WO2018025921A9 - マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置 - Google Patents

マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置 Download PDF

Info

Publication number
WO2018025921A9
WO2018025921A9 PCT/JP2017/028091 JP2017028091W WO2018025921A9 WO 2018025921 A9 WO2018025921 A9 WO 2018025921A9 JP 2017028091 W JP2017028091 W JP 2017028091W WO 2018025921 A9 WO2018025921 A9 WO 2018025921A9
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
maleimide
maleimide resin
parts
Prior art date
Application number
PCT/JP2017/028091
Other languages
English (en)
French (fr)
Other versions
WO2018025921A1 (ja
Inventor
一貴 松浦
政隆 中西
窪木 健一
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61074168&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018025921(A9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2018531955A priority Critical patent/JP6935402B2/ja
Priority to CN201780048792.1A priority patent/CN109563344A/zh
Priority to KR1020197003403A priority patent/KR20190035731A/ko
Priority to US16/322,514 priority patent/US20190203048A1/en
Publication of WO2018025921A1 publication Critical patent/WO2018025921A1/ja
Publication of WO2018025921A9 publication Critical patent/WO2018025921A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a maleimide resin composition, a prepreg, and a cured product thereof. Specifically, for high-reliability semiconductor encapsulant use, electrical / electronic component insulation material use, and various composite materials use such as laminate (printed wiring glass fiber reinforced composite material) and CFRP (carbon fiber reinforced composite material), The present invention relates to a maleimide resin composition, a prepreg, a cured product thereof, and a semiconductor device useful for various adhesive applications, various coating applications, structural members, and the like.
  • Epoxy resin which is a thermosetting resin, is cured with various curing agents, and generally becomes a cured product with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc. It is used in a wide range of fields such as paints, laminates, molding materials, casting materials and sealing materials. In recent years, the required characteristics of a laminated board on which electric / electronic components are mounted have been widened and advanced with the expansion of the field of use. In recent years, especially with the enhancement of functions of power semiconductors, wide band gap devices such as SiC (silicon carbide) and GaN (gallium nitride) have been attracting attention as next-generation devices.
  • SiC silicon carbide
  • GaN gallium nitride
  • the driving temperature for extracting the characteristics is 200 ° C. or higher, particularly around 250 ° C., and therefore the durability of the peripheral materials is not sufficient, and the development of a resin material that can withstand this driving condition is required. ing.
  • heat-resistant resins such as maleimide resin and benzoxazine resin have been energetically studied.
  • the allowable temperature of the molding machine There is a problem in moldability.
  • the heat stability at a very high temperature is exhibited at a 5% thermogravimetric reduction temperature, the initial thermal decomposition temperature of these resins has been a problem. Therefore, there is an urgent need to resolve moldability (curability) at 200 ° C. or lower, heat resistance at 250 ° C. or higher, and thermal stability at 250 ° C.
  • substrates printed wiring boards
  • the above-mentioned characteristics are indispensable characteristics for next-generation semiconductor peripheral materials.
  • substrates printed wiring boards
  • the above-mentioned characteristics are indispensable characteristics for next-generation semiconductor peripheral materials.
  • heat resistance is increasing.
  • the substrates mounted inside the device are also thinned one by one, and are often exposed to high temperatures in each process until mounting.
  • a semiconductor is mounted, it is exposed to a high temperature of 250 ° C. or higher, and if the elastic modulus at 250 ° C. or higher is low (softens), the substrate may be deformed.
  • the curing temperature is difficult to mold in a temperature region exceeding 200 ° C., particularly 230 ° C., due to the problem of oxidation of the copper foil surface. That is, in this field, it is important to be able to be cured and molded at 200 ° C. or lower and to have a high elastic modulus (hard) at 250 ° C.
  • dielectric loss tangent is regarded as important. In general cured epoxy resin (resin only), dielectric loss tangent is required to be 3/4 or less, that is, 0.015 or less, particularly 0.010 or less, relative to 0.02 (measured at 1 GHz). Therefore, there is an urgent need to develop materials that satisfy these characteristics.
  • the fiber-reinforced composite material is composed of a matrix resin and reinforcing fibers such as carbon fiber, glass fiber, alumina fiber, boron fiber, and aramid fiber, and generally has light weight and high strength characteristics.
  • Such fiber-reinforced composite materials include insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, build-up boards, etc.), aerospace materials such as passenger aircraft bodies and wings, and machine tool members represented by robot hand arms. In addition, it is widely used for construction and civil engineering repair materials, and for leisure goods such as golf shafts and tennis rackets.
  • CFRP carbon fiber reinforced composite materials
  • CFRP carbon fiber reinforced composite materials
  • epoxy resins have been widely used as matrix resins for fiber reinforced composite materials, but it is important to be able to maintain elastic modulus even at high temperatures, especially in applications such as engine parts. Insufficient curing systems using maleimide resins are being investigated.
  • a method in which a maleimide resin is modified with an allyl compound known as an additive such as a reactive diluent, a crosslinking agent, or a flame retardant for a maleimide resin.
  • an additive such as a reactive diluent, a crosslinking agent, or a flame retardant for a maleimide resin.
  • a resin composition obtained by heating and mixing o, o'-diallylbisphenol A, which is liquid at room temperature, with 4,4'-diphenylmethane bismaleimide is disclosed, and impregnated in a carbon fiber sheet without solvent.
  • Patent Document 4 a maleimide resin composition containing a novolac-type polyphenylmethane maleimide and o, o′-diallylbisphenol A is disclosed (Patent Document 5).
  • the present invention can be cured by a curing process equivalent to that of an epoxy resin, has a moldability (curability) of 200 ° C. or lower, a heat resistance of 250 ° C. or higher, a high thermal stability at 250 ° C. and a high elastic modulus. It is an object of the present invention to provide a maleimide resin composition, a prepreg, a cured product thereof, and a semiconductor device capable of maintaining, and achieving low dielectric constant and low dielectric loss tangent.
  • a maleimide resin composition comprising a maleimide compound (A) and a sulfonyl compound (B) containing a structure represented by the following formula (1) in the molecule,
  • R's are each independently an alkenyl group, an alkenyl ether group, a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a hydroxyl group.
  • R's are each independently an alkenyl group, an alkenyl ether group, a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a hydroxyl group.
  • An aryloxy group, an amino group, a cyano group, a nitro group, an acyl group, an acyloxy group, a carboxyl group, a group having a tertiary carbon structure, a cyclic alkyl group, a glycidyl group, and at least one of R is an alkenyl group or An alkenyl ether group, each X independently represents a hydrogen atom or a glycidyl group, a represents an integer of 1 to 4, n represents 0 to 10, and the average value represents a real number of 0 to 10.
  • the maleimide resin composition according to any one of [5] The maleimide resin composition according to any one of [1] to [4], further comprising a radical polymerization initiator (C), [6]
  • [7] A prepreg in which the maleimide resin composition according to any one of [1] to [6] is held on a sheet-like fiber base material and is in a semi-cured state; [8] A cured product of the maleimide resin composition according to any one of [1] to [6], [9] A cured product of the prepreg according to [7], [10] A semiconductor device encapsulated with the maleimide resin composition according to any one of [1] to [6], It is about.
  • the maleimide resin composition of the present invention is excellent in curability at low temperatures, and the cured product has heat resistance, water absorption characteristics, electrical reliability and mechanical strength. It is useful for laminates (printed wiring boards, build-up boards, etc.), various composite materials including CFRP, adhesives, paints, and the like.
  • FIG. 22 is a schematic view of a lead frame used in Example 22.
  • FIG. 22 is a schematic view of a sealing material created in Example 22.
  • FIG. 22 is a schematic view of a sealing material created in Example 22.
  • the maleimide resin composition of the present invention will be described below.
  • the maleimide resin composition of the present invention is characterized by containing a maleimide compound (A) and a sulfonyl compound (B) having a structure represented by the following formula (1) in the molecule.
  • R's are each independently an alkenyl group, an alkenyl ether group, a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a hydroxyl group.
  • the sulfonyl compound (B) containing in the molecule the structure represented by the formula (1), which is a bisphenol S-type compound containing an alkenyl group or an alkenyl ether group, is the highest due to the presence of the sulfonyl group that is an electron-withdrawing body.
  • the density of the occupied orbit (HOMO) is considered to be localized in the alkenyl group or alkenyl ether group, and to improve the reactivity with the compound (A) having a maleimide group of the electron acceptor.
  • the curing rate can be increased by using a radical polymerization initiator.
  • the maleimide compound (A) used in the present invention is a compound containing one or more maleimide groups represented by the following formula (3) in the molecule.
  • maleimide compound (A) used in the present invention known compounds can be used, and examples thereof include aliphatic / alicyclic maleimide compounds and aromatic maleimide compounds.
  • Specific examples of the aliphatic / alicyclic maleimide compound include monofunctional maleimides such as N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-hexylmaleimide, N-cyclohexylmaleimide, maleimidecarboxylic acid, N- 2,2′-hydroxyethylmaleimide, N-1-methoxymethylpropylmaleimide, N-1-ethoxymethylpropylmaleimide, N-1-methoxymethylbutylmaleimide, N, N′-3,6-dioxaoctane-1 , 8-bismaleimide, N, N′-4,7-dioxanedecane-1,10-bismaleimide,10-bismaleimide, N, N′-3,6,9
  • aromatic maleimide compound having one maleimide group represented by the formula (3) examples include monofunctional maleimides such as N-phenylmaleimide and N-methylphenylmaleimide.
  • aromatic maleimide compound having two maleimide groups represented by the formula (3) examples include N, N′-methylene bismaleimide, N, N′-trimethylene bismaleimide, and N, N′-dodecamethylene bismaleimide.
  • Examples of the aromatic maleimide compound having three or more maleimide groups represented by the formula (3) include a reaction product of aniline and formalin (polyamine compound), 3,4,4′-triaminodiphenylmethane, and triaminophenol. And polyfunctional maleimide compounds obtained by reaction of maleic anhydride with the above.
  • Maleimide compounds obtained by reaction of tris- (4-aminophenyl) -phosphate, tris (4-aminophenyl) -phosphate, tris (4-aminophenyl) -thiophosphate with maleic anhydride, 2,2-bis [ 4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-chloro-4- (4-maleimide) Phenoxy) phenyl] propane, 2,2-bis [3-bromo-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-ethyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-propyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-i Propyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3
  • maleimide compounds may be used alone or in combination of two or more.
  • An aromatic maleimide compound and an aliphatic maleimide compound may be used in combination.
  • aromatic maleimide is particularly preferable from the viewpoint of heat resistance (glass transition point) and / or elastic modulus, and a combination with maleimide having two or more functional groups in one molecule is preferable.
  • the sulfonyl compound (B) used in the present invention is a compound containing in its molecule a structure represented by the following formula (1).
  • R's are each independently an alkenyl group, an alkenyl ether group, a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a hydroxyl group.
  • the component (B) is used as an aromatic liquid reactive diluent for the compound (A) having a maleimide group.
  • the bisphenol S structure is superior to the bisphenol A structure in terms of reactivity with a compound having a maleimide group. This is considered to be due to the electron withdrawing property of the sulfonyl group as described above.
  • alkenyl group or alkenyl ether group in the formula examples include vinyl group, styryl group, allyl group, substituted allyl group, propenyl group, substituted propenyl group, vinyl ether group, allyl ether group, and methallyl ether group.
  • Examples of the substituent other than the alkenyl group or alkenyl ether group in the formula include a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, a hydroxyl group, an allyloxy group, amino A group, a cyano group, a nitro group, an acyl group, an acyloxy group, a carboxyl group, a group having a tertiary carbon structure, a cyclic alkyl group, a glycidyl group, or a combination thereof.
  • a in the formula is 1 to 4, preferably 1 to 2.
  • the sulfonyl compound (B) having a structure represented by the formula (1) in the molecule is preferably a compound represented by the following formula (2).
  • R has one or more alkenyl groups or alkenyl ether groups, and other substituents include a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluoro having 1 to 4 carbon atoms.
  • A represents a hydrogen atom or a glycidyl group, a represents an integer of 1 to 4.
  • n represents 0 to 10
  • the average value represents a real number of 0 to 10.
  • n is 0 to 10, preferably 0 to 5.
  • the average value of n is 0 to 10, preferably 0 to 5.
  • sulfonyl compound (B) containing the structure represented by the formula (1) or represented by the formula (2) include 2,2′-diallyl-4,4′-sulfonyldiphenol, 2-allyl -2'-propenyl-4,4'-sulfonyldiphenol, 2,2'-dipropenyl-4,4'-sulfonyldiphenol, 2,2'-diallyl-6,6'-sulfonyldiphenol, 2-allyl -2'-propenyl-6,6'-sulfonyldiphenol, 2,2'-dipropenyl-6,6'-sulfonyldiphenol, 2,2'-diallyl-4,4'-sulfonyldiglycidyl ether, 2- Allyl-2'-propenyl-4,4'-sulfonyldiglycidyl ether, 2,2'-dipropenyl-4,4'-sulfonyldiglycidy
  • the softening point of the component (B) is usually 60 to 130 ° C, preferably 70 to 120 ° C, more preferably 80 to 120 ° C.
  • the maleimide resin composition of the present invention contains at least component (A) and component (B), and the content of component (B) relative to 100 parts by weight of component (A) is 1 part by weight or more, preferably 10 parts by weight. Part to 200 parts by weight, preferably 100 parts by weight or less. If the amount of the component (B) is less than the above range, the viscosity of the composition is increased, the non-uniformity of the composition is increased, and the moldability may be deteriorated. The glass transition temperature of may decrease.
  • the ratio (weight ratio) of the component (A) to the sum of these components (A) and (B) is preferably 0.5 to 0.9, more preferably 0.5 to 0.8.
  • Blend as follows. When the ratio of the component (A) to the total of the component (A) and the component (B) is lower than the lower limit, the glass transition temperature of the cured product is remarkably lowered, and the weight during treatment at 300 ° C. for 24 hours is significantly reduced. When the amount is higher than the upper limit, the viscosity of the composition is significantly increased, and the composition may be extremely non-uniform, resulting in poor moldability.
  • the maleimide resin composition of the present invention may contain a radical polymerization initiator (C) in addition to the components (A) and (B).
  • the radical polymerization initiator (C) is used in the maleimide resin composition for the purpose of promoting the reaction between the alkenyl group or alkenyl ether group and the maleimide group.
  • the radical polymerization initiator (C) that can be used is not particularly limited, and examples thereof include organic peroxides and azo compounds, and organic peroxides are preferable.
  • organic peroxide examples include methyl ethyl ketone peroxide, cyclohexane peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, methyl acetoacetate peroxide, acetylacetone peroxide, 1,1-bis (t -Butylperoxy) -3,3,5-trimethylhexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) octane, n-butyl-4,4 -Bis (t-butylperoxy) valate, 2,2-bis (t-butylperoxy) butane, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, p-menthane hydroperoxy Id, 2,5-dimethylhexane-2,5-dihydroperoxid
  • organic peroxides those that decompose and generate radicals are preferably 120 ° C. or higher.
  • an organic peroxide compound benzoyl peroxide, diisopropyl peroxycarbonate, lauroyl peroxide, dicumyl peroxide, methyl ethyl ketone peroxide, and di-t-butyl peroxide are preferable.
  • the azo compound include azoisobutyl nitrile.
  • a compound activated by heat is preferably used. These may be used alone or in combination of two or more.
  • the amount of the polymerization initiator (C) is usually 0.001 to 10 parts by weight, preferably 0.01 to 5 parts by weight, with respect to 100 parts by weight of the component (A). It is more preferably 0.01 parts by weight or more and 3 parts by weight or less, and particularly preferably 0.01 parts by weight or more and 1 part by weight or less.
  • the amount of the component (C) is less than the above range, the effect of promoting the polymerization cannot be sufficiently obtained, which may cause curing failure.
  • the amount is too large, the cured material properties of the resin composition may be adversely affected. Therefore, 0.001 to 10% by weight is preferably added to 100 parts by weight of component (A).
  • the maleimide resin composition of the present invention can be used in combination with another curing accelerator other than the radical polymerization initiator, if necessary.
  • curing accelerators examples include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole.
  • Phosphines such as amines, triphenylphosphine, tributylphosphine, trioctylphosphine and organometallic salts such as tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphthenate, cobalt naphthenate, tin oleate, Zinc, aluminum chloride, include organometallic compounds such as metal chlorides such as tin chloride, benzoyl peroxide, dicumyl peroxide, there is a methyl ethyl ketone peroxide, etc. t- butyl perbenzoate organic peroxide.
  • the amount of the curing accelerator is preferably added in an amount of 0.01 to 20% by weight, more preferably 0.01 to 10% by weight based on the maleimide resin.
  • the radical polymerization accelerator exerts a polymerization promoting effect on both components (A) and (B) used in the present invention, but has an unstable oxygen-carbon bond at the end of some components.
  • this oxygen-carbon bond burns at a high temperature and causes thermal weight loss
  • a cured product obtained from a polymaleimide composition using only a radical polymerization accelerator as a polymerization accelerator has a long-term high temperature condition.
  • the thermal weight reduction rate when placed underneath may increase. Therefore, by using an anionic polymerization accelerator and a radical polymerization accelerator in combination, it is possible to make up for each of the advantages and make up for the disadvantages, thereby improving heat resistance and suppressing thermal weight loss.
  • An anionic polymerization agent is particularly preferable for the catalyst to be added.
  • a cyanate ester compound can be added to the maleimide resin composition of the present invention.
  • a conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix
  • Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples thereof include, but are not limited to, cyanate ester compounds obtained by reacting a product with cyanogen halide. These may be used alone or in combination of two or more.
  • cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
  • a known additive can be blended in the maleimide resin composition of the present invention as necessary.
  • additives that can be used include epoxy resins, curing agents for epoxy resins, polybutadiene and modified products thereof, modified products of acrylonitrile copolymers, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, and cyanates.
  • Ester compounds, silicone gel, silicone oil, and inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, etc.
  • colorants such as surface treatment agents for fillers such as silane coupling agents, mold release agents, carbon black, phthalocyanine blue, and phthalocyanine green.
  • the amount of these additives is preferably 1,000 parts by weight or less, more preferably 700 parts by weight or less, based on 100 parts by weight of the maleimide resin composition.
  • the method for preparing the maleimide resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized.
  • the maleimide resin (A) used in the present invention and the alkenyl group or alkenyl ether group-containing sulfonyl compound (B) are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • a curing agent such as an amine compound, a cyanate ester compound, a phenol resin, and an acid anhydride compound, and other additives may be added and prepolymerized.
  • an extruder, a kneader, or a roll is used in the absence of a solvent, and a reaction kettle with a stirring device is used in the presence of a solvent.
  • An organic solvent can be added to the maleimide resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish).
  • varnish a varnish-like composition
  • the maleimide resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain an epoxy resin composition varnish, and carbon fiber.
  • a cured product of the maleimide resin composition of the present invention by hot press molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating.
  • the solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the maleimide resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the hardened
  • the maleimide resin composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve the flexibility of the B-stage.
  • a film-type resin composition is formed by applying the epoxy resin composition of the present invention on the release film as the epoxy resin composition varnish, removing the solvent under heating, and then performing B-staging. Obtained as an adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • the prepreg of the present invention can be obtained by melting the maleimide resin composition of the present invention with heat, lowering the viscosity, and impregnating it with reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber. Moreover, the prepreg of this invention can also be obtained by impregnating the said varnish in a reinforced fiber and heat-drying.
  • the maleimide resin composition of the present invention is heated to 60 to 110 ° C, A hot melt method of impregnation in a fluid state is preferred.
  • the proportion of the polymaleimide composition in the prepreg obtained (impregnated with a maleimide resin composition in a reinforcing fiber) is usually 20% by weight to 80% by weight, preferably 25%, although it depends on the form of the reinforcing fiber. % Or more and 65% by weight or less, more preferably 30% by weight or more and 50% or less. If the proportion of the polymaleimide resin composition is larger than this range, a sufficient reinforcing effect cannot be obtained because the proportion of the reinforcing fibers is relatively reduced. Conversely, if the amount of the polymaleimide resin composition is small, moldability is impaired.
  • This prepreg can be cured by a known method to obtain a final molded product.
  • a prepreg can be laminated, pressurized to 2 to 10 kgf / cm 2 in an autoclave, and cured by heating at 150 ° C. to 200 ° C. for 30 minutes to 3 hours. Therefore, a fiber reinforced composite material molded article can be obtained by performing post-cure treatment in the temperature range of 180 ° C. to 280 ° C. for 1 hour to 12 hours while heating stepwise.
  • the above prepreg is cut into the desired shape, laminated with copper foil, etc. if necessary, and the epoxy resin composition for laminates is heat-cured while applying pressure to the laminate by the press molding method, autoclave molding method, sheet winding molding method, etc.
  • a laminated board can be obtained. Furthermore, a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing a prepreg or copper foil thereon and repeating the above operation.
  • the maleimide resin composition, prepreg or a cured product thereof, particularly a cured product of the prepreg of the present invention is particularly useful as a robot hand for transporting a liquid crystal glass substrate.
  • the use of the cured product of the present invention is not limited to the use of a robotic hand for transporting a liquid crystal glass substrate, but is also lightweight, such as a use of a disk for transporting silicon wafers, a use for aerospace parts, a use for automobile engine parts, etc. It can be widely applied to members that require high strength and high heat resistance.
  • epoxy equivalent Measured by a method according to JIS K-7236.
  • Melt viscosity Melt viscosity in the cone plate method at 150 ° C.
  • Softening point Measured by a method according to JIS K-7234.
  • the obtained sulfonyl compound (B3) having an epoxy group has an epoxy equivalent of 236 g / eq, a softening point of 64 ° C., a melt viscosity of 0.09 Pa ⁇ s, and the proportion of propenyl groups in all R in the formula (2) is 100%. there were.
  • the obtained sulfonyl compound (B4) having an epoxy group has an epoxy equivalent of 229 g / eq, a softening point of 64 ° C., a melt viscosity of 0.09 Pa ⁇ s, and the proportion of propenyl groups in all R in the formula (2) is 100%. there were.
  • the reaction is carried out at the same temperature for 2 hours, 3 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 20 hours while dehydrating.
  • 120 parts of toluene was added, and washing with water was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, followed by heating to remove water from the system by azeotropy.
  • the reaction solution was concentrated to obtain a resin solution containing 70% of maleimide resin (A1).
  • Example 1 63 parts by weight of the maleimide resin (A1) obtained in Synthesis Example 5 and 35 parts by weight of 2,2′-diallyl-4,4′-sulfonyldiphenol (B1) were blended and kneaded at 150 ° C., and then 2 parts by weight of dicumyl peroxide (C1 manufactured by DCP Kayaku Akzo), which is a curing accelerator, was blended and kneaded at 80 ° C. to obtain a maleimide resin composition. MDSC measurement was performed to observe the exothermic behavior of the resulting maleimide resin composition. The results are shown in Table 1.
  • Example 2 63 parts by weight of the maleimide resin (A1) obtained in Synthesis Example 5 and 35 parts by weight of the sulfonium compound (B2) obtained from Synthesis Example 1 were blended and kneaded at 150 ° C. 2 parts by weight of mill peroxide (C1) was blended and kneaded at 80 ° C. to obtain a maleimide resin composition. MDSC measurement was performed to observe the exothermic behavior of the resulting maleimide resin composition. The results are shown in Table 1.
  • Curing heat generation Measurement of curing heat generation start temperature, curing heat generation peak top temperature, and heat generation end temperature by modulated DSC (MDSC) measurement Analysis conditions Analysis mode: MDSC measurement Measuring instrument: Q2000 manufactured by TA-instruments, Temperature increase rate: 3 ° C / min
  • the maleimide resin composition of the present invention has been cured at a relatively low temperature of 200 ° C. or less and has excellent curability. I understand. From this, it is considered that the electron-withdrawing sulfonyl group is conjugated to the adjacent carbon to give the alkenyl and alkenyl ether group curability. Further, since the heat generation starting temperature is 100 ° C. or higher, it is considered that the increase in viscosity at the time of kneading at 100 ° C. or higher can be suppressed. Moreover, since the gel time at 175 ° C. is about 30 seconds, it has the same curability as the epoxy resin / phenol curing system used in the sealing material, so that the speed of the curing cycle is particularly high. It is considered that it can be used also in the required semiconductor encapsulation material field.
  • Example 3 63 parts by weight of the maleimide resin (A1) obtained in Synthesis Example 5 and 35 parts by weight of 2,2′-diallyl-4,4′-sulfonyldiphenol (B1) were blended, kneaded at 150 ° C., and then 2 parts by weight of dicumyl peroxide (C1), which is a curing accelerator, was blended and kneaded at 80 ° C. to obtain the maleimide resin composition of the present invention.
  • a cured sample was prepared from the obtained maleimide resin composition under curing conditions at 180 ° C. ⁇ 1 h, and the gel fraction was measured in order to evaluate curability. The results are shown in Table 2.
  • Example 4 (Examples 4 to 14 and Comparative Examples 2 to 3)
  • maleimide resin (A1), 2,2′-diallyl-4,4′-sulfonyldiphenol (B1), and dicumyl peroxide (C1) were changed to the materials / blending amounts shown in Table 2.
  • a maleimide resin composition was obtained in the same manner except that.
  • a cured sample was prepared from the obtained maleimide resin composition under the curing conditions at 180 ° C. ⁇ 1 h, and the gel fraction was measured to evaluate curability. The results are shown in Table 2.
  • the reactivity of the bis-S-type alkenyl group is excellent even in maleimide resins having different structures compared to the comparative bis-A-type allylphenol, and it has a substituent other than phenol. It can be seen that it has excellent reactivity. Moreover, since the gel time at 175 ° C. is about 30 seconds, it has the same curability as the epoxy resin / phenol curing system used in the sealing material, so that the speed of the curing cycle is particularly high. It is considered that it can be used also in the required semiconductor encapsulation material field.
  • Example 15 63 parts by weight of maleimide resin (A1) obtained in Synthesis Example 5 and 35 parts by weight of 2,2′-diallyl-4,4′-sulfonyldiphenol (B1), dicumyl peroxide (curing accelerator) 2 parts by weight of C1) was blended, kneaded with two rolls, transfer molded at 175 ° C., and a cured product was obtained under curing conditions of 200 ° C. ⁇ 2 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 3.
  • Example 16 63 parts by weight of maleimide resin (A1) obtained in Synthesis Example 5, 35 parts by weight of sulfonium compound (B2) obtained from Synthesis Example 1, and 2 parts by weight of dicumyl peroxide (C1) as a curing accelerator They were mixed, kneaded with two rolls, transfer molded at 175 ° C., and a cured product was obtained under curing conditions of 200 ° C. ⁇ 2 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 3.
  • Example 17 64 parts by weight of the maleimide resin (A1) obtained in Synthesis Example 5 and 36 parts by weight of the sulfonium compound (B2) obtained from Synthesis Example 1 are blended, kneaded with two rolls, and transferred at 175 ° C. A cured product was obtained under the curing conditions of 200 ° C. ⁇ 2 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 3.
  • ⁇ DMA Measurement items storage elastic modulus at 30 ° C, 200 ° C, 250 ° C, : Glass transition temperature (temperature at maximum of tan ⁇ )
  • Measuring method Dynamic viscoelasticity measuring instrument TA-instruments, Q-800 Measurement temperature range: 30 ° C-350 ° C Temperature rate: 2 ° C / min
  • Test piece size A material cut into 5 mm ⁇ 50 mm was used (thickness was about 800 ⁇ m).
  • -Dielectric constant and dielectric loss tangent Measurement method: cavity resonator manufactured by Agilent Technologies, Inc.
  • Measurement and bending test at 1 GHz in accordance with K6991 Measurement item: bending strength, flexural modulus Measurement method: Measured at 30 ° C. in accordance with JIS 6481 (bending strength).
  • ⁇ Pyrolysis measurement Measuring method: TG-DTA6220 manufactured by SII Measuring temperature range: 30 to 580 ° C Temperature increase rate: 10 ° C / min Td1: 1% weight reduction temperature Td5: 5% weight reduction temperature
  • the cured product of the maleimide resin composition of the present invention can be molded under the same curing conditions as the epoxy resin, and the obtained cured product is compared with the case where a high heat resistant epoxy resin is used. It can be seen that Tg is about 100 ° C. high, mechanical strength, high elastic modulus, and low dielectric properties are excellent, and that elastic modulus changes at room temperature and high temperature are small.
  • Example 18 63 parts by weight of maleimide resin (A1) obtained in Synthesis Example 5 and 35 parts by weight of 2,2′-diallyl-4,4′-sulfonyldiphenol (B1), dicumyl peroxide (curing accelerator) 2 parts by weight of C1) was dissolved in 100 parts by weight of MEK to prepare a varnish.
  • the prepared varnish was impregnated into a 0.1 mm thick glass cloth (Arizawa Seisakusho product number 1031 NT-105 S640) and dried at 120 ° C. for 5 minutes to prepare a prepreg.
  • bis S-type allylphenol has excellent copper foil adhesion compared to bis A-type allyl phenol, and thus was found to be an excellent adhesive.
  • Example 19 63 parts by weight of maleimide resin (A1) obtained in Synthesis Example 5 and 35 parts by weight of 2,2′-diallyl-4,4′-sulfonyldiphenol (B1), dicumyl peroxide (curing accelerator) 2 parts by weight of C1) was blended, kneaded with two rolls, and mixed and kneaded uniformly using a mixing roll to obtain a maleimide resin composition.
  • the maleimide resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted maleimide resin composition was transfer molded (175 ° C. ⁇ 60 seconds), further transferred to 175 ° C., and a cured sample was prepared under the curing conditions of 200 ° C. ⁇ 2 h to obtain a test piece for evaluation. A flame retardancy test was performed under the following measurement conditions. The evaluation results are also shown in Table 5.
  • Example 20 54 parts by weight of a maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) and 44 parts by weight of the sulfonium compound (B3) obtained in Synthesis Example 2 were blended, and dicumyl peroxide (a curing accelerator) 2 parts by weight of C1) was blended, kneaded with two rolls, and mixed and kneaded uniformly using a mixing roll to obtain a maleimide resin composition.
  • the maleimide resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted maleimide resin composition was transfer molded (175 ° C.
  • Example 21 56 parts by weight of a maleimide compound (BMI-1000, manufactured by Daiwa Kasei Kogyo Co., Ltd.) and 42 parts by weight of the sulfonium compound (B3) obtained in Synthesis Example 2 were blended to prepare a dicumyl peroxide (C1) as a curing accelerator. 2 parts by weight, kneaded with two rolls, and uniformly mixed and kneaded using a mixing roll to obtain a maleimide resin composition.
  • the maleimide resin composition was pulverized with a mixer and further tableted with a tablet machine. This tableted maleimide resin composition was transfer molded (175 ° C.
  • Flame retardancy test / flame retardancy conducted in accordance with UL94. However, the test was conducted with a sample size of 12.5 mm wide ⁇ 150 mm long and a thickness of 0.8 mm. ⁇ Afterflame time: Total afterflame time after 10 times contact with 5 samples
  • Example 22 96Pin QFP (chip size: 7 ⁇ 7 ⁇ thickness 0.1 mm, package size: 14 ⁇ 14 ⁇ thickness 1.35 mm) lead shown in FIG. 1 whose surface is made of copper metal in the maleimide resin composition of Example 18 described above.
  • a frame manufactured by Kensho-do Co., Ltd .: Nippon Kayaku custom-made product
  • the lead frame is set in a transfer molding die, and the maleimide resin composition tableted in the same manner as above is transfer molded (175 ° C. ⁇ 60 seconds), and after demolding, cured at 180 ° C. ⁇ 2 hours.
  • a 96-pin QFP sealing material (FIG. 2) was prepared.
  • Example 22 From Example 22, it can be confirmed that the maleimide resin composition of the present invention seals the lead frame in the same curing process as the conventional epoxy resin composition and the like. This shows that it can apply to a semiconductor sealing material.
  • the maleimide resin composition, prepreg and cured product thereof according to the present invention are used for high-reliability semiconductor encapsulating materials, electrical / electronic component insulating materials, laminates (printed wiring glass fiber reinforced composite materials) and CFRP (carbon fiber reinforced). Composite materials), various adhesive materials, various adhesives, various paints, structural members, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)

Abstract

マレイミド化合物と下記構造を有するスルホニル化合物を含む、エポキシ樹脂と同等の硬化プロセスで硬化可能であり、200℃以下での成型性(硬化性)、250℃以上の耐熱性、250℃での高い熱安定性と高い弾性率の維持、及び、低誘電・低誘電正接を達成できるマレイミド樹脂組成物を提供する。 (R:アルケニル,アルケニルエーテル,水素,ハロゲン,C1-10 アルキル,C1-4 フルオロアルキル,ヒドロキシ,アリロキシ,アミノ,シアノ,ニトロ,アシル,アシルオキシ,カルボキシ,3 級炭素含有基,環状アルキル,グリシジル(但し、1 以上のR はアルケニル又はアルケニルエーテル);a:1-4)

Description

マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置
 本発明は、マレイミド樹脂組成物、プリプレグ及びその硬化物に関する。詳しくは、高信頼性半導体封止材用途、電気・電子部品絶縁材料用途、及び積層板(プリント配線ガラス繊維強化複合材料)やCFRP(炭素繊維強化複合材料)を始めとする各種複合材料用途、各種接着剤用途、各種塗料用途、構造用部材等に有用なマレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置に関する。
 熱硬化性樹脂であるエポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、封止材料などの幅広い分野に利用されている。近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。
 近年、特にパワー半導体の高機能化に伴い、次世代デバイスとしてSiC(炭化珪素)やGaN(窒化ガリウム)などのワイドバンドギャップデバイスが注目されている。SiCやGaNパワー半導体デバイスを用いると小型化による省スペース化や、大幅な損失低減が可能となるため、SiCやGaNデバイスの早期普及が望まれている。しかし、現状では、その特性を引き出すための駆動温度が200℃以上、特に250℃付近と高すぎるため、周辺材料の耐久性が十分でなく、この駆動条件に耐えうる樹脂材料の開発が求められている。
 このような用途においては200℃以上、特に250℃での耐熱性(Tg)だけでなく、熱安定性が重要視され、200℃付近から熱分解が始まるエポキシ樹脂の使用は困難とされている。そこで、マレイミド樹脂やベンゾオキサジン樹脂などの耐熱性の樹脂が精力的に検討されているが、200℃以上、さらには250℃といった高い温度での成型が必要になることから、成形機の許容温度を超えてしまい、成型性に課題がある。その上、5%熱重量減少温度では非常に高い温度の耐熱安定性を示すものの、これら樹脂の初期の熱分解温度は比較的早いことが課題であった。
 したがって、200℃以下での成型性(硬化性)、250℃以上の耐熱性、250℃での熱安定性の解決が急務である。
 またこれは同時にこれら半導体を搭載するプリント配線基板(以下、基板と称す)にも求められており、上述の特性は次世代半導体周辺材料には必須の特性となる。
 さらに車載用の基板だけでなく、スマートフォンやタブレットに代表される電子デバイス用の基板にも耐熱性の要求特性が高まっている。
 特に薄型化が重要視されているこの分野においては当然ながらデバイス内部に搭載される基板も一枚一枚が薄層化しており、実装までの各工程において高温にさらされる場合が多い。半導体実装時には250℃以上の高温にさらされ、250℃以上での弾性率が低い(柔らかくなる)と基板が変形してしまう恐れがある。一方、硬化温度は銅箔表面の酸化の問題から、200℃、特に230℃を超えるような温度領域での成型が困難である。すなわち本分野においては200℃以下で硬化・成型でき、かつ250℃における弾性率が高い(硬い)ことが重要視されている。
 なお、近年特に注目されているのはこれら電子デバイスにおける高速通信化である。高周波基板はもとより、スマートフォンやタブレットの情報通信量が非常に多くなり、いかに早く多くの情報を伝えるかということが重要となってきており、高速通信化がパッケージ基板にたいして重要なファクターとなることから誘電特性、特に誘電正接が重要視される。一般のエポキシ樹脂硬化物(樹脂のみ)では誘電正接が0.02(1GHzでの測定)に対し、3/4以下、すなわち0.015以下、特に0.010以下の誘電正接が求められており、これらの特性を満たす材料の開発が急務である。
 また、繊維強化複合材料は、マトリックス樹脂と、炭素繊維、ガラス繊維、アルミナ繊維、ボロン繊維やアラミド繊維などの強化繊維とから成り、一般に軽量かつ高強度の特徴を有する。このような繊維強化複合材料は、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)、旅客機の機体や翼などの航空宇宙材料、ロボットハンドアームに代表される工作機械部材や、建築・土木補修材としての用途、さらにはゴルフシャフトやテニスラケットなどのレジャー用品用途などに幅広く用いられている。
 特に旅客機の機体や翼などの航空宇宙材料、ロボットハンドアームに代表される工作機械部材において炭素繊維強化複合材料(以下CFRPと称す)には、室温から約200℃までの温度範囲で剛性を保つ耐熱性、機械特性、長期信頼性、即ち熱分解温度が十分高く高温での弾性率が高い事が要求されている。
 繊維強化複合材料のマトリックス樹脂としては、従来エポキシ系樹脂が広く使用されているが、特にエンジン部分等への適用においては高温時にも弾性率を維持できることが重要であり、エポキシ樹脂では耐熱性が不十分で、マレイミド樹脂を使用した硬化系が検討されている。
 しかしながらマレイミド樹脂だけでは硬化性が悪く、かつ成型品が脆くなるため、これを改善するために各種変性剤が開発されている。その解決策として、種々の変性が行われており、例えばシアン酸エステル系樹脂組成物にメタ(アクリロイル)基を導入した変性ブタジェン系樹脂を配合するもの(特許文献1)、ブタジェン-アクリロニトリル共重合体を添加するもの(特許文献2)、あるいはこれらにさらにエポキシ樹脂を加えたもの(特許文献3)などが知られている。しかし、これらの方法では、成型品の脆さは軽減するものの、いずれも耐熱、機械強度の低下が避けられない問題があった。
 一方、マレイミド樹脂をマレイミド樹脂の反応性希釈剤、架橋剤、難燃剤などの添加剤として知られるアリル化合物で変性する方法が知られている。例えば、4,4’-ジフェニルメタンビスマレイミドに常温で液状であるo,o’-ジアリルビスフェノールAを加熱溶融混合して得られる樹脂組成物が開示されており、無溶剤で炭素繊維シートに含浸させることが可能であると記載されている(特許文献4)。また、ノボラック型のポリフェニルメタンマレイミドとo,o’-ジアリルビスフェノールAを含有するマレイミド樹脂組成物が開示されている(特許文献5)。
日本国特開昭57-153045号公報 日本国特開昭57-153046号公報 日本国特開昭56-157424号公報 日本国特開平5-222186号公報 日本国特開2012-201816号公報
 しかしながら、特許文献4では、o,o’-ジアリルビスフェノールAは反応性が低いため、従来のエポキシ樹脂組成物を成形できる硬化条件で硬化成形体を生成することは困難であり、高い硬化温度(235~250℃)、長時間の成形が必要であり、作業性とコストがかかり、積層板はもちろん、更に成形サイクルが短い事が要求される半導体封止材料用途などの使用箇所に制限があり使用できない等の問題がある。
 そこで、本発明は、エポキシ樹脂と同等の硬化プロセスで硬化可能で、200℃以下での成型性(硬化性)、250℃以上の耐熱性、250℃での高い熱安定性と高い弾性率の維持、また低誘電・低誘電正接を達成できるマレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究した結果、アルケニル基又はアルケニルエーテル基を有する特定の構造を有するスルホニル化合物がマレイミド基に対する反応性に優れることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
[1]マレイミド化合物(A)、及び、下記式(1)で表される構造を分子中に含むスルホニル化合物(B)を含むマレイミド樹脂組成物、
[規則91に基づく訂正 31.08.2018] 
Figure WO-DOC-FIGURE-1
(式中、複数のRは、それぞれ独立して、アルケニル基、アルケニルエーテル基、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表し、Rの少なくとも1つは、アルケニル基又はアルケニルエーテル基である。aは1~4の整数を表す。)
[2]前記マレイミド化合物(A)が芳香族マレイミド化合物及び脂肪族マレイミド化合物から選ばれる少なくともいずれかである前項[1]に記載のマレイミド樹脂組成物、
[3]前記スルホニル化合物(B)が下記式(2)で表されるスルホニル化合物である前項[1]又は[2]に記載のマレイミド樹脂組成物、
Figure JPOXMLDOC01-appb-C000004
(式中、複数のRは、それぞれ独立して、アルケニル基、アルケニルエーテル基、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表し、Rの少なくとも1つは、アルケニル基又はアルケニルエーテル基である。Xはそれぞれ独立して水素原子またはグリシジル基を表す。aは1~4の整数を表す。nは0~10であり、その平均値は0~10の実数を表す。)
[4]前記スルホニル化合物とフェノール類、ナフトール類とを重合し、メチレン結合、エチリデン結合、プロピリデン結合などのアルキリデン結合を介して結合している分子構造を有する変性スルホニル化合物を含む前項[1]~[3]のいずれか一項に記載のマレイミド樹脂組成物、
[5]さらに、ラジカル重合開始剤(C)を含む前項[1]~[4]のいずれか一項に記載のマレイミド樹脂組成物、
[6]前記ラジカル重合開始剤(C)が有機過酸化物及びアゾ化合物から選ばれる少なくともいずれかである前項[5]に記載のマレイミド樹脂組成物、
[7]前記[1]~[6]のいずれか一項に記載のマレイミド樹脂組成物をシート状の繊維基材に保持し、半硬化状態にあるプリプレグ、
[8]前記[1]~[6]のいずれか一項に記載のマレイミド樹脂組成物の硬化物、
[9]前記[7]に記載のプリプレグの硬化物、
[10]前記[1]~[6]のいずれか一項に記載のマレイミド樹脂組成物を用いて封止した半導体装置、
に関するものである。
 本発明のマレイミド樹脂組成物は、低温での硬化性に優れ、その硬化物が耐熱性、吸水特性、電気信頼性及び機械強度を有するため、電気電子部品用絶縁材料、半導体封止材料用途及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。
実施例22において使用するリードフレームの概略図である。 実施例22において作成する封止材の概略図である。
 本発明のマレイミド樹脂組成物について、以下に説明する。
 本発明のマレイミド樹脂組成物は、マレイミド化合物(A)、及び、上下記式(1)で表される構造を分子中に含むスルホニル化合物(B)を含有することを特徴とする。
[規則91に基づく訂正 31.08.2018] 
Figure WO-DOC-FIGURE-3
(式中、複数のRは、それぞれ独立して、アルケニル基、アルケニルエーテル基、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表し、Rの少なくとも1つは、アルケニル基又はアルケニルエーテル基である。aは1~4の整数を表す。)
 アルケニル基又はアルケニルエーテル基を含有するビスフェノールS型の化合物である前記式(1)で表される構造を分子中に含むスルホニル化合物(B)は、電子吸引体であるスルホニル基の存在により、最高被占軌道(HOMO)の密度はアルケニル基又はアルケニルエーテル基に局在化し、電子受容体のマレイミド基を有する化合物(A)との反応性を良くしていると考えられる。さらに、ラジカル重合開始剤を用いることで硬化速度を速めることができる。
 本発明で用いられるマレイミド化合物(A)は、下記の式(3)で表されるマレイミド基を分子中に1個以上含有する化合物である。
Figure JPOXMLDOC01-appb-C000006
 本発明に用いられるマレイミド化合物(A)は公知のものを使用することができ、例えば、脂肪族/脂環族マレイミド化合物、芳香族マレイミド化合物等が挙げられる。
 脂肪族/脂環族マレイミド化合物の具体例としては、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ヘキシルマレイミド、N-シクロヘキシルマレイミド、マレイミドカルボン酸等の単官能マレイミドやN-2,2’-ヒドロキシエチルマレイミド、N-1-メトキシメチルプロピルマレイミド、N-1-エトキシメチルプロピルマレイミド、N-1-メトキシメチルブチルマレイミド、N,N’-3,6-ジオキサオクタン-1,8-ビスマレイミド、N,N’-4,7-ジオキサンデカン-1,10-ビスマレイミド、N,N’-3,6,9-トリオキサドデカン-1,11-ビスマレイミド、N,N’-4,9-ジオキサドデカン-1,12-ビスマレイミド、N,N’-4,7,10-トリオキサトリデカン-1,13-ビスマレイミド、N,N’-7-メチル-4,10-トリオキサトリデカン-1,13-ビスマレイミド、N,N’-3,6,9,12-テトラオキサテトラデカン-1,14-ビスマレイミド、N,N’- 3,6,9,12,15-ペンタオキサへプタデカン-1,17-ビスマレインド、ビス(3-N-マレイミドプロピル)ポリテトラヒドロフランが挙げられる。
 前記式(3)で表されるマレイミド基を1つ有する芳香族マレイミド化合物としてはN-フェニルマレイミド、N-メチルフェニルマレイミド等の単官能マレイミドが挙げられる。
 前記式(3)で表されるマレイミド基を2つ有する芳香族マレイミド化合物としては、N,N’-メチレンビスマレイミド、N,N’-トリメチレンビスマレイミド、N,N’-ドデカメチレンビスマレイミド、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、1,4-ジマレイミドシクロヘキサン、イソホロンビスウレタンビス(N-エチルマレイミド)、N,N’-P-フェニレンビスマレイミド、N,N’-ジフェニルメタンビスマレイミド、N,N’-フェニレンビスマレイミド、N,N’-ジフェニルエーテルビスマレイミド、N,N’-ジフェニルスルホンビスマレイミド、N,N’-ジシクロヘキシルメタンビスマレイミド、N,N’-キシレンビスマレイミド、N,N’-トリレンビスマレイミド、N,N’-キシリレンビスマレイミド、N,N’-ジフェニルシクロヘキサンビスマレイミド、N,N’-ジクロロジフェニルメタンビスマレイミド、N,N’-ジフェニルシクロヘキサンビスマレイミド、N,N’-ジフェニルメタンビスメチルマレイミド、N,N’-ジフェニルエーテルビスメチルマレイミド、N,N’-ジフェニルスルホンビスメチルマレイミド(各々異性体を含む。)、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-ドデカメチレンビスマレイミド、N,N’-m-キシリレンビスマレイミド、N,N’-p-キシリレンジマレイミド、N,N’-1,3-ビスメチレンシクロヘキサンビスマレイミド、N,N’-1,4-ビスメチレンシクロヘキサンビスマレイミド、N,N’-2,4-トリレンビスマレイミド、N,N’-2,6-トリレンビスマレイミド、N,N’-3,3-ジフェニルメタンビスマレイミド、N,N’-4,4’-ジフェニルメタンビスマレイミド、3,3’-ジフェニルスルホンビスマレイミド、4,4’-ジフェニルスルホンビスマレイミド、N,N’-4,4’-ジフェニルスルフィドビスマレイミド、N,N’-p-ベンジフェノンビスマレイミド、N,N’-ジフェニルエタンビスマレイミド、N,N’-ジフェニルエ-テルビスマレイミド、N,N’-(メチレン-ジテトラヒドロフェニル)ビスマレイミド、N,N’-(3-エチル)-4,4’-ジフェニルメタンビスマレイミド、N,N’-(3,3’-ジメチル)-4,4’-ジフェニルメタンビスマレイミド、N,N’-(3,3’-ジエチル)-4,4’-ジフェニルメタンビスマレイミド、N,N’-(3,3’-ジクロロ)-4,4’-ジフェニルメタンビスマレイミド、N,N’-トリジンビスマレイミド、N,N’-イソホロンビスマレイミド、N,N’-p,p’-ジフェニルジメチルシリルビスマレイミド、N,N’-ベンゾフェノンビスマレイミド、N,N’-ジフェニルプロパンビスマレイミド、N,N’-ナフタレンビスマレイミド、N,N’-m-フェニレンビスマレイミド、N,N’-4,4’-(1,1-ジフェニル-シクロヘキサン)-ビスマレイミド、N,N’-3,5-(1,2,4-トリアゾール)-ビスマレイミド、N,N’-ピリジン-2,6-ジイルビスマレイミド、N,N’-5-メトキシ-1,3-フェニレンビスマレイミド、1,2-ビス(2-マレイミドエトキシ)エタン、1,3-ビス(3-マレイミドプロポキシ)プロパン、N,N’-4,4’-ジフェニルメタン-ビス-ジメチルマレイミド、N,N’-ヘキサメチレン-ビス-ジメチルマレイミド、N,N’-4,4’-(ジフェニルエーテル)-ビス-ジメチルマレイミド、N,N’-4,4’-(ジフェニルスルホン)-ビス-ジメチルマレイミド、N,N’-4,4’-(ジアミノ)-トリフェニルホスフェートのN,N’-ビスマレイミド等に代表される2官能マレイミド化合物等が挙げられる。
 前記式(3)で表されるマレイミド基を3つ以上有する芳香族マレイミド化合物としては、アニリンとホルマリンとの反応生成物(ポリアミン化合物)、3,4,4’-トリアミノジフェニルメタン、トリアミノフェノールなどと無水マレイン酸との反応で得られる多官能マレイミド化合物が挙げられる。
 トリス-(4-アミノフェニル)-ホスフェート、トリス(4-アミノフェニル)-ホスフェート、トリス(4-アミノフェニル)-チオホスフェートと無水マレイン酸との反応で得られるマレイミド化合物、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-クロロ-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-ブロモ-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-エチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-プロピル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-イソプロピル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-ブチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-第2級ブチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-メトキシ-4-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1-ビス〔4-(4-マレイミドフェノキシ)フェニル〕エタン、1,1-ビス〔3-メチル4-(4-マレイミドフェノキシ)フェニル〕エタン、1,1-ビス〔3-クロロ-4-(4-マレイミドフェノキシ)フェニル〕エタン、1,1-ビス〔3-ブロモ-4-(4-マレイミドフェノキシ)フェニル〕エタン、ビス〔4-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3-クロロ-4-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3-ブロモ-4-(4-マレイミドフェノキシ)フェニル〕メタン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1,1,3,3,3-ヘキサクロロ-2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3-ビス〔4-(4-マレイミドフェノキシ)フェニル〕ペンタン、1,1-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス〔3,5-ジメチル-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス〔3,5-ジブロモ-(4-マレイミドフェノキシ)フェニル〕プロパン及び1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス〔3,5-メチル-(4-マレイミドフェノキシ)フェニル〕プロパン及びこれらN,N’-ビスマレイミド化合物とジアミン類を付加させて得られる末端がN,N’-ビスマレイミド骨格を有するプレポリマー及びアニリン・ホルマリン重縮合物のマレイミド化物又はメチルマレイミド化合物等が例示できる。
 これらのマレイミド化合物は1種を単独で用いてもよく、2種以上を併用して用いてもよい。芳香族マレイミド化合物と脂肪族マレイミド化合物を併用して用いても良い。
 本発明においては特に耐熱性(ガラス転移点)および/または弾性率の面から芳香族マレイミドが好ましく、官能基を一分子中に2つ以上有するマレイミドとの組み合わせが好ましい。
 本発明で用いられるスルホニル化合物(B)は下記式(1)で表される構造を分子中に含む化合物である。
[規則91に基づく訂正 31.08.2018] 
Figure WO-DOC-FIGURE-5
(式中、複数のRは、それぞれ独立して、アルケニル基、アルケニルエーテル基、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表し、Rの少なくとも1つは、アルケニル基又はアルケニルエーテル基である。aは1~4の整数を表す。)
 前記(B)成分は、マレイミド基を有する化合物(A)の芳香族液状反応性希釈剤として用いられる。ビスフェノールS構造がビスフェノールA構造に対して、マレイミド基を有する化合物に対する反応性に優れる。これは、前述したとおりスルホニル基の電子吸引性に起因すると考えられる。
 式中のアルケニル基又はアルケニルエーテル基としては、ビニル基、スチリル基、アリル基、置換アリル基、プロぺニル基、置換プロぺニル基、ビニルエーテル基、アリルエーテル基、メタリルエーテル基が挙げられる。
 式中のアルケニル基又はアルケニルエーテル基以外の置換基としては、水素原子、ハロゲン原子、炭素原子数1乃至10のアルキル基、炭素原子数1乃至4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基又はそれらの組み合わせが挙げられる。
 式中のaは1~4であり、好ましくは1~2である。
 式(1)で表される構造を分子中に含むスルホニル化合物(B)は、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは1つ以上のアルケニル基又はアルケニルエーテル基を有し、それ以外の置換基として水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表す。Xはそれぞれ独立して水素原子またはグリシジル基を表す。aは1~4の整数を表す。nは0~10であり、その平均値は0~10の実数を表す。)
 式(2)中、nは0~10であり、0~5が好ましい。nの平均値は0~10であり、好ましくは0~5である。
 式(1)で表される構造を含む又は式(2)で表されるスルホニル化合物(B)の具体例としては、2,2’-ジアリル-4,4’-スルホニルジフェノール、2-アリル-2’-プロペニル-4,4’-スルホニルジフェノール、2,2’-ジプロペニル-4,4’-スルホニルジフェノール、2,2’-ジアリル-6,6’-スルホニルジフェノール、2-アリル-2’-プロペニル-6,6’-スルホニルジフェノール、2,2’-ジプロペニル-6,6’-スルホニルジフェノール、2,2’-ジアリル-4,4’-スルホニルジグリシジルエーテル、2-アリル-2’-プロペニル-4,4’-スルホニルジグリシジルエーテル、2,2’-ジプロペニル-4,4’-スルホニルジグリシジルエーテル、2,2’-ジアリル-6,6’-スルホニルジジグリシジルエーテル、2-アリル-2’-プロペニル-6,6’-スルホニルジグリシジルエーテル、2,2’-ジプロペニル-6,6’-スルホニルジグリシジルエーテルなどが挙げられる。
 (B)成分の軟化点としては通常60~130℃であり、70~120℃が好ましく、80~120℃がより好ましい。
 本発明のマレイミド樹脂組成物は、(A)成分、及び(B)成分を少なくとも含有し、(A)成分100重量部に対する(B)成分の含有量は、1重量部以上、好ましくは10重量部以上、200重量部以下、好ましくは100重量部以下である。
 上記範囲より(B)成分が少ないと、組成物の粘度が高くなり、組成物の不均一性が増し、成形性が不良となる場合があり、上記範囲より(B)成分が多いと硬化物のガラス転移温度が低下する場合がある。
 また、(A)成分と(B)成分は、これらの合計に対する(A)成分の割合(重量比)が好ましくは0.5~0.9、より好ましくは0.5~0.8となるように配合する。(A)成分と(B)成分との合計に対する(A)成分の割合が上記下限より低いと硬化物のガラス転移温度が著しく低下し、300℃24時間処理時の重量が著しく減少し、上記上限よりも多いと組成物の粘度が大幅に上昇し、また組成物が著しく不均一となり成形性が不良となる場合がある。
 本発明のマレイミド樹脂組成物において、前記(A)成分及び(B)成分のほかに、ラジカル重合開始剤(C)を含むことができる。ラジカル重合開始剤(C)はマレイミド樹脂組成物において、アルケニル基又はアルケニルエーテル基とマレイミド基の反応を促進させる目的で用いる。
 用いることができるラジカル重合開始剤(C)としては、特に制限は無いが、有機過酸化物、アゾ化合物が挙げられ、好ましくは有機過酸化物である。
 有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)オクタン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、アセチルパーオキサイド、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、スクシニックアシッドパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジミリスティルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジアリルパーオキシジカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカネート、クミルパーオキシネオデカネート、t-ブチルパーオキシ-2-エチルヘキサネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクテート、t-ヘキシルパーオキシネオデカネート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオヘキサネート、アセチルシクロヘキシルスルフォニルパーオキサイド、t-ブチルパーオキシアリルカーボネート、等が挙げられる。
 これらの有機過酸化物のうち、分解してラジカルを発生する温度が、120℃以上であるものが好ましい。このような有機過酸化系化合物として過酸化ベンゾイル、ジイソプロピルパーオキシカーボネート、ラウロイルパーオキサイド、ジクミルパーオキサイド、メチルエチルケトンパーオキサイド、ジ-t-ブチルパーオキサイドが好ましい。
 アゾ化合物としてはアゾイソブチルニトリル等が挙げられる。特に熱によって活性化される化合物が好適に用いられる。これらは1種を単独で用いてもよく、2種以上を併用して用いてもよい。
 (C)成分の重合開始剤の量としては、(A)成分100重量部に対して通常0.001重量部以上10重量部以下であり、0.01重量部以上5重量部以下が好ましく、0.01重量部以上3重量部以下がより好ましく、0.01重量部以上1重量部以下が特に好ましい。
 (C)成分が上記範囲より少ないと重合促進効果を十分に得ることができず、硬化不良の原因になり、また、多すぎると樹脂組成物の硬化物性に悪影響を及ぼす場合がある。そのため(A)成分100重量部に対し好ましくは0.001~10重量%添加する。
 本発明のマレイミド樹脂組成物は、必要に応じてラジカル重合開始剤の他の硬化促進剤を用いる、あるいは併用することができる。用い得る硬化促進剤としては、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類及びオクチル酸スズ、オクチル酸亜鉛、ジブチルスズジマレエート、ナフテン酸亜鉛、ナフテン酸コバルト、オレイン酸スズ等の有機金属塩、塩化亜鉛、塩化アルミニウム、塩化スズなどの金属塩化物などの有機金属化合物などがあり、ベンゾイルパーオキサイド、ジクミルパーオキサイド、メチルエチルケトンパーオキサイド、t-ブチルパーベンゾエートなど有機過酸化物がある。硬化促進剤は少なすぎると硬化不良の原因になり、多すぎると樹脂組成物の硬化物性に悪影響を及ぼす場合がある。そのためマレイミド樹脂に対し好ましくは0.01~20重量%、より好ましくは0.01~10重量%添加する。
 一方、ラジカル重合促進剤は、本発明で使用する(A)、(B)両成分に対して重合促進効果を発揮するが、一部の成分の末端に対して不安定な酸素-炭素結合を形成する。この酸素-炭素結合は、高温になると燃焼して熱重量減少の原因となるため、重合促進剤としてラジカル重合促進剤のみを用いたポリマレイミド系組成物から得られる硬化物は、長期間高温条件下においた場合の熱重量減少率が大きくなる場合がある。そのため、アニオン重合促進剤とラジカル重合促進剤を併用することにより、各々の長所を生かした上で短所を補い合い、これにより、耐熱性の向上と熱重量減少の抑制を図ることができる。添加する触媒には、特にアニオン重合剤が好ましい。
 本発明のマレイミド樹脂組成物には、前記(A)~(C)成分以外にシアネートエステル化合物を配合することもできる。本発明のマレイミド樹脂組成物に配合し得るシアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 また、日本国特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
 更に本発明のマレイミド樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、エポキシ樹脂、エポキシ樹脂用硬化剤、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、マレイミド樹脂組成物100重量部に対して好ましくは1,000重量部以下、より好ましくは700重量部以下の範囲である。
 本発明のマレイミド樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えば本発明で用いられるマレイミド樹脂(A)とアルケニル基又はアルケニルエーテル基含有スルホニル化合物(B)を触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。必要により、アミン化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物などの硬化剤及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。
 本発明のマレイミド樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。本発明のマレイミド樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、エポキシ樹脂組成物ワニスとし、炭素繊維、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のマレイミド樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のマレイミド樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有するマレイミド樹脂組成物の硬化物を得ることもできる。
 また、本発明のマレイミド樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明のエポキシ樹脂組成物を前記エポキシ樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
 本発明のマレイミド樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることにより本発明のプリプレグを得ることができる。
 また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることにより本発明のプリプレグを得ることもできる。
 これらの強化繊維に本発明のマレイミド樹脂組成物を含浸させる方法にも特に制限はないが、溶剤を使用しない方法が好ましいため、本発明のマレイミド樹脂組成物を60~110℃に加温し、流動性がある状態で含浸させるホットメルト法が好ましい。
 得られるプリプレグ(強化繊維にマレイミド樹脂組成物を含浸させたもの)に占めるポリマレイミド系組成物の割合は、強化繊維の形態にもよるが通常20重量%以上80重量%以下、好ましくは25重量%以上65重量%以下、より好ましくは30重量%以上50%以下である。この範囲よりもポリマレイミド樹脂組成物の割合が多いと相対的に強化繊維の割合が減ることにより十分な補強効果が得られず、逆にポリマレイミド樹脂組成物が少ないと成型性が損なわれる。
 このプリプレグは公知の手法により硬化させて最終成型品とすることができる。例えば、プリプレグを積層して、オートクレーブ中で2~10kgf/cmに加圧し、150℃~200℃で30分ないし3時間加熱硬化させて成型体とすることができるが、さらに耐熱性を向上させるため、ポストキュアとして180℃~280℃の温度範囲で温度をステップ的に加温しながら1時間~12時間処理することにより繊維強化複合材成型品とすることができる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら積層板用エポキシ樹脂組成物を加熱硬化させることにより積層板を得ることができる。
 更に、表面に銅箔を重ねてできた積層板に回路を形成し、その上にプリプレグや銅箔等を重ねて上記の操作を繰り返して多層の回路基板を得ることができる。
 本発明のマレイミド樹脂組成物、プリプレグまたはそれらの硬化物、特にプリプレグの硬化物は、特に液晶ガラス基板搬送用ロボットハンド用途として有用である。ただし、本発明の硬化物の用途は液晶ガラス基板搬送用ロボットハンド用途に限定されるものではなく、その他、シリコンウェハー搬送用ディスク用途、航空宇宙向け部材用途、自動車のエンジン部材用途など、軽量で高強度かつ高耐熱性が要求される部材に広く適用することができる。
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り「重量部」である。尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
 以下、本発明を実施例により詳細に説明する。尚、本発明はこれら実施例に限定される物ではない。また実施例において、エポキシ当量、溶融粘度、軟化点、全塩素濃度は以下の条件で測定した。
 エポキシ当量:JIS  K-7236に準じた方法で測定。
 溶融粘度:150℃におけるコーンプレート法における溶融粘度。
 軟化点:JIS  K-7234に準じた方法で測定。
 式(1)または(2)における全R中のプロペニル基の割合:NMRにより測定。
(合成例1)
 2,2’-ジアリル-4,4’-スルホニルジフェノール(日本化薬(株)製 ARM-019、B1)165重量部、メタノール200重量部を反応容器に仕込み、撹拌、溶解後、粒状の水酸化カリウム(純度85%)105重量部添加した。添加後、加熱しながらメタノールを留去し、内温を100℃に保持しながら4時間反応を行った。塩酸で中和を行った後、メチルイソブチルケトンを330重量部加え、水洗を繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することにより、2,2’-ジプロペニル-4,4’-スルホニルジフェノール161重量部を得た。得られた2,2’-ジプロペニル-4,4’-スルホニルジフェノール(B2)の軟化点は81℃であった。
(合成例2)
 合成例1で得られた2,2’-ジプロペニル-4,4’-スルホニルジフェノール(B2)165重量部、エピクロルヒドリン510重量部、ジメチルスルホキシド130重量部を反応容器に仕込み、加熱、撹拌、溶解後、温度を45℃に保持しながら、フレーク状水酸化ナトリウム41重量部を1.5時間かけて連続的に添加した。水酸化ナトリウム添加完了後、45℃で2時間、70℃で1時間反応を行った。ついで加熱減圧下において過剰のエピクロルヒドリンとジメチルスルホキシドを留去し、残留物に330重量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液から水洗によって副生塩を除去した後、30%水酸化ナトリウム水溶液10重量部を添加し、70℃で1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりエポキシ基を有するスルホニル化合物(B3)207重量部を得た。得られたエポキシ基を有するスルホニル化合物(B3)のエポキシ当量は236g/eq、軟化点64℃、溶融粘度0.09Pa・s、式(2)における全R中のプロペニル基の割合は100%であった。
(合成例3)
 2,2’-ジアリル-4,4’-スルホニルジフェノール(B1)165重量部、エピクロルヒドリン510重量部、ジメチルスルホキシド130重量部を反応容器に仕込み、加熱、撹拌、溶解後、温度を45℃に保持しながら、フレーク状の水酸化ナトリウム41重量部を1.5時間かけて連続的に添加した。水酸化ナトリウム添加完了後、45℃で2時間、70℃で1時間反応を行った。ついで加熱減圧下において過剰のエピクロルヒドリンとジメチルスルホキシドを留去し、残留物に330重量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液から水洗によって副生塩を除去した後、30%水酸化ナトリウム水溶液10重量部を添加し、70℃で1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりエポキシ基を有するスルホニル化合物(B4)207重量部を得た。得られたエポキシ基を有するスルホニル化合物(B4)のエポキシ当量は229g/eq、軟化点64℃、溶融粘度0.09Pa・s、式(2)における全R中のプロペニル基の割合は100%であった。
(合成例4)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372部とトルエン200部を仕込み、室温で35%塩酸146部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液330部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂173部を得た。芳香族アミン樹脂中のジフェニルアミンは2.0%であった。
 得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量づつ滴下した。その結果、芳香族アミン樹脂(a1)166部を得た。得られた芳香族アミン樹脂(a1)の軟化点は56℃、溶融粘度は0.035Pa・s、ジフェニルアミンは0.1%以下であった。
(合成例5)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、合成例4で得られた芳香族アミン樹脂(a1)195部をN-メチル-2-ピロリドン195部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸3部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら20時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、マレイミド樹脂(A1)を70%含有する樹脂溶液を得た。
(合成例6)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、ジメチルスルホキシド720質量部、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1水酸基当量263g/eq.軟化点65℃)540質量部、アリルクロライド(純度99% 東京化成工業製)280質量部(フェノール樹脂の水酸基1モル当量に対し、1.2モル当量)を加え、27℃に昇温し溶解させた。次いで46.3質量%水酸化ナトリウム水溶液134質量部を、内温35℃を超えないようにゆっくり加え、その後にフレーク状の水酸化ナトリウム(純度 99% 東ソー製)70.0質量部(フェノール樹脂の水酸基1モル当量に対し、1.1モル当量)を60分かけて添加した。そのまま30~35℃で4時間、40~45℃で1時間、55~60℃で1時間反応を行った。この際の反応追跡はHPLCを用いて行い、原料フェノール樹脂の消失や、n=1体とn=2体のピークの中間のピークが増大していないことを確認した。
 反応終了後、ロータリーエバポレータにて水やジメチルスルホキシド等を留去した。そして、酢酸30質量部を加えて中和し、メチルイソブチルケトン700質量部を加え、水洗を繰り返し、水層が中性になったことを確認した。その後油層からロータリーエバポレータを用いて、減圧下、窒素バブリングしながら溶剤類を留去することで、n=2.0である式(2)のアリルエーテル基を有するスルホニル化合物(B5)629質量部を得た。
(合成例7)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、ジメチルスルホキシド720質量部、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1水酸基当量263g/eq.軟化点65℃)540質量部、メタリルクロライド(純度99% 東京化成工業製)299質量部(フェノール樹脂の水酸基1モル当量に対し、1.1モル当量)を加え、27℃に昇温し溶解させた。次いで46.3質量%水酸化ナトリウム水溶液134質量部を、内温35℃を超えないようにゆっくり加え、その後にフレーク状の苛性ソーダ(純度 99% 東ソー製)70.0質量部(フェノール樹脂の水酸基1モル当量に対し、1.1モル当量)を60分かけて添加した。そのまま30~35℃で4時間、40~45℃で1時間、55~60℃で1時間反応を行った。
 反応終了後、ロータリーエバポレータにて水やジメチルスルホキシド等を留去した。そして、酢酸30質量部を加えて中和し、メチルイソブチルケトン700質量部を加え、水洗を繰り返し、水層が中性になったことを確認した。その後油層からロータリーエバポレータを用いて、減圧下、窒素バブリングしながら溶剤類を留去することで、n=2.0である式(2)のメタリルエーテル基を有するスルホニル化合物(B6)630質量部を得た。
(実施例1)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1)35重量部を配合し、150℃で混練し、その後、硬化促進剤であるジクミルパーオキサイド(DCP 化薬アクゾ製 C1)を2重量部配合し、80℃で混練し、マレイミド樹脂組成物を得た。得られたマレイミド樹脂組成物の発熱挙動を観察するためにMDSC測定を行った。結果を表1に示す。
(実施例2)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、合成例1から得られたスルホニウム化合物(B2)35重量部を配合し、150℃で混練し、その後、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、80℃で混練し、マレイミド樹脂組成物を得た。得られたマレイミド樹脂組成物の発熱挙動を観察するためにMDSC測定を行った。結果を表1に示す。
(比較例1)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、o,o’-ジアリルビスフェノールA(b1)35重量部を配合し、150℃で混練し、その後、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、80℃で混練し、マレイミド樹脂組成物を得た。得られたマレイミド樹脂組成物の発熱挙動を観察するためにMDSC測定を行った。結果を表1に示す。
・硬化発熱:モジュレイテッドDSC(MDSC)測定による硬化発熱開始温度、硬化発熱ピークトップ温度及び発熱終了温度の測定
 解析条件
 解析モード:MDSC測定 
 測定器:Q2000 TA-instruments社製、
 昇温速度:3℃/min
Figure JPOXMLDOC01-appb-T000009
 表1から、ビスA型アリルフェノールを用いたマレイミド樹脂組成物と比較して、本発明のマレイミド樹脂組成物は200℃以下の比較的低温で硬化終了しており、優れた硬化性を有することがわかる。このことから、電子吸引性のスルホニル基が隣接する炭素に共役にすることで、アルケニル、アルケニルエーテル基の硬化性を付与したものと考えられる。また、発熱開始温度が、100℃以上であることから、100℃以上での混練時の粘度増加を抑制できるものと考えられる。
 また、175℃でのゲルタイムが30秒程度であることから、封止材で使用されているエポキシ樹脂/フェノール硬化系と同等の硬化性を有していることから、硬化サイクルの速さが特に要求される半導体封止材料分野でも使用できるものと考えられる。
(実施例3)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、2,2’-ジアリル-4,4’-スルホニルジフェノール( B1)35重量部を配合し、150℃で混練し、その後、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、80℃で混練し、本発明のマレイミド樹脂組成物を得た。得られたマレイミド樹脂組成物を180℃×1hでの硬化条件で硬化サンプルを作成し、硬化性を評価するためゲル分率を測定した。結果を表2に示す。
(実施例4~14と比較例2~3)
 実施例3において、マレイミド樹脂(A1)、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1)、ジクミルパーオキサイド(C1)を、表2に記載の素材/配合量に変えた以外は同様の方法によりマレイミド樹脂組成物を得た。得られたマレイミド樹脂組成物を180℃×1hでの硬化条件で硬化サンプルを作成し、硬化性を評価するためゲル分率を測定した。結果を表2に示す。
 ゲル分率(%):得られた硬化物を50~100μmに粉砕し、粉砕物を5gを還流しているメチルエチルケトン中に約8時間放置し、抽出し、その後、を80℃で3時間、120℃で5時間乾燥し、重量を測定した。
 ゲル分率%=(メチルエチルケトン処理後の重量(g)/5g)×100
 ゲルタイム:175℃のオーブンの上でのゲル化までの時間を測定
 トランスファー成形性:175℃、20分以内に金型から硬化樹脂を取り出せること。
Figure JPOXMLDOC01-appb-T000010
 表2から、比較用のビスA型のアリルフェノールに比べて、ビスS型のアルケニル基の反応性は、構造の異なるマレイミド樹脂でも優れており、更に、フェノール以外の置換基を有しても、優れた反応性を有することがわかる。
 また、175℃でのゲルタイムが30秒程度であることから、封止材で使用されているエポキシ樹脂/フェノール硬化系と同等の硬化性を有していることから、硬化サイクルの速さが特に要求される半導体封止材料分野でも使用できるものと考えられる。
(実施例15)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1)を35重量部、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、二本ロールにて混練し、175℃のトランスファー成形し、200℃×2hの硬化条件で硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表3に示す。
(実施例16)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、合成例1から得られたスルホニウム化合物(B2)を35重量部、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、二本ロールにて混練し、175℃のトランスファー成形し200℃×2hの硬化条件で硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表3に示す。
(実施例17)
 合成例5で得られたマレイミド樹脂(A1)を64重量部、合成例1から得られたスルホニウム化合物(B2)を36重量部配合し、二本ロールにて混練し、175℃のトランスファー成形し200℃×2hの硬化条件で硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表3に示す。
(比較例4)
 EPPN-502H(日本化薬製 エポキシ当量169g/eq.軟化点67.5℃EP1)を61部、フェノールノボラック(P-2 明和化成製 H-1、水酸基当量106g/eq.)38重量部、トリフェニルホスフィン(TPP純正化学 試薬)1重量部を配合し、ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をタブレット化後、トランスファー成形で樹脂成形体を調製し、硬化条件160℃×2h+180℃×6hで硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表3に示す。
(比較例5)
 EOCN-1020-55(日本化薬製エポキシ当量194g/eq. 軟化点54.8℃ EP2)を65部、フェノールノボラック(P-2 明和化成製 H-1、水酸基当量106g/eq.)34重量部、TPP(純正化学 試薬)1重量部を配合しミキシングロールで混ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をタブレット化後、トランスファー成形で樹脂成形体を調製し、硬化条件160℃×2h+180℃×6hで硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表3に示す。
 得られた硬化物を下記の測定を実施した。
・DMA
 測定項目:30℃、200℃、250℃の貯蔵弾性率、
     :ガラス転移温度(tanδ最大時の温度)
 測定方法:動的粘弾性測定器TA-instruments製、Q-800
 測定温度範囲:30℃~350℃
 温速度:2℃/min
 試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
・誘電率及び誘電正接:
 測定方法:空洞共振機 Agilent Technologies社製
 K6991に準拠して1GHzにおいて測定
・曲げ試験
 測定項目:曲げ強度、曲げ弾性率
 測定方法:JIS-6481(曲げ強さ)に準拠し30℃で測定。
・熱分解測定:
 測定方法:TG-DTA6220 SII社製
 測定温度範囲:30~580℃
 昇温速度:10℃/min
 Td1:1%重量減少温度
 Td5:5%重量減少温度
Figure JPOXMLDOC01-appb-T000011
 表3から、本発明のマレイミド樹脂組成物の硬化物は、エポキシ樹脂と同様の硬化条件で成形可能であり、また、得られた硬化物は高耐熱エポキシ樹脂を用いた場合と比較して、Tgが約100℃高く、機械強度、高弾性率、低誘電特性に優れ、更に室温及び高温での弾性率変化が少ないことがわかる。
(実施例18)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1)を35重量部、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部を、100重量部のMEKに溶かし、ワニスを作成した。作成したワニスを厚み0.1mmのガラスクロス(有沢製作所製 品番1031 NT-105 S640)に含浸し、120℃×5minで乾燥させることでプリプレグを作成した。その後、銅箔(CF-T9LK-STD-18,福田金属箔粉工業株式会社製)にプリプレグを20枚を挟み、減圧下、圧力1.0MPa、180℃×2hで熱プレスし、厚み2mmの銅箔プリント配線板を作成し、銅箔の90℃ピール強度を測定し、表4に示した。
(比較例6)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、o,o’-ジアリルビスフェノールA(b1)を35重量部を配合し、150℃で混練し、その後、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部を添加し、100重量部のMEKに溶かし、ワニスを作成した。作成したワニスを厚み0.1mmのガラスクロス(有沢製作所製 品番1031 NT-105 S640)に含浸し、120℃×5minで乾燥させることでプリプレグを作成した。その後、銅箔(CF-T9LK-STD-18,福田金属箔粉工業株式会社製)にプリプレグを20枚を挟み、減圧下、圧力1.0MPa、230℃×2hで熱プレスし、厚み2mmの銅箔プリント配線板を作成し、銅箔の90℃ピール強度を測定し、表4に示した。
90℃ピール強度測定方法:JIS C 6481に準拠した。
Figure JPOXMLDOC01-appb-T000012
 表4からわかるように、ビスA型アリルフェノールと比較してビスS型アリルフェノールは優れた銅箔密着性を有することから、優れた接着材であることがわかった。
(実施例19)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、2,2’-ジアリル-4,4’-スルホニルジフェノール(B1)を35重量部、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、二本ロールにて混練し、ミキシングロールを用いて均一に混合・混練し、マレイミド樹脂組成物を得た。このマレイミド樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたマレイミド樹脂組成物をトランスファー成型(175℃×60秒)し、更に175℃のトランスファー成形し200℃×2hの硬化条件で硬化サンプルを作成し、評価用試験片を得た。下記の測定条件において、難燃性試験を行った。評価結果も表5に示す。
(実施例20)
 マレイミド化合物(BMI-2300、大和化成工業(株)製)を54重量部、合成例2で得られたスルホニウム化合物(B3)を44重量部を配合し、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、二本ロールにて混練し、ミキシングロールを用いて均一に混合・混練し、マレイミド樹脂組成物を得た。このマレイミド樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたマレイミド樹脂組成物をトランスファー成型(175℃×60秒)し、更に175℃のトランスファー成形し200℃×2hの硬化条件で硬化サンプルを作成し、評価用試験片を得た。下記の測定条件において、難燃性試験を行った。評価結果も表5に示す。
(実施例21)
 マレイミド化合物(BMI-1000、大和化成工業(株)製)を56重量部、合成例2で得られたスルホニウム化合物(B3)42重量部を配合し、硬化促進剤であるジクミルパーオキサイド(C1)を2重量部配合し、二本ロールにて混練し、ミキシングロールを用いて均一に混合・混練し、マレイミド樹脂組成物を得た。このマレイミド樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたマレイミド樹脂組成物をトランスファー成型(175℃×60秒)し、更に175℃のトランスファー成形し200℃×2hの硬化条件で硬化サンプルを作成し、評価用試験片を得た。下記の測定条件において、難燃性試験を行った。評価結果も表5に示す。
(比較例7)
 合成例5で得られたマレイミド樹脂(A1)を63重量部、o,o’-ジアリルビスフェノールA(b1)35重量部を配合し、硬化促進剤であるジクミルミルパーオキサイド(C1)を2重量部配合し、二本ロールにて混練し、ミキシングロールを用いて均一に混合・混練し、マレイミド樹脂組成物を得た。このマレイミド樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物をトランスファー成型(175℃×60秒)し、更に175℃のトランスファー成形し200℃×2hの硬化条件で硬化サンプルを作成し、評価用試験片を得た。下記の測定条件において、難燃性試験を行った。評価結果も表5に示す。
難燃性試験
・難燃性:UL94に準拠して行った。ただし、サンプルサイズは幅12.5mm×長さ150mmとし、厚さは0.8mmで試験を行った。
・残炎時間:5個1組のサンプルに10回接炎したあとの残炎時間の合計
Figure JPOXMLDOC01-appb-T000013
 表5からわかるように、ビスA型アリルフェノールと比較してビスS型アリルフェノールは優れた難燃性を示す事がわかった。ハロゲンやアンチモン化合物等の難燃剤を用いなくとも、難燃を示すことが明らかである。
(実施例22)
 前述の実施例18のマレイミド樹脂組成物において、表面が金属の銅製の図1に示す96Pin QFP(チップサイズ:7×7×厚み0.1mm、パッケージサイズ:14×14×厚み1.35mm)リードフレーム((株)健正堂製:日本化薬特注品)を作成した。まず、リードフレームをトランスファー成型金型にセットし、上記同様にしてタブレット化したマレイミド樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後180℃×2時間の条件で硬化の96Pin QFPの封止材(図2)を作成した。
 実施例22より、本発明のマレイミド樹脂組成物は、従来のエポキシ樹脂組成物等と同様の硬化過程でリードフレームを封止することが確認できる。このことから、半導体封止材料へ適用できることがわかる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2016年8月5日付で出願された日本国特許出願(特願2016-154824)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明のマレイミド樹脂組成物、プリプレグ及びその硬化物は、高信頼性半導体封止材用途、電気・電子部品絶縁材料用途、及び積層板(プリント配線ガラス繊維強化複合材料)やCFRP(炭素繊維強化複合材料)を始めとする各種複合材料用途、各種接着剤用途、各種塗料用途、構造用部材等に用いることができる。

Claims (9)

  1. [規則91に基づく訂正 31.08.2018] 
     マレイミド化合物(A)、及び、下記式(1)で表される構造を分子中に含むスルホニル化合物(B)を含むマレイミド樹脂組成物。
    Figure WO-DOC-FIGURE-1
    (式中、複数のRは、それぞれ独立して、アルケニル基、アルケニルエーテル基、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表し、Rの少なくとも1つは、アルケニル基又はアルケニルエーテル基である。aは1~4の整数を表す。)
  2.  前記マレイミド化合物(A)が芳香族マレイミド化合物及び脂肪族マレイミド化合物から選ばれる少なくともいずれかである請求項1に記載のマレイミド樹脂組成物。
  3.  前記スルホニル化合物(B)が下記式(2)で表されるスルホニル化合物である請求項1又は請求項2に記載のマレイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、複数のRは、それぞれ独立して、アルケニル基、アルケニルエーテル基、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~4のフルオロアルキル基、ヒドロキシル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基、第3級炭素構造を有する基、環状アルキル基、グリシジル基を表し、Rの少なくとも1つは、アルケニル基又はアルケニルエーテル基である。Xはそれぞれ独立して水素原子またはグリシジル基を表す。aは1~4の整数を表す。nは0~10であり、その平均値は0~10の実数を表す。)
  4.  さらに、ラジカル重合開始剤(C)を含む請求項1~請求項3のいずれか一項に記載のマレイミド樹脂組成物。
  5.  前記ラジカル重合開始剤(C)が有機過酸化物及びアゾ化合物から選ばれる少なくともいずれかである請求項4に記載のマレイミド樹脂組成物。
  6.  請求項1~請求項5のいずれか一項に記載のマレイミド樹脂組成物をシート状の繊維基材に保持し、半硬化状態にあるプリプレグ。
  7.  請求項1~請求項5のいずれか一項に記載のマレイミド樹脂組成物の硬化物。
  8.  請求項6に記載のプリプレグの硬化物。
  9.  請求項1~請求項5のいずれか一項に記載のマレイミド樹脂組成物を用いて封止した半導体装置。
PCT/JP2017/028091 2016-08-05 2017-08-02 マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置 WO2018025921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018531955A JP6935402B2 (ja) 2016-08-05 2017-08-02 マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置
CN201780048792.1A CN109563344A (zh) 2016-08-05 2017-08-02 马来酰亚胺树脂组合物、预浸料、其硬化物及半导体装置
KR1020197003403A KR20190035731A (ko) 2016-08-05 2017-08-02 말레이미드 수지 조성물, 프리프레그, 그 경화물 및 반도체 장치
US16/322,514 US20190203048A1 (en) 2016-08-05 2017-08-02 Maleimide Resin Composition, Prepreg, Cured Product Of Same And Semiconductor Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-154824 2016-08-05
JP2016154824 2016-08-05

Publications (2)

Publication Number Publication Date
WO2018025921A1 WO2018025921A1 (ja) 2018-02-08
WO2018025921A9 true WO2018025921A9 (ja) 2018-11-15

Family

ID=61074168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028091 WO2018025921A1 (ja) 2016-08-05 2017-08-02 マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置

Country Status (6)

Country Link
US (1) US20190203048A1 (ja)
JP (1) JP6935402B2 (ja)
KR (1) KR20190035731A (ja)
CN (1) CN109563344A (ja)
TW (1) TW201815946A (ja)
WO (1) WO2018025921A1 (ja)

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157424A (en) 1980-05-06 1981-12-04 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS57153045A (en) 1981-03-19 1982-09-21 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS57153046A (en) 1981-03-19 1982-09-21 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS6250312A (ja) * 1985-08-30 1987-03-05 Sumitomo Bakelite Co Ltd 耐熱性熱硬化性樹脂組成物
JPH02621A (ja) * 1987-11-06 1990-01-05 Shell Internatl Res Maatschappij Bv 2,2−ビス−〔3−(アリルもしくはプロペニル)−4−ヒドロキシフエニル〕化合物のグリシジルエーテルおよびそれから得られる樹脂
JPH01306405A (ja) * 1988-06-03 1989-12-11 Hitachi Ltd オルトジアリルビスシアナート系化合物、及び、この化合物を含む組成物
JP3250044B2 (ja) 1991-06-03 2002-01-28 バンティコ アクチエンゲゼルシャフト 改良された加工特性を備える貯蔵安定なポリイミドプレプレグ
JP2001302746A (ja) * 2000-04-21 2001-10-31 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2002072471A (ja) * 2000-08-28 2002-03-12 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP4259834B2 (ja) * 2002-09-19 2009-04-30 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
TW200602427A (en) * 2004-03-30 2006-01-16 Taiyo Ink Mfg Co Ltd Thermosetting resin composition and multilayered printed wiring board comprising the same
CN100467527C (zh) * 2005-11-29 2009-03-11 西北工业大学 碳纤维增强双马来酰亚胺树脂基复合材料及其制备方法
US20110224332A1 (en) * 2009-06-05 2011-09-15 He Yufang Thermosetting resin composition and use thereof
CN101613531B (zh) * 2009-07-02 2011-09-28 苏州大学 一种树脂膜熔渗工艺用树脂及其制备方法
CN101652026B (zh) * 2009-08-31 2011-03-30 苏州生益科技有限公司 一种制备覆铜板的方法
JP5655400B2 (ja) * 2010-07-09 2015-01-21 Dic株式会社 熱硬化性樹脂組成物およびプリント配線板用層間接着フィルム
JP5494341B2 (ja) * 2010-08-12 2014-05-14 Dic株式会社 熱硬化型樹脂組成物、その硬化物およびプリント配線板用層間接着フィルム
JP2012201816A (ja) 2011-03-25 2012-10-22 Mitsubishi Plastics Inc ポリマレイミド系組成物
CN102304343B (zh) * 2011-08-19 2013-09-18 腾辉电子(苏州)有限公司 一种用于覆铜箔基板的胶液及其制备方法
CN102276837B (zh) * 2011-08-19 2013-01-02 慧智科技(中国)有限公司 无卤含磷的阻燃聚酰亚胺树脂组合物及其制备方法
JP5842664B2 (ja) * 2012-02-23 2016-01-13 日立金属株式会社 熱硬化性接着剤組成物並びにそれを用いた耐熱接着フィルム、積層フィルム、配線フィルム及び多層配線フィルム
CN103665864B (zh) * 2012-09-21 2016-06-15 腾辉电子(苏州)有限公司 一种用于覆铜箔基板的胶液及其制备方法
CN103131008B (zh) * 2013-01-22 2016-05-25 广东生益科技股份有限公司 一种双马来酰亚胺预聚物及其合成方法
CN103725003B (zh) * 2013-12-30 2016-02-03 桂林电器科学研究院有限公司 一种具有高耐湿热性能的改性双马来酰亚胺树脂组合物及其制备方法
CN104140675B (zh) * 2014-07-23 2016-06-08 苏州大学 一种环状对苯二甲酸丁二醇酯齐聚物/热固性树脂及其制备方法
CN104356388B (zh) * 2014-11-25 2017-03-29 苏州大学 一种阻燃双马来酰亚胺树脂及其制备方法
CN104448823A (zh) * 2014-11-25 2015-03-25 华东理工大学 一种阻燃性双马来酰亚胺树脂组合物及其制备方法
CN104861652B (zh) * 2015-05-28 2017-05-10 苏州生益科技有限公司 一种热固性树脂组合物及使用其制作的半固化片及层压板
CN104877134B (zh) * 2015-05-28 2017-04-05 苏州生益科技有限公司 无卤阻燃聚酰亚胺树脂组合物及使用其制作的半固化片及层压板
CN105418923B (zh) * 2016-01-23 2018-01-16 苏州大学 一种改性双马来酰亚胺树脂及其制备方法

Also Published As

Publication number Publication date
US20190203048A1 (en) 2019-07-04
JPWO2018025921A1 (ja) 2019-06-20
JP6935402B2 (ja) 2021-09-15
WO2018025921A1 (ja) 2018-02-08
TW201815946A (zh) 2018-05-01
KR20190035731A (ko) 2019-04-03
CN109563344A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
KR20210056996A (ko) 말레이미드 수지, 경화성 수지 조성물 및 그 경화물
JP6789936B2 (ja) エポキシ樹脂組成物およびその硬化物
KR102314333B1 (ko) 열경화성 수지 조성물, 프리프레그, 및 그 경화물
KR20210056997A (ko) 말레이미드 수지, 경화성 수지 조성물 및 그 경화물
JP6515255B1 (ja) 硬化性樹脂組成物、ワニス、プリプレグ、硬化物、及び、積層板または銅張積層板
JP7160151B1 (ja) ポリマレイミド化合物、硬化性組成物、硬化物、プリプレグ、回路基板、ビルドアップフィルム、半導体封止材及び半導体装置。
JP2017101152A (ja) 変性ポリイミド樹脂組成物およびその製造方法、並びにそれを用いたプリプレグおよび積層板
TW202219116A (zh) 異氰酸酯改質聚醯亞胺樹脂、樹脂組成物及其硬化物
WO2018123806A1 (ja) アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物
WO2023032534A1 (ja) アリルエーテル化合物、樹脂組成物及びその硬化物
JP6429366B2 (ja) 硬化性マレイミド樹脂、硬化性樹脂組成物およびその硬化物
WO2019198607A1 (ja) アルケニル基含有化合物、硬化性樹脂組成物及びその硬化物
WO2018025921A9 (ja) マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置
WO2018199157A1 (ja) マレイミド樹脂組成物、プリプレグ及びその硬化物
JP7198419B2 (ja) 硬化性樹脂組成物
TWI754743B (zh) 含甲基烯丙基之樹脂、硬化性樹脂組成物及其硬化物
JP7191275B1 (ja) 熱硬化性樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置
TW202248264A (zh) 環氧樹脂混合物及其製造方法、環氧樹脂組成物及其硬化物
TW202330685A (zh) 環氧樹脂及其製造方法、硬化性樹脂組成物、硬化物及碳纖維強化複合材料
TW202307055A (zh) 環氧樹脂混合物、環氧樹脂組成物及其硬化物
TW202330694A (zh) 環氧樹脂、硬化性樹脂組成物、硬化物、及碳纖維強化複合材料
KR20180013133A (ko) 변성 에폭시 수지 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531955

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003403

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837023

Country of ref document: EP

Kind code of ref document: A1