter-cell insulating layer 9 toward the conductive layer 2 of the other photoelectric conversion element. , And electrically connected to the conductive layer 2. Thereby, adjacent photoelectric conversion elements are connected in series.
  • An inter-cell insulating layer 9 is provided on the scribe line portion 3.
  • the line width D2 of the scribe line part 3 in each photoelectric conversion element is preferably 80 ⁇ m or more and 300 ⁇ m or less, more preferably 100 ⁇ m or more and 200 ⁇ m or less, an increase in reverse current between the regions delimited by the scribe line part 3 Can be further suppressed. Therefore, since the photoelectric conversion efficiency with respect to external environmental factors such as heat is further improved, it is possible to further prevent the photoelectric conversion efficiency from changing with time.
  • a single cover layer 27 is provided on the counter electrode conductive layer 6 so as to face the support 21, and between the support 21 and the cover layer 27, An insulating member 8 or a sealing member 32 is provided.
  • the photoelectric conversion elements at both ends are sealed with the support 21, the cover layer 27, the insulating member 8, and the sealing member 32, and the photoelectric conversion element at the center is the support 21, the cover layer 27, and two insulating members. 8 is sealed.
  • a region located between the support 21 and the cover layer 27 inside the sealing member 32 is filled with a carrier transport material to form a carrier transport layer.
  • the adjacent photoelectric conversion element is an insulating member. Therefore, the carrier transport material can be prevented from going back and forth between adjacent photoelectric conversion elements.
  • the insulating member 8 has a function of partitioning adjacent photoelectric conversion elements.
  • the counter electrode conductive layer 6 extends from the first region through the inter-cell insulating layer 9 to the second region, the insulating member 8 does not directly contact the scribe line portion 3. Is provided above.
  • the insulating member 8 is provided on the inter-cell insulating layer 9 with the counter electrode conductive layer 6 interposed therebetween, in other words, a part of the insulating member 8 is part of the cell. If the inter-layer insulating layer 9 is used, the photoelectric conversion element 10 can be reduced in size, and thus the light receiving area ratio of the photoelectric conversion element in the photoelectric conversion module 20 can be improved.
  • the support 21 is preferably made of a light-transmitting material similar to the support 1 in the photoelectric conversion element 10 shown in FIG. 1, and specifically, is preferably made of a material that can be used as the material of the support 1. .
  • the cover layer 27 is preferably made of a material that can be used as the material of the cover layer 7 in the photoelectric conversion element 10 shown in FIG.
  • the sealing member 32 may be made of substantially the same material as that of the insulating member 8 or may be made of a material different from the insulating member 8 (for example, a material having no insulating property).
  • a collector electrode (not shown) is provided outside the sealing member 32 on the support 1, and the collector electrode is located at both ends. It is preferably in contact with the conductive layer 2 of the element. Thereby, an electric current can be easily taken out from the photoelectric conversion module 20 to the outside.
  • the photoelectric conversion element located at the center corresponds to the photoelectric conversion element 10 shown in FIG. 1, and the photoelectric conversion elements located at both ends are carrier transported from the photoelectric conversion element 10 shown in FIG. Different members are used to seal the layers.
  • the photoelectric conversion elements 10 illustrated in FIG. 1 may be connected in series. That is, the insulating member 8 may be used instead of the sealing member 32.
  • the number of photoelectric conversion elements constituting the photoelectric conversion module 20 is not limited to three.
  • Conductive layer 2 is formed the transparent electrode substrate 11 made of SnO 2 on the support 1 made of glass (Nippon Sheet Glass Co., Ltd., SnO 2 glass with film) was prepared.
  • the size of the transparent electrode substrate 11 was 30 mm ⁇ 30 mm ⁇ 1.0 mm (thickness).
  • a part of the conductive layer 2 of the transparent electrode substrate 11 was cut by laser scribing.
  • a commercially available glass paste (Noritake Co., Ltd.) is formed on the conductive layer 2 using a screen plate having a pattern of the inter-cell insulating layer 9 and a screen printing machine (manufactured by Neurong Seimitsu Kogyo Co., Ltd., model number: LS-150). And the average particle size was 18 nm) and leveled at room temperature for 1 hour. After that, the obtained coating film was dried in an oven set at 80 ° C. for 20 minutes, and then used for 60 minutes in the air using a baking furnace (model number: KDF P-100, manufactured by Denken Co., Ltd.) set at 500 ° C. Baked. As a result, a porous semiconductor layer having a thickness of 15 ⁇ m was obtained.
  • a paste containing zirconia particles (average particle size of 50 nm) was applied on the porous semiconductor layer using a screen printer. Thereafter, the porous insulating layer 5 was formed by firing at 500 ° C. for 60 minutes.
  • the pore diameter of the porous insulating layer 5 was measured using a BET measuring device (manufactured by Yuasa Ionics Co., Ltd., product number: AUTOSORB-1), the diameter was 90 ⁇ m.
  • a 400 nm-thick titanium film was formed on the porous insulating layer 5 at a deposition rate of 8 s / s using a mask on which a predetermined pattern was formed and a deposition apparatus (model number: EVD500A, manufactured by Anelva Corporation). . Thereby, the counter electrode conductive layer 6 was obtained.
  • a Pt film was formed on the counter electrode conductive layer 6 at a vapor deposition rate of 4 ⁇ / s using a mask on which a predetermined pattern was formed and a vapor deposition apparatus (model number: EVD500A manufactured by Anelva Corporation).
  • a catalyst layer is formed on the counter electrode conductive layer 6, and a laminate (the laminate is composed of the porous semiconductor layer, the porous insulating layer 5, the counter electrode conductive layer 6, and the catalyst layer in this order) is formed on the transparent electrode substrate 11. Formed to be laminated).
  • the size and position of the catalyst layer were the same as the size and position of the porous semiconductor layer, respectively.
  • the laminate was immersed in a dye adsorption solution prepared in advance at room temperature for 100 hours. Thereafter, the laminate was washed with ethanol and dried at about 60 ° C. for about 5 minutes. Thereby, the pigment
  • the dye adsorption solution has a volume ratio of 1: 1 of the dye represented by the above chemical formula (1) (trade name: Ruthenium 620 1H3TBA, manufactured by Solaronix) so that the concentration is 4 ⁇ 10 ⁇ 4 mol / liter. It was prepared by dissolving in a mixed solvent of acetonitrile and t-butanol.
  • the transparent electrode substrate 11 on which the laminate was formed and the cover layer 7 made of glass were bonded using a heat-sealing film (DuPont, Himiran 1855) cut out so as to surround the periphery of the laminate. . Then, it heated for 10 minutes in the oven set to about 100 degreeC. Thereby, the heat sealing
  • a heat-sealing film DuPont, Himiran 1855
  • an electrolyte prepared in advance was injected from an electrolyte injection hole formed in the cover layer 7 in advance.
  • the hole for injecting the electrolytic solution is formed using an ultraviolet curable resin (manufactured by ThreeBond, model number: 31X-101). Sealed. Thereby, a photoelectric conversion element (single cell) was completed.
  • the electrolytic solution was prepared according to the following method.
  • LiI Aldrich, redox species
  • I 2 Korean Organic Chemical Co., Ltd.
  • t-butylpyridine additive, manufactured by Aldrich
  • dimethylpropylimidazoleioio is obtained so that the concentration becomes 0.6 mol / liter.
  • Dido (manufactured by Shikoku Chemicals) was dissolved.
  • the photoelectric conversion elements of Examples 1 to 7 and Comparative Examples 1 to 9 in which a black mask was installed were placed in a constant temperature bath at 85 ° C., and thermal stress was applied to these photoelectric conversion elements, thereby improving the photoelectric conversion efficiency.
  • the time change was measured.
  • a sandwich cell (a sandwich cell in which a negative electrode and a positive electrode were separately prepared and bonded) was prepared as a reference cell, and the change in photoelectric conversion efficiency over time was also measured.
  • the photoelectric conversion efficiencies of the photoelectric conversion elements of Examples 1 to 7 and Comparative Examples 1 to 9 were divided by the photoelectric conversion efficiency of the sandwich cell to obtain the retention ratio of the photoelectric conversion efficiency with respect to the sandwich cell.
  • FIG. 3 is a graph showing the results of examining the relationship between the line width D2 of the scribe line portion 3 and the photoelectric conversion efficiency retention rate (%) of the photoelectric conversion element with respect to the sandwich cell.
  • the line width D2 of the scribe line section 3 is 60 ⁇ m or more, the retention of photoelectric conversion efficiency with respect to the sandwich cell starts to increase, and when the line width D2 of the scribe line section 3 is 70 ⁇ m or more, the sandwich The retention rate of photoelectric conversion efficiency with respect to the cell was 90% or more.
  • the line width D2 of the scribe line portion 3 is 90 ⁇ m or more when the inter-cell insulating layer 9 is not provided.
  • the line width D2 of the scribe line portion 3 may be set to 70 ⁇ m or more. Therefore, even if the line width D2 of the scribe line portion 3 is reduced compared to the case where there is no inter-cell insulating layer on the scribe line portion, it is possible to prevent a decrease in photoelectric conversion efficiency over time. It was found that the light receiving area ratio was improved.
  • a transparent electrode substrate 31 manufactured by Nippon Sheet Glass Co., Ltd., trade name: glass with SnO 2 film: length 60 mm ⁇ width 37 mm
  • a conductive layer (SnO 2 film) 2 formed on the surface of the support 21 was prepared.
  • a part of the conductive layer 2 on the surface of the transparent electrode substrate 31 was removed by laser scribing to form a scribe line portion 3 extending in the longitudinal direction of the transparent electrode substrate 31 and parallel to each other.
  • the conductive layer 2 was divided into three regions.
  • a porous semiconductor layer was formed according to Example 1 described above. Specifically, one porous semiconductor layer having a film thickness of 25 ⁇ m, a width of 5 mm, and a length of 50 mm centering on a position of 6.9 mm from the left end of the transparent electrode substrate 31 was formed. The second porous semiconductor layer is formed around a position of 6.9 mm from the center of the first porous semiconductor layer, and the third porous semiconductor layer is the center of the second porous semiconductor layer. And 6.9 mm from the center. The sizes of the porous semiconductor layers were the same.
  • a porous insulating layer 5 was formed on each porous semiconductor layer according to Example 1 described above.
  • a counter electrode conductive layer 6 was formed on each porous insulating layer 5 according to Example 1 described above.
  • One counter electrode conductive layer 6 having a width of 5.6 mm and a length of 50 mm is formed around a position of 7.2 mm from the left end of the transparent electrode substrate 31.
  • the second counter electrode conductive layer 6 is formed around a position 7 mm from the center of the first counter electrode conductive layer 6, and the third counter electrode conductive layer 6 is 7 mm from the center of the second counter electrode conductive layer 6. It was formed around the position of.
  • the sizes of the counter electrode conductive layers 6 were the same.
  • a catalyst layer made of Pt was formed on each counter electrode conductive layer 6 in accordance with Example 1 above.
  • the size and position of the catalyst layer were the same as the size and position of the porous semiconductor layer, respectively.
  • the thus obtained laminate was immersed in the dye adsorption solution used in Example 1 for 120 hours at room temperature, and the dye was adsorbed on the porous semiconductor layer to form the photoelectric conversion layer 4.
  • an ultraviolet curable resin (31X-101 manufactured by Three Bond Co., Ltd.) was applied between adjacent laminated bodies and around the cell using a dispenser (ULTRASAVE manufactured by EFD Co.).
  • a glass substrate having a length of 60 mm and a width of 30 mm was bonded to the ultraviolet curable resin as the cover layer 27, and then the ultraviolet curable resin was irradiated with ultraviolet rays using an ultraviolet lamp (NOVACURE manufactured by EFD). Thereby, the ultraviolet curable resin was cured and the insulating member 8 and the sealing member 32 were formed.
  • Example 1 Thereafter, the same electrolytic solution as in Example 1 was injected from an electrolytic solution injection hole provided in advance in the glass substrate. Once the electrolytic solution is filled in the space formed by the transparent electrode substrate 31, the cover layer 27, the insulating member 8 or the sealing member 32, electrolysis is performed using an ultraviolet curable resin (manufactured by ThreeBond, model number: 31X-101). The liquid injection hole was sealed.
  • an ultraviolet curable resin manufactured by ThreeBond, model number: 31X-101
  • a current collecting electrode was formed by applying Ag paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.) on the surface of the support 21. Thereby, the photoelectric conversion module was completed.
  • Ag paste trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.
  • a black mask was placed on the light receiving surfaces of the photoelectric conversion modules of Examples 8 to 9 and Comparative Examples 9 to 10.
  • the photoelectric conversion module was irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator) to measure the photoelectric conversion efficiency. Further, in accordance with Example 1 above, the retention rate of photoelectric conversion efficiency with respect to the sandwich cell was determined.
  • Example 8 was higher than Example 9. The reason is that Example 8 has a higher light receiving area ratio than Example 9. For the same reason, the photoelectric conversion efficiency of Comparative Example 9 was higher than the photoelectric conversion efficiency of Comparative Example 10.
  • FIG. 4 is a graph showing the results of examining the relationship between the line width D2 of the scribe line section 3 and the photoelectric conversion efficiency retention rate (%) of the photoelectric conversion module with respect to the sandwich cell.
  • the retention rate of the photoelectric conversion efficiency with respect to the sandwich cell it is the same in Example 8 and Example 3, is the same in Example 9 and Example 5, and is the same in Comparative Example 9 and Comparative Example 4. It was about the same, and it was comparable in the comparative example 19 and the comparative example 6.

Abstract

 光電変換効率が向上した光電変換素子を提供すること。 光電変換素子では、光電変換層が導電層上に設けられた第1の領域と、光電変換層が導電層上に設けられていない第2の領域とが、導電層が支持体上に設けられることなく構成されたスクライブライン部を挟んで存在している。スクライブライン部上には、セル間絶縁層が設けられている。対極導電層は、第1の領域からセル間絶縁層上を通って第2の領域へ延びて、第2の領域における導電層に接続されている。スクライブライン部のライン幅は、60μm以上である。

Description

光電変換素子および光電変換モジュール
 本発明は、光電変換素子および光電変換モジュールに関する。
 化石燃料に代わるエネルギー源として、太陽光を電力に変換する太陽電池が注目されている。現在、結晶系シリコン基板を用いた太陽電池および薄膜シリコン太陽電池などが実用化されている。しかし、前者の太陽電池には、シリコン基板の作製コストが高いという問題がある。後者の薄膜シリコン太陽電池には、多種の半導体製造用ガスおよび複雑な装置を用いる必要があるために製造コストが高くなるという問題がある。このため、いずれの太陽電池にも、光電変換の高効率化による発電出力当たりのコストを低減する努力が続けられているが、上記の問題を解決するには至っていない。
 特許文献1では、新しいタイプの太陽電池として、金属錯体の光誘起電子移動を応用した光電変換素子が提案されている。この光電変換素子では、色素を吸着させて可視光領域に吸収スペクトルをもたせた光電変換材料と電解質材料とからなる光電変換層が2枚の電極の間に挟持されており、電極のそれぞれはガラス基板の表面に透明導電膜が形成されて構成されている。
 上記光電変換素子に光が照射されると、光電変換層で電子が発生し、発生した電子が外部電気回路を通って電極に移動し、移動した電子が電解質中のイオンにより対向する電極に運ばれて光電変換層に戻る。このような一連の電子の流れにより、電気エネルギーが取り出される。
 上述のように、特許文献1に記載の光電変換素子の基本構造は、対向する透明導電膜付きガラス基板の間に電解液を注入した形態である。そのため、小面積の上記光電変換素子の試作は可能であっても、特許文献1に記載の光電変換素子を1m角のような大面積の太陽電池へ適用することは困難である。つまり、1つの太陽電池セルの面積を大きくすると、発生電流は面積に比例するので増加するが、電極部分に用いる透明導電膜の面内方向の電圧降下が増大し、ひいては太陽電池としての内部直列抵抗が増大する。その結果、光電変換時の電流電圧特性におけるFF(曲線因子)が低下し、さらには短絡電流が低下し、光電変換効率が低下するという問題が起こる。
 特許文献2および3には、複数の太陽電池が1枚の透明導電膜付きガラス基板上で直列接続されて構成された色素増感型太陽電池モジュールが提案されている。この色素増感型太陽電池モジュールでは、透明導電膜(電極)が短冊形にパターニングされた透明基板(ガラス基板)上に個々の太陽電池が配置されており、個々の太陽電池では、光電変換層となる多孔性半導体層(多孔質酸化チタン層)、多孔性絶縁層(中間多孔性絶縁層)、および対極(触媒層)が順次積層されている。このような色素増感型太陽電池モジュールでは、隣り合う太陽電池のうち一方の太陽電池の透明導電膜と他方の太陽電池の対極とが接触しており、これにより一方の太陽電池と他方の太陽電池とが直列接続されている。
日本国公開特許公報「特開平01-220380号公報(1989年9月4日公開)」 国際公開第1997/016838号パンフレット(1997年5月9日公開) 日本国公開特許公報「特開2002-367686号公報(2002年12月20日公開)」
 ところで、色素増感型太陽電池のような光電変換素子には、光、熱、または湿度などといった外的環境因子によって耐久性が低下するという課題がある。これにより、逆電流の増加が原因と推測される、光電変換効率の低下が認められる。特に、モノリシック型の湿式太陽電池(湿式太陽電池モジュール)では、熱ストレスを加えた場合に、逆電流の増加が原因と見られる性能劣化が顕著となる。
 本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、逆電流の増加が抑制され、よって、光電変換効率が向上した光電変換素子を提供することである。
 本発明に係る光電変換素子は、光透過性の材料からなる支持体と、前記支持体上に順に設けられた導電層、多孔性半導体層を含む光電変換層、多孔性絶縁層、および対極導電層とを備える。多孔性半導体層、多孔性絶縁層および対極導電層のそれぞれの空隙部分には、キャリア輸送材料が充填されている。光電変換層が導電層上に設けられた第1の領域と、光電変換層が導電層上に設けられていない第2の領域とが、導電層が支持体上に設けられることなく構成されたスクライブライン部を挟んで存在している。スクライブライン部上には、セル間絶縁層が設けられている。対極導電層は、第1の領域からセル間絶縁層上を通って第2の領域へ延びて、第2の領域における導電層に接続されている。スクライブライン部のライン幅は、60μm以上であり、好ましくは500μm以下である。ここで、「対極導電層は、第1の領域からセル間絶縁層上を通って第2の領域へ延びている。」は、対極導電層が第1の領域からセル間絶縁層の上面に接触して第2の領域へ延びる場合だけでなく、対極導電層が第1の領域からセル間絶縁層の上面に接触することなくセル間絶縁層の上方を通って第2の領域へ延びる場合も含む。
 セル間絶縁層の幅D1(μm)は、スクライブライン部のライン幅D2(μm)を用いて、D1>D2+100μmの関係式を満たすことが好ましい。
 キャリア輸送材料は、電解液であることが好ましい。
 多孔性絶縁層は、スクライブライン部ではなくセル間絶縁層に接していることが好ましい。また、多孔性絶縁層の細孔径は、50μm以上であることが好ましい。
 セル間絶縁層は、少なくとも酸化シリコンを含むことが好ましい。また、セル間絶縁層の細孔径は、100nm以下であることが好ましい。
 本発明の光電変換モジュールは、本発明の光電変換素子を備えている。第2の領域における導電層上には、順に、多孔性半導体層を含む光電変換層、多孔性絶縁層、および対極導電層が設けられている。第1の領域における導電層上に設けられた光電変換層、多孔性絶縁層、および対極導電層と、第2の領域における導電層上に設けられた光電変換層、多孔性絶縁層、および対極導電層との間には、キャリア輸送材料の移動を防止する絶縁部材が設けられている。
 セル間絶縁層は、絶縁部材の一部を構成していることが好ましい。
 本発明に係る光電変換素子では、逆電流の増加が抑制されるので、光電変換効率が向上する。
本発明の一実施形態に係る光電変換素子の概略断面図である。 本発明の一実施形態に係る光電変換モジュールの概略断面図である。 スクライブライン部のライン幅D2と、サンドイッチセルに対する光電変換素子の光電変換効率の保持率(%)との関係を調べた結果を示すグラフである。 スクライブライン部のライン幅D2と、サンドイッチセルに対する光電変換モジュールの光電変換効率の保持率(%)との関係を調べた結果を示すグラフである。
 以下、本発明の光電変換素子および光電変換モジュールについて図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。
 <光電変換素子の構成>
 図1は、本発明に係る光電変換素子10の概略断面図である。図1に示す光電変換素子10では、支持体1上に導電層2が設けられ、導電層2上に光電変換層4と多孔性絶縁層5と対極導電層6とキャリア輸送層とが順に設けられている。光電変換層4は多孔性半導体層を含んでおり、多孔性半導体層、多孔性絶縁層5および対極導電層6のそれぞれの空隙部分にはキャリア輸送材料が充填されている。
 図1に示す光電変換素子10には、光電変換層4が導電層2上に設けられた第1の領域と光電変換層4が導電層2上に設けられていない第2の領域とが存在し、第1の領域と第2の領域とはスクライブライン部3を挟んで存在する。スクライブライン部3は、導電層2が支持体1上に設けられることなく構成されている。スクライブライン部3上には、セル間絶縁層9が設けられている。
 対極導電層6は、第1の領域からセル間絶縁層9上を通って第2の領域へ延びて、第2の領域における導電層2に電気的に接続されている。よって、第2の領域における導電層2上に光電変換層4、多孔性絶縁層5、対極導電層6、およびキャリア輸送層を順に形成すれば、後述の光電変換モジュール20を作製することができる。
 対極導電層6を上記のように形成するためには、スクライブライン部3上には光電変換層4および多孔性絶縁層5を介することなくセル間絶縁層9を設けることが好ましく、さらには、セル間絶縁層9上に対極導電層6を設けることが好ましい。スクライブライン部上に光電変換層および多孔性絶縁層が形成されると、スクライブライン部のライン幅を大きくする必要があり、よって、光電変換素子の幅方向の長尺化を招くことがある。
 図1に示す光電変換素子10では、スクライブライン部3のライン幅D2は60μm以上である。通常、スクライブライン部は、生産のタクトの観点から、一度の加工により形成されることが好ましい。透明導電層付きガラス板を有する他の太陽電池(たとえばシリコン薄膜太陽電池またはCIGS太陽電池など)においても、一度の加工によりスクライブライン部を形成する、または短絡による歩留まり低下を抑制するために間隔を空けて平行に数本のスクライブライン部を形成する。これにより、通常の短絡を十分に抑制することができる。なお、従来のスクライブライン部のライン幅は50μm程度である。
 しかしながら、スクライブライン部のライン幅が50μm程度である2つ以上の光電変換素子を1つの基板上で直列接続してモノリシック型光電変換素子(本発明に係る光電変換モジュール)を作製し、得られたモノリシック型光電変換素子に対して例えば85℃の耐熱性試験(熱ストレスの付加)を行うと、間隔を空けて平行に複数本のスクライブライン部を形成した場合であっても、モノリシック型光電変換素子の光電変換効率が顕著に低下する。その原因は定かではないが、スクライブライン部により区切られた領域間の逆電流の増加が原因と考えられる。
 そこで、本発明では、スクライブライン部3のライン幅D2を60μm以上とし、且つ、スクライブライン部3上にセル間絶縁層9を設ける。これにより、スクライブライン部3により区切られた領域間の逆電流の増加を抑制し、熱などの外的環境因子に対する光電変換効率の低下の改善を図ることができる。よって、時間経過に対する光電変換効率の変化を防止することができる。
 また、スクライブライン部3上にセル間絶縁層9が設けられている。そのため、スクライブライン部3のライン幅D2を60μm以上とすれば、熱などの外的環境因子が負荷されたとき(以下「熱負荷時」と記すことがある)にスクライブライン部3により区切られた領域間を流れる逆電流が増加することを抑制することができる。よって、支持体1の上面における受光面積の大幅な減少を伴うことなく、熱などの外的環境因子に対する光電変換効率の改善を図ることができる。以下、光電変換素子10の各構成を示す。
 <支持体>
 支持体1を構成する材料は、一般に光電変換素子の支持体に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。しかし、支持体1は、光電変換素子10の受光面となる部分では光透過性を必要とするため、光透過性の材料からなることが好ましい。たとえば、支持体1は、ソーダガラス、溶融石英ガラス、または結晶石英ガラスなどのガラス基板であれば良く、可撓性フィルムなどの耐熱性樹脂板であっても良い。ただし、支持体1は、受光面として使用される場合であっても、少なくとも後述の色素に実効的な感度を有する波長の光を実質的に透過する(当該光の透過率がたとえば80%以上、好ましくは90%以上)ものであれば良く、必ずしも全ての波長の光に対して透過性を有する必要はない。
 可撓性フィルム(以下、「フィルム」ともいう)を構成する材料としては、たとえばテトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂、またはポリテトラフルオロエチレン(PTFE)などが挙げられる。
 加熱を伴って支持体1上に他の層を形成する場合、たとえば250℃程度の加熱を伴って支持体1上に多孔性半導体層を形成する場合には、上記のフィルムを構成する材料の中でも250℃以上の耐熱性を有するポリテトラフルオロエチレンを用いることが特に好ましい。
 完成した光電変換素子10を他の構造体に取り付けるときに、支持体1を利用できる。すなわち、金属加工部品とねじとを用いて、ガラス基板などの支持体1の周辺部を他の支持体に容易に取り付けることができる。
 支持体1の厚みは特に限定されないが、光透過性などを考慮すれば0.2mm~5mm程度であることが好ましい。
 <導電層>
 導電層2を構成する材料は、一般に光電変換素子の導電層に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。しかし、導電層2は、光電変換素子10の受光面となるため、光透過性を必要とし、よって光透過性の材料からなることが好ましい。たとえば、導電層2は、インジウム錫複合酸化物(ITO)、フッ素をドープした酸化錫(FTO)、または酸化亜鉛(ZnO)などであれば良い。ただし、導電層2は、支持体1と同じく、少なくとも後述の色素に実効的な感度を有する波長の光を実質的に透過する(当該光の透過率がたとえば80%以上、好ましくは90%以上)ものであれば良く、必ずしも全ての波長の光に対して透過性を有する必要はない。
 導電層2の膜厚は、特に限定されないが、0.02~5μm程度であることが好ましい。導電層2の膜抵抗は、低いほど好ましく、40Ω/sq以下であることが好ましい。
 導電層2には、低抵抗化のために金属リード線が設けられていても良い。金属リード線の材料としては、たとえば、白金、金、銀、銅、アルミニウム、ニッケル、またはチタンなどが挙げられる。金属リード線の太さは特に限定されないが、金属リード線が太すぎると受光面からの入射光量の低下を招くおそれがある。そのため、金属リード線の太さは0.1~4mm程度であれば好ましい。
 本発明では、支持体1に導電層2が積層された構造体を透明電極基板11と記すことがある。このような透明電極基板11としては、たとえばソーダ石灰フロートガラスからなる支持体1上にFTOからなる導電層2が積層された透明電極基板が挙げられ、本発明において好適に用いられる。
 <スクライブライン部>
 スクライブライン部3のライン幅D2は60μm以上であり、好ましくは100μm以上であり、より好ましくは200μm以上である。スクライブライン部3のライン幅D2が大きくなればなるほど、スクライブライン部3により区切られた領域間の逆電流の増加を抑制できるため、熱などの外的環境因子に対する光電変換効率が改善する。しかし、スクライブライン部3のライン幅D2は500μm以下であることが好ましい。スクライブライン部3のライン幅D2が500μmを超えると、光電変換層4などの縮小化を招くため、光電変換効率の低下を招くことがあるからである。
 スクライブライン部3の一部(好ましくはスクライブライン部3の全体)は、多孔性絶縁層5などが保持する電解液に接している場合に特に本発明の効果が顕著に現れる。ここで、電解液は後述のキャリア輸送材料の一例であり、その組成などは以下で示すとおりである。
 スクライブライン部3の形成方法は、特に限定されない。たとえば、導電層を支持体1の上面全体に形成してから、レーザースクライブ法などにより導電層のうちスクライブライン部3となる部分を除去しても良い。または、支持体1の上面のうちスクライブライン部3となる部分にマスクなどを設けてから、支持体1の上面のうちマスクなどが設けられていない部分に導電層2を形成し、その後、そのマスクを除去しても良い。
 <光電変換層>
 光電変換層4は、多孔性半導体層に、色素または量子ドットなどが吸着され、且つキャリア輸送材料が充填されて構成されている。
 -多孔性半導体層-
多孔性半導体層の形態としては、バルク状、粒子状の半導体材料を含む層、および多数の微細孔が形成された膜状などが挙げられるが、多数の微細孔が形成された膜状であることが好ましい。これにより、色素の吸着量およびキャリア輸送材料の充填量などを十分に確保することができる。
 多孔性半導体層の多孔性とは、空孔率が20%以上であることを言い、比表面積が0.5~300m2/gであることを言う。色素の吸着量などを十分に確保するという観点では、多孔性半導体層の比表面積は10~200m2/g程度であることが好ましい。ここで、多孔性半導体層の空孔率は、多孔性半導体層の厚さ(膜厚)、多孔性半導体層の質量、および半導体微粒子の密度から計算によって求められる。多孔性半導体層の比表面積は、気体吸着法であるBET法によって求められる。
 多孔性半導体層を構成する半導体材料としては、一般に光電変換材料に使用されるものであれば特に限定されない。このような材料としては、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、酸化ニッケル、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2、またはSrCu22などの化合物が挙げられる。これらの化合物を単独で用いても良いし、これらの化合物を組み合せて用いても良い。これらの化合物の中でも、酸化チタン、酸化亜鉛、酸化錫、または酸化ニオブを用いることが好ましい。光電変換効率、安定性、および安全性の点では、酸化チタンを用いることが好ましい。
 本発明において、多孔性半導体層を構成する材料として酸化チタンを用いる場合、酸化チタンは、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、またはオルソチタン酸などの各種の狭義の酸化チタンであっても良いし、水酸化チタンであっても良いし、含水酸化チタンであっても良い。これらを単独で用いても良いし、混合して用いても良い。アナターゼ型酸化チタンとルチル型酸化チタンとについては、製法または熱履歴によりどちらの形態にもなり得るが、アナターゼ型酸化チタンが一般的である。
 半導体材料の平均粒径は、特に限定されず、光電変換層4の光散乱性が半導体材料の平均粒径により調整可能であることを考慮して適宜設定することが好ましい。具体的には、光電変換層4の形成条件などによるため一概には言えないが、光電変換層4は、平均粒径の大きい半導体材料で形成された多孔性半導体層を含む場合には、入射光を散乱させて光捕捉率の向上に寄与する。一方、光電変換層4は、平均粒径の小さい半導体材料で形成された多孔性半導体層を含む場合には、光散乱性に優れないため、色素の吸着点を増加させ、よって色素の吸着量の増加に寄与する。多孔性半導体層は、平均粒径が略同一の半導体材料からなる単層であっても良いが、平均粒径の比較的小さな半導体材料からなる層と平均粒径の比較的大きな半導体材料からなる層とが積層されて構成されていても良い。平均粒径の比較的小さな半導体材料は、5nm以上50nm未満の平均粒径を有していることが好ましく、10nm以上30nm以下の平均粒径を有していることがより好ましい。これにより、投影面積に対して十分に大きい実効表面積が得られるので、入射光を高い収率で電気エネルギーに変換できるという効果も得られる。平均粒径の比較的大きな半導体材料は、50nm以上の平均粒径を有していることが好ましく、50nm以上600nm以下の平均粒径を有していることがより好ましく、50nm以上100nm以下の平均粒径を有していることがさらに好ましい。なお、入射光を光電変換に有効利用するという点では、市販の半導体材料のように半導体材料の平均粒径はある程度揃っていることが好ましい。
 以上のことから、光散乱性の向上という観点では、半導体材料は、平均粒径が50nm以上の酸化チタンであることが好ましく、平均粒径が50nm以上100nm以下の酸化チタンであることがより好ましい。
 ここで、本明細書では、平均粒径は、XRD(X線回折)の回折ピークから求めた値である。具体的には、XRDのθ/2θ測定における回折角の半値幅とシェラーの式とから、平均粒径を求める。たとえば半導体材料がアナターゼ型酸化チタンである場合、(101)面に対応する回折ピーク(2θ=25.3°付近)の半値幅を測定すればよい。
 光電変換層4の膜厚は、特に限定されないが、光電変換効率の観点から、0.5~50μm程度であることが好ましい。特に、光電変換層4は、平均粒径が50nm以上の半導体材料からなる多孔性半導体層を備えている場合には、好ましくは0.1~40μmの膜厚を有し、より好ましくは5~20μmの膜厚を有する。光電変換層4は、平均粒径が5nm以上50nm未満の半導体材料からなる多孔性半導体層を備えている場合には、好ましくは0.1~50μmの膜厚を有し、より好ましくは10~40μmの膜厚を有する。
 多孔性半導体層からなる光電変換層と対極導電層との間に絶縁層を設けることが一般的である。しかし、たとえば特開2007-194039号公報に開示されているように、平均粒径の大きい(平均粒径が100nm~500nm程度)半導体材料からなる多孔性半導体層を含む光電変換層上に対極導電層または導電層(単層)を形成しても良い。ところが、光電変換層のうち対極導電層と接触する部分を構成する半導体材料の平均粒径が大きいと、光電変換層の機械的強度の低下を招き、よって、光電変換素子の構造として問題が起こる場合がある。このような場合には、平均粒径の大きい半導体材料に平均粒径の小さい半導体材料を配合して、たとえば平均粒径の小さい半導体材料を材料全体の10重量%以下の割合で配合して、光電変換層の機械的強度の強化を図っても良い。
 -光増感剤-
 多孔性半導体層に吸着して光増感剤として機能する色素としては、可視光領域および赤外光領域の少なくとも一方の領域に吸収をもつ有機色素または金属錯体色素などが挙げられる。これらの色素を単独で用いても良いし、2種以上を混合して用いても良い。
 有機色素は、たとえばアゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、フタロシアニン系色素、またはナフタロシアニン系色素などである。有機色素の吸光係数は、一般的に、金属錯体色素の吸光係数よりも大きい。
 金属錯体色素は、遷移金属に分子(配位子)が配位結合されて構成されている。遷移金属は、たとえばCu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、またはRhなどである。金属錯体色素としてはフタロシアニン系金属錯体色素またはルテニウム系金属錯体色素が挙げられ、ルテニウム系金属錯体色素が好ましく、下記化学式(1)~(3)で表されるルテニウム系金属錯体色素がさらに好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 多孔性半導体層に色素を強固に吸着させるためには、色素が分子中にカルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、またはホスホニル基などのインターロック基を有することが好ましく、カルボン酸基またはカルボン酸無水基を有することがより好ましい。ここで、インターロック基は、色素の励起状態と半導体材料の伝導帯との間の電子の移動を容易にする電気的結合を提供する。
 多孔性半導体層に吸着して光増感剤として機能する量子ドットとしては、CdS、CdSe、PbS、またはPbSeなどが挙げられる。
 このような光増感剤の吸着量は、1×10-8mol/cm2以上1×10-6mol/cm2以下であることが好ましく、5×10-8mol/cm2以上5×10-7mol/cm2であることがより好ましい。光増感剤の吸着量が1×10-8mol/cm2未満であれば、光電変換効率の低下を招くおそれがある。一方、光増感剤の吸着量が1×10-6mol/cm2を超えると、開放電圧が低下するという不具合を招くことがある。
 多孔性半導体層に光増感剤を吸着させる方法としては、たとえば色素を溶解した溶液(色素吸着用溶液)に多孔性半導体層を浸漬させる方法が代表的なものとして挙げられる。このとき、色素吸着用溶液を多孔性半導体層の微細孔の奥部まで浸透させるという点において、色素吸着用溶液を加熱することが好ましい。
 多孔性半導体層に充填されたキャリア輸送材料については、後述の<キャリア輸送層>で記すとおりである。
 <多孔性絶縁層>
 光電変換素子において、光電変換層4と対極導電層6との間に多孔性絶縁層5を設けることが一般的である。ここで、多孔性絶縁層5の多孔性とは、空孔率が20%以上であることを言い、比表面積が10~100m2/gであることを言う。このような多孔性絶縁層5の細孔径は50μm以上であることが好ましく、50μm以上200μm以下であることがより好ましい。別の言い方をすると、多孔性絶縁層5は、平均粒径が5~500nmの粒子からなることが好ましく、平均粒径が10~300nmの粒子からなることがより好ましい。これにより、多孔性絶縁層5がキャリア輸送材料を保持できる。なお、多孔性絶縁層5の細孔径は、たとえばBET法にしたがって測定されることが好ましい。多孔性絶縁層5の空孔率および多孔性絶縁層5を構成する粒子の平均粒径の各測定方法は上記<光電変換層>で記した方法であることが好ましい。
 多孔性絶縁層5の材料は特に限定されず、ガラスであっても良いし、酸化ジルコニウム、酸化ケイ素、酸化アルミニウム、酸化ニオブ、またはチタン酸ストロンチウムなどの伝導帯準位の高い絶縁材料であっても良い。好ましくは、多孔性絶縁層5が酸化ジルコニウムまたは平均粒径が100nm以上の酸化チタンを含むことである。
 多孔性絶縁層5の膜厚は、特に限定されないが、絶縁性という観点から2μm以上50μm以下であることが好ましく、より好ましくは5μm以上20μm以下である。
 このような多孔性絶縁層5は、図1に示すようにスクライブライン部3ではなくセル間絶縁層9に接していることが好ましい。これにより、熱などの外的環境因子が負荷されたときにスクライブライン部3を介して第1の領域における導電層2と第2の領域における導電層2との間を流れる逆電流が増加することを抑制することができる。
 <対極導電層>
 本発明では、触媒能を有し且つキャリア輸送層中の正孔を還元する働きを有する触媒層と、電子を収集し且つ隣り合う光電変換素子との直列接続を可能とする導電層とを合わせて、対極導電層6と呼ぶ。そのため、対極導電層6は、触媒層と導電層とが積層されて構成されていても良いし、高い導電性を有する触媒層(単層)であっても良いし、触媒能を有する導電層(単層)であっても良い。また、本発明には、対極導電層6とは別に触媒層を更に設ける態様も含まれる。
 対極導電層6が触媒層と導電層との積層構造を有する場合、通常、多孔性絶縁層5上に触媒層を形成し、その触媒層上に導電層を形成する。ただし、蒸着法により触媒層(白金層など)を形成した場合のように形成された触媒層の膜強度がそれほど強くない場合には、多孔性絶縁層上に形成された触媒層上に導電層を形成すると、導電層が触媒層から剥離することがある。この場合には、多孔性絶縁層5上に導電層を設け、その導電層上に触媒層を設けることが好ましい。
 対極導電層6の導電層を構成する材料は、特に限定されず、一般に光電変換素子の導電層に使用可能で、かつ本発明の効果を発揮し得る材料であることが好ましい。導電層の材料は、たとえばインジウムと錫との複合酸化物(ITO)、フッ素がドープされた酸化錫(FTO)、または酸化亜鉛(ZnO)などの金属酸化物であっても良いし、チタン、タングステン、金、銀、銅、またはニッケルなどの金属材料であっても良い。導電層の膜強度を考慮すると、導電層を構成する材料はチタンであることが最も好ましい。
 蒸着法により対極導電層6の導電層を形成すると、導電層自体が多孔質になるため、色素溶液またはキャリア輸送材料などが移動するための孔を導電層に別途、形成しなくても良い。蒸着法により対極導電層6の導電層を形成した場合、導電層に自動的に形成される孔の孔径は約1nm~20nmである。この導電層上に触媒層を形成しても、触媒層を構成する材料が導電層に形成された孔の内部を通って多孔性絶縁層5、さらには多孔性半導体層(光電変換層4)に到達するおそれがないことを確認している。
 一方、白金またはカーボンからなる微粒子分散ペーストを用いて塗布法により対極導電層6の触媒層を形成する場合には、触媒層を構成する微粒子が対極導電層6の導電層を貫通するおそれがある。この場合には、対極導電層6の導電層は緻密な層であることが好ましく、対極導電層6の触媒層を形成してから、対極導電層6の導電層と対極導電層6の触媒層とに対して孔を同時に形成すれば良い。このような場合には、対極導電層6の導電層の材料は、たとえばインジウムと錫との複合酸化物(ITO)、フッ素をドープした酸化錫(FTO)、または酸化亜鉛(ZnO)などの金属酸化物であっても良いし、チタン、タングステン、金、銀、銅、またはニッケルなどの金属材料であっても良い。
 対極導電層6に孔を意図的に形成する場合、たとえばレーザー光を照射して対極導電層6を部分的に蒸発させることが好ましい。このような孔の径は0.1μm~100μmであることが好ましく、より好ましくは1μm~100μmである。また、孔の間隔は1μm~200μmであることが好ましく、より好ましくは5μm~200μmである。
 対極導電層6の膜厚は、特に限定されない。しかし、対極導電層6の膜厚が薄すぎると対極導電層6の抵抗が高くなり、対極導電層6の膜厚が厚すぎるとキャリア輸送材料の移動の妨げとなる。これらを考慮して対極導電層6の膜厚を適宜選択することが好ましく、対極導電層6の膜厚は、50nm~5μm程度であることが好ましい。
 対極導電層6の触媒層を構成する材料は、一般に光電変換素子の触媒層に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、たとえば白金、または、カーボンが好ましい。カーボンの形態としては、カーボンブラック、グラファイト、ガラス炭素、アモルファス炭素、ハードカーボン、ソフトカーボン、カーボンホイスカー、カーボンナノチューブ、またはフラーレンなどが好ましい。
 なお、対極導電層6には、必要に応じて、取り出し電極(図示せず)が設けられる。取り出し電極により、光電変換素子から外部へ電流を取り出すことができる。取り出し電極の材料は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。
 <カバー層>
 カバー層7は、電解液の揮発の防止、および電池内への水などの浸入の防止を目的として、設けられている。カバー層7を構成する材料は、一般に光電変換素子のカバー層に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、たとえばソーダ石灰ガラス、鉛ガラス、ほうけい酸ガラス、溶融石英ガラス、または結晶石英ガラスなどが挙げられ、好ましくはソーダ石灰フロートガラスである。
 <絶縁部材>
 絶縁部材8は、電解液の揮発の防止、電池内への水などの浸入の防止、支持体1に作用する落下物の衝撃(応力)の吸収、および長期にわたる使用時において支持体1に作用するたわみなどの吸収などを目的として設けられている。それだけでなく、絶縁部材8は、図1に示す光電変換素子10を用いて後述の光電変換モジュール20を作製したときには、隣り合う光電変換素子の間をキャリア輸送材料(たとえば電解液)が行き来することを防止することができる。なお、光電変換モジュール20の構成要素としての光電変換素子には、支持体21(図2参照)上に順に設けられた導電層2と光電変換層4と多孔性絶縁層5と対極導電層6とキャリア輸送層とで構成されるものも含まれる。
 絶縁部材8を構成する材料は、一般に光電変換素子の絶縁部材に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、例えば、シリコーン樹脂、エポキシ樹脂、またはポリイソブチレン系樹脂であっても良く、ポリアミド系樹脂、ポリオレフィン系樹脂、またはアイオノマー樹脂などのホットメルト樹脂であっても良く、ガラスフリットなどであっても良い。これらの材料を2種以上用いて絶縁部材8を構成する場合には、2種以上の材料を混合しても良いし、各材料からなる層を積層しても良い。酸化還元性電解質の溶剤としてニトリル系溶剤、またはカーボネート系溶剤を使用する場合には、絶縁部材8を構成する材料は、シリコーン樹脂、ホットメルト樹脂、ポリイソブチレン系樹脂、またはガラスフリットであることが好ましい。
 <セル間絶縁層>
 セル間絶縁層9は、スクライブライン部3上に設けられている。このようなセル間絶縁層9を構成する材料は、たとえば酸化シリコン、酸化アルミニウム、および、酸化マグネシウムなどの少なくとも1つであることが好ましく、より好ましくは酸化シリコンである。
 セル間絶縁層9は、多孔性絶縁層5よりも緻密な層であることが好ましい。これにより、キャリア輸送材料が多孔性絶縁層5からセル間絶縁層9へ浸入することを防止できるので、セル間絶縁層9の絶縁性および第1の領域における導電層2と第2の領域における導電層2との絶縁性を高く維持することができる。よって、スクライブライン部3により区切られた領域間の逆電流の増加がさらに抑制されるので、熱などの外的環境因子に対する光電変換効率の更なる改善が図られる。したがって、時間経過に対する光電変換効率の変化をさらに防止することができる。
 セル間絶縁層9が緻密な層であるとは、空孔率が50%以下であることを言い、比表面積が50m2/g以下であることを言う。このようなセル間絶縁層9の細孔径は100nm以下であることが好ましく、5nm以上50nm以下であることがより好ましい。別の言い方をすると、セル間絶縁層9は、平均粒径が5~50nmの粒子からなることが好ましく、平均粒径が5~30nmの粒子からなることが好ましい。なお、セル間絶縁層9の空孔率、セル間絶縁層9の比表面積、およびセル間絶縁層9を構成する粒子の平均粒径の各測定方法は、上記<光電変換層>で記した方法であることが好ましい。また、セル間絶縁層9の細孔径は、多孔性絶縁層5の細孔径の測定方法と同様の方法にしたがって測定されることが好ましい。
 セル間絶縁層9が緻密な層であるので、セル間絶縁層9の強度を確保することができる。よって、図1に示すように、セル間絶縁層9上に対極導電層6を挟んで絶縁部材8を設けることができる。別の言い方をすると、絶縁部材8の一部をセル間絶縁層9で構成することができる。これにより、光電変換素子10の小型化を図ることができ、図2に示す光電変換モジュール20における光電変換素子の受光面積率の向上に寄与する。
 セル間絶縁層9の大きさは特に限定されないが、セル間絶縁層9の幅D1(μm)は下記式(1)を満たすことが好ましい。これにより、スクライブライン部3により区切られた領域間の逆電流の増加がさらに抑制されるので、熱などの外的環境因子に対する光電変換効率の更なる改善が図られる。したがって、時間経過に対する光電変換効率の変化をさらに防止することができる
  D1>D2+100μm:式(1)。
 より好ましくは、セル間絶縁層9の幅D1(μm)が下記式(2)を満たすことである。これにより、セル間絶縁層9を設けたことに起因する光電変換素子10の大型化(受光面積率の低下)を防止することができる
  D2+300μm>D1>D2+100μm:式(2)。
 <キャリア輸送層>
 本発明において、「キャリア輸送層」とは、絶縁部材8の内側に位置し、且つ導電層2とカバー層7とで挟まれた領域に、キャリア輸送材料が注入されて構成されている。したがって、少なくとも光電変換層4および多孔性絶縁層5にもキャリア輸送材料が充填される。
 キャリア輸送材料は、イオンを輸送可能な導電性材料であることが好ましく、たとえば液体電解質、固体電解質、ゲル電解質、または溶融塩ゲル電解質などであることが好ましい。
 液体電解質は、酸化還元種を含む液状物であることが好ましく、一般に電池または太陽電池などにおいて使用できるものであれば特に限定されない。具体的には、液体電解質は、酸化還元種と酸化還元種を溶解可能な溶剤とからなるもの、酸化還元種と酸化還元種を溶解可能な溶融塩とからなるもの、または酸化還元種と上記溶剤と上記溶融塩からなるものであることが好ましい。
 酸化還元種としては、たとえばI-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、またはキノン/ハイドロキノン系などが挙げられる。具体的には、酸化還元種は、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、またはヨウ化カルシウム(CaI2)などの金属ヨウ化物とヨウ素(I2)との組み合わせであっても良い。酸化還元種は、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、またはテトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素との組み合わせであっても良い。酸化還元種は、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、または臭化カルシウム(CaBr2)などの金属臭化物と臭素との組み合わせであっても良い。これらの中でも、LiIとI2との組み合わせが特に好ましい。
 酸化還元種を溶解可能な溶媒としては、たとえば、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水、または非プロトン極性物質などが挙げられる。これらの中でも、カーボネート化合物またはニトリル化合物が特に好ましい。これらの溶媒を2種類以上混合して用いることもできる。
 固体電解質は、電子、ホール、またはイオンを輸送できる導電性材料であり、光電変換素子の電解質として用いることができ、且つ流動性がないものであることが好ましい。具体的には、固体電解質は、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅、チオシアン酸銅などのp型半導体、または溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。
 ゲル電解質は、通常、電解質とゲル化剤からなる。電解質は、たとえば上記液体電解質であっても良いし、上記固体電解質であっても良い。
 ゲル化剤としては、たとえば、架橋ポリアクリル樹脂誘導体、架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、または側鎖に含窒素複素環式四級化合物塩構造を有するポリマーなどの高分子ゲル化剤などが挙げられる。
 溶融塩ゲル電解質は、通常、上記のようなゲル電解質と常温型溶融塩とからなる。
 常温型溶融塩としては、たとえばピリジニウム塩類またはイミダゾリウム塩類などの含窒素複素環式四級アンモニウム塩類などが挙げられる。
 上記の電解質は、必要に応じて、次に示す添加剤を含むことが好ましい。添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物であっても良いし、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、またはヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩であっても良い。
 電解質の濃度は、0.001~1.5モル/リットルの範囲が好ましく、0.01~0.7モル/リットルの範囲が特に好ましい。ただし、本発明に係る光電変換素子において受光面側に対極導電層6の触媒層がある場合には、入射光がキャリア輸送層内の電解液を通って多孔性半導体層(多孔性半導体層には色素が吸着されている)に達し、キャリアが励起される。そのため、受光面側に触媒層がある光電変換素子では、光電変換素子の性能が電解質の濃度に依存することがある。この点を考慮して、電解質の濃度を設定することが好ましい。
 <光電変換素子の製造方法>
 図1に示す光電変換素子10の製造方法を以下に示す。
 支持体1上に導電層2を形成する。ここで、導電層2の形成方法は、特に限定されず、たとえば公知のスパッタ法または公知のスプレー法などであることが好ましい。また、導電層2に金属リード線(図示せず)を設ける場合には、たとえば、公知のスパッタ法または公知の蒸着法などにより支持体1上に金属リード線を形成してから、得られた金属リード線を含む支持体1上に導電層2を形成しても良いし、支持体1上に導電層2を形成してから、導電層2上に金属リード線を形成しても良い。
 次に、レーザースクライブ法により導電層2の一部を切断してスクライブライン部3を形成する。このとき、スクライブライン部3のライン幅D2が所望の値(60μm以上、好ましくは100μm以上500μm以下、より好ましくは200μm以上500μm以下)となるまで、導電層2に対する加工を繰り返し行なうことが好ましい。
 続いて、導電層2上に多孔性半導体層を形成する。多孔性半導体層の形成方法は、特に限定されず、スクリーン印刷法またはインクジェット法などにより粒子状の半導体材料を含有するペーストを導電層2上に塗布した後、焼成しても良いし、焼成の代わりに、ゾル-ゲル法または電気化学的な酸化還元反応を利用しても良い。これらの方法の中で、厚膜の多孔性半導体層を低コストで形成できるという観点から、ペーストを用いたスクリーン印刷法が特に好ましい。
 半導体材料として酸化チタンを用いた場合の多孔性半導体層の形成方法を以下に具体的に示す。
 まず、チタンイソプロポキシド(キシダ化学株式会社製)125mLを0.1Mの硝酸水溶液(キシダ化学株式会社製)750mLに滴下して加水分解させてから、80℃で8時間加熱する。これにより、ゾル液が調製される。得られたゾル液をチタン製オートクレーブ中で230℃で11時間加熱して酸化チタン粒子を成長させ、超音波分散を30分間行ない、平均粒径(平均一次粒径)15nmの酸化チタン粒子を含むコロイド溶液を調製する。得られたコロイド溶液に当該コロイド溶液の2倍容量のエタノールを加え、これを回転数5000rpmで遠心分離する。これにより、酸化チタン粒子を得る。
 次いで、得られた酸化チタン粒子を洗浄する。その後、酸化チタン粒子をエチルセルロースとテルピネオールとを無水エタノールに溶解させたものと混合して攪拌する。これにより、酸化チタン粒子が分散する。その後、上記混合液を真空条件下で加熱してエタノールを蒸発させ、酸化チタンペーストを得る。最終的な組成として例えば酸化チタン固体濃度が20wt%、エチルセルロース濃度が10wt%、且つテルピネオール濃度が64wt%となるように、各濃度を調整する。
 ここで、酸化チタンペーストを調製するために用いる溶剤としては、上記以外にエチレングリコールモノメチルエーテルなどのグライム系溶剤、イソプロピルアルコールなどのアルコール系溶剤、イソプロピルアルコール/トルエンなどの混合溶剤、または水などが挙げられる。酸化チタン以外の半導体粒子を含むペーストを調製する場合にも、これらの溶剤を用いることができる。
 次いで、上記の方法により酸化チタンペーストを導電層上に塗布し、乾燥させてから焼成する。これにより、酸化チタンからなる多孔性半導体層が得られる。ここで、乾燥条件および焼成条件、たとえば温度、時間、または雰囲気などの条件は、使用する支持体の材料または半導体材料により適宜調整される。焼成は、例えば、大気雰囲気下または不活性ガス雰囲気下で、50~800℃程度の範囲内で、10秒~12時間程度で行なわれることが好ましい。また、乾燥および焼成は、それぞれ、単一の温度で1回行なわれても良いし、温度を変化させて2回以上行なわれても良い。
 続いて、スクライブライン部3上にセル間絶縁層9を設ける。セル間絶縁層9の形成方法としては、特に限定されず、公知の方法が挙げられる。具体的には、スクリーン印刷法またはインクジェット法などによりセル間絶縁層9を構成する絶縁材料を含有するペーストをスクライブライン部3上に塗布してから焼成する方法であっても良いし、焼成の代わりにゾル-ゲル法または電気化学的な酸化還元反応を利用しても良い。これらの方法の中で、セル間絶縁層9を低コストで形成できるという観点から、ペーストを用いたスクリーン印刷法が特に好ましい。
 続いて、多孔性半導体層上に多孔性絶縁層5を形成する。多孔性絶縁層5の形成方法としては、特に限定されず、公知の方法が挙げられる。具体的には、スクリーン印刷法またはインクジェット法などにより多孔性絶縁層5を構成する絶縁材料を含有するペーストを多孔性半導体層上に塗布してから焼成する方法であっても良いし、焼成の代わりにゾル-ゲル法または電気化学的な酸化還元反応を利用した方法などを行なっても良い。これらの方法の中で、多孔性絶縁層5を低コストで形成できるという観点から、ペーストを用いたスクリーン印刷法が特に好ましい。
 続いて、多孔性絶縁層5上に対極導電層6を形成する。対極導電層6の形成方法は、特に限定されず、蒸着法または印刷法などであれば良い。蒸着法により対極導電層6を作製すると、対極導電層6自体が多孔質になるため、色素溶液またはキャリア輸送材料が移動可能な孔を別途、対極導電層6に形成しなくて良い。なお、この孔を対極導電層6に形成する場合には、レーザー光照射により対極導電層6を部分的に蒸発させる方法を用いることが好ましい。
 続いて、多孔性半導体層に色素を吸着させる。色素の吸着方法としては、たとえば色素が溶解された溶液(色素吸着用溶液)に多孔性半導体層を浸漬する方法が挙げられる。色素を溶解させる溶剤としては、色素を溶解可能な溶剤であることが好ましく、具体的には、エタノールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類、または水などが挙げられる。これらの溶剤を2種類以上混合して用いても良い。
 色素吸着用溶液中の色素濃度は、使用する色素および溶剤の種類により適宜調整することができる。しかし、多孔性半導体層への色素の吸着機能を向上させるためには、この色素濃度は、できるだけ高濃度である方が好ましく、たとえば5×10-4モル/リットル以上であることが好ましい。
 続いて、絶縁部材8を所定の位置に設ける。具体的には、まず、支持体1上に形成された積層体(積層体は、光電変換層4、多孔性絶縁層5および対極導電層6が積層されて構成されたもの)の周囲を囲う形に熱融着フィルムまたは紫外線硬化樹脂などを切り出して、絶縁部材8を作製する。絶縁部材8の材料としてシリコーン樹脂、エポキシ樹脂、またはガラスフリットを使用する場合には、ディスペンサーにより絶縁部材8のパターンを形成することができる。絶縁部材8の材料としてホットメルト樹脂を使用する場合には、ホットメルト樹脂からなるシート部材にパターニングした穴を開けることにより、絶縁部材8を形成することができる。このようにして形成された絶縁部材8を、透明電極基板11とカバー層7とを貼り合わせるように透明電極基板11とカバー層7との間に配置する。そして、加熱または紫外線照射により、絶縁部材8と透明電極基板11およびカバー層7とを固定する。
 続いて、カバー層7に予め設けてあった注入用孔からキャリア輸送材料を注入する。キャリア輸送材料が絶縁部材8の内側であって導電層2とカバー層7とで挟まれた部分に充填されたら、紫外線硬化樹脂を用いて注入用孔を封止する。キャリア輸送材料の充填により、対極導電層6上にはキャリア輸送層が形成され、またキャリア輸送材料が光電変換層4および多孔性絶縁層5に保持される。これにより、図1に示す光電変換素子10が製造される。
 <光電変換モジュール>
 図2は、本発明に係る光電変換モジュールの一部分の概略断面図である。
 図2に示す光電変換モジュール20では、3つの光電変換素子が直列接続されている。詳細には、1枚の支持体21上に3つの導電層2がスクライブライン部3を隔てて設けられており、これにより、透明電極基板31が構成されている。各導電層2上には、多孔性半導体層に色素などが吸着されて構成された光電変換層4、多孔性絶縁層5、対極導電層6、およびキャリア輸送層が設けられている。このような光電変換モジュール20では、隣り合う光電変換素子のうちの一方の光電変換素子の対極導電層6はセル間絶縁層9上を通って他方の光電変換素子の導電層2へ向かって延び、当該導電層2に電気的に接続されている。これにより、隣り合う光電変換素子が直列に接続される。
 スクライブライン部3上にはセル間絶縁層9が設けられている。これにより、図2に示す光電変換モジュール20では、各光電変換素子におけるスクライブライン部3のライン幅D2が60μm以上であっても、熱負荷時にスクライブライン部3により区切られた領域間に生じる逆電流の増加を抑制できるので、熱などの外的環境因子に対する光電変換効率が改善される。したがって、時間経過に対する光電変換効率の変化を防止することができる。各光電変換素子におけるスクライブライン部3のライン幅D2が好ましくは80μm以上300μm以下であれば、より好ましくは100μm以上200μm以下であれば、スクライブライン部3により区切られた領域間の逆電流の増加をさらに抑制できる。したがって、熱などの外的環境因子に対する光電変換効率がさらに改善されるので、時間経過に対する光電変換効率の変化をさらに防止することができる。
 図2に示す光電変換モジュール20では、対極導電層6上には、1枚のカバー層27が支持体21に対向して設けられており、支持体21とカバー層27との間には、絶縁部材8または封止部材32が設けられている。両端の光電変換素子は、支持体21、カバー層27、絶縁部材8および封止部材32で封止されており、中央の光電変換素子は、支持体21、カバー層27、および2つの絶縁部材8で封止されている。封止部材32の内側であって支持体21とカバー層27との間に位置する領域にはキャリア輸送材料が充填されてキャリア輸送層が形成されているが、隣り合う光電変換素子は絶縁部材8により区画されているため、キャリア輸送材料が隣り合う光電変換素子の間を行き来することを防止できる。
 このように、絶縁部材8は、隣り合う光電変換素子を区画する機能を有する。ここで、対極導電層6が第1の領域からセル間絶縁層9上を通って第2の領域へ延びているため、絶縁部材8は、スクライブライン部3に直接接することなく対極導電層6の上方に設けられる。また、上記<セル間絶縁層>で述べたように、セル間絶縁層9上に対極導電層6を挟んで絶縁部材8を設ければ、別の言い方をすると絶縁部材8の一部をセル間絶縁層9で構成すれば、光電変換素子10の小型化を図ることができ、よって、光電変換モジュール20における光電変換素子の受光面積率を向上させることができる。
 支持体21は、図1に示す光電変換素子10における支持体1と同じく光透過性を有する材料からなることが好ましく、具体的には支持体1の材料として使用可能な材料からなることが好ましい。カバー層27は、図1に示す光電変換素子10におけるカバー層7の材料として使用可能な材料からなることが好ましい。封止部材32は、絶縁部材8と略同一の材料からなっても良いし、絶縁部材8とは異なる材料(たとえば絶縁性を有していない材料)からなっても良い。
 図2に示す光電変換モジュール20では、支持体1上のうち封止部材32の外側に集電電極(不図示)が設けられていることが好ましく、この集電電極は両端に位置する光電変換素子の導電層2に接していることが好ましい。これにより、電流を光電変換モジュール20から外部へ容易に取り出すことが出来る。
 図2に示す光電変換モジュール20では、中央に位置する光電変換素子が図1に示す光電変換素子10に相当し、両端に位置する光電変換素子が図1に示す光電変換素子10とはキャリア輸送層などを封止する部材を異にする。しかし、図2に示す光電変換モジュール20では、図1に示す光電変換素子10が直列に接続されていても良い。つまり、封止部材32の代わりに絶縁部材8を用いても良い。
 なお、本発明に係る光電変換モジュールでは、当該光電変換モジュール20を構成する光電変換素子の個数は3個に限定されない。
 本発明を実施例および比較例によりさらに具体的に説明するが、本発明はこれらの実施例および比較例に限定されない。
 <実施例1~7および比較例1~9>
 <太陽電池の作製>
 ガラスからなる支持体1上にSnO2からなる導電層2が形成された透明電極基板11(日本板硝子株式会社製、SnO2膜付ガラス)を用意した。この透明電極基板11の大きさは、30mm×30mm×1.0mm(厚さ)であった。透明電極基板11の導電層2の一部をレーザースクライブにより切断した。
 このとき、実施例1~7では、スクライブライン部3のライン幅D2をD2=60、70、80、90、100、150、200μmとし、且つ、スクライブライン部3上にセル間絶縁層9を形成した。一方、比較例1では、スクライブライン部3のライン幅D2をD2=50μmとし、且つ、スクライブライン部3上にセル間絶縁層9を形成した。また、比較例2~8では、スクライブライン部3のライン幅D2をD2=60、70、80、90、100、150、200μmとし、且つ、スクライブライン部3上にセル間絶縁層9を形成しなかった。
 次に、セル間絶縁層9のパターンを有するスクリーン版とスクリーン印刷機(ニューロング精密工業株式会社製、型番:LS-150)とを用いて、導電層2上に市販のガラスペースト(ノリタケ社製、平均粒径は18nm)を塗布し、室温で1時間レベリングした。その後、得られた塗膜を80℃に設定したオーブンで20分間乾燥してから、500℃に設定した焼成炉(株式会社デンケン製、型番:KDF P-100)を用いて空気中で60分間焼成した。その結果、膜厚15μmの多孔性半導体層を得た。
 次いで、スクリーン印刷機を用いて、多孔性半導体層上にジルコニア粒子(平均粒経50nm)を含むペーストを塗布した。その後、500℃、60分間で焼成し、多孔性絶縁層5を形成した。ここで、BET測定器(ユアサアイオニクス社製、品番:AUTOSORB-1)を用いて多孔性絶縁層5の細孔径を測定したところ、その径は90μmであった。
 次いで、所定のパターンが形成されたマスクおよび蒸着装置(アネルバ株式会社製、型番:EVD500A)を用いて、蒸着速度8Å/sで、多孔性絶縁層5上に膜厚400nmのチタンを成膜した。これにより、対極導電層6が得られた。
 次いで、所定のパターンが形成されたマスクおよび蒸着装置(アネルバ株式会社製、型番:EVD500A)を用いて、蒸着速度4Å/sで、対極導電層6上にPt膜を形成した。これにより、対極導電層6上に触媒層が形成され、透明電極基板11上には積層体(積層体は、多孔性半導体層、多孔性絶縁層5、対極導電層6、および触媒層が順に積層されて構成されたもの)が形成された。なお、触媒層の大きさ、およびその位置は、それぞれ、多孔性半導体層の大きさ、およびその位置と同じであった。
 次いで、予め調製しておいた色素吸着用溶液に積層体を室温で100時間浸漬した。その後、積層体をエタノールで洗浄してから約60℃で約5分間乾燥させた。これにより、多孔性半導体層に色素が吸着された。
 ここで、色素吸着用溶液は、濃度が4×10-4モル/リットルとなるように上記化学式(1)の色素(Solaronix社製、商品名:Ruthenium620 1H3TBA)を体積比が1:1であるアセトニトリルとt-ブタノールとの混合溶剤に溶解させて、調製された。
 次いで、積層体の周囲を囲う形に切り出した熱融着フィルム(デュポン社製、ハイミラン1855)を用いて、積層体が形成された透明電極基板11とガラスからなるカバー層7とを貼り合せた。その後、約100℃に設定したオーブンで10分間加熱した。これにより、熱融着フィルムが融解して絶縁部材8となり、融解した熱融着フィルムと透明電極基板11およびカバー層7のそれぞれとが圧着された。
 次いで、カバー層7に予め形成されていた電解液注入用孔から、予め調製しておいた電解液を注入した。透明電極基板11とカバー層7と絶縁部材8とで形成される空間内に電解液が充填されたら、紫外線硬化樹脂(スリーボンド社製、型番:31X-101)を用いて電解液注入用孔を封止した。これにより、光電変換素子(単セル)が完成した。
 ここで、電解液は、次に示す方法にしたがって調製された。溶剤としてのアセトニトリルに、濃度が0.1モル/リットルとなるようにLiI(アルドリッチ社製、酸化還元種)を溶解させ、濃度が0.01モル/リットルとなるようにI2(キシダ化学社製、酸化還元種)を溶解させた。さらに、上記アセトニトリルに、濃度が0.5モル/リットルとなるようにt-ブチルピリジン(アルドリッチ社製、添加剤)を溶解させ、濃度が0.6モル/リットルになるようにジメチルプロピルイミダゾールアイオダイド(四国化成工業社製)を溶解させた。
 得られた光電変換素子の透明電極基板11上にAgペースト(藤倉化成株式会社製、商品名:ドータイト)を塗布して集電電極部を形成した。以上のようにして、実施例1~7および比較例1~9の光電変換素子を作製した。
 <評価方法および結果>
 実施例1~7および比較例1~9の光電変換素子の受光面に、開口部の面積が1.0cm2である黒色のマスクを設置した。そして、この光電変換素子に1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、光電変換効率(η)を測定した。
 また、黒色のマスクが設置された実施例1~7および比較例1~9の光電変換素子を85℃の恒温槽内に入れてこれらの光電変換素子に熱ストレスを付加し、光電変換効率の時間変化を測定した。リファレンスセルとしてサンドイッチセル(サンドイッチセルは、負極と正極とを別々に作製して貼り合せたもの)を準備し、時間経過に対する光電変換効率の変化も測定した。そして、実施例1~7および比較例1~9の光電変換素子の光電変換効率をサンドイッチセルの光電変換効率で除して、サンドイッチセルに対する光電変換効率の保持率を求めた。サンドイッチセルに対する光電変換効率の保持率が高いほど、光電変換効率に優れていることを意味する。ここで、実施例1~7および比較例1~9では、試験時間を500時間としてサンドイッチセルに対する光電変換効率の保持率を求めた。
 図3は、スクライブライン部3のライン幅D2と、サンドイッチセルに対する光電変換素子の光電変換効率の保持率(%)との関係を調べた結果を示すグラフである。図3に示すように、スクライブライン部3のライン幅D2が60μm以上となると、サンドイッチセルに対する光電変換効率の保持率が高くなり始め、スクライブライン部3のライン幅D2が70μm以上であればサンドイッチセルに対する光電変換効率の保持率が90%以上となった。
 図3から分かるように、サンドイッチセルに対する光電変換効率の保持率を90%以上とするためには、セル間絶縁層9が設けられていない場合にはスクライブライン部3のライン幅D2を90μm以上とする必要があるが、セル間絶縁層9が設けられている場合にはスクライブライン部3のライン幅D2を70μm以上とすれば良い。そのため、スクライブライン部上にセル間絶縁層がない場合に比べてスクライブライン部3のライン幅D2を小さくしても時間経過に対する光電変換効率の低下を防止することができ、よって、太陽電池の受光面積率が向上することが分かった。
 <実施例8~9および比較例9~10>
 <光電変換モジュールの作製>
 図2に示す光電変換モジュールを作製した。
 先ず、支持体21の表面に導電層(SnO2膜)2が形成された透明電極基板31(日本板硝子社製、商品名:SnO2膜付ガラス:縦60mm×横37mm)を用意した。透明電極基板31表面上の導電層2の一部をレーザースクライブにより除去して、透明電極基板31の縦方向に延びるように且つ互いに平行にスクライブライン部3を形成した。スクライブライン部3の形成により、導電層2は3つの領域に分割された。
 ここで、実施例8~9では、スクライブライン部3のライン幅D2をD2=80、100μmとし、且つ、スクライブライン部3上にセル間絶縁層9を形成した。一方、比較例9~10では、スクライブライン部3のライン幅D2をD2=80、100μmとし、且つ、スクライブライン部3上にセル間絶縁層9を形成しなかった。
 次に、上記実施例1に準じて多孔性半導体層を形成した。具体的には、透明電極基板31の左端から6.9mmの位置を中心として、膜厚が25μm、幅が5mm、長さが50mmのサイズの多孔性半導体層を1つ形成した。2つ目の多孔性半導体層は1つ目の多孔性半導体層の中心から6.9mmの位置を中心として形成され、3つ目の多孔性半導体層は2つ目の多孔性半導体層の中心から6.9mmの位置を中心として形成された。なお、多孔性半導体層の大きさは互いに同一であった。
 各多孔性半導体層上に、上記実施例1に準じて多孔性絶縁層5を形成した。
 次いで、各多孔性絶縁層5上に、上記実施例1に準じて対極導電層6を形成した。透明電極基板31の左端から7.2mmの位置を中心として、幅が5.6mm、長さが50mmのサイズの対極導電層6を1つ形成した。2つ目の対極導電層6は1つ目の対極導電層6の中心から7mmの位置を中心として形成され、3つ目の対極導電層6は2つ目の対極導電層6の中心から7mmの位置を中心として形成された。なお、対極導電層6の大きさは互いに同一であった。
 次いで、上記実施例1に準じて、各対極導電層6上にPtからなる触媒層を形成した。なお、触媒層の大きさおよびその位置は、それぞれ、多孔性半導体層の大きさおよびその位置と同じとした。
 このようにして得られた積層体を上記実施例1で用いた色素吸着用溶液に室温で120時間浸漬し、多孔性半導体層に色素を吸着させて光電変換層4を形成した。
 次いで、隣り合う積層体の間およびセルの周囲に、紫外線硬化樹脂(スリーボンド社製 31X-101)をディスペンサー(EFD社製 ULTRASAVER)により塗布した。カバー層27として縦60mm×横30mmのガラス基板を紫外線硬化樹脂に貼り合わせた後、紫外線ランプ(EFD社製 NOVACURE)を用いて紫外線を紫外線硬化樹脂に照射した。これにより、紫外線硬化樹脂が硬化されて絶縁部材8および封止部材32が形成された。
 その後、ガラス基板に予め設けられていた電解液注入孔より、実施例1と同じ電解液を注入した。透明電極基板31とカバー層27と絶縁部材8または封止部材32とで形成される空間内に電解液が充填されたら、紫外線硬化樹脂(スリーボンド社製、型番:31X-101)を用いて電解液注入用孔を封止した。
 支持体21の表面上にAgペースト(藤倉化成株式会社製、商品名:ドータイト)を塗布して集電電極を形成した。これにより、光電変換モジュールが完成した。
 <評価方法および結果>
実施例8~9および比較例9~10の光電変換モジュールの受光面に黒色のマスクを設置した。そして、この光電変換モジュールに1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、光電変換効率を測定した。また、上記実施例1に準じて、サンドイッチセルに対する光電変換効率の保持率を求めた。
 光電変換効率に関しては、実施例8の方が実施例9よりも高かった。その理由としては、実施例8の方が実施例9よりも受光面積率が高いことが考えられる。同様の理由から、比較例9の光電変換効率の方が比較例10の光電変換効率よりも高かった。
 図4は、スクライブライン部3のライン幅D2と、サンドイッチセルに対する光電変換モジュールの光電変換効率の保持率(%)との関係を調べた結果を示すグラフである。サンドイッチセルに対する光電変換効率の保持率に関しては、実施例8と実施例3とで同程度であり、実施例9と実施例5とで同程度であり、比較例9と比較例4とで同程度であり、比較例19と比較例6とで同程度であった。また、実施例8(D2=80μm、セル間絶縁層9が形成されている)におけるサンドイッチセルに対する光電変換効率の保持率は、比較例10(D2=100μm、セル間絶縁層9が形成されていない)におけるサンドイッチセルに対する光電変換効率の保持率と同程度であった。よって、セル間絶縁層9を形成すれば、時間経過に対する光電変換効率の保持率の低下を防止できるだけでなく、光電変換モジュールにおける受光面積率の低下を防止できる,ということが分かった。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,21 支持体、2 導電層、3 スクライブライン部、4 光電変換層、5 多孔性絶縁層、6 対極導電層、7,27 カバー層、8 絶縁部材、9 セル間絶縁層、10 光電変換素子、11,31 透明電極基板、20 光電変換モジュール、32 封止部材。
 

Claims (10)

  1.   光透過性の材料からなる支持体と、前記支持体上に順に設けられた導電層、多孔性半導体層を含む光電変換層、多孔性絶縁層、および対極導電層とを備え、前記多孔性半導体層、前記多孔性絶縁層および前記対極導電層のそれぞれの空隙部分にキャリア輸送材料が充填されている光電変換素子であって、
      前記光電変換層が前記導電層上に設けられた第1の領域と、前記光電変換層が前記導電層上に設けられていない第2の領域とが、前記導電層が前記支持体上に設けられることなく構成されたスクライブライン部を挟んで存在し、
      前記スクライブライン部上には、セル間絶縁層が設けられており、
      前記対極導電層は、前記第1の領域から前記セル間絶縁層上を通って前記第2の領域へ延びて、前記第2の領域における前記導電層に接続されており、
      前記スクライブライン部のライン幅が60μm以上である光電変換素子。
  2.   前記スクライブライン部のライン幅は、500μm以下である請求項1に記載の光電変換素子。
  3.   前記セル間絶縁層の幅D1(μm)は、前記スクライブライン部のライン幅D2(μm)を用いて
       D1>D2+100μm
     の関係式を満たす請求項1または2に記載の光電変換素子。
  4.   前記キャリア輸送材料は電解液である請求項1~3のいずれかに記載の光電変換素子。
  5.   前記多孔性絶縁層は、前記スクライブライン部ではなく前記セル間絶縁層に接している請求項1~4のいずれかに記載の光電変換素子。
  6.   前記多孔性絶縁層の細孔径が50μm以上である請求項1~5のいずれかに記載の光電変換素子。
  7.   前記セル間絶縁層は、少なくとも酸化シリコンを含む請求項1~6のいずれかに記載の光電変換素子。
  8.   前記セル間絶縁層の細孔径が100nm以下である請求項1~7のいずれかに記載の光電変換素子。
  9.   請求項1~8のいずれかに記載の光電変換素子を備えた光電変換モジュールであって、
      前記第2の領域における導電層上には、順に、多孔性半導体層を含む光電変換層、多孔性絶縁層、および対極導電層が設けられており、
      前記第1の領域における導電層上に設けられた前記光電変換層、前記多孔性絶縁層、および前記対極導電層と、前記第2の領域における導電層上に設けられた前記光電変換層、前記多孔性絶縁層、および前記対極導電層との間には、前記キャリア輸送材料の移動を防止する絶縁部材が設けられている光電変換モジュール。
  10.   前記セル間絶縁層は、前記絶縁部材の一部を構成している請求項9に記載の光電変換モジュール。
     
PCT/JP2013/062039 2012-05-01 2013-04-24 光電変換素子および光電変換モジュール WO2013164967A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13784534.3A EP2846396A4 (en) 2012-05-01 2013-04-24 PHOTOELECTRIC CONVERSION ELEMENT AND PHOTOELECTRIC CONVERSION MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012104567A JP2013232362A (ja) 2012-05-01 2012-05-01 光電変換素子および光電変換モジュール
JP2012-104567 2012-05-01

Publications (1)

Publication Number Publication Date
WO2013164967A1 true WO2013164967A1 (ja) 2013-11-07

Family

ID=49514366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062039 WO2013164967A1 (ja) 2012-05-01 2013-04-24 光電変換素子および光電変換モジュール

Country Status (3)

Country Link
EP (1) EP2846396A4 (ja)
JP (1) JP2013232362A (ja)
WO (1) WO2013164967A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051813A1 (ja) * 2015-09-25 2017-03-30 シャープ株式会社 光電変換素子および光電変換モジュール
US20180374653A1 (en) * 2016-03-04 2018-12-27 Fujifilm Corporation Photoelectric conversion element and photoelectric conversion module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103612114B (zh) * 2013-11-05 2016-02-10 苏州铂电自动化科技有限公司 螺钉拧紧装配专用scara机器人
WO2018003930A1 (ja) * 2016-06-30 2018-01-04 シャープ株式会社 色素増感太陽電池の製造方法、色素増感太陽電池および色素増感太陽電池モジュール

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220380A (ja) 1988-02-12 1989-09-04 Gebr Sulzer Ag 光電気化学電池・その製法及び使用法
WO1997016838A1 (en) 1995-10-31 1997-05-09 Ecole Polytechnique Federale De Lausanne A battery of photovoltaic cells and process for manufacturing the same
JP2002367686A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 色素増感型太陽電池及びその製造方法
JP2007194039A (ja) 2006-01-18 2007-08-02 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
WO2008004553A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
JP2008016351A (ja) * 2006-07-06 2008-01-24 Sharp Corp 色素増感太陽電池モジュールおよびその製造方法
JP2009043481A (ja) * 2007-08-07 2009-02-26 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
WO2011001815A1 (ja) * 2009-06-29 2011-01-06 シャープ株式会社 湿式太陽電池モジュール
JP2012009374A (ja) * 2010-06-28 2012-01-12 Sharp Corp 色素増感太陽電池およびその製造方法、並びに色素増感太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029715A1 (de) * 1995-03-23 1996-09-26 Ecole Polytechnique Federale De Lausanne (Epfl) Verfahren zum herstellen eines langzeitstabilen moduls von photoelektrochemischen zellen
EP1936644A3 (en) * 2006-12-22 2011-01-05 Sony Deutschland Gmbh A photovoltaic cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220380A (ja) 1988-02-12 1989-09-04 Gebr Sulzer Ag 光電気化学電池・その製法及び使用法
WO1997016838A1 (en) 1995-10-31 1997-05-09 Ecole Polytechnique Federale De Lausanne A battery of photovoltaic cells and process for manufacturing the same
JP2002367686A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 色素増感型太陽電池及びその製造方法
JP2007194039A (ja) 2006-01-18 2007-08-02 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
WO2008004553A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
JP2008016351A (ja) * 2006-07-06 2008-01-24 Sharp Corp 色素増感太陽電池モジュールおよびその製造方法
JP2009043481A (ja) * 2007-08-07 2009-02-26 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
WO2011001815A1 (ja) * 2009-06-29 2011-01-06 シャープ株式会社 湿式太陽電池モジュール
JP2012009374A (ja) * 2010-06-28 2012-01-12 Sharp Corp 色素増感太陽電池およびその製造方法、並びに色素増感太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2846396A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051813A1 (ja) * 2015-09-25 2017-03-30 シャープ株式会社 光電変換素子および光電変換モジュール
JPWO2017051813A1 (ja) * 2015-09-25 2018-06-28 シャープ株式会社 光電変換素子および光電変換モジュール
US20180261398A1 (en) * 2015-09-25 2018-09-13 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion module
US20180374653A1 (en) * 2016-03-04 2018-12-27 Fujifilm Corporation Photoelectric conversion element and photoelectric conversion module

Also Published As

Publication number Publication date
EP2846396A1 (en) 2015-03-11
EP2846396A4 (en) 2016-01-13
JP2013232362A (ja) 2013-11-14

Similar Documents

Publication Publication Date Title
JP4523549B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5273709B2 (ja) 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール
JP4761327B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
WO2010044445A1 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5714005B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP5922242B2 (ja) 光電変換素子、その製造方法、光電変換素子モジュールおよびその製造方法
WO2013164967A1 (ja) 光電変換素子および光電変換モジュール
JP6050247B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP6594313B2 (ja) 光電変換素子およびこれを含む光電変換素子モジュール
JP2014238969A (ja) 太陽電池
JP5758400B2 (ja) 色素増感太陽電池モジュールおよびその製造方法
JP5956929B2 (ja) 光電変換素子およびその製造方法
JP6009204B2 (ja) 光電変換素子、光電変換素子の製造方法および光電変換素子モジュール
JP5930970B2 (ja) 光電変換素子および光電変換素子モジュール
WO2013114733A1 (ja) 光電変換素子モジュール
WO2013024642A1 (ja) 光電変換素子
JP2013251229A (ja) 光電変換素子および色素増感太陽電池
JP2014026903A (ja) 光電変換素子および色素増感太陽電池
WO2013161557A1 (ja) 光電変換素子モジュールおよびその製造方法
JP2013251228A (ja) 光電変換素子および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013784534

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013784534

Country of ref document: EP