WO2018030194A1 - セラミック電子部品 - Google Patents

セラミック電子部品 Download PDF

Info

Publication number
WO2018030194A1
WO2018030194A1 PCT/JP2017/027652 JP2017027652W WO2018030194A1 WO 2018030194 A1 WO2018030194 A1 WO 2018030194A1 JP 2017027652 W JP2017027652 W JP 2017027652W WO 2018030194 A1 WO2018030194 A1 WO 2018030194A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
ceramic
front surface
corner portion
electronic component
Prior art date
Application number
PCT/JP2017/027652
Other languages
English (en)
French (fr)
Inventor
洋介 松下
一生 山元
滋 遠藤
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780049137.8A priority Critical patent/CN109565941B/zh
Priority to JP2018532944A priority patent/JP6624295B2/ja
Publication of WO2018030194A1 publication Critical patent/WO2018030194A1/ja
Priority to US16/265,047 priority patent/US11051398B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/043Printed circuit coils by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10522Adjacent components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a ceramic electronic component.
  • a ceramic electronic component such as a multilayer ceramic substrate and a multilayer ceramic capacitor includes a ceramic insulator, an internal conductor embedded in the ceramic insulator, and an external conductor provided on the outer surface of the ceramic insulator.
  • Patent Document 1 shows a structure in which a trapezoidal Cu foil processed by etching or the like is formed on an insulator, and a plurality of layers are laminated.
  • a technique for forming a wiring conductor or a via hole electrode by screen printing a conductive paste on an insulator is also known.
  • FIG. 6A is a cross-sectional view schematically showing a cross-sectional shape of an electrode formed by etching a metal foil described in Patent Document 1
  • FIG. 6B is a screen print of a conductive paste. It is sectional drawing which shows typically the cross-sectional shape of the electrode formed in this way.
  • the cross-sectional shape of the electrode is closer to a circle.
  • the width and thickness of the electrode are constant, so a laminated structure When applied to, it is difficult to achieve both low profile.
  • the present invention has been made to solve the above-described problems, and provides a ceramic electronic component that can prevent deterioration of characteristics due to the edge effect and that can be compatible with low profile. Objective.
  • a ceramic electronic component includes a conductor portion comprising a ceramic insulator, an internal conductor provided inside the ceramic insulator, and an external conductor provided outside the ceramic insulator.
  • Each of the conductor portions includes a front surface and a back surface facing the front surface, and at least one of the conductor portions has a constant conductor thickness.
  • R chamfered shape the inner conductor or the outer conductor from the front surface to the back surface direction, R It consists of a back surface corner part which has a chamfered shape.
  • the conductor part in the ceramic electronic component of the present invention has an R-chamfered shape at the end, and does not have a sharp tip. Therefore, characteristic deterioration due to the edge effect can be suppressed. Moreover, the conductor part has a flat part with a constant conductor thickness. If the shape of the end portion of the conductor portion is an R chamfered shape, the characteristic deterioration due to the edge effect can be improved. Therefore, it is acceptable to provide a flat portion without making the cross-sectional shape of the electrode circular.
  • the thickness of the conductor portion is determined by the thickness of the flat portion, and by reducing the thickness of the flat portion, it is possible to satisfy the demand for a low profile.
  • the conductor portion having the front surface corner portion and the back surface corner portion is preferably the internal conductor.
  • the back surface side tip of the front surface corner portion and the front surface side tip of the back surface corner portion are connected. Moreover, it is also preferable that a side surface which is a flat surface exists between the back surface side tip of the front surface corner portion and the front surface side tip of the back surface corner portion. In either aspect, since there is no pointed shape at the end of the conductor portion, characteristic deterioration due to the edge effect can be suppressed.
  • the curvature radius of the front surface corner portion and the curvature radius of the back surface corner portion are different.
  • the conductor portion having the front surface corner portion and the back surface corner portion is a transmission line of a microstrip line, and the curvature radius of the back surface corner portion located on the ground side is larger than the curvature radius of the front surface corner portion. Is preferred.
  • the width of the conductor portion having the front surface corner portion and the back surface corner portion is different between the front surface side and the back surface side.
  • the conductor portion having the front surface corner portion and the back surface corner portion is preferably an internal electrode layer of a multilayer ceramic capacitor.
  • the said conductor part which has the said surface corner part and the said back surface corner part is an internal electrode layer of a laminated ceramic coil.
  • the ceramic electronic component of the present invention there are a plurality of types of conductor portions having the front surface corner portion and the back surface corner portion, and having different widths on the front surface side conductor portion. It is preferable that the difference in the width of the conductor part on the side is larger as the conductor part has a larger width on the surface side. In the portion where the width of the conductor portion is large (the portion for forming the capacitance), if the difference in the width is large, the effect of reducing the variation amount of the capacitance characteristic is increased.
  • the ceramic electronic component of the present invention there is a buried conductor portion which is the conductor portion buried in the ceramic insulator, having the front surface corner portion and the back surface corner portion, and the ceramic layer constituting the ceramic insulator It is preferable that the surface of each and the surface of the said buried conductor part form a flat surface.
  • the end portion of the conductor portion has an R chamfered shape
  • the stress concentration on the end portion is alleviated and the occurrence of structural defects such as cracks is prevented.
  • by forming a flat surface for each ceramic layer it is possible to improve the coplanarity of the entire electronic component and reduce the risk of interlayer short circuit.
  • the ceramic insulator is an insulator formed by laminating a plurality of ceramic layers, and the conductor portion having the front surface corner portion and the back surface corner portion electrically connects the plurality of ceramic layers.
  • the ceramic composition contains more ceramic components than the composition of the material constituting the wiring conductor part. It is preferable that In the conductor part for interlayer connection, if there is much content of the ceramic component in a conductor part, it is advantageous from a viewpoint of exhibiting a shrinkage
  • the ceramic insulator is an insulator formed by laminating a plurality of ceramic layers, and the conductor portion having the front surface corner portion and the back surface corner portion electrically connects the plurality of ceramic layers. It is preferable that the composition of the material which comprises the interlayer connection conductor part and wiring conductor part which connect in general and which comprises the said interlayer connection conductor part and the said wiring conductor part is the same. It is advantageous from the viewpoint of relaxation of the stress applied at the time of firing shrinkage if the composition of the material constituting the interlayer connection conductor and the wiring conductor is the same.
  • the ceramic electronic component which can prevent the characteristic deterioration by an edge effect and becomes compatible with low profile can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a multilayer ceramic substrate.
  • FIG. 2 is a cross-sectional view schematically showing an example of a multilayer ceramic capacitor.
  • FIG. 3A, FIG. 3B, and FIG. 3C are cross-sectional views schematically showing examples of the shape of the conductor portion.
  • 4A is a cross-sectional view schematically showing a part of a ceramic electronic component having a microstrip line
  • FIG. 4B is a cross-sectional view schematically showing an example of a multilayer ceramic capacitor.
  • FIG. 4C is a cross-sectional view schematically showing an example of a multilayer ceramic coil.
  • FIG. 1 is a cross-sectional view schematically showing an example of a multilayer ceramic substrate.
  • FIG. 2 is a cross-sectional view schematically showing an example of a multilayer ceramic capacitor.
  • FIG. 3A, FIG. 3B, and FIG. 3C are cross-sectional views schematically showing examples of the shape of
  • 5A is a cross-sectional view schematically showing a part of a ceramic electronic component having a plurality of types of conductor portions having different widths of the conductor portions on the surface side
  • FIG. It is sectional drawing which shows typically a part of ceramic electronic component in which the buried conductor part which is a buried conductor part exists.
  • 6A is a cross-sectional view schematically showing a cross-sectional shape of an electrode formed by etching a metal foil described in Patent Document 1
  • FIG. 6B is a screen print of a conductive paste. It is sectional drawing which shows typically the cross-sectional shape of the electrode formed in this way.
  • the ceramic electronic component of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
  • Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
  • the ceramic electronic component of the present invention is roughly classified into a multilayer ceramic substrate and a chip component such as an LC composite component mounted on a substrate such as a multilayer ceramic substrate.
  • a chip component such as an LC composite component mounted on a substrate such as a multilayer ceramic substrate.
  • FIG. 1 is a cross-sectional view schematically showing an example of a multilayer ceramic substrate.
  • a multilayer ceramic substrate 10 shown in FIG. 1 is provided on a ceramic insulator 20 formed by laminating a plurality of ceramic layers 21, an internal conductor 30 provided inside the ceramic insulator 20, and outside the ceramic insulator 20. And an outer conductor 40.
  • the internal conductor 30 may be an interlayer connection conductor portion 31 that electrically connects a plurality of ceramic layers 21 or may be a wiring conductor portion 32 as a wiring conductor.
  • a multilayer ceramic capacitor 50, an IC 60, or the like as a chip component is mounted on the external conductor 40 (the external conductor shown above in FIG. 1) provided on one main surface of the multilayer ceramic substrate 10.
  • a bonding material 61 such as solder may be used for mounting the chip component on the external conductor 40.
  • an external conductor 40 (an external conductor shown below in FIG. 1) provided on the other main surface of the multilayer ceramic substrate 10 places the multilayer ceramic substrate 10 on which chip components are mounted on a mother board (not shown). Used as electrical connection means when mounting.
  • At least one of the conductor portions including the inner conductor 30 and the outer conductor 40 has a flat portion having a constant conductor thickness, and the inner conductor or the outer conductor.
  • the inner conductor 30 among the conductor portions includes a flat portion, a front surface corner portion, and a back surface corner portion. An example of the shape of such a conductor portion will be described in detail later.
  • the chip component examples include a chip component mounted on a multilayer ceramic substrate, for example, a multilayer ceramic electronic component such as an LC composite component such as a multilayer ceramic capacitor, a multilayer inductor, and a multilayer filter.
  • a multilayer ceramic electronic component such as an LC composite component such as a multilayer ceramic capacitor, a multilayer inductor, and a multilayer filter.
  • the present invention can also be applied to various ceramic electronic components other than multilayer ceramic electronic components.
  • FIG. 2 is a cross-sectional view schematically showing an example of a multilayer ceramic capacitor.
  • the cross-sectional view shown in FIG. 2 is an LT cross-sectional view including the length direction (L direction) and the thickness direction (T direction) of the multilayer ceramic capacitor.
  • a multilayer ceramic capacitor 50 shown in FIG. 2 includes a ceramic insulator 51 formed by laminating a plurality of dielectric layers, and an internal electrode layer 52 (an internal electrode layer 52a, an internal conductor provided inside the ceramic insulator 51). 52b and 52c) and an internal electrode layer 53 (internal electrode layers 53a, 53b and 53c).
  • the internal electrode layer 52 and the internal electrode layer 53 are disposed between the dielectric layers, the internal electrode layer 52 is connected to an external electrode 54 as an external conductor, and the internal electrode layer 53 is an external electrode as an external conductor. It is connected to the electrode 55. A capacitance is generated between the opposing surfaces of the internal electrode layer 52 and the internal electrode layer 53.
  • the internal electrode layer as the conductor portion (internal conductor) has a flat portion having a constant conductor thickness, and faces from the surface of the internal conductor toward the back surface.
  • An example of the shape of such a conductor portion will be described in detail later.
  • FIG. 3A, FIG. 3B, and FIG. 3C are cross-sectional views schematically showing examples of the shape of the conductor portion.
  • a surface corner portion extending from the surface 101 to the rear surface 102 direction (indicated by double arrow C 1)
  • side 103 and side 104 is a flat surface.
  • Surface corner portion C 1 and the back corner portion C 2 is an end of the conductor portion 100 has a R-chamfered shape, not in a sharp pointed shape. Therefore, characteristic deterioration due to the edge effect can be suppressed.
  • the conductor portion 100 shown in FIG. 3 (a), the radius of curvature of the surface corner portion C 1 and the back corner C 2 are the same.
  • the radii of curvature at the front and back corners are the radii of the inscribed circles that are inscribed in each corner.
  • the conductor portion 100 is a flat portion having a constant conductor thickness.
  • the thickness of the flat portion may satisfy the requirements of the lower profile because it is possible to reduce the distance between the flat portion P 1 and the flat portion P 2 (shown by the double arrow T).
  • the width of the conductor portion is determined as the width of the flat portion.
  • the width of the flat portion in the conductor portion 100 shown in FIG. 3 (a) is the same on the surface side of the conductor portion (double arrow length indicated by P 1) and (length indicated by a double-headed arrow P 2) back side conductor
  • the width of the part is the same on the front side and the back side of the conductor part.
  • the fact that the conductor thickness is constant means that the variation in thickness of the flat portion (difference between the maximum value of the thickness and the minimum value of the thickness) is 3 ⁇ m or less.
  • the flat portions face each other. The thickness is determined by the portion to be applied, and the portion where the flat portion and the corner portion face each other is not considered.
  • the other structure is the same as that of the conductor part 100 shown to Fig.3 (a).
  • Any conductor portion 110 shown in FIG. 3 (b), the radius of curvature of the surface corner portion C 1 and the back corner C 2 are the same.
  • Figure 3 (b) the dotted line indicates the curvature radius of the surface corner portion C 1 and the back corner portion C 2 in the overlap.
  • variety of a conductor part differs in the surface side and the back surface side.
  • the surface side of the conductor portion of the width (the length indicated by the double arrow P 1) is larger than the back side of the conductor portion of the width (the length indicated by the double arrow P 2).
  • the shape of the conductor portion 120 shown in FIG. 3C is substantially trapezoidal as a whole, and such a substantially trapezoidal shape is preferable as the cross-sectional shape of the conductor portion of the ceramic electronic component of the present invention. .
  • the preferred range of radius of curvature, R 1 is 0.1 ⁇ m or more and 15 ⁇ m or less
  • R 2 is 0. 1 ⁇ m or more and 1000 ⁇ m or less.
  • the ratio of the width of the conductor portion is preferably 0.6 or more and 0.98 or less.
  • the ceramic electronic component shown below may include any of the conductor portions shown in FIGS. 3 (a), 3 (b), and 3 (c), but unless otherwise specified, the ceramic electronic component shown in FIG.
  • An example in which the cross-sectional shape shown in c) includes a substantially trapezoidal conductor will be described.
  • FIG. 4A is a cross-sectional view schematically showing a part of a ceramic electronic component having a microstrip line.
  • the transmission line 72 is a conductor portion having a front corner portion and a rear corner portion having an R chamfered shape, and is a substantially trapezoidal conductor portion as shown in FIG. .
  • a ceramic insulator 73 is provided between the ground 71 and the transmission line 72.
  • the radius of curvature R 2 of the back side corner portion C 2 located on the ground 71 side is preferably larger than the radius of curvature R 1 of the surface corner portion C 1 located on the opposite side of the ground 71.
  • FIG. 4B is a cross-sectional view schematically showing an example of the multilayer ceramic capacitor, and is a WT cross-sectional view including the width direction (W direction) and the thickness direction (T direction) of the multilayer ceramic capacitor.
  • the structure of the multilayer ceramic capacitor is the same as that of the multilayer ceramic capacitor shown in FIG. 2, but cross-sectional views in different directions are shown in order to facilitate the explanation of the relationship between the shape of the conductor portion and its effect.
  • FIG. 4B shows a cross section of the multilayer ceramic capacitor 50 shown in FIG. 2 cut at a position not including the external electrode (near the center in the length direction, DD ′ cross section of FIG. 2).
  • the internal electrode layer 52 and the internal electrode layer 53 are substantially trapezoidal conductor portions as shown in FIG. Further, the trapezoidal direction (taper direction) of each internal electrode layer is the same. In the multilayer ceramic capacitor, a larger capacity can be obtained as the area of the opposing electrode layer is larger, but if the position of the opposing electrode layer is shifted, the designed capacity cannot be obtained.
  • the internal electrode layer 52b is an example in which the position of the electrode layer has shifted.
  • the internal electrode layer 52b and the internal electrode layers 53b are opposed (the width shown by double arrow E 2), despite the same as the width indicated by double-headed arrow E 1 described above the position of the internal electrode layer 52b is shifted It is.
  • the internal electrode layer 52 and the internal electrode layer 53 are substantially trapezoidal conductor portions as shown in FIG. 3C, respectively, and therefore, only the difference between the long side and the short side of the trapezoid. Means that it is possible to absorb misalignment when the internal electrode layers are laminated. In a multilayer ceramic capacitor in which electrodes having a substantially trapezoidal cross section are stacked, the amount of variation in capacitance characteristics with respect to the displacement of the electrode position can be reduced.
  • FIG. 4C is a cross-sectional view schematically showing an example of a multilayer ceramic coil.
  • the multilayer ceramic coil 80 five internal electrode layers are shown as conductor portions provided inside the ceramic insulator 81, and the internal electrode layers 82 (82a, 82b, 82c, 82d and 82e) are respectively shown in FIG. It is a substantially trapezoidal conductor as shown in c). Further, the trapezoidal direction (taper direction) of each internal electrode layer is the same.
  • FIG. 4C shows an example in which the position of the internal electrode layer 82 out of the five internal electrode layers 82 is shifted. In the multilayer ceramic coil, stray capacitance is generated between adjacent internal electrode layers.
  • each of the internal electrode layers has a substantially trapezoidal conductor as shown in FIG.
  • the laminated ceramic coil since electrodes are laminated at the same location, a stress difference caused by pressing tends to occur between an area where electrodes are present and an area where electrodes are not present.
  • the corner portions on the front surface and the back surface of the conductor portion have an R chamfered shape, the risk of causing a sheet defect can be reduced.
  • FIG.5 (a) is sectional drawing which shows typically a part of ceramic electronic component which has several types of conductor parts from which the width
  • FIG. 5A shows a ceramic insulator 91 of a ceramic electronic component 90, a conductor portion 92 having a large width, and a conductor portion 93 having a small width.
  • the substantially trapezoidal conductor part as shown in FIG.3 (c) is shown, respectively.
  • the conductor part 92 having a large width is an effective conductor part for forming a capacitance.
  • the width of the conductor portion on the surface side is the width indicated by the double arrow G 1
  • the width of the conductor portion of the back side is the width indicated by the double arrow G 2.
  • the amount of variation in the capacitance characteristic with respect to the positional deviation of the electrode position can be reduced by making the shape of the conductor portion substantially trapezoidal as in the case of the internal electrode layer of the multilayer ceramic capacitor. Can be reduced. For this reason, it is effective that the difference between the width of the conductor portion on the front surface side and the width of the conductor portion on the back surface side (the length indicated by G 1 -G 2 ) is large.
  • the narrow conductor portion 93 is an effective conductor portion for use in signal transmission.
  • the width of the conductor portion on the surface side is the width indicated by the double arrow G 3
  • the width of the conductor portion of the back side is the width indicated by the double arrow G 4. If the difference between the width of the conductor portion on the front surface side and the width of the conductor portion on the back surface side (the length indicated by G 3 -G 4 ) is large, the cross-sectional area of the conductor portion becomes small, leading to deterioration of transmission characteristics. It is effective that this difference is small.
  • the difference between the width of the conductor part on the front surface side and the width of the conductor part on the back surface side is large in the conductor part having a large width. Is preferably increased, and in a conductor portion having a small width, it is preferable to reduce the difference between the width of the conductor portion on the front surface side and the width of the conductor portion on the back surface side.
  • FIG. 5B is a cross-sectional view schematically showing a part of a ceramic electronic component in which a buried conductor portion that is a conductor portion buried in a ceramic insulator is present.
  • FIG. 5B shows a ceramic electronic component 95 which is an insulator formed by laminating a plurality of ceramic layers 96a, 96b and 96c.
  • a conductor portion 97a, a conductor portion 97b, and a conductor portion 97c are buried in the ceramic layer 96a, the ceramic layer 96b, and the ceramic layer 96c, respectively.
  • Such a conductor portion is also referred to as a buried conductor portion.
  • each ceramic layer and the surface of each buried conductor part form a flat surface.
  • a ceramic electronic component having good coplanarity can be obtained.
  • the conductor parts are stacked and pressed at the same location with the conductor parts not buried in each ceramic layer, the ceramic layers between the conductor parts become too thin during pressing, and the insulation reliability between the ceramic layers is increased. Although there is a concern about the decrease, this problem can also be solved by burying the conductor portion in each ceramic layer.
  • the thickness of the conductor portion is likely to vary, and the buried conductor portion may be unevenly buried. If conductor parts that are not sufficiently buried are stacked in the same place, the ceramic layer may become too thin. From this viewpoint, it is preferable to form the conductor portion using a photosensitive conductive paste.
  • the end portion of the conductor portion has an R chamfered shape
  • the stress concentration on the end portion is alleviated and the occurrence of structural defects such as cracks is prevented.
  • FIG. 5B shows only a part of the ceramic electronic component, only the inner conductor may be used as the buried conductor portion, and only the outer conductor may be used as the buried conductor portion. Both the inner conductor and the outer conductor may be used. It may be a buried conductor part. In the case of a ceramic electronic component having a constraining layer for suppressing the shrinkage of the ceramic layer, the conductor portion may be buried in the constraining layer.
  • the material constituting the ceramic insulator preferably contains a low-temperature sintered ceramic material.
  • the low-temperature sintered ceramic material means a material that can be sintered at a firing temperature of 1000 ° C. or less and can be co-fired with Ag, Cu, or the like among ceramic materials.
  • the low-temperature sintered ceramic material examples include a glass composite-based low-temperature sintered ceramic material obtained by mixing borosilicate glass with a ceramic material such as quartz, alumina, forsterite, or the like, ZnO—MgO—Al 2 O 3 —SiO 2 type Crystallized glass low-temperature sintered ceramic materials using crystallized glass, BaO—Al 2 O 3 —SiO 2 ceramic materials, Al 2 O 3 —CaO—SiO 2 —MgO—B 2 O 3 ceramic materials, etc.
  • the material constituting the conductor part preferably includes a metal material. Further, a ceramic material or a glass material may be added.
  • the metal material preferably contains Au, Ag, or Cu, and more preferably contains Ag or Cu. Since Au, Ag, and Cu have low resistance, they are particularly suitable when the ceramic electronic component is used for high frequency. Examples of the ceramic material include alumina and titania. Examples of the glass material include silica and boron.
  • ceramic components such as alumina and titania are distributed on the interface between the ceramic insulator and the conductor. The effect of suppressing sintering shrinkage and the effect of improving adhesion in a high temperature region can be expected.
  • the conductor portion having the front surface corner portion and the back surface corner portion includes an interlayer connection conductor portion that electrically connects a plurality of ceramic layers and a wiring conductor portion
  • the composition of the material constituting the interlayer connection conductor portion may be more than the composition of the material constituting the wiring conductor portion, and the composition of the material constituting the interlayer connection conductor portion and the wiring conductor portion may be the same.
  • the composition of the material composing the interlayer connection conductor part contains more ceramic components than the composition of the material composing the wiring conductor part, the content of the ceramic component in the conductor part in the interlayer connection conductor part When there is much, it is advantageous from a viewpoint of exhibiting a shrinkage
  • the wiring conductor portion if the content of the ceramic component in the conductor portion is relatively small, it is advantageous from the viewpoint of improving transmission characteristics.
  • the composition of the material composing the interlayer connection conductor and the wiring conductor is the same, it is advantageous from the viewpoint of relaxing the stress applied during firing shrinkage.
  • both of the interlayer connection conductor portion and the wiring conductor portion includes an interlayer connection conductor portion that electrically connects a plurality of ceramic layers and a wiring conductor portion
  • both of the interlayer connection conductor portion and the wiring conductor portion It is preferable that the width of the flat portion is different between the front surface side and the back surface side of the conductor portion, and the direction in which the width of the flat portion changes from the front surface side to the back surface side of the conductor portion is the same in the interlayer connection conductor portion and the wiring conductor portion. It is preferable. That is, it is preferable that the taper directions as the cross-sectional shapes of the interlayer connection conductor portion and the wiring conductor portion are the same. If the taper directions are the same, it is advantageous from the viewpoint of relaxation of stress applied during firing shrinkage.
  • the conductor part of the ceramic electronic component of this invention should just be a conductor part in which at least 1 has a surface corner part and a back surface corner part, and the conductor part which does not have a corner part may exist. Moreover, the conductor part which does not have either a surface corner part or a back surface corner part may exist.
  • a method for producing a ceramic electronic component of the present invention includes a step of preparing a ceramic green sheet containing a raw material powder of a ceramic insulator, a step of applying a conductive paste on the ceramic green sheet, and a step of applying a conductive paste. It is preferable to include a pattern forming step of exposing the conductive paste through a mask and developing to form a conductor pattern, and a step of firing the patterned ceramic green sheet.
  • a ceramic green sheet containing raw material powder for a ceramic insulator is prepared.
  • the ceramic green sheet becomes a ceramic layer after firing.
  • the ceramic green sheet is obtained by forming a slurry containing a ceramic raw material powder such as a low-temperature sintered ceramic material, an organic binder, and a solvent into a sheet shape by a doctor blade method or the like.
  • the slurry may contain various additives such as a dispersant and a plasticizer.
  • the thickness of a ceramic green sheet is not limited, For example, it is preferable to set it as 5 micrometers or more and 100 micrometers or less.
  • a through hole for forming an interlayer connection conductor is formed in a specific ceramic green sheet.
  • the through hole can be formed using a mechanical punch, a CO 2 laser, a UV laser, or the like.
  • the hole diameter is also arbitrary, and is preferably 20 ⁇ m or more and 200 ⁇ m or less, for example.
  • a conductive paste applying step for applying a photosensitive conductive paste on the ceramic green sheet is performed.
  • the photosensitive conductive paste is preferably solid-printed on the entire ceramic green sheet.
  • the photosensitive conductive paste may be filled in the through hole.
  • the photosensitive conductive paste preferably contains a metal material and a photosensitive organic component. Moreover, you may contain the ceramic material and the glass material.
  • the metal material is the same as the metal material described as the material constituting the conductor portion. Although content of the metal material in the photosensitive electrically conductive paste is not specifically limited, It is preferable that it is 70 to 95 weight%.
  • an alkali-soluble polymer As a photosensitive organic component, an alkali-soluble polymer, a photosensitive monomer, and a photoinitiator are contained, for example.
  • an acrylic polymer having a carboxyl group in the side chain can be used as the alkali-soluble polymer.
  • the acrylic polymer having a carboxyl group in the side chain can be produced, for example, by copolymerizing an unsaturated carboxylic acid and an ethylenically unsaturated compound.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, vinyl acetic acid, and anhydrides thereof.
  • examples of the ethylenically unsaturated compound include acrylic esters such as methyl acrylate and ethyl acrylate, methacrylic esters such as methyl methacrylate and ethyl methacrylate, and fumaric esters such as monoethyl fumarate.
  • examples of the acryl-type copolymer which has a carboxyl group in a side chain you may use what introduce
  • an unsaturated monocarboxylic acid is reacted with the acrylic copolymer in which an epoxy group is introduced instead of a carboxyl group on the side chain, and then a saturated or unsaturated polycarboxylic acid anhydride is further introduced.
  • a weight average molecular weight (Mw) is 50000 or less, and an acid value is 30 or more and 150 or less.
  • dipentaerythritol monohydroxypentaacrylate can be used as the photosensitive monomer.
  • Other photosensitive monomers include hexanediol triacrylate, tripropylene glycol triacrylate, trimethylolpropane triacrylate, EO-modified trimethylolpropane triacrylate, stearyl acrylate, tetrahydrofurfuryl acrylate, lauryl acrylate, 2-phenoxyethyl.
  • photopolymerization initiator for example, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one can be used.
  • Other photopolymerization initiators include benzyl, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, benzyldimethyl ketal.
  • 2-n-butoxy-4-dimethylaminobenzoate 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, isopropylthioxanthone, 2-dimethylaminoethylbenzoate, ethyl p-dimethylaminobenzoate, Isoamyl p-dimethylaminobenzoate, 3,3′-dimethyl-4-methoxybenzophenone, 2,4-dimethylthioxanthone, 1- (4-dodecylphenyl)- -Hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2
  • the photosensitive conductive paste preferably contains a solvent as the photosensitive organic component.
  • a solvent a sensitizer, and an antifoamer, A various thing can be used.
  • the content of the photosensitive organic component in the photosensitive conductive paste is not particularly limited, but is preferably 70% by weight or more and 95% by weight or less.
  • the photosensitive conductive paste may contain additives such as a dispersant and an anti-settling agent.
  • the photosensitive conductive paste applied to the ceramic green sheet is exposed through a mask and developed to form a conductor pattern.
  • a conductor pattern By forming the conductor pattern, a wiring conductor portion as a wiring conductor is provided. Exposure is performed using UV light, and a conductive pattern can be formed by removing an uncured portion using a weak alkaline developer.
  • the shape of the conductor portion formed by the above method includes a flat portion having a constant conductor thickness, a surface corner portion having an R chamfered shape from the surface of the inner conductor or the outer conductor toward the back surface, and the inner conductor or the outer conductor. From the back surface to the front surface direction, a shape is formed of a back surface corner portion having an R chamfer shape.
  • the average particle diameter of the metal material preferably ⁇ 1 ⁇ m or more and 5 ⁇ m or less
  • the printed film thickness preferably 5 ⁇ m or more and 20 ⁇ m or less
  • the exposure conditions preferably 10 mJ or more and 2000 mJ or less
  • the development conditions By optimizing (development time, developer concentration or composition, development temperature, etc.), it is possible to adjust the radius of curvature of each corner portion and the width of the conductor portions on the front and back sides.
  • the conductor portion may be formed on the green sheet by screen printing the conductive paste.
  • a green sheet having a conductor portion formed using a photosensitive conductive paste and a green sheet formed by screen-printing the conductive paste are prepared. Also good.
  • a laminated body is formed by laminating and press-bonding patterned green sheets.
  • the pressure and temperature at the time of pressure bonding can be arbitrarily set. At this time, the shape of the conductor portion can be adjusted by applying an appropriate pressure.
  • the laminate is placed in a firing furnace in a state of being placed on a firing jig such as a setter or a sheath, and firing is performed.
  • a batch furnace or a belt furnace can be used as the firing furnace.
  • Ni—Sn plating, electroless Au plating, or the like can be selected. And after baking and plating, it breaks along a break line and divides
  • a constrained green sheet mainly composed of an inorganic material (Al 2 O 3 or the like) that does not substantially sinter at the sintering temperature of the raw laminate before firing is prepared.
  • the raw laminate may be fired with a constrained green sheet disposed on the outermost surface of the laminate.
  • the constrained green sheet does not sinter substantially at the time of firing, so that the shrinkage does not occur, and acts to suppress the shrinkage in the main surface direction with respect to the laminate.
  • the dimensional accuracy of the ceramic electronic component can be increased.
  • Multilayer ceramic substrate (ceramic electronic parts) 20, 51, 73, 81, 91 Ceramic insulators 21, 96a, 96b, 96c Ceramic layer 30 Internal conductor 31 Interlayer connection conductor 32 Wiring conductor 40 External conductor 50 Multilayer ceramic capacitor (ceramic electronic component) 52, 52a, 52b, 52c, 53, 53a, 53b, 53c Internal electrode layers 54, 55 (for multilayer ceramic capacitors) External electrode 60 IC 61 Bonding material 70, 90, 95 Ceramic electronic component 71 Ground 72 Transmission line 80 Multilayer ceramic coil (ceramic electronic component) 82, 82a, 82b, 82c, 82d, 82e Internal electrode layer 92 (for laminated ceramic coil) Large conductor portion 93 Small conductor portions 97, 97a, 97b, 97c Buried conductor portions 100, 110, 120 Conductor portion 101 Front side 102 Back side 103, 104 Side

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本発明のセラミック電子部品は、セラミック絶縁体と、上記セラミック絶縁体の内部に設けられた内部導体及び上記セラミック絶縁体の外部に設けられた外部導体とからなる導体部と、を備えたセラミック電子部品であって、上記導体部のそれぞれは、表面と、上記表面に対向する裏面とを備えており、上記導体部のうちの少なくとも1つは、導体厚さが一定の平坦部と、上記内部導体又は上記外部導体の上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記内部導体又は上記外部導体の上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなることを特徴とする。

Description

セラミック電子部品
本発明は、セラミック電子部品に関する。
多層セラミック基板及び積層セラミックコンデンサ等のセラミック電子部品は、セラミック絶縁体と、セラミック絶縁体に埋設された内部導体と、セラミック絶縁体の外表面に設けられた外部導体とを備えている。
特許文献1には、絶縁体の上に、エッチング等で加工した台形形状のCu箔が形成され、これが複数層積層された構造が示されている。
また、絶縁体の上に導電ペーストをスクリーン印刷することで配線導体やビアホール電極を形成する技術も知られている。
特開2006-191145号公報
図6(a)は特許文献1に記載された、金属箔をエッチングすることにより形成された電極の断面形状を模式的に示す断面図であり、図6(b)は導電ペーストをスクリーン印刷して形成された電極の断面形状を模式的に示す断面図である。
図6(a)に示す断面形状となる電極を使用して高周波の信号を伝送する場合、電極端部(図6(a)で点線Aで囲んだ部位)で生じる縁端効果の影響により、電極端部の電流密度が高くなる。その結果、インサーションロス(挿入損失)が増加するという課題が生じる。
また、図6(b)に示すように、導電ペーストをスクリーン印刷することによって電極を形成すると電極端部(図6(b)で点線Bで囲んだ部位)が尖った形状となるのでここにも縁端効果による特性劣化という問題が生じる。
また、縁端効果による特性劣化を改善するためには、電極の断面形状が円形に近いほど有利となるが、電極の断面形状を円形とすると電極の幅と厚みが一定となるため、積層構造に適用すると低背化との両立が難しい。電極の厚みを薄くするには電極の幅も低減する必要があり、断面積低減に伴う特性劣化が懸念される。
本発明は上記の問題を解決するためになされたものであり、縁端効果による特性劣化を防止することができ、かつ、低背化との両立が可能となるセラミック電子部品を提供することを目的とする。
上記目的を達成するため、本発明のセラミック電子部品は、セラミック絶縁体と、上記セラミック絶縁体の内部に設けられた内部導体及び上記セラミック絶縁体の外部に設けられた外部導体とからなる導体部と、を備えたセラミック電子部品であって、上記導体部のそれぞれは、表面と、上記表面に対向する裏面とを備えており、上記導体部のうちの少なくとも1つは、導体厚さが一定の平坦部と、上記内部導体又は上記外部導体の上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記内部導体又は上記外部導体の上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなることを特徴とする。
本発明のセラミック電子部品における導体部は、その端部の形状がR面取り形状となっていて先端が尖った形状となっていない。そのため、縁端効果による特性劣化を抑制することができる。
また、導体部は導体厚さが一定の平坦部を有している。導体部の端部の形状がR面取り形状となっていれば縁端効果による特性劣化を改善することはできるので、電極の断面形状を円形とせずに平坦部を設けても許容できる。導体部の厚さはこの平坦部の厚さで定まり、平坦部の厚さを薄くすることによって低背化の要請と両立させることができる。
本発明のセラミック電子部品では、上記表面コーナー部及び上記裏面コーナー部を有する上記導体部は、上記内部導体であることが好ましい。
本発明のセラミック電子部品では、上記表面コーナー部の裏面側先端と上記裏面コーナー部の表面側先端が繋がっていることが好ましい。また、上記表面コーナー部の裏面側先端と上記裏面コーナー部の表面側先端の間に、平坦面である側面が存在していることも好ましい。
どちらの態様であっても導体部の端部に尖った形状が存在しないので縁端効果による特性劣化を抑制することができる。
本発明のセラミック電子部品では、上記表面コーナー部の曲率半径と上記裏面コーナー部の曲率半径が異なることが好ましい。
特に、上記表面コーナー部及び上記裏面コーナー部を有する上記導体部が、マイクロストリップラインの伝送ラインであり、グランド側に位置する裏面コーナー部の曲率半径が、表面コーナー部の曲率半径よりも大きいことが好ましい。
マイクロストリップラインに代表される伝送ラインに関して、グランドと対抗する側の曲率半径を大きくすることで、電極端部への電界集中を緩和して、より良好な伝送特性を実現させることができる。
本発明のセラミック電子部品では、上記表面コーナー部及び上記裏面コーナー部を有する上記導体部の幅がその上記表面側と上記裏面側で異なることが好ましい。
特に、上記表面コーナー部及び上記裏面コーナー部を有する上記導体部が、積層セラミックコンデンサの内部電極層であることが好ましい。または、上記表面コーナー部及び上記裏面コーナー部を有する上記導体部が、積層セラミックコイルの内部電極層であることも好ましい。
表面コーナー部及び裏面コーナー部を有する導体部の幅がその表面側と裏面側で異なると、導体部の断面形状は略台形状になる。
断面形状が略台形状の電極を積層した積層セラミックコンデンサ又は積層セラミックコイルでは、電極位置の位置ずれに対する特性の変動量を低減させることができる。
本発明のセラミック電子部品では、上記表面コーナー部及び上記裏面コーナー部を有し、表面側の導体部の幅が異なる複数種類の導体部が存在し、上記表面側の導体部の幅と上記裏面側の導体部の幅の差が、表面側の導体部の幅が大きな導体部ほど大きいことが好ましい。
導体部の幅が大きい部分(容量の形成のための部分)では、上記幅の差が大きいと容量特性の変動量を低減させる効果が大きくなる。
一方、導体部の幅が小さい部分(微細配線部分)では、上記幅の差が小さいほうが断面積が小さくなりすぎないので伝送特性の劣化防止に有効である。
以上のことから、導体部の幅が大きい部分では表面側の導体部の幅と裏面側の導体部の幅の差を大きくすることが好ましく、導体部の幅が小さい部分では表面側の導体部の幅と裏面側の導体部の幅の差を小さくすることが好ましい。
本発明のセラミック電子部品では、上記表面コーナー部及び上記裏面コーナー部を有し、上記セラミック絶縁体に埋没した導体部である埋没導体部が存在しており、上記セラミック絶縁体を構成するセラミック層の表面と上記埋没導体部の表面とが平坦面を形成していることが好ましい。
導体部の端部がR面取り形状となっていると、セラミック絶縁体に導体部を埋没させる際に、端部への応力集中が緩和され、クラック等の構造欠陥の発生が防止される。
また、セラミック層毎に平坦面を形成させることによって、電子部品全体としてのコプラナリティの改善、層間ショートリスクの低減をすることができる。
本発明のセラミック電子部品では、上記セラミック絶縁体が、複数のセラミック層が積層されてなる絶縁体であり、上記表面コーナー部及び上記裏面コーナー部を有する導体部が、上記複数のセラミック層間を電気的に接続する層間接続用導体部と、配線導体部とを含み、上記層間接続用導体部を構成する材料の組成において、上記配線導体部を構成する材料の組成に比べてセラミック成分が多く含まれていることが好ましい。
層間接続用導体部では、導体部内のセラミック成分の含有量が多いと収縮抑制効果を発揮する観点から有利である。一方、配線導体部では、導体部内のセラミック成分の含有量が相対的に少ないと伝送特性改善の観点から有利である。
本発明のセラミック電子部品では、上記セラミック絶縁体が、複数のセラミック層が積層されてなる絶縁体であり、上記表面コーナー部及び上記裏面コーナー部を有する導体部が、上記複数のセラミック層間を電気的に接続する層間接続用導体部と、配線導体部とを含み、上記層間接続用導体部と上記配線導体部を構成する材料の組成が同じであることが好ましい。
層間接続用導体部と配線導体部を構成する材料の組成が同じであると、焼成収縮時に加わる応力の緩和の観点から有利である。
本発明によれば、縁端効果による特性劣化を防止することができ、かつ、低背化との両立が可能となるセラミック電子部品を提供することができる。
図1は、多層セラミック基板の一例を模式的に示す断面図である。 図2は、積層セラミックコンデンサの一例を模式的に示す断面図である。 図3(a)、図3(b)及び図3(c)は、導体部の形状の例を模式的に示す断面図である。 図4(a)は、マイクロストリップラインを有するセラミック電子部品の一部を模式的に示す断面図であり、図4(b)は、積層セラミックコンデンサの一例を模式的に示す断面図であり、図4(c)は、積層セラミックコイルの一例を模式的に示す断面図である。 図5(a)は、表面側の導体部の幅が異なる複数種類の導体部を有するセラミック電子部品の一部を模式的に示す断面図であり、図5(b)は、セラミック絶縁体に埋没した導体部である埋没導体部が存在しているセラミック電子部品の一部を模式的に示す断面図である。 図6(a)は特許文献1に記載された、金属箔をエッチングすることにより形成された電極の断面形状を模式的に示す断面図であり、図6(b)は導電ペーストをスクリーン印刷して形成された電極の断面形状を模式的に示す断面図である。
以下、本発明のセラミック電子部品について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。
本発明のセラミック電子部品としては、大きく分けて多層セラミック基板の場合と、多層セラミック基板等の基板に搭載するLC複合部品等のチップ部品の場合がある。
まず、多層セラミック基板とチップ部品の例を挙げて、本発明のセラミック部品の構成の例、特に導体部の設けられる位置の例について説明する。
図1は、多層セラミック基板の一例を模式的に示す断面図である。
図1に示す多層セラミック基板10は、複数のセラミック層21が積層されてなるセラミック絶縁体20と、セラミック絶縁体20の内部に設けられた内部導体30と、セラミック絶縁体20の外部に設けられた外部導体40とを備えている。
内部導体30は複数のセラミック層21間を電気的に接続する層間接続用導体部31であってもよく、配線導体としての配線導体部32であってもよい。
多層セラミック基板10の一方の主面上に設けられた外部導体40(図1で上に示す外部導体)には、チップ部品としての積層セラミックコンデンサ50やIC60等が搭載される。チップ部品の外部導体40への搭載には半田等の接合材61を使用してもよい。
また、多層セラミック基板10の他方の主面上に設けられた外部導体40(図1で下に示す外部導体)は、チップ部品が搭載された多層セラミック基板10をマザーボード(図示せず)上に実装する際の電気的接続手段として用いられる。
本発明のセラミック電子部品としての多層セラミック基板10では、内部導体30及び外部導体40からなる導体部のうち少なくとも1つが、導体厚さが一定の平坦部と、上記内部導体又は上記外部導体の上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記内部導体又は上記外部導体の上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなる。
特に、導体部のうち内部導体30が、平坦部と、表面コーナー部と裏面コーナー部とからなることが好ましい。
このような導体部の形状の例については後で詳述する。
チップ部品としては、多層セラミック基板に搭載するチップ部品、例えば、積層セラミックコンデンサ、積層インダクタ、積層フィルタ等のLC複合部品といった積層セラミック電子部品が挙げられる。また、積層セラミック電子部品以外の種々のセラミック電子部品に対して適用することも可能である。
図2は、積層セラミックコンデンサの一例を模式的に示す断面図である。
図2に示す断面図は、積層セラミックコンデンサの長さ方向(L方向)と厚さ方向(T方向)を含むLT断面図である。
図2に示す積層セラミックコンデンサ50は、複数の誘電体層が積層されてなるセラミック絶縁体51と、セラミック絶縁体51の内部に設けられた内部導体としての内部電極層52(内部電極層52a、52b及び52c)及び内部電極層53(内部電極層53a、53b及び53c)とを備えている。
内部電極層52及び内部電極層53は、誘電体層の間に配置されており、内部電極層52は外部導体としての外部電極54に接続されており、内部電極層53は外部導体としての外部電極55に接続されている。
そして、内部電極層52と内部電極層53との対向面間で静電容量が発生する。
本発明のセラミック電子部品としての積層セラミックコンデンサ50では、導体部(内部導体)としての内部電極層が、導体厚さが一定の平坦部と、上記内部導体の上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記内部導体の上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなる。
このような導体部の形状の例については後で詳述する。
図3(a)、図3(b)及び図3(c)は、導体部の形状の例を模式的に示す断面図である。
図3(a)に示す導体部100は、表面101と、表面101に対向する裏面102とを備えており、導体厚さが一定の平坦部(両矢印P及び両矢印Pで示す)と、表面101から裏面102方向に向かう表面コーナー部(両矢印Cで示す)と、裏面102から表面101方向に向かう裏面コーナー部(両矢印Cで示す)とを備えている。
表面コーナー部Cと裏面コーナー部Cの間には、平坦面である側面103及び側面104が存在している。
導体部100の端部である表面コーナー部Cと裏面コーナー部CはR面取り形状となっており、先端が尖った形状となっていない。そのため、縁端効果による特性劣化を抑制することができる。
図3(a)に示す導体部100では、表面コーナー部Cと裏面コーナー部Cの曲率半径は同じである。表面コーナー部及び裏面コーナー部の曲率半径は各コーナー部に内接する内接円の半径である。
また、導体部100の大部分は導体厚さが一定の平坦部となっている。平坦部の厚さは平坦部P及び平坦部Pの間の距離(両矢印Tで示す)であり薄くすることができるので低背化の要請を満足することができる。
本明細書において、導体部の幅は、平坦部の幅として定めることとする。図3(a)に示す導体部100では平坦部の幅は導体部の表面側(両矢印Pで示す長さ)及び裏面側(両矢印Pで示す長さ)で同じであり、導体部の幅は導体部の表面側及び裏面側で同じである。
なお、本明細書において、導体厚さが一定であるということは、平坦部の厚さのばらつき(厚さの最大値と厚さの最小値の差)が3μm以下であることを意味する。
平坦部の厚さ及び厚さのばらつきを定める際に、平坦部の幅が導体部の表面側及び裏面側で異なる場合(図3(c)に示すような場合)は、平坦部同士が対向する部分で厚さを定めることとし、平坦部とコーナー部が対向する部分は考慮しない。
図3(b)に示す導体部110では、表面コーナー部Cの裏面側先端と裏面コーナー部Cの表面側先端が繋がっており、表面コーナー部Cと裏面コーナー部Cの間に平坦面である側面が存在しない。そのほかの構成は図3(a)に示す導体部100と同様である。図3(b)に示す導体部110でも、表面コーナー部Cと裏面コーナー部Cの曲率半径は同じである。図3(b)では表面コーナー部Cと裏面コーナー部Cの曲率半径を示す点線は重なっている。
図3(c)に示す導体部120では、表面コーナー部Cと裏面コーナー部Cの曲率半径が異なり、裏面コーナー部Cの曲率半径が、表面コーナー部Cの曲率半径よりも大きくなっている。
表面コーナー部Cと裏面コーナー部Cの間には、平坦面である側面103及び側面104が存在している。
図3(c)には、表面コーナー部Cの曲率半径をR、裏面コーナー部Cの曲率半径をRで示しており、R>Rとなっている。
また、図3(c)に示す導体部120では導体部の幅がその表面側と裏面側で異なっている。具体的には表面側の導体部の幅(両矢印Pで示す長さ)が、裏面側の導体部の幅(両矢印Pで示す長さ)よりも大きくなっている。
図3(c)に示す導体部120の形状は、全体としては略台形状になっており、本発明のセラミック電子部品の導体部の断面形状としては、このような略台形状の形状が好ましい。
表面コーナー部Cの曲率半径Rと裏面コーナー部Cの曲率半径Rが異なる場合、曲率半径の好ましい範囲は、Rが0.1μm以上、15μm以下であり、Rが0.1μm以上、1000μm以下である。
また、導体部の幅がその表面側と裏面側で異なる場合、導体部の幅の比(P/Pで表される比)は0.6以上、0.98以下であることが好ましい。
続いて、上記のような導体部を備えたセラミック電子部品の具体例と、各セラミック電子部品において上記のような導体部を備えた場合に発揮される効果について説明する。
以下に示すセラミック電子部品は、図3(a)、図3(b)及び図3(c)に示したいずれの形態の導体部を備えていてもよいが、特に言及がない限り図3(c)に示す断面形状が略台形状の導体部を備えている例について説明する。
図4(a)は、マイクロストリップラインを有するセラミック電子部品の一部を模式的に示す断面図である。
セラミック電子部品70では、伝送ライン72がR面取り形状を有する表面コーナー部と裏面コーナー部とを備えた導体部であり、図3(c)に示すような略台形状の導体部となっている。グランド71と伝送ライン72の間にはセラミック絶縁体73が設けられている。
特に伝送ライン72に関して、グランド71側に位置する裏面コーナー部Cの曲率半径Rを、グランド71と反対側に位置する表面コーナー部Cの曲率半径Rよりも大きくすることが好ましい。
伝送ライン72の、グランド71と対向する側のコーナー部の曲率半径を大きくすることで、電極端部への電解集中を緩和して、より良好な伝送特性を実現させることができる。
図4(b)は、積層セラミックコンデンサの一例を模式的に示す断面図であり、積層セラミックコンデンサの幅方向(W方向)と厚さ方向(T方向)を含むWT断面図である。
積層セラミックコンデンサの構成としては図2に示した積層セラミックコンデンサと同じであるが、導体部の形状とその効果の関係を説明しやすくするために、異なる向きの断面図を示している。
図4(b)には、図2に示す積層セラミックコンデンサ50を外部電極を含まない位置(長さ方向の中央付近、図2のD-D′断面)で切断した断面を示している。
積層セラミックコンデンサ50では、内部電極層52及び内部電極層53がそれぞれ図3(c)に示すような略台形状の導体部となっている。また、各内部電極層の台形状の向き(テーパーの向き)は同じである。
積層セラミックコンデンサでは、対向する電極層の面積が大きいほど大きな容量を得ることができるが、対向する電極層の位置がずれると設計通りの容量を得ることができない。
図4(b)において内部電極層52aと内部電極層53aは、対向する電極層の位置がそろっている例であり、両矢印Eで示す幅で電極層が対向しているので設計通りの容量を得ることができる。
図4(b)において、内部電極層52bは電極層の位置がずれてしまった例である。
この内部電極層52bと内部電極層53bが対向する幅(両矢印Eで示す幅)は、内部電極層52bの位置がずれているにもかかわらず上述した両矢印Eで示す幅と同じである。
このことは、内部電極層52及び内部電極層53がそれぞれ図3(c)に示すような略台形状の導体部となっているために、台形の長辺と短辺の差の長さだけは内部電極層の積層時の位置ずれを吸収することができることを意味している。
断面形状が略台形状の電極を積層した積層セラミックコンデンサでは、電極位置の位置ずれに対する容量特性の変動量を低減させることができる。
図4(c)は、積層セラミックコイルの一例を模式的に示す断面図である。
積層セラミックコイル80では、セラミック絶縁体81の内部に設けられた導体部として5層の内部電極層を示しており、内部電極層82(82a、82b、82c、82d及び82e)がそれぞれ図3(c)に示すような略台形状の導体部となっている。また、各内部電極層の台形状の向き(テーパーの向き)は同じである。
図4(c)には、5層の内部電極層82のうち、内部電極層82cだけ位置がずれてしまった例を示している。
積層セラミックコイルにおいては、隣接する内部電極層の間に浮遊容量が生じるが、上述した積層セラミックコンデンサの場合と同様に、内部電極層がそれぞれ図3(c)に示すような略台形状の導体部となっていると、台形の長辺と短辺の差の長さだけは内部電極層の積層時の位置ずれを吸収することができ、浮遊容量ばらつきを低減できる。
また、積層セラミックコイルにおいては、同一箇所に電極を積層するため、電極が有るエリアと電極が無いエリア間でプレスに伴う応力差が生じやすい。薄いセラミックシートを使用する場合では、シート欠陥につながるケースもあるため、導体部の表面と裏面のコーナー部がR面取り形状となっていると、シート欠陥が生じるリスクを低減することができる。
図5(a)は、表面側の導体部の幅が異なる複数種類の導体部を有するセラミック電子部品の一部を模式的に示す断面図である。
図5(a)にはセラミック電子部品90のセラミック絶縁体91と、幅の大きい導体部92と幅の小さい導体部93を示している。
導体部92及び導体部93としては、それぞれ図3(c)に示すような略台形状の導体部を示している。
幅の大きい導体部92は静電容量を形成させるために有効な導体部である。
導体部92において、表面側の導体部の幅は両矢印Gで示す幅であり、裏面側の導体部の幅は両矢印Gで示す幅である。静電容量を形成させるための導体部の場合、積層セラミックコンデンサの内部電極層の場合と同様に、導体部の形状を略台形状とすることによって電極位置の位置ずれに対する容量特性の変動量を低減させることができる。
そのため、表面側の導体部の幅と裏面側の導体部の幅の差(G-Gで示す長さ)が大きいことが有効である。
幅の小さい導体部93は信号伝送に使用するために有効な導体部である。
導体部93において、表面側の導体部の幅は両矢印Gで示す幅であり、裏面側の導体部の幅は両矢印Gで示す幅である。
表面側の導体部の幅と裏面側の導体部の幅の差(G-Gで示す長さ)が大きいと、導体部の断面積が小さくなってしまい、伝送特性の劣化につながるため、この差が小さいことが有効である。
以上のことから、表面側の導体部の幅が異なる複数種類の導体部を有するセラミック電子部品においては、幅が大きい導体部では表面側の導体部の幅と裏面側の導体部の幅の差を大きくすることが好ましく、幅が小さい導体部では表面側の導体部の幅と裏面側の導体部の幅の差を小さくすることが好ましい。
図5(b)は、セラミック絶縁体に埋没した導体部である埋没導体部が存在しているセラミック電子部品の一部を模式的に示す断面図である。
図5(b)にはセラミック絶縁体が複数のセラミック層96a、96b及び96cが積層されてなる絶縁体であるセラミック電子部品95を示している。
セラミック層96a、セラミック層96b及びセラミック層96cにはそれぞれ導体部97a、導体部97b及び導体部97cが埋没している。このような導体部を埋没導体部とも呼ぶ。
そして、各セラミック層の表面と各埋没導体部の表面が平坦面を形成していることが好ましい。各セラミック層に導体部を埋没させることにより、良好なコプラナリティを有するセラミック電子部品とすることができる。
また、各セラミック層に対して導体部が埋没していない状態で同一箇所に導体部を積み重ねてプレスすると、プレス時に導体部間のセラミック層が薄くなりすぎてしまい、セラミック層間の絶縁信頼性が低下することが懸念されるが、各セラミック層に導体部を埋没させることによりこの問題も解決することができる。
また、スクリーン印刷により埋没導体部を形成する場合は、導体部の厚さにバラツキが生じやすいので埋没導体部の埋没の具合が不揃いになる場合がある。埋没が不充分な導体部を同一箇所に積み重ねると、セラミック層が薄くなりすぎてしまうことがある。この観点からは感光性の導電ペーストを用いて導体部を形成することが好ましい。
また、導体部の端部がR面取り形状となっていると、セラミック絶縁体に導体部を埋没させる際に、端部への応力集中が緩和され、クラック等の構造欠陥の発生が防止される。
図5(b)にはセラミック電子部品の一部のみを示しているが、内部導体のみを埋没導体部としてもよく、外部導体のみを埋没導体部としてもよく、内部導体と外部導体の両方を埋没導体部としてもよい。
また、セラミック層の収縮を抑制するための拘束層を有するセラミック電子部品の場合、拘束層に導体部を埋没させてもよい。
セラミック絶縁体を構成する材料としては、低温焼結セラミック材料を含有することが好ましい。低温焼結セラミック材料とは、セラミック材料のうち、1000℃以下の焼成温度で焼結可能であり、AgやCu等との同時焼成が可能である材料を意味する。
低温焼結セラミック材料としては、例えば、クオーツやアルミナ、フォルステライト等のセラミック材料にホウ珪酸ガラスを混合してなるガラス複合系低温焼結セラミック材料、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラス系低温焼結セラミック材料、BaO-Al-SiO系セラミック材料やAl-CaO-SiO-MgO-B系セラミック材料等を用いた非ガラス系低温焼結セラミック材料等が挙げられる。
導体部を構成する材料としては、金属材料を含むことが好ましい。また、セラミック材料やガラス材料が添加されていてもよい。
金属材料としては、Au、Ag又はCuを含むことが好ましく、Ag又はCuを含むことがより好ましい。Au、Ag及びCuは低抵抗であるため、特に、セラミック電子部品が高周波用途である場合に適している。
また、セラミック材料としては、アルミナ、チタニア等があげられる。
ガラス材料としては、シリカ、ホウ素等があげられる。
また、セラミック絶縁体と導体部の境界面にアルミナやチタニアといったセラミック成分が分布していることが好ましい。焼結収縮の抑制効果、高温領域での密着性改善効果が期待できる。
表面コーナー部及び裏面コーナー部を有する導体部が、複数のセラミック層間を電気的に接続する層間接続用導体部と、配線導体部とを含む場合、層間接続用導体部を構成する材料の組成においては、配線導体部を構成する材料の組成に比べてセラミック成分が多くてもよく、層間接続用導体部と配線導体部を構成する材料の組成が同じであってもよい。
層間接続用導体部を構成する材料の組成において、配線導体部を構成する材料の組成に比べてセラミック成分が多く含まれている場合、層間接続用導体部では、導体部内のセラミック成分の含有量が多いと収縮抑制効果を発揮する観点から有利である。一方、配線導体部では、導体部内のセラミック成分の含有量が相対的に少ないと伝送特性改善の観点から有利である。
層間接続用導体部と配線導体部を構成する材料の組成が同じである場合、焼成収縮時に加わる応力の緩和の観点から有利である。
表面コーナー部及び裏面コーナー部を有する導体部が、複数のセラミック層間を電気的に接続する層間接続用導体部と、配線導体部とを含む場合、層間接続用導体部及び配線導体部の両方について平坦部の幅が導体部の表面側及び裏面側で異なることが好ましく、平坦部の幅が導体部の表面側から裏面側に変化する向きが層間接続用導体部及び配線導体部で同じであることが好ましい。すなわち、層間接続用導体部と配線導体部の断面形状としてのテーパーの向きが同じであることが好ましい。
テーパーの向きが同じであると、焼成収縮時に加わる応力の緩和の観点から有利である。
本発明のセラミック電子部品の導体部は、少なくとも1つが表面コーナー部及び裏面コーナー部を有する導体部であればよく、コーナー部を有さない導体部が存在していてもよい。また、表面コーナー部又は裏面コーナー部のいずれかを有さない導体部が存在していてもよい。
続いて、本発明のセラミック電子部品の製造方法の一例につき説明する。以下には、図1に示す多層セラミック基板であるセラミック電子部品を製造する方法として説明する。
本発明のセラミック電子部品を製造する方法は、セラミック絶縁体の原料粉末を含むセラミックグリーンシートを準備する工程と、上記セラミックグリーンシート上に感光性の導電ペーストを付与する導電ペースト付与工程と、上記導電ペーストに対して、マスクを介して露光し、現像して導体パターンを形成するパターン形成工程と、パターン形成したセラミックグリーンシートを焼成する工程とを含むことが好ましい。
まず、セラミック絶縁体の原料粉末を含むセラミックグリーンシートを準備する。セラミックグリーンシートは、焼成後にセラミック層となるものである。
セラミックグリーンシートは、例えば低温焼結セラミック材料のようなセラミック原料の粉末と、有機バインダと溶剤とを含有するスラリーを、ドクターブレード法等によってシート状に成形したものである。上記スラリーには、分散剤、可塑剤等の種々の添加剤が含有されていてもよい。
セラミックグリーンシートの厚さは限定されるものではないが、例えば5μm以上、100μm以下とすることが好ましい。
必要に応じて、特定のセラミックグリーンシートに、層間接続用導体部を形成するための貫通孔を形成する。貫通孔の形成はメカパンチ、COレーザー、UVレーザー等を使用して行うことができる。穴径も任意であり、例えば20μm以上、200μm以下とすることが好ましい。
次に、セラミックグリーンシート上に感光性の導電ペーストを付与する導電ペースト付与工程を行う。
感光性の導電ペーストは、セラミックグリーンシート全体にベタ印刷することが好ましい。また、セラミックグリーンシートに貫通孔を形成した場合は貫通孔内にも感光性の導電ペーストを充填してもよい。
なお、貫通孔内には感光性でない導電ペーストを充填することにしてもよい。
感光性の導電ペーストは、金属材料と感光性有機成分とを含有することが好ましい。
また、セラミック材料やガラス材料を含有していてもよい。
金属材料は、導体部を構成する材料として説明した金属材料と同様である。
感光性の導電ペースト中の金属材料の含有量は特に限定されないが、70重量%以上、95重量%以下であることが好ましい。
感光性有機成分としては、例えば、アルカリ可溶ポリマー、感光性モノマー及び光重合開始剤を含有する。
アルカリ可溶ポリマーとしては、例えば、側鎖にカルボキシル基を有するアクリル系重合体を用いることができる。側鎖にカルボキシル基を有するアクリル系重合体は、例えば、不飽和カルボン酸とエチレン性不飽和化合物を共重合させることによって製造することができる。
不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ビニル酢酸及びこれらの無水物等が挙げられる。一方、エチレン性不飽和化合物としては、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル、フマル酸モノエチル等のフマル酸エステル等が挙げられる。
また、側鎖にカルボキシル基を有するアクリル系共重合体としては、以下のような形態の不飽和結合を導入したものを用いてもよい。
1)アクリル系共重合体の側鎖のカルボキシル基に、これと反応可能な、例えばエポキシ基等の官能基を有するアクリル系モノマーを付加する。
2)側鎖のカルボキシル基の代わりにエポキシ基が導入されてなる上記アクリル系共重合体に、不飽和モノカルボン酸を反応させた後、さらに飽和又は不飽和多価カルボン酸無水物を導入する。
また、側鎖にカルボキシル基を有するアクリル系共重合体としては、重量平均分子量(Mw)が50000以下、かつ酸価が30以上150以下のものが好ましい。
感光性モノマーとしては、例えば、ジペンタエリスリトールモノヒドロキシペンタアクリレートを用いることができる。感光性モノマーとしては、その他にも、ヘキサンジオールトリアクリレート、トリプロピレングリコールトリアクリレート、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、ステアリルアクリレート、テトラヒドロフルフリルアクリレート、ラウリルアクリレート、2-フェノキシエチルアクリレート、イソデシルアクリレート、イソオクチルアクリレート、トリデシルアクリレート、カプロラクトンアクリレート、エトキシ化ノニルフェノールアクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレート、プロポキシ化ネオペンチルグリコールジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタエリスリトールトリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、プロポキシ化グリセリルトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート等を用いることができる。また、上記化合物の分子内のアクリレートの一部又は全てをメタクリレートに変えたものを用いることもできる。
光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンを用いることができる。光重合開始剤としては、その他にも、ベンジル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド、ベンジルジメチルケタール、2-n-ブトキシ-4-ジメチルアミノベンゾエート、2-クロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、イソプロピルチオキサントン、2-ジメチルアミノエチルベンゾエート、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4-ジメチルチオキサントン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、メチルベンゾイルフォルメート、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等を用いることができる。
感光性の導電ペーストは、感光性有機成分として、溶剤を含有することが好ましい。その他、増感剤、消泡剤等を含有してもよい。溶剤、増感剤及び消泡剤については、特に制約はなく、種々のものを用いることができる。
感光性の導電ペースト中の感光性有機成分の含有量は特に限定されないが、70重量%以上、95重量%以下であることが好ましい。
感光性の導電ペーストは、その他、分散剤、沈降防止剤等の添加剤を含有してもよい。
セラミックグリーンシートに付与した感光性の導電ペーストに対して、マスクを介して露光し、現像して導体パターンを形成する。導体パターンを形成することにより、配線導体としての配線導体部が設けられる。
露光はUV光を用いて行い、弱アルカリ性の現像液を使用して未硬化部を除去することによって導体パターンを形成することができる。
上記方法により形成される導体部の形状は、導体厚さが一定の平坦部と、内部導体又は外部導体の表面から裏面方向に向かい、R面取り形状を有する表面コーナー部と、内部導体又は外部導体の裏面から表面方向に向かい、R面取り形状を有する裏面コーナー部とからなる形状となる。
導体部の形状に関しては、金属材料の平均粒径(好ましくはφ1μm以上、5μm以下)、印刷膜厚(好ましくは5μm以上、20μm以下)、露光条件(好ましくは10mJ以上、2000mJ以下)、現像条件(現像時間、現像液の濃度又は組成、現像温度等)を適正化することで、各コーナー部の曲率半径や表面側及び裏面側の導体部の幅を調整することが可能となる。
なお、グリーンシートには、感光性の導電ペーストを用いて形成した導体部に加えて、導電ペーストをスクリーン印刷することにより導体部を形成してもよい。
また、パターン形成したグリーンシートを複数枚準備する際に、感光性の導電ペーストを用いて形成した導体部を有するグリーンシートと、導電ペーストをスクリーン印刷することにより形成したグリーンシートをそれぞれ準備してもよい。
パターン形成したグリーンシートを積層し、圧着することにより積層体を形成する。
圧着時の圧力と温度は任意に設定することができる。
このとき、適正な圧力を加えることにより導体部の形状を調整することもできる。
続いて、積層体をセッターやサヤ等の焼成用治具の上に載置された状態で焼成炉に投入し、焼成を行う。焼成炉としてはバッチ炉、ベルト炉を用いることができる。
また、導体部を形成する金属材料として銅を使用する場合は還元性雰囲気で焼成することが好ましい。
必要に応じて焼成前にブレイクラインを形成しておくことが好ましい。ブレイクラインの形成方法としてはレーザーやギロチンカット(ハーフカット)、ダイサー(ハーフカット)等を選択することができる。
焼成工程における焼成雰囲気、焼成温度、昇温速度を適正化することで、導体部の焼結収縮挙動を調整し、導体部にコーナー部を形成させ、導体部の形状を調整することができる。
必要に応じて、焼成後に外部導体に対してメッキを行うことが好ましい。メッキとしてはNi-Snメッキ、無電解Auメッキ等を選択することができる。
そして、焼成及びメッキ後にブレイクラインに沿ってブレイクを行い、セラミック電子部品ごとに分割する。
上記したセラミック電子部品の製造方法では、焼成前の生の積層体の焼結温度では実質的に焼結しない無機材料(Al等)を主成分とする拘束グリーンシートを準備し、生の積層体の最表面に拘束グリーンシートを配置した状態で生の積層体を焼成してもよい。この場合、拘束グリーンシートは、焼成時において実質的に焼結しないので収縮が生じず、積層体に対して主面方向での収縮を抑制するように作用する。その結果、セラミック電子部品の寸法精度を高めることができる。
10 多層セラミック基板(セラミック電子部品)
20、51、73、81、91 セラミック絶縁体
21、96a、96b、96c セラミック層
30 内部導体
31 層間接続用導体部
32 配線導体部
40 外部導体
50 積層セラミックコンデンサ(セラミック電子部品)
52、52a、52b、52c、53、53a、53b、53c (積層セラミックコンデンサの)内部電極層
54、55 外部電極
60 IC
61 接合材
70、90、95 セラミック電子部品
71 グランド
72 伝送ライン
80 積層セラミックコイル(セラミック電子部品)
82、82a、82b、82c、82d、82e (積層セラミックコイルの)内部電極層
92 幅の大きい導体部
93 幅の小さい導体部
97、97a、97b、97c 埋没導体部
100、110、120 導体部
101 表面
102 裏面
103、104 側面

Claims (13)

  1. セラミック絶縁体と、
    前記セラミック絶縁体の内部に設けられた内部導体及び前記セラミック絶縁体の外部に設けられた外部導体とからなる導体部と、を備えたセラミック電子部品であって、
    前記導体部のそれぞれは、表面と、前記表面に対向する裏面とを備えており、
    前記導体部のうちの少なくとも1つは、導体厚さが一定の平坦部と、前記内部導体又は前記外部導体の前記表面から前記裏面方向に向かい、R面取り形状を有する表面コーナー部と、前記内部導体又は前記外部導体の前記裏面から前記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなることを特徴とするセラミック電子部品。
  2. 前記表面コーナー部及び前記裏面コーナー部を有する前記導体部は、前記内部導体である請求項1に記載のセラミック電子部品。
  3. 前記表面コーナー部の裏面側先端と前記裏面コーナー部の表面側先端が繋がっている請求項1又は2に記載のセラミック電子部品。
  4. 前記表面コーナー部の裏面側先端と前記裏面コーナー部の表面側先端の間に、平坦面である側面が存在している請求項1又は2に記載のセラミック電子部品。
  5. 前記表面コーナー部の曲率半径と前記裏面コーナー部の曲率半径が異なる請求項1~4のいずれかに記載のセラミック電子部品。
  6. 前記表面コーナー部及び前記裏面コーナー部を有する前記導体部が、マイクロストリップラインの伝送ラインであり、グランド側に位置する裏面コーナー部の曲率半径が、表面コーナー部の曲率半径よりも大きい請求項5に記載のセラミック電子部品。
  7. 前記表面コーナー部及び前記裏面コーナー部を有する前記導体部の幅がその前記表面側と前記裏面側で異なる請求項1~6のいずれかに記載のセラミック電子部品。
  8. 前記表面コーナー部及び前記裏面コーナー部を有する前記導体部が、積層セラミックコンデンサの内部電極層である請求項7に記載のセラミック電子部品。
  9. 前記表面コーナー部及び前記裏面コーナー部を有する前記導体部が、積層セラミックコイルの内部電極層である請求項7に記載のセラミック電子部品。
  10. 前記表面コーナー部及び前記裏面コーナー部を有し、表面側の導体部の幅が異なる複数種類の導体部が存在し、
    前記表面側の導体部の幅と前記裏面側の導体部の幅の差が、表面側の導体部の幅が大きな導体部ほど大きい請求項7~9のいずれかに記載のセラミック電子部品。
  11. 前記表面コーナー部及び前記裏面コーナー部を有し、前記セラミック絶縁体に埋没した導体部である埋没導体部が存在しており、前記セラミック絶縁体を構成するセラミック層の表面と前記埋没導体部の表面とが平坦面を形成している請求項1~10のいずれかに記載のセラミック電子部品。
  12. 前記セラミック絶縁体が、複数のセラミック層が積層されてなる絶縁体であり、
    前記表面コーナー部及び前記裏面コーナー部を有する導体部が、前記複数のセラミック層間を電気的に接続する層間接続用導体部と、配線導体部とを含み、前記層間接続用導体部を構成する材料の組成において、前記配線導体部を構成する材料の組成に比べてセラミック成分が多く含まれている請求項1~11のいずれかに記載のセラミック電子部品。
  13. 前記セラミック絶縁体が、複数のセラミック層が積層されてなる絶縁体であり、
    前記表面コーナー部及び前記裏面コーナー部を有する導体部が、前記複数のセラミック層間を電気的に接続する層間接続用導体部と、配線導体部とを含み、前記層間接続用導体部と前記配線導体部を構成する材料の組成が同じである請求項1~11のいずれかに記載のセラミック電子部品。
PCT/JP2017/027652 2016-08-10 2017-07-31 セラミック電子部品 WO2018030194A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780049137.8A CN109565941B (zh) 2016-08-10 2017-07-31 陶瓷电子部件
JP2018532944A JP6624295B2 (ja) 2016-08-10 2017-07-31 セラミック電子部品
US16/265,047 US11051398B2 (en) 2016-08-10 2019-02-01 Ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-157813 2016-08-10
JP2016157813 2016-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/265,047 Continuation US11051398B2 (en) 2016-08-10 2019-02-01 Ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2018030194A1 true WO2018030194A1 (ja) 2018-02-15

Family

ID=61162784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027652 WO2018030194A1 (ja) 2016-08-10 2017-07-31 セラミック電子部品

Country Status (4)

Country Link
US (1) US11051398B2 (ja)
JP (1) JP6624295B2 (ja)
CN (1) CN109565941B (ja)
WO (1) WO2018030194A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107780A (ja) * 2018-12-28 2020-07-09 太陽誘電株式会社 積層コイル部品
JP2020107782A (ja) * 2018-12-28 2020-07-09 太陽誘電株式会社 積層コイル部品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787016B2 (ja) * 2016-10-05 2020-11-18 Tdk株式会社 積層コイル部品の製造方法
KR20190116148A (ko) 2019-08-08 2019-10-14 삼성전기주식회사 적층 세라믹 커패시터 및 이의 실장 기판
JP7120195B2 (ja) * 2019-09-30 2022-08-17 株式会社村田製作所 感光性絶縁ペーストおよび電子部品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049033A (ja) * 1998-07-27 2000-02-18 Murata Mfg Co Ltd セラミック電子部品
JP2000286617A (ja) * 1999-03-31 2000-10-13 Kyocera Corp 積層型ストリップライン共振器
JP2004356333A (ja) * 2003-05-28 2004-12-16 Kyocera Corp 積層型電子部品およびその製法
JP2006060080A (ja) * 2004-08-20 2006-03-02 Kyocera Corp 積層コンデンサ
JP2010192889A (ja) * 2009-01-22 2010-09-02 Ngk Insulators Ltd 積層型インダクタ
JP2011010154A (ja) * 2009-06-29 2011-01-13 Fujitsu Ltd 線路導体およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019033A (ja) * 1998-07-01 2000-01-21 Toyota Central Res & Dev Lab Inc 磁界検出センサ
JP2003174261A (ja) 2001-12-05 2003-06-20 Murata Mfg Co Ltd セラミック多層基板
JP2006191145A (ja) 2006-03-20 2006-07-20 Kyocera Corp 多層配線基板
JP5319910B2 (ja) 2007-11-07 2013-10-16 コバレントマテリアル株式会社 導電性パターンの埋設形成方法、積層基板の製造方法及び微細流路構造体の製造方法
JP2010251597A (ja) 2009-04-17 2010-11-04 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP5370330B2 (ja) 2010-10-01 2013-12-18 住友金属鉱山株式会社 半導体素子搭載用基板の製造方法
WO2013031940A1 (ja) * 2011-09-02 2013-03-07 株式会社 村田製作所 フェライト磁器組成物、セラミック電子部品、及びセラミック電子部品の製造方法
JP2015041693A (ja) 2013-08-21 2015-03-02 日立化成株式会社 多層配線基板およびその製造方法ならびに積層コイル部品
JP6252393B2 (ja) * 2014-07-28 2017-12-27 株式会社村田製作所 セラミック電子部品およびその製造方法
US9881741B2 (en) * 2014-12-11 2018-01-30 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
KR20160084712A (ko) * 2015-01-06 2016-07-14 삼성전기주식회사 코일 내장형 기판 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049033A (ja) * 1998-07-27 2000-02-18 Murata Mfg Co Ltd セラミック電子部品
JP2000286617A (ja) * 1999-03-31 2000-10-13 Kyocera Corp 積層型ストリップライン共振器
JP2004356333A (ja) * 2003-05-28 2004-12-16 Kyocera Corp 積層型電子部品およびその製法
JP2006060080A (ja) * 2004-08-20 2006-03-02 Kyocera Corp 積層コンデンサ
JP2010192889A (ja) * 2009-01-22 2010-09-02 Ngk Insulators Ltd 積層型インダクタ
JP2011010154A (ja) * 2009-06-29 2011-01-13 Fujitsu Ltd 線路導体およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107780A (ja) * 2018-12-28 2020-07-09 太陽誘電株式会社 積層コイル部品
JP2020107782A (ja) * 2018-12-28 2020-07-09 太陽誘電株式会社 積層コイル部品
JP7272790B2 (ja) 2018-12-28 2023-05-12 太陽誘電株式会社 積層コイル部品
JP7373902B2 (ja) 2018-12-28 2023-11-06 太陽誘電株式会社 積層コイル部品

Also Published As

Publication number Publication date
CN109565941A (zh) 2019-04-02
JP6624295B2 (ja) 2019-12-25
US20190208622A1 (en) 2019-07-04
US11051398B2 (en) 2021-06-29
CN109565941B (zh) 2021-07-20
JPWO2018030194A1 (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2018030194A1 (ja) セラミック電子部品
WO2016076024A1 (ja) 感光性導電ペースト、それを用いた積層型電子部品の製造方法、および積層型電子部品
JP6614355B2 (ja) 感光性導電ペースト、積層型電子部品の製造方法、及び、積層型電子部品
US20040134875A1 (en) Circuit-parts sheet and method of producing a multi-layer circuit board
US20190166690A1 (en) Ceramic electronic component
JP4922616B2 (ja) 配線基板とその製造方法
JP2004179181A (ja) 複合シートの製造方法、並びに積層部品の製造方法
JP7120195B2 (ja) 感光性絶縁ペーストおよび電子部品
JP2004202831A (ja) 複合シート、積層体およびそれらの製造方法、ならびに積層部品
JP2014024735A (ja) 感光性絶縁ペーストおよび積層型コイル部品
JP4641826B2 (ja) コンデンサ内蔵セラミック配線基板およびその製造方法
JPH10275979A (ja) セラミック基板および分割回路基板
JP4072046B2 (ja) 複合シートの製造方法および積層部品の製造方法
JP4697755B2 (ja) 多層セラミック基板の製造方法
JP2004281924A (ja) セラミック多層基板
JP2004296543A (ja) 複合シートの製造方法、並びに積層部品の製造方法
JP2004031699A (ja) セラミック回路基板及びその製造方法
JP3559310B2 (ja) 積層セラミック回路基板の製造方法
CN112578636B (zh) 感光性绝缘膏和电子部件
JP2005072500A (ja) 複合シート、積層体およびそれらの製造方法、ならびに積層部品
JP2004179524A (ja) 複合シート、積層部品、ならびにそれらの製造方法
JP2010232257A (ja) 多層配線基板
JP2004128522A (ja) 積層インダクタ部品の製造方法
JP2005340305A (ja) 複合体及び複合体の製造方法並びに積層部品の製造方法
JP2005136007A (ja) 複合シート、並びに積層部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839267

Country of ref document: EP

Kind code of ref document: A1