WO2018020880A1 - 電解質濃度測定装置 - Google Patents

電解質濃度測定装置 Download PDF

Info

Publication number
WO2018020880A1
WO2018020880A1 PCT/JP2017/021856 JP2017021856W WO2018020880A1 WO 2018020880 A1 WO2018020880 A1 WO 2018020880A1 JP 2017021856 W JP2017021856 W JP 2017021856W WO 2018020880 A1 WO2018020880 A1 WO 2018020880A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
bottle
internal standard
unit
standard solution
Prior art date
Application number
PCT/JP2017/021856
Other languages
English (en)
French (fr)
Inventor
淳史 岸岡
哲義 小野
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US16/319,839 priority Critical patent/US10768136B2/en
Priority to CN202011559074.0A priority patent/CN112666234B/zh
Priority to EP17833890.1A priority patent/EP3492913B1/en
Priority to CN201780040517.5A priority patent/CN109416338B/zh
Priority to EP20215351.6A priority patent/EP3828535A1/en
Publication of WO2018020880A1 publication Critical patent/WO2018020880A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1032Dilution or aliquotting

Definitions

  • the present invention relates to an electrolyte concentration measuring device for measuring an electrolyte concentration in a liquid.
  • An ion-selective electrode (ISE: Ion Selective Electrode) is capable of quantifying ions to be measured in a sample by bringing a sample solution into contact with a detection unit and measuring a potential difference with a reference electrode. Because of this simplicity, it is widely used in the analytical field.
  • the flow type ion selective electrode is provided with a detection unit in the flow path through which the sample liquid flows, and the ion concentration of a plurality of samples can be continuously determined.
  • flow-type electrolyte concentration measuring devices equipped with flow-type ion-selective electrodes are installed in biochemical automated analyzers, etc., where the concentration of electrolytes in samples such as serum and urine can be measured with high accuracy and high throughput. It is characterized by analysis.
  • a flow-type electrolyte concentration measurement device usually analyzes multiple ions (sodium ion, potassium ion, calcium ion, chloride ion, etc.) simultaneously, so multiple ion-selective electrodes (ISE: Ion : Selective) corresponding to the ions to be detected Electrode) is installed.
  • ISE Ion : Selective
  • these electrodes are consumables. For example, they are used for a few months or thousands of tests and are replaced with new electrodes.
  • reagents are used regularly in the electrolyte concentration measuring apparatus.
  • the type of reagent to be used varies depending on the apparatus configuration, and examples include an internal standard solution that flows before and after sample analysis, a diluted solution that dilutes the sample, and a reference electrode solution.
  • Electrolyte concentration measuring device calibrates using standard solution of known concentration when starting up the device or replacing the electrode, and creates a calibration curve. Calibration is also performed when reagent bottles are replaced or replenished.
  • Patent Document 1 describes a management system that confirms and warns of reagent deterioration due to reagent addition and input error of standard solution concentration value.
  • Patent Document 2 describes a reagent adjusting device that adjusts a reagent having a highly accurate concentration.
  • reagents such as an internal standard solution and a diluent used in the apparatus are supplied in, for example, a 2 L bottle.
  • the bottle needs to be replaced once every several hours when continuously operating.
  • a large-scale inspection center operates many devices side by side, and the device operator is bound by the time schedule for reagent bottle replacement.
  • the internal standard solution is allowed to flow between analyzes, and a minute concentration change affects the analysis value because it is a reagent that serves as an analysis standard. For this reason, it is necessary to recalibrate when replacing the bottle of the same type of reagent. While this reagent bottle replacement and calibration are being performed, the apparatus is downtime, which causes a substantial decrease in analysis throughput. Moreover, since the reagent is heavy, the transportation cost was a burden.
  • the present invention provides an electrolyte concentration measuring apparatus that solves the above-described problems of the prior art and simplifies reagent replenishment.
  • an electrolyte concentration measuring apparatus includes an ion selective electrode, a comparison electrode, and a potential measuring unit, and an internal standard solution or specimen is supplied to the ion selective electrode.
  • a measurement unit that measures a potential difference with the potential measurement unit, a reagent supply unit that supplies a reagent containing an internal standard solution to the measurement unit, and processes the information of the potential difference measured by the measurement unit to process the internal standard solution or the ion concentration of the sample
  • a density value correction / determination unit an output unit that outputs a result determined by the density value correction / determination unit; and a control unit that controls the measurement unit, the recording calculation unit, the density value correction / determination unit, and the output unit.
  • the reagent supply unit is an internal standard solution.
  • a bottle storage unit that stores multiple bottles for each reagent type, and supplies the reagent to the measurement unit by detecting the remaining amount of reagent in each of the multiple bottles stored in the bottle storage unit For a bottle whose remaining amount of reagent is less than a preset amount, a bottle that contains the same type of reagent stored in the bottle storage unit and has a sufficiently larger amount of remaining reagent than the preset amount.
  • It has a bottle switching unit that switches and supplies the reagent to the measurement unit, and the concentration value correction / determination unit switches the bottle that supplies the reagent to the measurement unit among a plurality of bottles containing the same type of reagent in the reagent supply unit
  • the recording operation unit after switching the bottle containing the same type of reagent using the internal standard solution or the ion concentration information of the sample obtained by the recording operation unit before switching the bottle.
  • the ion concentration in the standard solution or specimen obtained was configured to correct.
  • a plurality of bottles of the same kind of reagent can be installed in the apparatus, and the reagent bottles are automatically switched. Reagent bottles can be replaced. Further, by adding a function of automatically preparing the reagent in the apparatus, it is not necessary to replenish the reagent for a longer time. As a result, operator load and equipment downtime can be reduced.
  • FIG. 1 of this invention It is a block diagram which shows the whole structure of the flow type electrolyte concentration measuring apparatus which concerns on Example 1 of this invention. It is a flowchart at the time of starting of the apparatus of the electrolyte concentration measurement in Example 1 of this invention. It is a flowchart at the time of the continuous analysis of the electrolyte concentration measurement in Example 1 of this invention. It is a flowchart at the time of reagent bottle switching of the electrolyte concentration measurement in Example 1 of this invention. It is a flowchart from S301 to S313 which shows the detail of S203 of the flow at the time of apparatus starting demonstrated in FIG. 2A in Example 1 of this invention.
  • the inventors have researched and developed a flow-type electrolyte concentration measurement device to devise a method for reducing the load on the device operator related to reagent supply during continuous operation while maintaining high measurement accuracy.
  • the device of the present invention makes appropriate corrections even for internal standard solutions that have been considered difficult to replace reagent bottles without calibration, since even minute changes in concentration affect analysis values. Therefore, it has been found that the reagent bottle can be automatically switched without calibration.
  • FIG. 1 is a schematic diagram illustrating an example of a flow type electrolyte concentration measuring apparatus 100 according to the present embodiment.
  • the flow-type electrolyte concentration measuring apparatus 100 includes a measuring unit 170, a recording calculation unit 172, a concentration value correction / determination unit 173, an output unit 174, a control unit 175, and an input unit 176.
  • the measurement unit 170 includes three types of electrodes, ie, a chloride ion electrode 101, a potassium ion electrode 102, and a sodium ion electrode 103, which constitute the ion selective electrode unit 110, and a comparison electrode 104.
  • the comparison electrode solution is introduced from the comparison electrode solution bottle 161 or 162 into the flow path 1041 of the comparison electrode 104 using the sipper syringe pump 133.
  • the internal standard solution dispensed from the internal standard solution bottle A: 141 or B: 142 or the diluted specimen is introduced into the dilution tank 120 into the flow paths 1011, 1021, and 1031 of the ion selective electrode unit 110.
  • the potential difference (electromotive force) between the comparison electrode 104 and each ion selective electrode 101, 102, 103 is the analysis target in the liquid introduced into the flow path 1011, 1021, 1031 of each ion selective electrode 101, 102, 103. Since it varies depending on the ion concentration, the electromotive force is measured by the potential measuring unit 171, and the ion concentration is calculated by the recording calculation unit 172. Details of the calculation method will be described later.
  • the comparison electrode solution, the internal standard solution, and the dilution solution are constantly used. Therefore, if any reagent is insufficient during the continuous analysis, the analysis cannot be performed.
  • the flow-type electrolyte concentration measuring apparatus 100 includes an internal standard solution bottle switching means 140, a diluent bottle switching means 150, and a comparative electrode liquid bottle switching means 160, each of which is a bottle of the same type of reagent. 141 and 142, 151 and 152, 161 and 162 are installed at the same time, and a switching valve provided with solenoid valves 126, 127, and 128 is provided. With this mechanism, when the reagent in one bottle is insufficient, it can be switched to the other bottle. In addition, while the apparatus is using one of the bottles, the empty bottle can be replaced with a new bottle filled with a reagent at a timing desired by the apparatus operator.
  • the flow-type electrolyte concentration measuring apparatus 100 includes a reagent amount monitoring mechanism that monitors the amount of reagent in each reagent bottle 141, 142, 151, 152, 161, and 162 (in the example shown in FIG. Weight sensors for measuring the weight of the bottles: 143, 144, 153, 154, 163, 164).
  • the weight of the reagent bottle is compared with a preset value, and the weight of the reagent bottle is determined based on the preset weight.
  • the timing of reagent bottle switching is managed by switching to a bottle that contains a sufficient amount of reagent.
  • the reagent amount monitoring mechanism is not limited to the method using the weight sensor, and a liquid level meter that monitors the height of the reagent liquid inside the reagent bottle may be used. Further, the consumption amount of the reagent may be managed by the control unit 175 from the number of analyzes and the operation history of the syringe without providing the reagent amount monitoring mechanism.
  • the solenoid valves 122, 123, 124, 125, 126, 127, and 128 can switch and open and close the flow paths, and appropriately operate according to the direction and timing of introducing the liquid.
  • the solenoid valves 122, 123, 124, 125, 126, 127, and 128 can switch and open and close the flow paths, and appropriately operate according to the direction and timing of introducing the liquid.
  • two reagent bottles of the same kind are installed, but the effect of the present invention is exhibited if there are a plurality of reagent bottles instead of two.
  • the present invention can also be applied to only some of the reagents, not all types of reagents used in the apparatus.
  • a power supply (not shown) is turned on to start up the apparatus (S201), a reagent bottle 141 (internal standard solution bottle A141), a bottle 142 (internal standard solution bottle B142), and a bottle 151 (dilution solution bottle A151).
  • the bottle 152 (dilution liquid bottle B152), the bottle 161 (comparison electrode liquid bottle A161), and the bottle 162 (comparison electrode liquid bottle B162) are installed in the bottle switching means 140, 150, 160, respectively (S202).
  • the diluent pump pump 132 is operated to dilute the dilution liquid in the dilution bottle 151 (bottle 151). Dispensing into the interior of 120 and diluting the known low concentration standard solution at the set ratio D (S301). Meanwhile, the comparison electrode solution is introduced from the comparison electrode solution bottle 161 into the channel 1041 of the comparison electrode 104 (S302). Next, the diluted known low concentration standard solution in the dilution tank is sucked from the sipper nozzle 107 and introduced into the channels 1011, 1021, 1031 of the respective ion selective electrodes 101, 102, 103 (S 303).
  • each potential difference (electromotive force) between each of the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 171 (S304).
  • the vacuum pump 112 is driven, the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (S305).
  • the internal standard solution syringe pump 131 is operated to dispense the internal standard solution in the internal standard solution bottle 141 (bottle 141) from the internal standard solution supply nozzle 109 to the dilution tank 120 (S306).
  • the sipper syringe pump 133 is operated in a state where the pinch valve 105 is closed and the electromagnetic valve 122 is opened, and the comparison electrode solution is introduced from the comparison electrode solution bottle 161 into the channel 1041 of the comparison electrode 104 (S307). .
  • each potential difference (electromotive force) between each ion selective electrode 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 171 (S309).
  • the vacuum pump 112 is driven again, and the remaining liquid in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (S310).
  • a known high-concentration standard solution is dispensed into the dilution tank 120 with a dispensing nozzle (not shown), and then the diluent syringe pump 132 is operated to remove the diluent in the diluent bottle 151 from the diluent supply nozzle 108.
  • the sipper syringe pump 133 is operated to introduce the comparison electrode solution from the comparison electrode solution bottle 161 into the channel 1041 of the comparison electrode 104 (S312). .
  • the pinch valve 105 opened and the electromagnetic valve 128 closed, the diluted known high-concentration standard solution in the dilution tank 120 is sucked from the sipper nozzle 107, and the flow path of each ion selective electrode 101, 102, 103 is drawn. It introduces to 1011, 1021, 1031 (S313).
  • each potential difference (electromotive force) between each of the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 171 (S314).
  • the vacuum pump 112 is driven, the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (S315).
  • the internal standard solution syringe pump 131 is operated to dispense the internal standard solution in the internal standard solution bottle 141 from the internal standard solution supply nozzle 109 to the dilution tank 120 (S316).
  • the sipper syringe pump 133 is operated in a state where the pinch valve 105 is closed and the electromagnetic valve 122 is opened, and the comparison electrode solution is introduced from the comparison electrode solution bottle 161 into the channel 1041 of the comparison electrode 104 (S317). .
  • the internal standard solution in the dilution tank 120 is sucked from the sipper nozzle 107 with the pinch valve 105 opened and the electromagnetic valve 128 closed, and the flow paths 1011, 1021 of the respective ion selective electrodes 101, 102, 103 are sucked.
  • 1031 is filled with the internal standard solution (S318), and in this state, each potential difference (electromotive force) between each ion-selective electrode 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 171 (S319).
  • the vacuum pump 112 is driven again, and the remaining liquid in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (S320).
  • the recording calculation unit 172 calculates the slope sensitivity SL corresponding to the calibration curve using the following calculation formula (S321).
  • E constant potential determined by measurement system, z: valence of ion to be measured, F: Faraday constant, R: gas constant, T: absolute temperature, f: activity coefficient, C: ion concentration
  • the concentration of the internal standard solution is calculated from the slope sensitivity obtained in S203 and the electromotive force of the internal standard solution (S204).
  • the concentration value correction / determination unit 173 determines whether or not the ion concentration of the internal standard solution is within the set concentration range (S205). If within the range, the flow proceeds to the flow of continuous analysis shown in FIG. If it is outside, an alarm is issued (S206). If the concentration of the reagent used in the apparatus is greatly different from the design value, it is considered that the reagent is in an irregular apparatus state, which may affect the analysis accuracy. Therefore, this apparatus has a concentration value correction / determination unit 173. It has.
  • the diluent in the diluent bottle 151 is dispensed into the dilution tank 120 using the syringe pump 132 for diluent, Dilute the sample at the set ratio D.
  • the comparison electrode solution is introduced from the comparison electrode solution bottle 161 into the flow path of the comparison electrode 104.
  • the diluted specimen in the dilution tank 120 is sucked from the sipper nozzle 107 and introduced into the flow paths 1011, 1021, 1031 of the respective ion selective electrodes 101, 102, 103.
  • the reference electrode solution and the diluted specimen come into contact.
  • Each potential difference (electromotive force) between the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 171 (S211).
  • the vacuum pump 112 is operated and the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and exhausted to the waste liquid tank 111, the internal standard liquid in the internal standard liquid bottle 141 is dispensed into the dilution tank 120.
  • the pinch valve 105 is closed and the electromagnetic valve 122 is opened to operate the sipper syringe pump 133 so that the liquid remaining in the flow path 1041 of the comparison electrode 104 is discarded in the waste liquid tank 111 and the comparison electrode liquid A comparison electrode solution is introduced from the bottle 161 into the flow path 1041 of the comparison electrode 104.
  • the internal standard solution in the dilution tank 120 is sucked from the sipper nozzle 107, and each electrode is started in a state where the flow paths 1011, 1021 and 1031 of the ion selective electrodes 101, 102 and 103 are filled with the internal standard solution.
  • the power is measured by the potential measuring unit 171 (S212).
  • the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111.
  • the concentration of the sample is calculated using the following formula (S213).
  • the above calculation formula is basic, and various corrections such as temperature drift and carryover may be added.
  • a refreshing liquid may be introduced into the dilution tank or the channel during the analysis.
  • an electrode exchange detection mechanism detects that the electrodes have been exchanged (S214). ) Perform calibration operation. If the electrode is not replaced, a reagent bottle replacement detection mechanism (not shown) detects whether the reagent bottle to be switched next is installed (S215), and if not installed, an alarm is issued (S216). When this alarm is issued, the apparatus operator takes out an empty bottle and installs a new reagent bottle by the next reagent bottle switching timing.
  • the reagent bottle currently used in the dilution tank 120 for example, the internal standard solution in the internal standard solution bottle A141 (bottle 141) is dispensed.
  • the comparison electrode solution is introduced from the comparison electrode solution bottle A161 into the flow path 1041 of the comparison electrode 104.
  • the internal standard solution in the dilution tank 120 is sucked from the sipper nozzle 107, and each ion selective electrode 101 is filled with the internal standard solution in the flow paths 1011, 1021, 1031 of the respective ion selective electrodes 101, 102, 103. , 102, 103 and the reference electrode 104 are measured by the potential measuring unit 171 (S231).
  • the vacuum pump 112 is operated to suck up the liquid remaining in the dilution tank with the vacuum suction nozzle 106 and discard it in the waste liquid tank 111.
  • the solenoid valve is switched so that the reagent is supplied from a new bottle (S232), and the liquid in the supply channel is replaced (S233).
  • the internal standard solution in the internal standard solution bottle B142 is dispensed into the dilution tank.
  • the comparison electrode solution is introduced into the flow path of the comparison electrode 104 from the comparison electrode solution bottle B162.
  • each ion selective electrode 101 is filled with the channels 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103 with the internal standard solution.
  • 102, 103 and the reference electrode 104 are measured by the potential measuring unit 171 (S234).
  • the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded into the waste liquid tank 111.
  • the concentration value correction / determination unit 173 calculates the concentration value of the internal standard solution using the following equation, determines whether there is an abnormality in the concentration, and corrects the concentration value of the internal standard solution (S235). .
  • the slope sensitivity SL uses the value calculated by the equation (Equation 1).
  • This concentration correction enables accurate correction because the reagent after switching is measured by the ion selection electrode itself used for the analysis of the specimen.
  • the above concentration correction can also be calculated from the slope sensitivity at the time of calibration and the value of the electromotive force when measuring a standard solution with a known concentration.
  • the reagents may be switched one by one instead of three.
  • the flow-type electrolyte concentration measuring device can absorb some concentration errors between the reagent bottles, so that the reagent bottles can be automatically switched and the load on the operator and the downtime of the device can be reduced. Can do.
  • a flow type electrolyte concentration measuring apparatus 400 according to the second embodiment of the present invention will be described with reference to FIG.
  • the flow type electrolyte concentration measuring apparatus 400 in this embodiment is an internal standard solution preparation means 440, a diluting liquid preparation means 450, and a comparative electrode liquid preparation means instead of the reagent bottle switching means 140, 150, 160 described in the first embodiment. 460. Parts having the same configurations as those of the first embodiment are denoted by the same numbers.
  • the internal standard solution preparation means 440 is provided with an internal standard solution preparation container A441 and an internal standard solution preparation container B442, and is provided with a drug substance supply means 448 for supplying the drug substance 447.
  • a pure water supply pump 481 for introducing pure water into each preparation container, stirring mechanisms 443 and 444 for stirring and mixing the drug substance 447 and pure water, and a switching valve (solenoid valve 421, preparation container A and preparation container B). 422, 423).
  • the dilution liquid preparation means 450 and the comparison electrode liquid preparation means 460 also have the same mechanism, a dilution drug substance supply means 458 for supplying the diluted drug substance 457, and a comparison electrode drug substance supply means 468 for supplying the comparison electrode liquid drug 467. Yes.
  • the flow-type electrolyte concentration measuring apparatus 400 in this embodiment can automatically prepare a reference electrode solution, an internal standard solution, and a diluted solution, which are reagents used regularly in the device, during continuous analysis. While conducting a continuous analysis using the reagent in the preparation container A441, if a new reagent is prepared in the other internal standard solution preparation container B442 and the amount of the reagent in the internal standard solution preparation container A441 is insufficient, the internal standard solution preparation container It is automatically switched to B442, the density correction is automatically performed, and the analysis can be continued. The same applies to the diluent preparation unit 450 and the comparison electrode solution preparation unit 460. Thereby, the interval of reagent replenishment can be made much longer than that of the conventional apparatus. Therefore, the device operator may replenish the drug substance at the timing of electrode replacement, for example.
  • a reagent amount monitoring mechanism for monitoring the amount of reagent in each reagent container (in the example shown in FIG. 4, a weight sensor for measuring the weight of each reagent bottle: 445, 446, 455, 456, 465, 466), and the timing of reagent container switching is managed by comparing the measured weight of each reagent bottle with a preset value.
  • the reagent amount monitoring mechanism is not limited to the method using the weight sensor, and a liquid level meter that monitors the height of the reagent liquid inside the reagent bottle may be used.
  • the consumption amount of the reagent may be managed by the control unit 475 based on the number of analyzes and the operation history of the syringe without providing the reagent amount monitoring mechanism.
  • the control unit 475 in the flow type electrolyte concentration measuring apparatus 400 in the present embodiment, two reagent preparation containers of the same type are installed, but the effect of the present invention is exhibited if there are not two but plural.
  • the present invention can also be applied to only some of the reagents, not all types of reagents used in the apparatus.
  • the apparatus is started up (S501), and reagent preparation is started (S502).
  • the internal standard solution, the diluting solution, and the comparison electrode solution are respectively prepared with priority given to the preparation container A, and preparation in the preparation container B is started as soon as it is finished.
  • the drug substance 447 is charged into the preparation container A441 using the drug substance supply means 448.
  • the internal standard solution is prepared by quantitatively supplying pure water to the preparation container A441 using the pure water supply pump 481 while being stirred by the stirring means 443. At this time, it is important that the concentration in the container is uniform without any dissolution of the drug substance.
  • the specific operation of S503 and S504 will be described.
  • the dilution liquid in the dilution liquid preparation container A451 is dispensed into the dilution tank using the syringe pump for dilution liquid and set.
  • the known low-concentration standard solution is diluted with the ratio D (corresponding to S301 described in the flowchart of FIG. 3 in Example 1, and the corresponding relationship with each step of the flowchart of FIG. 3 is shown below).
  • the comparison electrode solution is introduced from the comparison electrode solution container A461 into the flow path of the comparison electrode 104 (corresponding to S302).
  • the diluted known low-concentration standard solution in the dilution tank is sucked from the sipper nozzle and introduced into the channels 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103 (corresponding to S303).
  • the reference electrode solution and the diluted known low concentration standard solution come into contact.
  • Each potential difference (electromotive force) between the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 471 (corresponding to S304).
  • the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (corresponding to S305), and then the internal standard liquid in the internal standard liquid preparation container A441 is placed in the dilution tank 120. Dispensing (corresponding to S306).
  • the comparison electrode solution is introduced from the comparison electrode solution preparation container A461 into the channel 1041 of the comparison electrode 104 (corresponding to S307).
  • each potential difference (electromotive force) between each of the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 471 (corresponding to S309).
  • the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (corresponding to S310), and then a known high concentration standard solution is diluted by a dispensing nozzle (not shown).
  • a dispensing nozzle not shown.
  • the diluent in the diluent preparation container A451 is dispensed into the dilution tank 120 using the diluent syringe pump 132, and the known high-concentration standard solution is diluted at the set ratio D (in S311). Correspondence).
  • the comparison electrode solution is introduced from the comparison electrode solution preparation container A461 into the flow path of the comparison electrode 104 (corresponding to S312).
  • the diluted known high-concentration standard solution in the dilution tank 120 is sucked from the sipper nozzle, and the channels 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103 are collected. (Corresponding to S313).
  • the reference electrode solution and the diluted known high concentration standard solution are in contact.
  • Each potential difference (electromotive force) between each of the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 471 (corresponding to S314).
  • the liquid remaining in the dilution tank is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (corresponding to S315), and then the internal standard liquid in the internal standard liquid preparation container A441 is stored in the dilution tank 120. Are dispensed (corresponding to S316). Meanwhile, the comparison electrode solution is introduced from the comparison electrode solution preparation container A461 into the flow path of the comparison electrode 104 (corresponding to S317).
  • the internal standard solution in the dilution tank 120 is sucked from the sipper nozzle 107, the flow paths of the ion selective electrodes 101, 102, 103 are filled with the internal standard solution (corresponding to S318), and in this state, each ion selective electrode 101, Each potential difference (electromotive force) between 102 and 103 and the comparison electrode 104 is measured by the potential measuring unit 471 (S319). Further, the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111 (corresponding to S320).
  • the recording calculation unit 472 calculates the slope sensitivity SL corresponding to the calibration curve using the following calculation formula (corresponding to S321).
  • Slope sensitivity SL (EMFH-EMFL) / (LogCH-LogCL) (Equation 8) SL: slope sensitivity
  • EMFH measurement electromotive force of known high concentration standard solution
  • EMFL measurement electromotive force of known low concentration standard solution
  • CH known concentration value of high concentration standard solution
  • CL known concentration value of low concentration standard solution This is called calibration.
  • E constant potential determined by measurement system, z: valence of ion to be measured, F: Faraday constant, R: gas constant, T: absolute temperature, f: activity coefficient, C: ion concentration
  • the concentration value correction / determination unit 473 determines whether or not the ion concentration of the internal standard solution is within the set concentration range (S505). If within the range, the flow proceeds to the flow of continuous analysis shown in FIG. If it is outside, an alarm is issued (S506), the reagent mixed in the other preparation container is switched to S503, and the calibration is performed again. If the reagent concentration is significantly different from the design value, it may be an irregular device condition such as a failure of the reagent preparation mechanism, which may affect the analysis accuracy. A portion 473 is provided.
  • the diluent in the diluent preparation container A451 is dispensed into the dilution tank 120 using the syringe pump 132 for diluent. Dilute the sample at the set ratio D.
  • the comparison electrode solution is introduced into the flow path of the comparison electrode 104 from the comparison electrode solution preparation container A461.
  • the diluted specimen in the dilution tank 120 is sucked from the sipper nozzle 107 and introduced into the flow paths 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103.
  • the reference electrode solution and the diluted specimen come into contact.
  • Each potential difference (electromotive force) between the ion selective electrodes 101, 102, 103 and the comparison electrode 104 is measured by the potential measuring unit 471 (S511).
  • the internal standard liquid in the internal standard liquid preparation container A441 is dispensed into the dilution tank 120.
  • the comparison electrode solution is introduced into the channel 1041 of the comparison electrode 104 from the comparison electrode solution preparation container A461.
  • the internal standard solution in the dilution tank 120 is sucked from the sipper nozzle 107 and the electromotive force of each electrode is measured with the internal standard solution filled with the channels 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103.
  • the measurement is performed by the unit 471 (S512). Further, the liquid remaining in the dilution tank 120 is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111.
  • the above calculation formula is basic, and various corrections such as temperature drift and carryover may be added. Moreover, you may perform operation for refreshing a dilution tank and a flow path in the middle of an analysis.
  • an electrode exchange detection mechanism detects that the electrodes have been exchanged (S514). ) Perform calibration operation. If the electrodes are not exchanged, the remaining amount in the reagent preparation container is confirmed by a reagent amount monitoring mechanism (not shown) (S515). If the remaining amount of the reagent is sufficient, the sample is continuously analyzed, and if it is insufficient, the reagent preparation container is switched. Here, the operation at the time of switching the reagent preparation container will be described.
  • the reagent container currently used in the dilution tank for example, the internal standard solution in the internal standard solution preparation container A441 is dispensed.
  • the comparison electrode solution is introduced into the flow path of the comparison electrode 104 from the comparison electrode solution preparation container A461.
  • the internal standard solution in the dilution tank 120 is sucked from the sipper nozzle 107, and the ion selective electrodes 101, 102 are filled with the internal standard solution in the flow paths 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103. , 103 and the reference electrode 104 are measured by the potential measuring unit 471 (S531).
  • the liquid remaining in the dilution tank is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111.
  • the solenoid valve is switched so that the reagent is supplied from the other reagent preparation container (S532), and the liquid in the supply channel is replaced (S533).
  • the remaining reagent is drained by a drainage mechanism (not shown), and reagent blending is newly started.
  • the internal standard solution in the internal standard solution preparation container B442 is dispensed into the dilution tank.
  • the comparison electrode solution is introduced into the flow path of the comparison electrode 104 from the comparison electrode solution preparation container B462.
  • each ion selective electrode 101 is filled with the channels 1011, 1021, 1031 of the ion selective electrodes 101, 102, 103 with the internal standard solution.
  • 102, 103 and the reference electrode 104 are measured by the potential measuring unit 471 (S534).
  • the liquid remaining in the dilution tank is sucked up by the vacuum suction nozzle 106 and discarded in the waste liquid tank 111.
  • the concentration value correction / determination unit 473 calculates the concentration value of the internal standard solution using the following formula, determines whether there is an abnormality in the concentration, and corrects the concentration value of the internal standard solution (S535). ).
  • the slope sensitivity SL uses the value calculated by the equation (Equation 8).
  • This concentration correction enables accurate correction because the reagent prepared by the ion selective electrode itself used for the analysis of the sample is measured. Moreover, you may analyze the reagent after mixing several times and confirm whether it can mix
  • the above concentration correction can also be calculated from the slope value at the time of calibration and the electromotive force value when measuring a standard solution with a known concentration.
  • the reagent preparation containers may be switched one by one instead of three at the same time.
  • the flow type electrolyte concentration measuring apparatus 400 preparation is possible within 10% of the reagent concentration error, and the reagent concentration is measured and corrected appropriately at the timing of switching the reagent container. Even if there is an adjustment error, the analysis value does not shift. For this reason, in the conventional apparatus, it was necessary to strictly adjust the concentration of the internal standard solution.
  • the flow-type electrolyte concentration measuring apparatus according to this example can absorb a slight concentration adjustment error, so that the reagent with a simple mechanism is used. Formulation can be enabled to reduce operator load and equipment downtime.
  • solid is used as the drug substance, but it may be a concentrated liquid drug substance. In this case, it is necessary to replace the drug substance supply mechanism for liquid.
  • FIG. 7A and 7B show a flow of measuring the electrolyte concentration in the conventional apparatus.
  • 7A is the same as the process flow at the time of starting up the apparatus of FIG. 2A described in the first embodiment, and therefore the same step number is used and description thereof is omitted.
  • the flow-type electrolyte concentration measuring apparatus 600 has no bottle switching means in each embodiment of the present invention. It differs greatly from the measuring device 100 or 400.
  • the sample is analyzed during the continuous analysis (S711), the internal standard solution is analyzed (S712), and then the reagent bottle replacement determination step ( When any of the reagent bottles 641, 651 or 661 needs to be replaced in S713), the analysis is stopped (S714) and an alarm is issued (S715).
  • the apparatus operator replaces any one of the reagent bottles 641, 651 or 661, and the analysis cannot be performed until the calibration is completed. Therefore, the period becomes the apparatus downtime. For this reason, the operating rate of the apparatus is lowered, and the operator is bound by the time schedule for reagent bottle replacement.
  • FIG. 8 shows an experimental flow performed to verify the stability of the analysis value of the flow-type electrolyte concentration measuring apparatus 100 in Example 1 of the present invention.
  • the same experimental flow was performed on the conventional flow-type electrolyte concentration measuring apparatus 600 to obtain comparative data.
  • FIG. 9 shows the results of the above verification experiment using a conventional device.
  • FIG. 9 shows the measurement results of the high-concentration Na ion: 901, medium-concentration Na ion: 902, and low-concentration Na ion: 903 with respect to the Na ion concentration of the standard serum.
  • high concentration Na ion: 901, medium concentration Na ion: 902, low concentration Na ion: 903 In either case, the concentration changed greatly.
  • Carib in FIG. 9
  • a constant value was shown regardless of the concentration of the internal standard solution. In the conventional apparatus, it was confirmed that calibration was necessary after replacing the internal standard solution bottle in order to maintain the accuracy of the analysis value.
  • the analytical value Na ion concentration
  • the reagent concentration is measured and corrected appropriately at the time of bottle replacement. It was confirmed that the reagent bottle can be automatically switched without affecting the value.
  • the effects of the device 1101 of Example 1 and the device 1102 of Example 2 of the present invention are compared with those of the conventional device 1103.
  • the conventional apparatus 1103 when starting up the apparatus, electrodes and reagent bottles are installed, and calibration is performed after temperature adjustment. This time takes about 30 minutes. Thereafter, every 8 hours when the reagent runs out, the apparatus operator replaces the reagent bottle and performs calibration. The analysis stop time at this time is about 10 minutes. For example, when replacing the electrode after several thousand tests, the same operation as that for starting the apparatus is performed. Thus, in the conventional apparatus 1103, the apparatus operator is tied to the reagent replacement schedule about every 8 hours.
  • the apparatus 1101 when the apparatus is started up, it takes the same time as before, but the bottle is automatically switched every 8 hours thereafter to correct the reagent concentration.
  • Each analysis stop time is about 1 minute, which is greatly shortened compared to the conventional case, and does not require operation of the apparatus operator when the reagent container is switched.
  • the equipment operator can change the empty bottle at any time by the next 8 hours, greatly reducing the load.
  • the apparatus operator only needs to perform calibration by installing the drug substance of the electrode and reagent when the apparatus is started up.
  • a new reagent is automatically prepared, switched and corrected in the preparation container.
  • the equipment operator is only required for electrode replacement timing and can leave the equipment for about 30 hours.
  • the weight of the reagent is about 1/100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

イオン選択性電極と比較電極と電位測定部とを有する測定部と、内部標準液又は検体のイオン濃度を求める記録演算部と、内部標準液のイオン濃度が予め設定した値の範囲に入っているかを判断するとともに記録演算部で求めた内部標準液のイオン濃度値を補正する濃度値補正・判断部とを備え、測定部は複数のボトルを収納する内部標準液ボトル収納部を有し、濃度値補正・判定部は、測定部の内部標準液ボトル収納部において内部標準液を収容する複数のボトル間でボトルを切り替えたときに、内部標準液を収容するボトルを切り替える前のイオン濃度値の情報を用いてボトルを切り替えた後に求めた内部標準液のイオン濃度値を補正するように構成した。

Description

電解質濃度測定装置
 本発明は、液中の電解質濃度を測定する電解質濃度測定装置に関する。
 イオン選択性電極(ISE:Ion Selective Electrode)は検出部に試料液を接触させ、比較電極との電位差を計測することで、試料中の測定対象イオンが定量できる。この簡便さゆえ分析分野で広く利用されている。特に、フロー型イオン選択性電極は、試料液が流れる流路に検出部が設けられており、複数の試料についてのイオン濃度の定量が連続してできる。
 そのため、フロー型イオン選択性電極を搭載したフロー型電解質濃度測定装置は、生化学自動分析装置などに搭載されており、そこでは血清や尿などの検体中の電解質濃度を高精度かつ高スループットで分析すること特徴としている。
 フロー型電解質濃度測定装置は、通常複数のイオン(ナトリウムイオン、カリウムイオン、カルシウムイオン、塩化物イオンなど)を同時に分析するため、検出するイオンに対応した複数のイオン選択性電極(ISE:Ion Selective Electrode)が搭載される。一般的にこれらの電極は消耗品であり、例えば、2、3ヶ月もしくは数千テストで使用寿命となり新しい電極に交換される。
 また、分析値の精度を担保するため、電解質濃度測定装置内で定常的に数種類の試薬が使用される。使用する試薬の種類は装置構成によって異なるが、例えば、検体分析前後に流す内部標準液、検体を希釈する希釈液、比較電極液などがある。
 電解質濃度測定装置は、装置の立上げや電極交換の際、既知濃度の標準液を用いてキャリブレーションし、検量線を作成する。また、試薬のボトル交換や補充を行った際にも、キャリブレーションを実施する。
 特許文献1には、試薬の継ぎ足しによる試薬劣化や標準液濃度値の入力ミスを確認し、警告する管理システムについて記載されている。
 また、特許文献2には、高精度な濃度を有する試薬を調整する試薬調整装置について記載されている。
特開2013-213841号公報 特開平9-33538号公報
 従来の電解質濃度測定装置では、装置内で使用する内部標準液や希釈液などの試薬は、例えば2Lのボトルで供給される。従来装置では連続稼動すると数時間に一度のボトル交換が必要となる。大規模検査センタでは多数の装置を並べて運用しており、装置オペレーターが試薬ボトル交換のタイムスケジュールに縛られていた。
 また、特に内部標準液は分析と分析との間に流し、分析標準となる試薬のため微小な濃度変化が分析値に影響する。そのため、同種の試薬のボトル交換の際もキャリブレーションし直す必要が生じていた。この試薬ボトル交換およびキャリブレーションを実行している間は装置のダウンタイムとなり、実質的な分析スループットの低下原因となっていた。また、試薬は重いため輸送コストが負担であった。
 そこで本発明は、上記の従来技術の課題を解決し、試薬補充を簡便化した電解質濃度測定装置を提供する。
 上記した課題を解決するために、本発明では、電解質濃度測定装置を、イオン選択性電極と比較電極と電位測定部とを有してイオン選択性電極に内部標準液又は検体を供給した際の電位差を前記電位測定部で測定する測定部と、測定部に内部標準液を含む試薬を供給する試薬供給部と、測定部で測定した電位差の情報を処理して内部標準液又は検体のイオン濃度を求める記録演算部と、記録演算部で求めた内部標準液のイオン濃度が予め設定した値の範囲に入っているかを判断するとともに記録演算部で求めた内部標準液のイオン濃度値を補正する濃度値補正・判断部と、濃度値補正・判定部で判定した結果を出力する出力部と、測定部と記録演算部と濃度値補正・判定部と出力部とを制御する制御部とを備え、試薬供給部は内部標準液などの試薬を収容するボトルを試薬の種類ごとにそれぞれ複数収納するボトル収納部と、ボトル収納部に収納された複数のボトルのそれぞれの内部の試薬の残量を検知して測定部に試薬を供給することにより試薬の残量が予め設定した量よりも少なくなったボトルについてボトル収納部に収納した同じ種類の試薬を収容するボトルで試薬の残量が予め設定した量よりも十分に多いボトルに切替えて測定部に試薬を供給するボトル切替え部を有し、濃度値補正・判定部は、試薬供給部において同じ種類の試薬を収容する複数のボトル間で測定部に試薬を供給するボトルを切り替えたときに、ボトルを切り替える前に記録演算部で求めた内部標準液又は検体のイオン濃度の情報を用いて同じ種類の試薬を収容するボトルを切り替えた後に記録演算部で求めた内部標準液又は検体のイオン濃度を補正するように構成した。
 本発明によれば、フロー型電解質濃度測定装置において、装置内に同種試薬のボトルを複数本設置可能であり、自動的に試薬ボトルの切替えが行われるため、装置オペレーターは比較的自由なタイミングで試薬ボトルを交換できる。また、装置内で自動的に試薬調合する機能を付加することで、さらに長時間、試薬補充の必要がなくなる。その結果、オペレーターの負荷と装置のダウンタイムを低減できる。
 上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施例1に係るフロー型電解質濃度測定装置の全体構成を示すブロック図である。 本発明の実施例1における電解質濃度測定の装置立ち上げ時のフローチャートである。 本発明の実施例1における電解質濃度測定の連続分析時のフローチャートである。 本発明の実施例1における電解質濃度測定の試薬ボトル切替え時のフローチャートである。 本発明の実施例1における図2Aで説明した装置立ち上げ時のフローのS203の詳細を示すS301からS313までのフロー図である。 本発明の実施例1における図2Aで説明した装置立ち上げ時のフローのS203の詳細を示すS314からS321までのフロー図である。 本発明の実施例2に係るフロー型電解質濃度測定装置の全体構成を示すブロック図である。 本発明の実施例2における電解質濃度測定の装置立ち上げ時のフローチャートである。 本発明の実施例2における電解質濃度測定の連続分析時のフローチャートである。 本発明の実施例2における電解質濃度測定の装置立ち上げ試薬時容器切替えのフローチャートである。 本発明の比較例における従来型のフロー型電解質濃度測定装置の全体構成を示すブロック図である。 本発明の比較例における電解質濃度測定の装置立上時のフローチャートである。 本発明の比較例における電解質濃度測定の連続分析時のフローチャートである。 本発明の実施例1におけるフロー型電解質濃度測定装置の分析値の安定性を実証するための実験フローである。 本発明の比較例において、比較例装置における分析値の安定性の実証実験結果を示すグラフである。 本発明の実施例1におけるフロー型電解質濃度測定装置における分析値の安定性の実証実験結果を示すグラフである。 本発明の実施例1及び実施例2におけるフロー型電解質濃度測定装置の効果を従来装置との比較で示した表である。
 発明者らはフロー型電解質濃度測定装置において、従来の高い測定精度を維持したまま、連続運転時の試薬供給に関する装置オペレーターの負荷を低減する方法を考案すべく、研究開発を行った。その結果、これまで、微小な濃度変化でも分析値に影響を与えるため、キャリブレーションなしで試薬ボトルの交換が困難と考えられていた内部標準液に関しても、本発明装置では、適切な補正がなされるため、キャリブレーションなしで自動的に試薬ボトルの切替えが可能となることが分った。
 本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 図1は、本実施例に関わるフロー型電解質濃度測定装置100の一例を示す概略図である。
 本フロー型電解質濃度測定装置100は、測定部170、記録演算部172、濃度値補正・判断部173、出力部174、制御部175、入力部176を備えている。
 測定部170は、イオン選択性電極部110を構成する塩素イオン電極101、カリウムイオン電極102とナトリウムイオン電極103の3種類の電極と、比較電極104を備える。シッパーシリンジポンプ133を用いて、比較電極104の流路1041に比較電極液ボトル161もしくは162から比較電極液が導入される。
 一方、イオン選択性電極部110の流路1011,1021,1031には希釈槽120に内部標準液ボトルA:141又はB:142から分注された内部標準液や希釈された検体などが導入される。比較電極104と各イオン選択性電極101,102,103との電位差(起電力)は、各イオン選択性電極101,102,103の流路1011,1021,1031に導入された液中の分析対象イオン濃度によって変化するため、その起電力を電位測定部171で測定し、イオン濃度を記録演算部172にて算出する。算出方法の詳細は後述する。
 本実施例によるフロー型電解質濃度測定装置100内では、定常的に比較電極液、内部標準液と希釈液を使用するため、連続分析時にいずれかの試薬が不足すると分析ができなくなる。
 本実施例に係るフロー型電解質濃度測定装置100には、内部標準液ボトル切替え手段140と希釈液ボトル切替え手段150と比較電極液ボトル切替え手段160を備えており、これらはそれぞれ同種試薬の各ボトル141と142,151と152,161と162をそれぞれ2本同時に設置するポートと電磁弁126、127、128を備えた切替弁を有している。この機構により、片方のボトル内の試薬が不足した場合、もう片方のボトルに切替えることができる。また、片方のボトルを装置が使用している間に、装置オペレーターが好きなタイミングで、空になったボトルを試薬が充填された新たなボトルに取り替えることが可能である。
 本実施例に係るフロー型電解質濃度測定装置100には、各試薬ボトル141、142,151、152,161及び162内の試薬量をモニターする試薬量モニター機構(図1に示した例では、試薬ボトルの重量を計測する重量センサ:143,144、153,154,163,164)を有しており、試薬ボトルの重量を予め設定した値と比較し、試薬ボトルの重量が予め設定した重さよりも軽くなった場合には、試薬が十分に収容されているボトルと切替えることで試薬ボトル切替えのタイミングを管理している。試薬量モニター機構としてはこの重量センサを用いた方式に限らず、試薬ボトル内部の試薬液の液面の高さをモニターする液面計などを用いても良い。また、試薬量モニター機構を備えずとも分析回数やシリンジの動作履歴などから試薬の消費量を制御部175で管理しても良い。
 なお、電磁弁122、123、124、125、126、127、128は流路の切替えや開閉を行うことができ、液を導入する方向やタイミングに従って適宜動作する。また、本実施例に係るフロー型電解質濃度測定装置100では同種の試薬ボトルは2本設置しているが、2本でなくとも複数本であれば本発明の効果を発揮する。装置内で使う全種類の試薬でなく、一部の試薬のみに本発明を適用することもできる。
 次に、図2A乃至図2Cを用いて、本実施例に係るフロー型電解質濃度測定装置100における電解質濃度測定のフローを説明する。
 まず、装置立上げ時の手順について図2Aを用いて説明する。最初に図示していない電源を投入して装置を立上げ(S201)、試薬用のボトル141(内部標準液ボトルA141)、ボトル142(内部標準液ボトルB142),ボトル151(希釈液ボトルA151)、ボトル152(希釈液ボトルB152),ボトル161(比較電極液ボトルA161)及びボトル162(比較電極液ボトルB162)をそれぞれボトル切り替え手段140,150,160に設置する(S202)。温調後、イオン選択性電極101,102,103の検量線を求めるために、2種類の既知濃度の標準液を測定し、スロープを算出する(S203)。続いて、内部標準液濃度を算出する(S204)。
 ここで、S203とS204の具体的な操作について、図3のフロー図を用いて説明する。
 先ず、既知低濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を作動させて希釈液ボトル151(ボトル151)内の希釈液を希釈槽120の内部に分注し、設定した割合Dで既知低濃度標準液を希釈する(S301)。その間に、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S302)。次に、希釈槽中の希釈した既知低濃度標準液をシッパーノズル107から吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S303)。
 液絡部121では、比較電極104の流路1041に供給された比較電極液と各イオン選択性電極101,102,103の流路1011,1021,1031に供給された希釈した既知低濃度標準液が接触する。この状態で、各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S304)。
 次に、真空ポンプ112を駆動させ、希釈槽120の内部の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S305)。その後、内部標準液用シリンジポンプ131を作動させて、内部標準液供給ノズル109から希釈槽120に、内部標準液ボトル141(ボトル141)内の内部標準液を分注する(S306)。その間に、ピンチ弁105を閉じて電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S307)。
 次に、ピンチ弁105を開いて電磁弁128を閉じた状態でシッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で(S308),各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S309)。
 その後、また真空ポンプ112を駆動させ、希釈槽120の内部の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S310)。その後、既知高濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を作動させて希釈液ボトル151内の希釈液を希釈液供給ノズル108から希釈槽120に分注し、設定した割合Dで既知高濃度標準液を希釈する(S311)。その間に、ピンチ弁105を閉じて電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S312)。
 次に、ピンチ弁105を開いて電磁弁128を閉じた状態で希釈槽120中の希釈した既知高濃度標準液をシッパーノズル107から吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S313)。液絡部121では、比較電極104の流路1041に供給された比較電極液と各イオン選択性電極101,102,103の流路1011,1021,1031に供給された希釈した既知高濃度標準液が接触する。この状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S314)。
 次に、真空ポンプ112を駆動させ、希釈槽120の内部の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S315)。その後、内部標準液用シリンジポンプ131を作動させて、内部標準液供給ノズル109から希釈槽120に、内部標準液ボトル141内の内部標準液を分注する(S316)。その間に、ピンチ弁105を閉じて電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S317)。
 次に、ピンチ弁105を開いて電磁弁128を閉じた状態でシッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たし(S318),この状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S319)。
 その後、また真空ポンプ112を駆動させ、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S320)。
 以上の操作により電位測定部171で測定した起電力から、記録演算部172にて下記の計算式を用いて、検量線に相当するスロープ感度SLを算出する(S321)。
 (A)スロープ感度
  SL=(EMFH-EMFL)/(LogCH-LogCL) ………(数1)
  SL:スロープ感度
  EMFH:既知高濃度標準液の測定起電力
  EMFL:既知低濃度標準液の測定起電力
  CH:高濃度標準液の既知濃度値
  CL:低濃度標準液の既知濃度値
 以上の操作をキャリブレーションと呼ぶ。なお、スロープ感度SLはネルンスト式
  E = E0 + 2.303×( RT / zF )×log( f × C )
(E0:測定系により定まる一定電位、z:測定対象イオンの価数、F:ファラデー定数、R:気体定数、T:絶対温度、f:活量係数、C:イオン濃度)
の2.303×(RT/zF)に相当する。温度と測定対象イオン価数から計算で求めることができるが、より分析精度を高めるため本実施例装置では上記のキャリブレーションによって電極固有のスロープ感度SLを求めている。
 S203の詳細について、具体的な測定シーケンスを上記したが、この手順にかかわらず、イオン濃度の異なる2種類の液を流路にそれぞれ導入し、起電力を測定できれば、異なる手順でも良い。
 続いて、S203で求めたスロープ感度と内部標準液の起電力から内部標準液濃度を算出する(S204)。
 (B)内部標準液濃度
  CIS=CL×10a ………………………………(数2)
  a=(EMFIS-EMFL)/SL  …………(数3)
  CIS:内部標準液濃度
  EMFIS:内部標準液の起電力
 次に、内部標準液のイオン濃度が設定濃度範囲か否かを濃度値補正・判断部173にて判断し(S205)、範囲内であれば図2Bに示した連続分析のフローへ進み、範囲外であれば、アラームを出す(S206)。装置内で使用する試薬の濃度が設計値から大きく異なる場合、イレギュラーな装置状態にあると考えられ、分析精度に影響を与える可能性があるため、本装置には濃度値補正・判断部173を備えている。
 次に、連続分析時の操作について、図2Bに示したフロー図を用いて説明する。キャリブレーション後、血清や尿などを検体として分析を行う。図2Bに示した処理フローにおいても、図2AのS203のステップを図3に示したフロー図で説明したような詳細な動作があるが、説明を簡単にするために、細かい動作の記載を省略する。
 具体的には、検体を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液ボトル151内の希釈液を希釈槽120に分注し、設定した割合Dで検体を希釈する。その間に、比較電極液ボトル161内から比較電極104の流路に比較電極液を導入する。希釈槽120中の希釈した検体をシッパーノズル107から吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031に導入する。
 液絡部では比較電極液と希釈した検体が接触する。イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S211)。真空ポンプ112を作動させて希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に排気した後、希釈槽120に内部標準液ボトル141内の内部標準液を分注する。その間に、ピンチ弁105を閉じて、電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて比較電極104の流路1041に残っていた液体を廃液タンク111に廃棄するとともに、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する。
 次に、シッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各電極の起電力を電位測定部171で測定する(S212)。その後、希釈槽120の内部に残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。
 S203で求めたスロープ感度とS204で算出した内部標準液濃度から、下記の計算式を用いて検体の濃度を算出する(S213)。
 (C)検体の濃度
  CS=CIS×10b …………………………………(数4)
  b=(EMFIS-EMFS)/SL ……………(数5)
  CS:検体濃度
  EMFS:検体の測定起電力
 なお、以上の計算式は基本的なものであり、温度ドリフトやキャリーオーバーなど各種の補正を追加してもよい。また、分析の途中に希釈槽や流路にリフレッシュのための液を導入しても良い。
 分析の合間に、ユーザーが各イオン選択性電極101,102,103又は比較電極104の何れかを交換した場合は、電極交換検知機構(図示せず)が電極交換されたことを検知し(S214)、キャリブレーション操作を行う。電極交換されていない場合、次に切替える予定の試薬ボトルが設置されているかを試薬ボトル交換検知機構(図示せず)が検知し(S215)、設置されていなければアラームを出す(S216)。このアラームが出た場合、装置オペレーターが次の試薬ボトル切替えのタイミングまでに、空になったボトルを取り出し、新たな試薬ボトルを設置する。
 次に、試薬ボトルの切替えが必要かを判断する(S217)。不要であれば、引き続き検体の分析を行い、必要であれば、図2Cのフロー図に示す試薬ボトル切替えを行う。
 ここで、試薬ボトル切替え時の操作について、図2Cのフロー図に基づいて説明する。図2Cに示した処理フローにおいても、図2AのS203のステップを図3に示したフロー図で説明したような詳細な動作があるが、説明を簡単にするために、細かい動作の記載を省略する。
 まず、試薬ボトル切替え前に、希釈槽120に現在使用している試薬ボトル、例えば内部標準液ボトルA141(ボトル141)内の内部標準液を分注する。その間に、比較電極液ボトルA161内から比較電極104の流路1041に比較電極液を導入する。シッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で、各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部171で測定する(S231)。
 次に、真空ポンプ112を作動させて希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。次に、電磁弁を切替え新たなボトルから試薬が供給されるようにし(S232)、供給流路内の液を置換する(S233)。その後、希釈槽に内部標準液ボトルB142内の内部標準液を分注する。その間に、比較電極液ボトルB162内から比較電極104の流路に比較電極液を導入する。
 次に、シッパーノズル107から希釈槽内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部171で測定する(S234)。希釈槽120の残った液を真空吸引ノズル106で吸い上げ廃液タンク111に廃棄する。
 次に、濃度値補正・判断部173にて、次の式を用いて内部標準液の濃度値を算出し、濃度に異常が無いか判断し、内部標準液の濃度値を補正する(S235)。スロープ感度SLは式(数1)で算出した値を用いる。
 (D)内部標準液濃度補正
  CIS’=CIS×10c  ……………………………(数6)
  c =(EMFIS’-EMFIS)/SL …………(数7)
  CIS:現ボトルの内部標準液濃度
  CIS’:新ボトルの内部標準液濃度
  EMFIS:現ボトルの内部標準液の起電力
  EMFIS’:新ボトルの内部標準液の起電力
そして、また自動的に連続分析を再開する。
 本濃度補正は、検体の分析に使用するイオン選択電極そのもので切替え後の試薬を測定しているため、正確な補正を可能としている。
 上記の濃度補正に関しては、キャリブレーション時のスロープ感度と濃度既知の標準液を測定したときの起電力の値からも算出できる。また、試薬は3種同時ではなく1種類ずつ切替えても良い。
 本実施例に拠れば、試薬容器切替えのタイミングで適切に試薬濃度測定と補正を行っているため、切替え時に多少濃度調整誤差があっても分析値がずれない。これにより、本実施例によるフロー型電解質濃度測定装置では、試薬ボトル間で生じる多少の濃度誤差を吸収できるため、試薬ボトルの自動切換えが可能となり、オペレーターの負荷と装置のダウンタイムを低減することができる。
 本発明の第2の実施例におけるフロー型電解質濃度測定装置400について図4を用いて説明する。本実施例におけるフロー型電解質濃度測定装置400は、実施例1で記載した試薬ボトル切替え手段140,150,160の代わりに、内部標準液調合手段440、希釈液調合手段450と比較電極液調合手段460を備えている。実施例1と同じ構成の部品については、同じ番号を付してある。
 内部標準液調合手段440には、内部標準液調合容器A441と内部標準液調合容器B442が設けられており、原薬447を供給する原薬供給手段448を備えている。また、純水を各調合容器に導入する純水供給ポンプ481と、原薬447と純水を攪拌混合する攪拌機構443,444と、調合容器Aと調合容器Bの切替弁(電磁弁421,422,423)を有している。希釈液調合手段450と比較電極液調合手段460も同様の機構、希釈原薬457を供給する希釈原薬供給手段458と、比較電極液薬467を供給する比較電極原薬供給手段468を備えている。
 本実施例におけるフロー型電解質濃度測定装置400は、装置内で定常的に使用する試薬である比較電極液、内部標準液と希釈液を連続分析中に自動的に調合できるため、例えば内部標準液調合容器A441内の試薬を使用して連続分析を行いながら、もう一方の内部標準液調合容器B442で新たな試薬を調合し、内部標準液調合容器A441の試薬が不足したら、内部標準液調合容器B442に自動的に切り替わり、自動的に濃度補正を行い、分析を継続することができる。希釈液調合手段450と比較電極液調合手段460についても同様である。これにより、試薬補給の間隔が従来装置に比べて格段に長くすることができる。そのため、装置オペレーターは例えば電極交換のタイミングで原薬を補給すれば良い。
 本実施例におけるフロー型電解質濃度測定装置400には、各試薬容器内の試薬量をモニターする試薬量モニター機構(図4に示した例では、各試薬ボトルの重量を計測する重量センサ:445,446、455,456,465,466)を有しており、計測した各試薬ボトルの重量を予め設定した値と比較することにより試薬容器切替えのタイミングを管理している。試薬量モニター機構としてはこの重量センサを用いた方式に限らず、試薬ボトル内部の試薬液の液面の高さをモニターする液面計などを用いても良い。また、試薬量モニター機構を備えずとも分析回数やシリンジの動作履歴などから試薬の消費量を制御部475で管理しても良い。また、本実施例におけるフロー型電解質濃度測定装置400では同種の試薬調合容器を2個設置しているが、2個で無くとも複数個であれば本発明の効果を発揮する。装置内で使う全種類の試薬でなく、一部の試薬のみに本発明を適用することもできる。
 図5A乃至図5Cを用いて、本実施例におけるフロー型電解質濃度測定装置400における電解質濃度測定のフローを説明する。
 まず、装置立上げ時の手順について図5Aのフローに基づいて説明する。
  先ず装置を立上げ(S501)、試薬調合を開始する(S502)。このとき、内部標準液、希釈液と比較電極液をそれぞれ調合容器Aを優先して調合し、終わり次第、調合容器Bでの調合を開始する。内部標準液の場合、原薬447を原薬供給手段448を用いて調合容器A441に投入する。攪拌手段443で攪拌しながら純水供給ポンプ481を用いて調合容器A441に純水を定量供給することで内部標準液が調合される。このとき容器内の濃度が原薬の溶け残りなどなく均一になることが重要である。
 温調後、イオン選択性電極101,102,103の検量線を求めるために、2種類の既知濃度の標準液を測定し、スロープを算出する(S503)。続いて、調合した内部標準液濃度を算出する(S504)。
 ここで、S503とS504の具体的な操作について説明する。既知低濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液調合容器A451内の希釈液を希釈槽に分注し、設定した割合Dで既知低濃度標準液を希釈する(実施例1において、図3のフロー図で説明したS301に対応。以下、図3のフロー図の各ステップとの対応関係を示す。)。その間に、比較電極液容器A461内から比較電極104の流路に比較電極液を導入する(S302に対応)。
 希釈槽中の希釈した既知低濃度標準液をシッパーノズルから吸引し、イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S303に対応)。液絡部121では比較電極液と希釈した既知低濃度標準液が接触する。イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S304に対応)。
 各電位差を測定後、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄(S305に対応)した後、希釈槽120に内部標準液調合容器A441内の内部標準液を分注する(S306に対応)。その間に、比較電極液調合容器A461内から比較電極104の流路1041に比較電極液を導入する(S307に対応)。
 次に、シッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路を内部標準液で満たす(S308に対応)。この状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S309に対応)。
 各電位差を測定後、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄(S310に対応)した後、既知高濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液調合容器A451内の希釈液を希釈槽120に分注し、設定した割合Dで既知高濃度標準液を希釈する(S311に対応)。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する(S312に対応)。
 希釈槽120への希釈液の分注が終了したら、希釈槽120中の希釈した既知高濃度標準液をシッパーノズルから吸引し、イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S313に対応)。液絡部121では比較電極液と希釈した既知高濃度標準液が接触する。各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S314に対応)。
 各電位差の測定が終わったら、希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄(S315に対応)した後、希釈槽120に内部標準液調合容器A441内の内部標準液を分注する(S316に対応)。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する(S317に対応)。
 シッパーノズル107から希釈槽120内の内部標準液を吸引し、イオン選択性電極101,102,103の流路を内部標準液で満たし(S318に対応)、その状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S319)。また、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S320に対応)。
 以上の電位測定部471で測定した起電力から、記録演算部472にて下記の計算式を用いて、検量線に当たるスロープ感度SLを算出する(S321に対応)。 
  (A)スロープ感度
  SL=(EMFH-EMFL)/(LogCH-LogCL) ……(数8)
  SL:スロープ感度
  EMFH:既知高濃度標準液の測定起電力
  EMFL:既知低濃度標準液の測定起電力
  CH:高濃度標準液の既知濃度値
  CL:低濃度標準液の既知濃度値
 以上の操作をキャリブレーションと呼ぶ。なお、スロープ感度SLはネルンスト式
  E = E0 + 2.303×( RT / zF )×log( f × C )
(E0:測定系により定まる一定電位、z:測定対象イオンの価数、F:ファラデー定数、R:気体定数、T:絶対温度、f:活量係数、C:イオン濃度)
の2.303×(RT/zF)に相当する。温度と測定対象イオン価数から計算で求めることができるが、より分析精度を高めるため本実施例装置では上記のキャリブレーションによって電極固有のスロープ感度SLを求めている。
 以上、S503の詳細について具体的な測定シーケンスを上記したが、この手順にかかわらず、イオン濃度の異なる2種類の液を流路にそれぞれ導入し、起電力を測定できれば、異なる手順でも良い。
 続いて、S503で求めたスロープ感度と内部標準液の起電力から内部標準液濃度を算出する(S504)。 
  (B)内部標準液濃度
  CIS=CL×10a  ……………………………(数9)
  a=(EMFIS-EMFL)/SL …………(数10)
  CIS:内部標準液濃度
  EMFIS:内部標準液の起電力
 次に、内部標準液のイオン濃度が設定濃度範囲か否かを濃度値補正・判断部473にて判断し(S505)、範囲内であれば図5Bに示した連続分析のフローへ進み、範囲外であれば、アラームを出し(S506)、もう一方の調合容器で調合した試薬に切替えS503に戻ってキャリブレーションをやり直す。試薬の濃度が設計値から大きく異なる場合、試薬調合機構の不具合などのイレギュラーな装置状態にあると考えられ、分析精度に影響を与える可能性があるため、本装置には濃度値補正・判断部473を備えている。
 次に、連続分析時の操作について、図5Bに示したフロー図を用いて説明する。キャリブレーション後、血清や尿などを検体として分析を行う。図5Bに示した処理フローにおいても、実施例1で図2AのS203のステップを図3に示したフロー図で説明したような詳細な動作があるが、説明を簡単にするために、細かい動作の記載を省略する。
 具体的には、検体を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液調合容器A451内の希釈液を希釈槽120に分注し、設定した割合Dで検体を希釈する。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する。
 希釈槽120中の希釈した検体をシッパーノズル107から吸引し、イオン選択性電極101,102,103の流路1011,1021,1031に導入する。液絡部121では比較電極液と希釈した検体が接触する。イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S511)。
 希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄した後、希釈槽120に内部標準液調合容器A441内の内部標準液を分注する。その間に、比較電極液調合容器A461内から比較電極104の流路1041に比較電極液を導入する。シッパーノズル107から希釈槽120内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各電極の起電力を電位測定部471で測定する(S512)。また、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。
 S503で求めたスロープ感度とS504de算出した内部標準液濃度から、下記の計算式を用いて検体の濃度を算出する(S513)。 
  (C)検体の濃度
  CS=CIS×10b ……………………………………(数11)
  b=(EMFIS-EMFS)/SL ………………(数12)
  CS:検体濃度
  EMFS:検体の測定起電力
 なお、以上の計算式は基本的なものであり、温度ドリフトやキャリーオーバーなど各種の補正を追加してもよい。また、分析の途中に希釈槽や流路をリフレッシュさせるための操作を行っても良い。
 分析の合間に、ユーザーが各イオン選択性電極101,102,103又は比較電極104の何れかを交換した場合は、電極交換検知機構(図示せず)が電極交換されたことを検知し(S514)、キャリブレーション操作を行う。電極交換されていない場合、試薬調合容器内の残量を試薬量モニター機構(図示せず)で確認する(S515)。試薬残量が十分であれば、引き続き検体の分析を行い、不十分であれば、試薬調合容器の切替えを行う。ここで、試薬調合容器の切替え時の操作について説明する。
 まず、試薬調合容器の切替え前に、希釈槽に現在使用している試薬容器、例えば内部標準液調合容器A441内の内部標準液を分注する。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する。シッパーノズル107から希釈槽120内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部471で測定する(S531)。
 次に、希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。次に、電磁弁を切替えもう一方の試薬調合容器から試薬が供給されるようにし(S532)、供給流路内の液を置換する(S533)。このとき、元の試薬調合容器では、残った試薬を排液機構(図示せず)で排液し、新たに試薬の調合を開始する。希釈槽に内部標準液調合容器B442内の内部標準液を分注する。その間に、比較電極液調合容器B462内から比較電極104の流路に比較電極液を導入する。
 次に、シッパーノズル107から希釈槽内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部471で測定する(S534)。希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。
 次に、濃度値補正・判断部473にて、次の式を用いて内部標準液の濃度値を算出し、濃度に異常が無いか判断を行い、内部標準液の濃度値を補正する(S535)。スロープ感度SLは式(数8)で算出した値を用いる。 
  (D)内部標準液濃度補正
  CIS’=CIS×10c  …………………………………(数13)
  c =(EMFIS’-EMFIS)/SL ………………(数14)
  CIS:現在使用している調合容器の内部標準液濃度
  CIS’:切替え後の調合容器の内部標準液濃度
  EMFIS:現在使用している調合容器の内部標準液の起電力
  EMFIS’:切替え後の調合容器の内部標準液の起電力
そして、また自動的に連続分析を再開する。
 本濃度補正は、検体の分析に使用するイオン選択電極そのもので調合した試薬を測定しているため、正確な補正を可能としている。また、調合後の試薬を複数回分析し、均一な濃度に調合できているかを確認しても良い。
 上記の濃度補正に関しては、キャリブレーション時のスロープの値と濃度既知の標準液を測定したときの起電力の値からも算出できる。また、試薬調合容器は3種同時ではなく1種類ずつ切替えても良い。
 本実施例によるフロー型電解質濃度測定装置400では、試薬の濃度誤差10%以内で調合が可能であり、試薬容器切替えのタイミングで適切に試薬濃度測定と補正を行っているため、切替え時に多少濃度調整誤差があっても分析値がずれない。これにとり、従来装置では、内部標準液の厳密な濃度調整が必要であったが、本実施例によるフロー型電解質濃度測定装置では、多少の濃度調整誤差を吸収できるため、簡便な機構での試薬調合を可能にして、オペレーターの負荷と装置のダウンタイムを低減することができる。なお、本実施例では、原薬として固形を用いたが、濃縮した液体の原薬でも良く、その場合、原薬供給機構を液体用に交換する必要がある。
 [比較例]
 ここで、実施例1及び実施例2に対する比較例として、従来のフロー型電解質濃度測定装置600の全体構成のブロック図を図6に示す。図7A及び図7Bに従来装置における電解質濃度測定のフローを示す。図7Aの従来装置における装置立ち上げ時の処理のフローは、実施例1で説明した図2Aの装置立ち上げ時の処理フローと同じであるので、同じステップ番号で示し、説明を省略する。
 図7Bに示した連続分析時の従来のフロー型電解質濃度測定装置600における処理フローでは、フロー型電解質濃度測定装置600にボトル切替え手段が無いことが本発明各実施例に記載したフロー型電解質濃度測定装置100または400と大きく異なる。
 そのため、図7Bに示した従来のフロー型電解質濃度測定装置600では、連続分析時に、検体を分析し(S711),内部標準液の分析を行った(S712)後、試薬ボトル交換の判定ステップ(S713)において試薬ボトル641,651または661の何れかの交換の必要が生じた際、分析を停止し(S714)、アラームを出す(S715)。
 アラームが出ると、装置オペレーターが試薬ボトル641,651または661の何れかの交換を実施し、キャリブレーションが完了するまで分析ができないため、その期間が装置のダウンタイムとなる。そのため、装置の稼働率が低下するとともにオペレーターが試薬ボトル交換のタイムスケジュールに縛られる。
 図8に本発明の実施例1におけるフロー型電解質濃度測定装置100の分析値の安定性を実証するために行った実験フローを示す。比較実験として、従来のフロー型電解質濃度測定装置600についても、同じ実験フローを実施して比較データを得た。
 まず、キャリブレーションを行い(S801)、3種類の濃度の標準血清を2回分析する(S802)。ここで、試薬ボトルの交換により極端な濃度変化が起こった場合を模擬するため、元の90%濃度の内部標準液が入った内部標準液ボトルに交換し、供給流路の液置換を行う(S803)。標準血清を2回分析し(S804)、キャリブレーションした(S805)後に再度、標準血清を2回分析する(S806)。ここで、また元の濃度の内部標準液の入ったボトルに交換し(S807)、液置換を行い、標準血清を2度分析する(S808)。再度、キャリブレーションした(S809)後に、再度、標準血清を2回分析する(S810)。
 従来装置で、上記の検証実験を行った結果を図9に示す。図9は標準血清のNaイオン濃度について、高濃度Naイオン:901、中濃度Naイオン:902、低濃度Naイオン:903について測定した結果を示している。内部標準液ボトルを交換したタイミング(図9の横軸の2と3の間、及び6と7の間)で、高濃度Naイオン:901、中濃度Naイオン:902、低濃度Naイオン:903何れもが大きく濃度が変化した。一方で、キャリブレーション(図9中の「キャリブ」)の後は、内部標準液の濃度に係わらず、一定の値を示した。従来装置では、分析値の正確さを保つために内部標準液ボトルの交換後に、キャリブレーションが必要であることが確認できた。
 本発明の実施例1におけるフロー型電解質濃度測定装置100で同様の実験を行った場合の標準血清のNaイオン濃度について、高濃度Naイオン:1001、中濃度Naイオン:1002、低濃度Naイオン:1003について測定した結果を図10に示す。
 本発明の実施例1におけるフロー型電解質濃度測定装置100では、濃度の異なる内部標準液に切替えても(図10の横軸の2と3の間、及び6と7の間)、分析値(Naイオン濃度)に影響を与えなかった。前記の通り、本発明の実施例1におけるフロー型電解質濃度測定装置100では、ボトル交換のタイミングで適切に試薬濃度測定と補正を行っているため、ボトル交換時に多少試薬濃度が変化しても分析値に影響せず、自動的に試薬ボトルを切替えることが可能であると確認できた。
 本発明の実施例2におけるよるフロー型電解質濃度測定装置400でも、実施例1のフロー型電解質濃度測定装置100で得られた図10と同等の分析値の安定性を得ることができた。
 また、図11の表1100に、に本発明の実施例1の装置1101および実施例2の装置1102の効果を従来装置1103と比較した。従来装置1103では、装置立上げ時、電極および試薬ボトルを設置し、温調後キャリブレーションを行う。この時間は約30分要する。その後、試薬が無くなる8時間毎に装置オペレーターが試薬ボトルを交換し、キャリブレーションする。このときの分析停止時間は約10分である。例えば、数千テスト後、電極を交換する際は、装置立上げと同様の操作を行う。このように、従来装置1103では、装置オペレーターは約8時間毎の試薬交換スケジュールに縛られる。
 一方、本発明の実施例1の装置1101では、装置立上げ時は従来と同等の時間がかかるが、その後8時間毎に自動的にボトルを切替え、試薬濃度補正する。各分析停止時間は約1分であり、従来に比べ大幅に短縮しており、かつ試薬容器切替え時は装置オペレーターの操作を必要としない。装置オペレーターは次の8時間が経つまでに、空になったボトルを好きなタイミングで交換できるため、負荷は大幅に低減される。
 さらに、実施例2の装置1102では、装置オペレーターは、装置立上げ時に電極と試薬の原薬を設置し、キャリブレーションを実施するだけでよく。連続分析時は、調合容器に新たな試薬を自動的に調合、切替え、補正する。装置オペレーターは電極交換のタイミングにだけに必要であり、約30時間装置から離れることができる。また、試薬を濃縮した原薬のみを使用するため、試薬の重さは100分の1程度となる。
 100,400,600……フロー型電解質濃度測定装置  101…塩素イオン電極  102…カリウムイオン電極  103…ナトリウムイオン電極  104…比較電極  105…ピンチ弁  106…真空吸引ノズル  107…シッパーノズル  108…希釈液供給ノズル  109…内部標準液供給ノズル  110…イオン選択性電極部  111…廃液タンク  112…真空ポンプ  122、123、124、125、126、127、128、421,422,423,424,425,426…電磁弁  131…内部標準液用シリンジポンプ  132…希釈液用シリンジポンプ  133…シッパーシリンジポンプ  140…内部標準液ボトル切替え手段  141…内部標準液ボトルA  142…内部標準液用のボトルB  150…希釈液ボトル切替え手段  151…希釈液ボトルA  152…希釈液ボトルB  160…比較電極液ボトル切替え手段  161…比較電極液ボトルA  162…比較電極液ボトルB  171,471…電位測定部  172,472…記録演算部  173,473…濃度値補正・判断部  174,474…出力部  175,475…制御部  176,476…入力部  440…内部標準液調合手段  441…内部標準液調合容器A  442…内部標準液調合容器B  450…希釈液調合手段  451…希釈液調合容器A  452…希釈液調合容器B  460…比較電極液調合手段  461…比較電極液調合容器A  462…比較電極液調合容器B  443,444,453,454,463,464…攪拌手段  447、457、467…原薬  448、458、468…原薬供給手段  481…純水供給ポンプ。

Claims (7)

  1.  イオン選択性電極と比較電極と電位測定部とを有して前記イオン選択性電極に内部標準液又は検体を供給した際の電位差を前記電位測定部で測定する測定部と、
     前記測定部に前記内部標準液を含む試薬を供給する試薬供給部と、
     前記測定部で測定した電位差の情報を処理して前記内部標準液又は検体のイオン濃度を求める記録演算部と、
     前記記録演算部で求めた前記内部標準液のイオン濃度が予め設定した値の範囲に入っているかを判断するとともに前記記録演算部で求めた前記内部標準液のイオン濃度値を補正する濃度値補正・判断部と、
     前記濃度値補正・判定部で判定した結果を出力する出力部と、
     前記測定部と前記記録演算部と前記濃度値補正・判定部と前記出力部とを制御する制御部とを備え、
     前記試薬供給部は前記内部標準液などの試薬を収容するボトルを前記試薬の種類ごとにそれぞれ複数収納するボトル収納部と、前記ボトル収納部に収納された複数のボトルのそれぞれの内部の前記試薬の残量を検知して前記測定部に前記試薬を供給することにより前記試薬の残量が予め設定した量よりも少なくなったボトルについて前記ボトル収納部に収納した同じ種類の試薬を収容するボトルで前記試薬の残量が前記予め設定した量よりも十分に多いボトルに切替えて前記測定部に前記試薬を供給するボトル切替え部を有し、
     前記濃度値補正・判定部は、前記試薬供給部において前記同じ種類の試薬を収容する複数のボトル間で前記測定部に前記試薬を供給するボトルを切り替えたときに、前記ボトルを切り替える前に前記記録演算部で求めた前記内部標準液又は検体のイオン濃度の情報を用いて前記同じ種類の試薬を収容するボトルを切り替えた後に前記記録演算部で求めた前記内部標準液又は検体のイオン濃度を補正することを特徴とする電解質濃度測定装置。
  2.  請求項1に記載の電解質濃度測定装置であって、前記試薬供給部の前記ボトル切替え部は、前記複数のボトルのそれぞれの内部の前記試薬の残量を検出する残量検出部と、前記残量検出部で検出した前記ボトルの内部の前記試薬の残量の情報に基づいて同じ種類の前記試薬を収容する前記複数のボトル間で前記測定部に前記試薬を供給する前記試薬の流路を切替える流路切替え部とを備えることを特徴とする電解質濃度測定装置。
  3.  請求項1に記載の電解質濃度測定装置であって、一方の試薬ボトル内の試薬を使用して電解質濃度測定を実施している間に、装置オペレーターが他方の試薬ボトルを新たな試薬ボトルに交換可能な試薬ボトル交換機構を備えることを特徴とする電解質濃度測定装置。
  4.  請求項1に記載の電解質濃度測定装置であって、新たな試薬ボトルに置き換えられたことを認識する試薬ボトル交換検知機構を備えることを特徴とする電解質濃度測定装置。
  5.  請求項1に記載の電解質濃度測定装置であって、前記イオン選択性電極を交換したことを認識する電極交換検知機構を備えることを特徴とする電解質濃度測定装置。
  6.  請求項1に記載の電解質濃度測定装置であって、前記試薬供給部の前記ボトル収納部は、前記ボトルに収容する前記試薬に応じた原薬を供給する原薬供給部と、前記ボトルに純水を供給する純水供給部と、前記原薬供給部から前記原薬が供給され前記純水供給部から前記純水が供給された前記ボトルの内部で前記原薬と前記純水とを撹拌混合する撹拌機構部とを備えていることを特徴とする電解質濃度測定装置。
  7.  請求項6に記載の電解質濃度測定装置であって、試薬ボトル内の原薬と純水とを投入し終わった試薬を一定時間間隔で濃度測定し、試薬が均一な濃度に調合されたか否かを判断する調合試薬濃度判断機構を備えることを特徴とする電解質濃度測定装置。
PCT/JP2017/021856 2016-07-26 2017-06-13 電解質濃度測定装置 WO2018020880A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/319,839 US10768136B2 (en) 2016-07-26 2017-06-13 Electrolyte concentration measurement device
CN202011559074.0A CN112666234B (zh) 2016-07-26 2017-06-13 电解质浓度测定装置、电解质浓度测定方法
EP17833890.1A EP3492913B1 (en) 2016-07-26 2017-06-13 Device for measuring electrolyte concentration
CN201780040517.5A CN109416338B (zh) 2016-07-26 2017-06-13 电解质浓度测定装置
EP20215351.6A EP3828535A1 (en) 2016-07-26 2017-06-13 Device for measuring electrolyte concentration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146319 2016-07-26
JP2016146319A JP6622665B2 (ja) 2016-07-26 2016-07-26 電解質濃度測定装置

Publications (1)

Publication Number Publication Date
WO2018020880A1 true WO2018020880A1 (ja) 2018-02-01

Family

ID=61016668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021856 WO2018020880A1 (ja) 2016-07-26 2017-06-13 電解質濃度測定装置

Country Status (5)

Country Link
US (1) US10768136B2 (ja)
EP (2) EP3492913B1 (ja)
JP (1) JP6622665B2 (ja)
CN (2) CN109416338B (ja)
WO (1) WO2018020880A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198400A1 (ja) * 2018-04-12 2019-10-17 株式会社日立ハイテクノロジーズ 電解質分析装置
EP3779469A4 (en) * 2018-04-12 2022-01-19 Hitachi High-Tech Corporation ELECTROLYTE ANALYSIS DEVICE
EP3875965A4 (en) * 2018-10-31 2022-07-27 Hitachi High-Tech Corporation ELECTROLYTE ANALYSIS DEVICE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763749B (zh) * 2019-10-22 2022-05-06 湖北兴福电子材料有限公司 一种含酸蚀刻液中氟离子的检测方法
WO2021140796A1 (ja) * 2020-01-06 2021-07-15 株式会社日立ハイテク 電解質分析装置
US20230057869A1 (en) * 2020-01-13 2023-02-23 King Abdullah University Of Science And Technology Resonant frequency-based magnetic sensor at veering zone and method
EP4099006A4 (en) * 2020-01-29 2024-03-27 Hitachi High-Tech Corporation ELECTROLYTE ANALYZER
JP7231576B2 (ja) * 2020-03-09 2023-03-01 株式会社日立ハイテク 電解質濃度測定装置
CN112014551B (zh) * 2020-07-22 2022-11-04 四川科路泰交通科技有限公司 一种沥青测试用液体储存箱自动选择控制方法及系统
EP4189361A4 (en) * 2020-07-31 2024-05-22 Leica Biosystems Nussloch GmbH METHOD AND APPARATUS FOR MONITORING REAGENT CONCENTRATION, ELECTRONIC DEVICE, COMPUTER READABLE RECORDING MEDIUM
CN113433178B (zh) * 2021-07-05 2024-07-16 陕西中天盛隆智能科技有限公司 一种离子浓度监测系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148965U (ja) * 1984-03-15 1985-10-03 株式会社島津製作所 稀釈液管理装置
JPH04138365A (ja) * 1990-09-29 1992-05-12 Shimadzu Corp 自動化学分析方法及び装置
JPH08220049A (ja) * 1995-02-20 1996-08-30 Hitachi Ltd 電解質測定法及び装置
JPH0933538A (ja) * 1995-07-19 1997-02-07 Toa Medical Electronics Co Ltd 試薬調製装置およびその方法
JP2003516549A (ja) * 1999-12-10 2003-05-13 インストゥルメンテイション ラボラトリー カンパニー 乾式化学物質センサの促進された水和のためのデバイスおよび方法
JP2004251799A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 自動分析装置
JP2007333706A (ja) * 2006-06-19 2007-12-27 Sekisui Chem Co Ltd カートリッジ式検出装置
JP2011122823A (ja) * 2009-12-08 2011-06-23 Hitachi High-Technologies Corp 電解質分析装置
JP2015125018A (ja) * 2013-12-25 2015-07-06 株式会社東芝 自動分析装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747731Y2 (ja) * 1987-03-23 1995-11-01 株式会社島津製作所 電解質濃度測定装置
JP2503751Y2 (ja) * 1989-01-25 1996-07-03 株式会社日立製作所 自動分析装置
JP2982464B2 (ja) 1992-02-03 1999-11-22 住友金属工業株式会社 羽口からの炭化水素ガス吹き込み方法
JPH08220050A (ja) * 1995-02-08 1996-08-30 Hitachi Ltd 電解質分析装置
JP3443478B2 (ja) * 1995-04-28 2003-09-02 オリンパス光学工業株式会社 自動分析装置及び試薬残量管理方法
JP3271741B2 (ja) * 1996-06-04 2002-04-08 株式会社日立製作所 自動分析方法及び装置
JP2000275207A (ja) * 1999-03-24 2000-10-06 Olympus Optical Co Ltd 臨床用電解質測定方法
JP2006337386A (ja) * 2006-09-25 2006-12-14 Hitachi High-Technologies Corp 自動分析装置
JP5080211B2 (ja) * 2007-11-09 2012-11-21 ベックマン コールター, インコーポレイテッド 分析装置
JP2009145091A (ja) * 2007-12-12 2009-07-02 Hitachi High-Technologies Corp 自動分析装置
JP5214420B2 (ja) * 2008-12-02 2013-06-19 株式会社エイアンドティー 電解質分析方法および電解質分析装置
JP2011007719A (ja) * 2009-06-29 2011-01-13 Hitachi High-Technologies Corp 自動分析装置
WO2011034169A1 (ja) * 2009-09-18 2011-03-24 日立化成工業株式会社 自動分析装置
JP5965248B2 (ja) * 2012-08-22 2016-08-03 株式会社日立ハイテクノロジーズ 電解質分析装置
JP5279941B2 (ja) * 2012-10-01 2013-09-04 株式会社東芝 自動分析方法及び自動分析装置
JP5427975B2 (ja) 2013-07-25 2014-02-26 株式会社日立ハイテクノロジーズ 電解質分析装置の管理システム
JP2015122823A (ja) * 2013-12-20 2015-07-02 日立工機株式会社 モータ駆動制御装置、電動工具及びモータ駆動制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148965U (ja) * 1984-03-15 1985-10-03 株式会社島津製作所 稀釈液管理装置
JPH04138365A (ja) * 1990-09-29 1992-05-12 Shimadzu Corp 自動化学分析方法及び装置
JPH08220049A (ja) * 1995-02-20 1996-08-30 Hitachi Ltd 電解質測定法及び装置
JPH0933538A (ja) * 1995-07-19 1997-02-07 Toa Medical Electronics Co Ltd 試薬調製装置およびその方法
JP2003516549A (ja) * 1999-12-10 2003-05-13 インストゥルメンテイション ラボラトリー カンパニー 乾式化学物質センサの促進された水和のためのデバイスおよび方法
JP2004251799A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 自動分析装置
JP2007333706A (ja) * 2006-06-19 2007-12-27 Sekisui Chem Co Ltd カートリッジ式検出装置
JP2011122823A (ja) * 2009-12-08 2011-06-23 Hitachi High-Technologies Corp 電解質分析装置
JP2015125018A (ja) * 2013-12-25 2015-07-06 株式会社東芝 自動分析装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198400A1 (ja) * 2018-04-12 2019-10-17 株式会社日立ハイテクノロジーズ 電解質分析装置
JPWO2019198400A1 (ja) * 2018-04-12 2021-04-15 株式会社日立ハイテク 電解質分析装置
EP3779469A4 (en) * 2018-04-12 2022-01-19 Hitachi High-Tech Corporation ELECTROLYTE ANALYSIS DEVICE
JP7002640B2 (ja) 2018-04-12 2022-01-20 株式会社日立ハイテク 電解質分析装置
EP3875965A4 (en) * 2018-10-31 2022-07-27 Hitachi High-Tech Corporation ELECTROLYTE ANALYSIS DEVICE

Also Published As

Publication number Publication date
JP6622665B2 (ja) 2019-12-18
EP3492913A1 (en) 2019-06-05
US20190265187A1 (en) 2019-08-29
CN112666234A (zh) 2021-04-16
EP3492913B1 (en) 2021-03-03
CN112666234B (zh) 2024-04-19
US10768136B2 (en) 2020-09-08
JP2018017543A (ja) 2018-02-01
EP3828535A1 (en) 2021-06-02
EP3492913A4 (en) 2020-03-11
CN109416338B (zh) 2020-11-27
CN109416338A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6622665B2 (ja) 電解質濃度測定装置
JP5331669B2 (ja) 電解質分析装置
US11782021B2 (en) Electrolyte concentration measurement device
JP2014041060A (ja) 電解質分析装置
WO2023181620A1 (ja) 電解質分析装置
JP2018146586A (ja) 分析物濃度を決定する方法
CN115053126B (zh) 电解质分析装置
JP7148594B2 (ja) 自動分析装置、自動分析方法
JP6986925B2 (ja) 電解質濃度測定装置
WO2023002729A1 (ja) 自動分析装置および自動分析装置での試薬管理方法
US8888989B2 (en) Method and apparatus for electrolyte measurements
JP5492833B2 (ja) 自動分析装置およびその制御方法
JP5214420B2 (ja) 電解質分析方法および電解質分析装置
JP5427975B2 (ja) 電解質分析装置の管理システム
US20240060931A1 (en) Electrolyte analysis device and method for identifying abnormality in same
US20240345018A1 (en) Electrolyte analyzer and analysis method
WO2023013222A1 (ja) 電解質分析装置および分析方法
JPH08220049A (ja) 電解質測定法及び装置
EP4271987A1 (en) Simultaneous and selective washing and detection in ion selective electrode analyzers
CN115280156A (zh) 自动分析装置
JPWO2023002729A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833890

Country of ref document: EP

Effective date: 20190226