WO2018016728A1 - 마이크로 led 어레이 디스플레이 장치 - Google Patents

마이크로 led 어레이 디스플레이 장치 Download PDF

Info

Publication number
WO2018016728A1
WO2018016728A1 PCT/KR2017/005354 KR2017005354W WO2018016728A1 WO 2018016728 A1 WO2018016728 A1 WO 2018016728A1 KR 2017005354 W KR2017005354 W KR 2017005354W WO 2018016728 A1 WO2018016728 A1 WO 2018016728A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro led
pixels
cmos
display device
semiconductor layer
Prior art date
Application number
PCT/KR2017/005354
Other languages
English (en)
French (fr)
Inventor
장한빛
신은성
조현용
Original Assignee
주식회사 루멘스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루멘스 filed Critical 주식회사 루멘스
Priority to EP17831202.1A priority Critical patent/EP3487266A4/en
Priority to CN201780042188.8A priority patent/CN109479354B/zh
Publication of WO2018016728A1 publication Critical patent/WO2018016728A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a micro LED array display device. Specifically, a plurality of micro LED pixels are arranged on a single micro LED panel in an etching process in manufacturing an LED chip, and the micro LED panel in that state is used for bumps
  • the present invention relates to a micro LED array display device that can be used for micro display by flip chip bonding on a CMOS backplane and configured to individually drive micro LED pixels.
  • LEDs Light emitting diodes
  • LEDs are a type of solid-state device that converts electrical energy into light, and basically include two doped layers, an active layer interposed between an n-type semiconductor layer and a p-type semiconductor layer, so that a voltage between the two doped layers When applied, electrons and holes are injected into the active layer, and then recombined in the active layer to generate light. LEDs can be driven at relatively low voltages, but also feature low heat due to their high energy efficiency. LEDs can be manufactured in various types. Among these various types, in particular, a type used for manufacturing a micro LED array display device is a type in which a plurality of micro LED pixels are formed on one wafer.
  • a signal line is formed after conventionally forming two terminals of p-pole and n-pole at each pixel through a chip manufacturing process.
  • the drive was arranged in the vertical axis.
  • the devices that control signals for the micro LED pixels must be formed separately in the peripheral area, the size of the micro LED array display increases and numerous data lines arranged on the vertical and horizontal axes must be connected by wire bonding with the micro LED pixels. Therefore, the process is complicated and inconvenient.
  • An object of the present invention is to solve the complexity and inconvenience of wire bonding between micro LED pixels and various data lines in manufacturing a micro LED array display device, and to individually separate each of the micro LED pixels.
  • it is to provide a micro LED array display device in which each of the micro LED pixels is flip-chip bonded using bumps to correspond to each of the CMOS cells formed on the CMOS backplane.
  • Another object of the present invention is to solve the difficulty in forming a structure for emitting red, green and blue light on a substrate when forming a plurality of micro LED pixels on one substrate, CMOS backplane To provide a micro LED array display device flip-chip bonded on.
  • a micro LED array display device includes a micro LED panel including a plurality of micro LED pixels, and each of the micro LED pixels to individually drive each of the micro LED pixels.
  • a CMOS backplane including a plurality of CMOS cells corresponding to the second micro LED pixels and the micro LED pixels, with the micro LED pixels and the CMOS cells facing each other; And bumps electrically connected to each other, wherein the micro LED pixels are individually controlled by flip-chip bonding the bumps to each of the micro LED pixels corresponding to each of the CMOS cells formed on the CMOS backplane. do.
  • the micro LED pixels are formed by etching the growth of the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer in order on the substrate, the vertical structure of the micro LED pixels, In order, the portion including the first conductivity type semiconductor layer, the active layer, and the second conductivity type semiconductor layer, wherein the micro LED pixels are not formed, the active layer and the second conductivity type semiconductor layer are removed to remove the first conductivity type semiconductor layer. Is exposed.
  • a first conductive metal layer is formed on the first conductive semiconductor layer in a portion where the micro LED pixels are not formed to be spaced apart from the micro LED pixels.
  • the first conductivity type metal layer is formed along the periphery of the micro LED panel on the first conductivity type semiconductor layer.
  • the height of the first conductivity type metal layer is the same as the height of the micro LED pixels.
  • the first conductivity type metal layer functions as a common electrode of the micro LED pixels.
  • the CMOS backplane may include a common cell formed to correspond to the first conductivity type metal layer, and the first conductivity type metal layer and the common cell may be electrically connected by a common bump.
  • the first conductivity type is n-type and the second conductivity type.
  • the substrate is made of any one of sapphire, SiC, Si, glass, and ZnO.
  • the bumps are formed in each of the CMOS cells, recording by heating, so that each of the CMOS cells and micro LED pixels corresponding to each of the CMOS cells are electrically connected.
  • a micro LED array display device for full color implementation includes: first to third micro LED panels each including a plurality of micro LED pixels and emitting light of different wavelength bands; A single CMOS backplane comprising a plurality of CMOS cells corresponding to each of the micro LED pixels to individually drive each of the micro LED pixels of each of the first to third micro LED panels; Micro LED pixels of each of the first to third micro LED panels and micro LED pixels of each of the first to third micro LED panels, with micro LED pixels of each of the LED panels and the CMOS cells disposed to face each other.
  • the micro LED pixels are individually controlled by flip chip bonding using the bumps such that each of the micro LED pixels corresponds to each of the micro LED pixels of the first to third micro LED panels to each of the configured CMOS cells. It is characterized by.
  • the present invention provides a new concept micro LED array display device in which a chip is flip-chip bonded using bumps so that each of the micro LED pixels corresponds to each of the CMOS cells formed on the CMOS backplane.
  • the complexity and inconvenience of wirebonding with lines can be eliminated and each micro LED pixel can be individually controlled.
  • multiple micro LED panels emitting red, green and blue light each on a single CMOS backplane can be flip-chip bonded using bumps, allowing the three colors to be concentrated in one place using optics to achieve full color. Therefore, when forming a plurality of micro LED pixels on a conventional substrate, there is an effect that can solve the technical difficulties in forming a structure for emitting red, green and blue light on the substrate.
  • FIG. 1 is a view showing an example of a micro LED panel 100 of a micro LED array display device according to an embodiment of the present invention
  • FIG. 2 includes a plurality of CMOS cells for individually driving each of the micro LED panel 100 and the micro LED pixels on the micro LED panel 100 of FIG. 1 in the micro LED array display device according to the exemplary embodiment of the present invention. Is a view showing a CMOS backplane 200,
  • FIG. 3 illustrates a state in which bumps 300 are disposed on the CMOS backplane 200 in order to electrically connect the micro LED panel 100 and the CMOS backplane 200 of FIG. 2 using the bumps 300. Is the drawing shown,
  • FIG. 4 illustrates the micro LED panel 100 on the CMOS backplane 200 in which the bumps 300 are disposed in FIG. 3 so that each of the micro LED pixels and the CMOS backplane 200 on the micro LED panel 100 is disposed. Shows a state in which the CMOS cells on the circuit are electrically connected,
  • FIG. 5 illustrates micro LED panels 1100, 1200, and 1300 of red, green, and blue, respectively, and corresponding CMOS cells, respectively, for fabricating a full color according to an embodiment of the present invention.
  • CMOS cell regions 2100, 2200, and 2300 on a single CMOS backplane 2000 and to arrange bumps 3000 on CMOS cells.
  • FIG. 6 is a view illustrating a state in which the red, green, and blue micro LED panels 1100, 1200, and 1300 of FIG. 5 are electrically connected to a single CMOS backplane 2000 using bumps 3000.
  • FIG. 7 is a view for briefly explaining the driving of the micro LED array display device for a full color implementation according to an embodiment of the present invention.
  • a micro LED pixel is arrayed in a mesa etching process and flip-chip bonded to a CMOS backplane, thereby applying it to a micro display such as a head mounted display (HMD) or a head up display (HUD).
  • HMD head mounted display
  • HUD head up display
  • the present invention is flip chip bonded on a CMOS backplane to arrange and individually drive micro LED pixels in a mesa etching process during LED chip fabrication.
  • the present invention may realize full color by arranging three devices having red, green, and blue, that is, micro LED panels on a CMOS backplane.
  • FIG. 1 is a view showing an example of a micro LED panel 100 of a micro LED array display device according to an embodiment of the present invention
  • Figure 2 is a micro LED array display device according to an embodiment of the present invention
  • Figure 1 3 illustrates a micro back panel 200 including a plurality of CMOS cells for individually driving each of the micro LED panel 100 and the micro LED pixels on the micro LED panel 100
  • FIG. 3 is a micro LED of FIG. 2.
  • the bumps 300 are disposed on the CMOS backplane 200, and FIG. 4 is illustrated in FIG. 4.
  • the micro LED panel 100 is disposed on the CMOS backplane 200 in which the bumps 300 are disposed at 3 so that each of the micro LED pixels on the micro LED panel 100 and the CMOS cells on the CMOS backplane 200 are disposed. Electrically The figure shows the state connected with.
  • the micro LED array display device includes a micro LED panel 100, a CMOS backplane 200, and bumps 300.
  • the micro LED panel 100 includes a plurality of micro LED pixels 130
  • the CMOS backplane 200 corresponds to each of the micro LED pixels 130 to individually drive each of the micro LED pixels 130.
  • the bumps 300 may be configured such that each of the micro LED pixels 130 and the CMOS cells 230 corresponding to the micro LED pixels 130 and the CMOS cells 230 are disposed with the micro LED pixels 130 and the CMOS cells 230 facing each other.
  • micro LED array display may be flip-chip bonded using the bumps 300 so that each of the micro LED pixels 130 corresponds to each of the CMOS cells 230 formed on the CMOS backplane 200.
  • the device individually controls the micro LED pixels 130.
  • the micro LED panel 100 is grown after the first conductive semiconductor layer 132, the active layer 134, and the second conductive semiconductor layer 136 are sequentially grown on the substrate 110. Therefore, the micro pixels 130 on the micro LED panel 100 are formed through such a process, and the vertical structure of each micro LED pixel 130 is the first conductivity type semiconductor layer 132 on the substrate 110. ), An active layer 134, and a second conductivity type semiconductor layer 136.
  • the substrate 110 may be made of any one of sapphire, SiC, Si, glass, and ZnO.
  • the first conductive semiconductor layer 132 may be an n-type semiconductor layer
  • the second conductive semiconductor layer 136 may be a p-type semiconductor layer.
  • the active layer 134 is an area where electrons and holes provided from the first conductivity type semiconductor layer 132 and the second conductivity type semiconductor layer 136 are recombined when power is applied.
  • the etched portion that is, the portion 120 in which the micro LED pixels 130 are not formed, has the second conductivity-type semiconductor layer 136 and the active layer 134 removed to form a first portion.
  • the conductive semiconductor layer 132 is exposed.
  • the first conductive type is spaced apart from the micro LED pixels 130.
  • the metal layer 140 is formed.
  • the first conductive metal layer 140 is formed on the first conductive semiconductor layer 132 to have a predetermined width along the periphery of the micro LED panel 100.
  • the height of the first conductive metal layer 140 is formed to be substantially the same as the height of the micro LED pixels 130.
  • the first conductivity type metal layer 140 is electrically connected to the CMOS backplane 200 by bumps 300 to function as a common electrode of the micro LED pixels 130.
  • the first conductivity type metal layer 140 may be common ground.
  • the CMOS backplane 200 includes a plurality of CMOS cells 230 for individually driving each of the micro LED pixels 130. Each of the CMOS cells 230 is electrically connected to corresponding micro LED pixels through bumps 330. Each of the CMOS cells 230 is an integrated circuit for individually driving corresponding micro LED pixels.
  • CMOS backplane 200 may be, for example, an active matrix (AM) panel, and therefore, each of CMOS cells 230 may be a pixel drive circuit comprising two transistors and one capacitor, and bumps When flip chip bonding the micro LED panel 100 to the CMOS backplane 200 by using the 300, an equivalent circuit is disposed between a drain terminal of a transistor of the pixel driving circuit and a common ground terminal (eg, reference numeral 240).
  • the individual micro LED pixels may be arranged in the form.
  • the CMOS backplane 200 includes a common cell 240 formed at a position corresponding to the first conductive metal layer 140, and the first conductive metal layer 140 and the common cell 240 have a common bump 340. Is electrically connected by In the present specification, bumps 330 electrically connecting each of the plurality of CMOS cells and each of the micro LED pixels, and common bumps electrically connecting the first conductive metal layer 140 and the common cell 240.
  • the bumps 300 may be used as a term that includes all of the 340.
  • the bumps 330 and the common bumps 340 face the CMOS backplane 200 and the micro LED panel 100 with each other disposed above the CMOS cells 230.
  • the bumps 330 and the common bump 340 are melted, so that each of the CMOS cells 230 and the CMOS cells are melted.
  • the micro LED pixel 130 corresponding to each 230 is in an electrically connected state.
  • FIG. 5 corresponds to micro LED panels 1100, 1200, and 1300 that emit red, green, and blue light, respectively, and micro LED pixels formed thereon, for realizing full color according to an embodiment of the present invention.
  • CMOS cell regions 2100, 2200, and 2300 are formed on a single CMOS backplane 2000 and bumps 3000 are disposed on the CMOS cells.
  • FIG. 6 is a view illustrating a state in which the red, green, and blue micro LED panels 1100, 1200, and 1300 of FIG. 5 are electrically connected to a single CMOS backplane 2000 using bumps 3000. to be.
  • the micro LED array display device for a full-color implementation includes a first micro LED panel 1100, a second micro LED panel 1200, and a third micro LED panel 1300, each of them Includes a plurality of micro LED pixels arranged.
  • Each of the first micro LED panel 1100, the second micro LED panel 1200, and the third micro LED panel 1300 emits light having a different wavelength band.
  • the first micro LED panel 1100 is configured to emit red light
  • the second micro LED panel 1200 is green light
  • the third micro LED panel 1300 emits blue light.
  • the single CMOS backplane 2000 includes a plurality of CMOS cells corresponding to each of the micro LED pixels of each of the first micro LED panel 1100, the second micro LED panel 1200, and the third micro LED panel 1300. Include. CMOS cell regions 2100, 2200, and 2300 corresponding to each of the micro LED panels 1100, 1200, and 1300 may be disposed in the single CMOS backplane 2000 so that the micro LED panels 1100, 1200, and 1300 may be disposed.
  • Each of the micro LED panels 1100, 1200, and 1300 is flip-chip bonded to the CMOS cell regions 2100, 2200, and 2300.
  • CMOS cell regions 2100, 2200, 2300 so that micro LED panels 1100, 1200, 1300 are flipchip bonded to a single CMOS backplane 2000 so that each of the CMOS cells and each of the micro LED pixels are electrically connected.
  • Each of the plurality of CMOS cells is formed to correspond to the plurality of micro LED pixels of each of the micro LED panels 1100, 1200, and 1300.
  • Each of these CMOS cells and micro LED pixels are electrically connected through bumps 3000.
  • Flip chip bonding the micro LED panels 1100, 1200, 1300 to a single CMOS backplane 2000 may flip the micro LED panel 100 to the CMOS backplane 200 described with reference to FIGS. 1 through 4. It is the same as the process of chip bonding.
  • CMOS backplane 2000 a common cell is formed in each of the CMOS cell regions 2100, 2200, and 2300, and the common cell is each of the micro LED panels 1100, 1200, and 1300 through common bumps. Is electrically connected to the first conductivity type metal layer.
  • CMOS backplane 2000 As described above, in manufacturing a micro LED, it is technically difficult to form a structure that emits red, green, and blue light on one substrate, and thus, each of them is independent of a single CMOS backplane 2000 as in the present invention. It is possible to achieve full color by flip chip bonding a plurality of micro LED panels, each of which is made of a light emitting diode and emits light of different wavelength bands, that is, red, green, and blue light, respectively, so that three colors are concentrated in one place using an optical system. do. In addition, it is possible to solve the inconvenience and difficulty of wire bonding between the LED chips and various data lines running on the vertical axis to control the LED chips as well as to control the signals of the LED chips. Since the devices in charge do not have to be separately provided in the external region of the LED chip, there is an advantage that the size of the entire display device can be reduced.
  • FIG. 7 is a view for briefly describing driving of a micro LED array display apparatus for a full color implementation according to an embodiment of the present invention.
  • the micro LED array display device is driven by the control signal of the drive IC 700.
  • the control signal from the driver IC 700 is supplied to each micro LED pixel by CMOS cells formed in the CMOS backplane 2000, that is, a CMOS integrated circuit.
  • the control signal from the driver IC 700 may be an analog signal or a digital signal, and the digital signal may be a pulse width modulation (PWM) signal.
  • PWM pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)
  • Wire Bonding (AREA)

Abstract

마이크로 LED 어레이 디스플레이 장치가 개시된다. 개시되는 마이크로 LED 어레이 디스플레이 장치는, 복수 개의 마이크로 LED 픽셀들을 포함하는 마이크로 LED 패널과, 마이크로 LED 픽셀들 각각을 개별 구동시키기 위해 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들을 포함하는 CMOS 백플레인과, 마이크로 LED 픽셀들과 CMOS 셀들이 마주하도록 배치된 상태에서, 마이크로 LED 픽셀들 각각과 마이크로 LED 픽셀들 각각에 대응하는 CMOS 셀을 전기적으로 연결시키는 범프들을 포함하며, 상기 CMOS 백플레인 상에 형성된 상기 CMOS 셀들 각각에 상기 마이크로 LED 픽셀들 각각이 대응되게 상기 범프들을 이용하여 플립칩 본딩함으로써 상기 마이크로 LED 픽셀들이 개별적으로 제어된다.

Description

마이크로 LED 어레이 디스플레이 장치
본 발명은 마이크로 LED 어레이 디스플레이 장치에 관한 것으로, 구체적으로는, LED 칩의 제조시 식각 공정에서 하나의 마이크로 LED 패널 상에 복수 개의 마이크로 LED 픽셀들을 배열하고, 그 상태의 마이크로 LED 패널을 범프들을 이용하여 CMOS 백플레인(Backplane) 상에 플립칩 본딩하여 마이크로 LED 픽셀들을 개별 구동할 수 있도록 구성함으로써, 마이크로 디스플레이용으로 사용될 수 있는 마이크로 LED 어레이 디스플레이 장치에 관한 것이다.
발광다이오드(Light Emitting Diode, LED)는 저전력 소비와 친환경적이라는 측면에서 그 수요가 폭발적으로 증가하고 있으며, 조명장치나 LCD 표시장치의 백라이트용으로 뿐만 아니라, 디스플레이 장치에도 널리 적용되고 있다.
LED는 전기 에너지를 빛으로 변환시키는 고체 소자의 일종으로서, 기본적으로, 두 개의 도핑층, 즉 n형 반도체층과 p형 반도체층 사이에 개재된 활성층을 포함하여, 두 개의 도핑층 사이에 전압이 인가되면, 전자와 정공이 활성층으로 주입된 후, 활성층 내에서 재결합되어 빛이 발생되는 원리를 이용하고 있다. LED는 비교적 낮은 전압으로 구동이 가능하면서도 높은 에너지 효율로 인해 발열이 낮은 특징이 있다. LED는 다양한 타입으로 제조될 수 있는데, 이러한 여러 가지 타입들 중 특히, 마이크로 LED 어레이 디스플레이 장치의 제조에 사용되는 타입으로서, 하나의 웨이퍼 상에 복수 개의 마이크로 LED 픽셀들을 형성한 타입이 있다. 이와 같이, 하나의 웨이퍼 상에 복수 개의 마이크로 LED 픽셀들을 형성하여 마이크로 LED 어레이 디스플레이 장치를 제조함에 있어서, 종래에는 칩 제조 공정을 통하여 각 픽셀에 p극과 n극의 2 단자를 형성한 후 신호 라인 종횡축으로 배열하여 구동하였다. 이 경우 마이크로 LED 픽셀들에 대하여 신호 제어를 담당하는 소자들이 주변 영역에 별도로 형성되어야 하기 때문에 마이크로 LED 어레이 디스플레이의 크기가 커지고 종횡축에 어레이된 수많은 데이터라인들을 마이크로 LED 픽셀들과 와이어본딩으로 연결해야 하므로 그 공정이 복잡하고 불편함이 많이 따른다.
또한, 하나의 기판상에 복수 개의 마이크로 LED 픽셀들을 형성하는 경우, 하나의 기판상에 적색, 녹색 및 청색 광을 발광하는 구조물을 형성함에 있어서의 기술적인 한계로 인해, 마이크로 LED 어레이 디스플레이 장치에서 LED 광원을 사용할 경우, 종래에는 단색으로만 구현할 수밖에 없는 어려움이 있었다. 따라서, 이러한 문제점들을 해결하기 위한 방안이 당해 기술 분야에서 요구되고 있다.
본 발명이 해결하고자 하는 과제는, 마이크로 LED 어레이 디스플레이 장치를 제조함에 있어서, 마이크로 LED 픽셀들과 각종 데이터라인들과의 와이어본딩 작업의 복잡함과 불편함을 해소하고, 마이크로 LED 픽셀들 각각을 개별적으로 제어가능하도록 하기 위해, CMOS 백플레인 상에 형성된 CMOS 셀들 각각에 마이크로 LED 픽셀들 각각이 대응되게 범프들을 이용하여 플립칩 본딩되는 마이크로 LED 어레이 디스플레이 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 하나의 기판상에 복수 개의 마이크로 LED 픽셀들을 형성하는 경우, 기판 상에 적색, 녹색 및 청색 광을 발광하는 구조를 형성함에 있어서의 어려움을 해결하고자, CMOS 백플레인 상에 플립칩 본딩되는 마이크로 LED 어레이 디스플레이 장치를 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따른 마이크로 LED 어레이 디스플레이 장치는, 복수 개의 마이크로 LED 픽셀들을 포함하는 마이크로 LED 패널과, 상기 마이크로 LED 픽셀들 각각을 개별 구동시키기 위해 상기 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들을 포함하는 CMOS 백플레인과, 상기 마이크로 LED 픽셀들과 상기 CMOS 셀들이 마주하도록 배치된 상태에서, 상기 마이크로 LED 픽셀들 각각과 상기 마이크로 LED 픽셀들 각각에 대응하는 CMOS 셀을 전기적으로 연결시키는 범프들을 포함하며, 상기 CMOS 백플레인 상에 형성된 상기 CMOS 셀들 각각에 상기 마이크로 LED 픽셀들 각각이 대응되게 상기 범프들을 이용하여 플립칩 본딩함으로써 상기 마이크로 LED 픽셀들이 개별적으로 제어되는 것을 특징으로 한다.
일 실시예에 따라, 상기 마이크로 LED 픽셀들은 기판상에 차례대로 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 성장시킨 후 식각되어 형성되며, 상기 마이크로 LED 픽셀들의 수직구조는, 차례대로, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하고, 상기 마이크로 LED 픽셀들이 형성되지 않은 부분은, 활성층 및 제2 도전형 반도체층이 제거되어 제1 도전형 반도체층이 노출된다.
일 실시예에 따라, 상기 마이크로 LED 픽셀들이 형성되지 않은 부분의 제1 도전형 반도체층 상에는 상기 마이크로 LED 픽셀들과 이격되게 제1 도전형 메탈층이 형성된다.
일 실시예에 따라, 상기 제1 도전형 메탈층은 상기 제1 도전형 반도체층 상에서 상기 마이크로 LED 패널의 외곽을 따라 형성된다.
일 실시예에 따라, 상기 제1 도전형 메탈층의 높이는 상기 마이크로 LED 픽셀들의 높이와 동일하다.
일 실시예에 따라, 상기 제1 도전형 메탈층은 상기 마이크로 LED 픽셀들의 공통 전극으로서 기능한다.
일 실시예에 따라, 상기 CMOS 백플레인은, 상기 제1 도전형 메탈층에 대응되게 형성된 공통 셀을 포함하고, 상기 제1 도전형 메탈층과 상기 공통 셀은 공통 범프에 의해 전기적으로 연결된다.
일 실시예에 따라, 상기 제1 도전형은 n형이고, 상기 제2 도전형이다.
일 실시예에 따라, 상기 기판은, 사파이어, SiC, Si, 유리, 및 ZnO 중 어느 하나로 이루어진다.
일 실시예에 따라, 상기 범프들은 상기 CMOS 셀들 각각에 형성되어, 가열에 의해 녹음으로써, 상기 CMOS 셀들 각각과 상기 CMOS 셀들 각각에 대응되는 마이크로 LED 픽셀이 전기적으로 연결된다.
본 발명의 다른 측면에 따라 풀 컬러 구현을 위한 마이크로 LED 어레이 디스플레이 장치는, 각각이, 복수 개의 마이크로 LED 픽셀들을 포함하며, 서로 다른 파장 대역의 광을 발광하는, 제1 내지 제3 마이크로 LED 패널과, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들 각각을 개별 구동하기 위해 상기 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들을 포함하는 단일 CMOS 백플레인과, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들과 상기 CMOS 셀들이 마주하도록 배치된 상태에서, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들 각각과, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들 각각에 대응하는 CMOS 셀을 전기적으로 연결하기 위한 범프들을 포함하며, 상기 CMOS 백플레인 상에 형성된 상기 CMOS 셀들 각각에 상기 제1 내지 제3 마이크로 LED 패널의 상기 마이크로 LED 픽셀들 각각에 상기 마이크로 LED 픽셀들 각각이 대응되게 상기 범프들을 이용하여 플립칩 본딩함으로써 상기 마이크로 LED 픽셀들이 개별적으로 제어되는 것을 특징으로 한다.
본 발명은 CMOS 백플레인 상에 형성된 CMOS 셀들 각각에 마이크로 LED 픽셀들 각각이 대응되도록 범프들을 이용하여 플립칩 본딩되는 새로운 개념의 마이크로 LED 어레이 디스플레이 장치를 제공함으로써, 기존 공정에서 마이크로 LED 픽셀들과 각종 데이터라인들과의 와이어본딩 작업의 복잡함과 불편함을 해소하고, 마이크로 LED 픽셀들 각각을 개별적으로 제어가능하도록 할 수 있다. 뿐만 아니라, 단일 CMOS 백플레인에 적색, 녹색 및 청색 광 각각을 발광하는 복수 개의 마이크로 LED 패널들을 범프들을 이용하여 플립칩 본딩시켜, 광학계를 이용하여 세 가지 색상이 한 곳에 집중하도록 함으로써 풀컬러 구현을 가능하게 하므로, 종래 하나의 기판 상에 복수 개의 마이크로 LED 픽셀들을 형성하는 경우, 기판 상에 적색, 녹색 및 청색 광을 발광하는 구조를 형성함에 있어서의 기술적 어려움을 해소할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이 장치의 마이크로 LED 패널(100)의 일 예를 보인 도면이고,
도 2는 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이 장치에서 도 1의 마이크로 LED 패널(100)과 마이크로 LED 패널(100) 상의 마이크로 LED 픽셀들 각각을 개별 구동하기 위한 복수 개의 CMOS 셀들을 포함하는 CMOS 백플레인(200)을 보인 도면이고,
도 3은 도 2의 마이크로 LED 패널(100)과 CMOS 백플레인(200)을 범프들(300)을 이용하여 전기적으로 연결시키기 위해, 범프들(300)을 CMOS 백플레인(200) 상에 배치한 상태를 보인 도면이고,
도 4는 도 3에서 범프들(300)이 배치된 CMOS 백플레인(200) 상에 마이크로 LED 패널(100)을 마주보게 배치하여 마이크로 LED 패널(100) 상의 마이크로 LED 픽셀들 각각과 CMOS 백플레인(200) 상의 CMOS 셀들을 전기적으로 연결시킨 상태를 보인 도면이고,
도 5는 본 발명의 일 실시예에 따라 풀컬러(full color) 구현을 위해, 각각 제작된 적색, 녹색 및 청색 각각의 마이크로 LED 패널들(1100, 1200, 1300)과, 이들을 대응되는 CMOS 셀들 각각에 전기적으로 연결하기 위해 단일 CMOS 백플레인(2000) 상에 CMOS 셀 영역들(2100, 2200, 2300)을 형성하고, CMOS 셀들 상에 범프들(3000)을 배치한 상태를 보인 도면이고,
도 6은 도 5의 적색, 녹색 및 청색 각각의 마이크로 LED 패널들(1100, 1200, 1300)을 범프들(3000)을 이용하여 단일 CMOS 백플레인(2000)에 전기적으로 연결시킨 상태를 보인 도면이고,
도 7은 본 발명의 일 실시예에 따라 풀컬러 구현을 위한 마이크로 LED 어레이 디스플레이 장치의 구동을 간략히 설명하기 위한 도면이다.
본 발명은 메사 식각공정에서 마이크로 LED 픽셀을 어레이하고 이를 CMOS 백플레인 위에 플립칩 본딩함으로써, HMD(Head Mounted Display) 또는 HUD(Head Up Display)와 같은 마이크로 디스플레이(Micro Display)에 적용할 수 있도록 한 마이크로 LED 어레이 디스플레이 장치와 관련된다. 본 발명은 LED 칩 제조시 메사 식각 공정에서 마이크로 LED 픽셀들을 배열하고, 개별구동할 수 있도록 CMOS 백플레인 위에 플립칩 본딩된다. 또한 본 발명은 적색, 녹색, 및 청색을 갖는 세 가지 소자, 즉 마이크로 LED 패널들을 CMOS 백플레인 위에 배열함으로써 풀 컬러를 구현할 수도 있다.
이하에서는 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 첨부된 도면들 및 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 사람이 용이하게 이해할 수 있도록 간략화되고 예시된 것이므로, 도면들 및 실시예들이 본 발명의 범위를 한정하는 것으로 해석되어서는 아니될 것이다.
도 1은 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이 장치의 마이크로 LED 패널(100)의 일 예를 보인 도면이고, 도 2는 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이 장치에서 도 1의 마이크로 LED 패널(100)과 마이크로 LED 패널(100) 상의 마이크로 LED 픽셀들 각각을 개별 구동하기 위한 복수 개의 CMOS 셀들을 포함하는 CMOS 백플레인(200)을 보인 도면이고, 도 3은 도 2의 마이크로 LED 패널(100)과 CMOS 백플레인(200)을 범프들(300)을 이용하여 전기적으로 연결시키기 위해, 범프들(300)을 CMOS 백플레인(200) 상에 배치한 상태를 보인 도면이고, 도 4는 도 3에서 범프들(300)이 배치된 CMOS 백플레인(200) 상에 마이크로 LED 패널(100)을 마주보게 배치하여 마이크로 LED 패널(100) 상의 마이크로 LED 픽셀들 각각과 CMOS 백플레인(200) 상의 CMOS 셀들을 전기적으로 연결시킨 상태를 보인 도면이다.
우선, 도 1 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이장치에 관하여 설명한다. 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이 장치는, 마이크로 LED 패널(100), CMOS 백플레인(200), 및 범프들(300)을 포함한다. 마이크로 LED 패널(100)은 복수 개의 마이크로 LED 픽셀들(130)을 포함하고, CMOS 백플레인(200)은, 마이크로 LED 픽셀들(130) 각각을 개별 구동시키기 위해 마이크로 LED 픽셀들(130) 각각에 대응하는 복수 개의 CMOS 셀들(230)을 포함한다. 그리고, 범프들(300)은, 마이크로 LED 픽셀들(130)과 CMOS 셀들(230)이 마주하도록 배치된 상태에서, 마이크로 LED 픽셀들(130) 각각과 이들 각각에 대응하는 CMOS 셀들(230)이 전기적으로 연결되도록 한다. 본 명세서 내에서 마이크로 LED 픽셀들 및 CMOS 셀들의 참조부호는, 편의상 각각 하나의 마이크로 LED 픽셀과 하나의 CMOS 셀에 대해 130과 230으로 표시하였다. 이와 같은 구성을 통해, CMOS 백플레인(200) 상에 형성된 CMOS 셀들(230) 각각에 마이크로 LED 픽셀들(130) 각각이 대응되게 범프들(300)을 이용하여 플립칩 본딩함으로써, 상기 마이크로 LED 어레이 디스플레이 장치는 마이크로 LED 픽셀들(130)을 개별적으로 제어한다.
마이크로 LED 패널(100)은 기판(110) 상에 차례대로 제1 도전형 반도체층(132), 활성층(134), 및 제2 도전형 반도체층(136)을 성장시킨 후 식각된다. 따라서, 마이크로 LED 패널(100) 상의 마이크로 픽셀들(130)은 이러한 과정을 거쳐서 형성되는 것으로서, 개개의 마이크로 LED 픽셀(130)의 수직구조는, 기판(110) 위에 제1 도전형 반도체층(132), 활성층(134) 및 제2 도전형 반도체층(136)을 포함한다. 기판(110)은, 사파이어, SiC, Si, 유리, 및 ZnO 중 어느 하나로 이루어질 수 있다. 그리고, 제1 도전형 반도체층(132)은 n형 반도체층이고, 제2 도전형 반도체층(136)은 p형 반도체층일 수 있다. 활성층(134)은 전원의 인가시 제1 도전형 반도체층(132)과 제2 도전형 반도체층(136)으로부터 제공되는 전자와 정공이 재결합되는 영역이다.
마이크로 LED 패널(100)에서, 식각된 부분, 즉 마이크로 LED 픽셀들(130)이 형성되지 않은 부분(120)은, 제2 도전형 반도체층(136)과 활성층(134)이 제거되어, 제1 도전형 반도체층(132)이 노출되어 있다. 이와 같이 마이크로 LED 패널(100)에서 마이크로 LED 픽셀들(130)이 형성되지 않은 부분(120)의 제1 도전형 반도체층(132) 상에는, 마이크로 LED 픽셀들(130)과 이격되게 제1 도전형 메탈층(140)이 형성된다. 제1 도전형 메탈층(140)은 제1 도전형 반도체층(132) 상에서 마이크로 LED 패널(100)의 외곽을 따라 소정의 폭을 갖도록 형성된다. 제1 도전형 메탈층(140)의 높이는 마이크로 LED 픽셀들(130)의 높이와 대체로 동일하게 형성된다. 제1 도전형 메탈층(140)은 범프들(300)에 의해 CMOS 백플레인(200)과 전기적으로 연결되어, 마이크로 LED 픽셀들(130)의 공통 전극으로서 기능한다. 예를 들어, 제1 도전형 메탈층(140)은 공통 접지일 수 있다.
CMOS 백플레인(200)은 마이크로 LED 픽셀들(130) 각각을 개별 구동시키기 위한 복수 개의 CMOS 셀들(230)을 포함한다. CMOS 셀들(230) 각각은 범프들(330)을 통해 대응되는 마이크로 LED 픽셀에 전기적으로 연결된다. CMOS 셀들(230) 각각은 대응되는 마이크로 LED 픽셀을 개별 구동시키기 위한 집적회로이다. CMOS 백플레인(200)은, 예를 들어, AM(Active Matrix) 패널일 수 있고, 따라서, CMOS 셀들(230) 각각은, 두 개의 트랜지스터와 하나의 커패시터를 포함하는 픽셀 구동 회로일 수 있고, 범프들(300)을 이용하여 CMOS 백플레인(200)에 마이크로 LED 패널(100)을 플립칩 본딩하는 경우, 등가 회로상, 상기 픽셀 구동 회로의 트랜지스터의 드레인 단자와 공통 접지 단자(예컨대, 참조부호 240) 사이에 개개의 마이크로 LED 픽셀이 배치되는 형태로 될 수 있다.
CMOS 백플레인(200)은 제1 도전형 메탈층(140)과 대응되는 위치에 형성된 공통 셀(240)을 포함하며, 제1 도전형 메탈층(140)과 공통 셀(240)은 공통 범프(340)에 의해 전기적으로 연결된다. 본 명세서 내에서는, 복수 개의 CMOS 셀들 각각과 마이크로 LED 픽셀들 각각을 전기적으로 연결하는 범프들(330)과, 제1 도전형 메탈층(140)과 공통 셀(240)을 전기적으로 연결하는 공통 범프(340)를 모두 포함하는 용어로서 범프들(300)이 사용되기도 한다.
도 3에 도시된 바와 같이, 범프들(330) 및 공통 범프(340)가 CMOS 셀들(230) 각각의 상부에 배치된 상태의 CMOS 백플레인(200)과 마이크로 LED 패널(100)을 서로 마주보게 하여 CMOS 셀들(230)과 마이크로 LED 픽셀들(130)을 일대일 대응시켜 밀착시킨 후 가열하게 되면, 범프들(330) 및 공통 범프(340)가 녹게 되고, 그에 따라 CMOS 셀들(230) 각각과 CMOS 셀들(230) 각각에 대응하는 마이크로 LED 픽셀(130)이 도 4에 도시된 바와 같이, 전기적으로 연결되는 상태가 된다.
다음으로, 도 5 및 도 6을 참조하여 상기 LED 배열 디스플레이 장치로 풀컬러(full color)를 구현한 실시예를 설명한다. 도 5는 본 발명의 일 실시예에 따라 풀컬러 구현을 위해, 각각 제작된 적색, 녹색 및 청색 광을 발광하는 마이크로 LED 패널들(1100, 1200, 1300)과, 이들에 형성된 마이크로 LED 픽셀들을 대응되는 CMOS 셀들 각각에 전기적으로 연결하기 위해, 단일 CMOS 백플레인(2000) 상에 CMOS 셀 영역들(2100, 2200, 2300)을 형성하고, CMOS 셀들 상에 범프들(3000)을 배치한 상태를 보인 도면이고, 도 6은 도 5의 적색, 녹색 및 청색 각각의 마이크로 LED 패널들(1100, 1200, 1300)을 범프들(3000)을 이용하여 단일 CMOS 백플레인(2000)에 전기적으로 연결시킨 상태를 보인 도면이다.
도면들을 참조하면, 풀컬러 구현을 위한 마이크로 LED 어레이 디스플레이 장치는, 제1 마이크로 LED 패널(1100), 제2 마이크로 LED 패널(1200), 및 제3 마이크로 LED 패널(1300)을 포함하며, 이들 각각은 배열되는 복수 개의 마이크로 LED 픽셀들을 포함한다. 제1 마이크로 LED 패널(1100), 제2 마이크로 LED 패널(1200), 및 제3 마이크로 LED 패널(1300) 각각은 서로 다른 파장 대역의 광을 발광한다. 예를 들어, 제1 마이크로 LED 패널(1100)은 적색 광, 제2 마이크로 LED 패널(1200)은 녹색 광, 그리고 제3 마이크로 LED 패널(1300)은 청색 광을 발광하도록 구성된다. 또한, 풀컬러 구현을 위한 마이크로 LED 어레이 디스플레이 장치는, 제1 마이크로 LED 패널(1100), 제2 마이크로 LED 패널(1200), 및 제3 마이크로 LED 패널(1300) 각각의 마이크로 LED 픽셀들 각각을 개별 구동하기 위해, 단일 CMOS 백플레인(2000)을 포함한다. 단일 CMOS 백플레인(2000)은, 제1 마이크로 LED 패널(1100), 제2 마이크로 LED 패널(1200), 및 제3 마이크로 LED 패널(1300) 각각의 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들을 포함한다. 단일 CMOS 백플레인(2000)에는 마이크로 LED 패널들(1100, 1200, 1300)이 배치될 수 있도록 마이크로 LED 패널들(1100, 1200, 1300) 각각에 대응하는 CMOS 셀 영역들(2100, 2200, 2300)이 형성되어 있어, 이들 CMOS 셀 영역들(2100, 2200, 2300)에 마이크로 LED 패널들(1100, 1200, 1300) 각각이 플립칩 본딩된다. 단일 CMOS 백플레인(2000)에 마이크로 LED 패널들(1100, 1200, 1300)이 플립칩 본딩되어 CMOS 셀들 각각과 마이크로 LED 픽셀들 각각이 전기적으로 연결되도록 하기 위해, CMOS 셀 영역들(2100, 2200, 2300) 각각에 마이크로 LED 패널들(1100, 1200, 1300) 각각의 복수 개의 마이크로 LED 픽셀들에 대응하도록, 복수 개의 CMOS 셀들이 형성되어 있다. 이러한 CMOS 셀들과 마이크로 LED 픽셀들 각각은 범프들(3000)을 통해 전기적으로 연결된다. 단일 CMOS 백플레인(2000)에 마이크로 LED 패널들(1100, 1200, 1300)을 플립칩 본딩하는 과정은, 도 1 내지 도 4를 참조하여 설명된 CMOS 백플레인(200)에 마이크로 LED 패널(100)을 플립칩 본딩하는 과정과 동일하다.
또한, 단일 CMOS 백플레인(2000) 상에는, CMOS 셀 영역들(2100, 2200, 2300) 각각에 공통 셀이 형성되어 있으며, 이러한 공통 셀은 공통 범프들을 통해 마이크로 LED 패널들(1100, 1200, 1300) 각각의 제1 도전형 메탈층과 전기적으로 연결된다.
전술한 바와 같이, 마이크로 LED를 제작함에 있어서, 하나의 기판 상에 적색, 녹색, 청색 광을 발광하는 구조물을 형성하는데에는 기술적으로 어려움이 있으므로, 본 발명과 같이 단일 CMOS 백플레인(2000)에 각각 독립적으로 제작되고 서로 다른 파장 대역의 광, 즉 적색, 녹색, 청색 광 각각을 발광하는 복수 개의 마이크로 LED 패널들을 플립칩 본딩시켜 광학계를 이용하여 세 가지 색상이 한 곳에 집중하도록 함으로써 풀컬러 구현을 가능하게 한다. 또한, 종래와 같이 LED 칩들과 이들의 제어를 담당하기 위해 종횡축으로 달리고 있는 각종 데이터선 간을 와이어본딩해야 하는 불편함이나 어려움을 해소할 수 있을 뿐만 아니라, 종래와 같이 LED 칩들의 신호 제어를 담당하는 소자들이 LED 칩의 외부 영역에 별도로 구비되지 않아도 되므로, 전체 디스플레이 장치의 크기도 줄일 수 있는 이점이 있다.
마지막으로, 도 7은 본 발명의 일 실시예에 따라 풀컬러 구현을 위한 마이크로 LED 어레이 디스플레이 장치의 구동을 간략히 설명하기 위한 도면으로서, 도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 마이크로 LED 어레이 디스플레이 장치의 구동은, 구동 IC(700)의 제어신호에 의해 이루어진다. 구동 IC(700)로부터의 제어신호는 CMOS 백플레인(2000)에 형성된 CMOS 셀들, 즉 CMOS 집적회로에 의해 각각의 마이크로 LED 픽셀에 공급된다. 구동 IC(700)로부터의 제어신호는 아날로그 신호일 수도 있고, 디지털 신호일 수도 있으며, 상기 디지털 신호는 펄스폭 변조(PWM) 신호일 수도 있다.

Claims (20)

  1. 마이크로 LED 어레이 디스플레이 장치로서,
    복수 개의 마이크로 LED 픽셀들을 포함하는 마이크로 LED 패널;
    상기 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들을 포함하는 CMOS 백플레인; 및
    상기 마이크로 LED 픽셀들과 상기 CMOS 셀들이 마주하도록 배치된 상태에서, 상기 마이크로 LED 픽셀들 각각과 상기 마이크로 LED 픽셀들 각각에 대응하는 CMOS 셀을 전기적으로 연결시키는 범프들;을 포함하며,
    상기 CMOS 백플레인 상에 형성된 상기 CMOS 셀들 각각에 상기 마이크로 LED 픽셀들 각각이 대응되게 상기 범프들을 이용하여 플립칩 본딩함으로써 상기 마이크로 LED 픽셀들이 개별적으로 제어되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  2. 청구항 1에 있어서, 상기 마이크로 LED 픽셀들은 기판상에 차례대로 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 성장시킨 후 식각되어 형성되며, 상기 마이크로 LED 픽셀들의 수직구조는, 차례대로, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하고, 상기 마이크로 LED 픽셀들이 형성되지 않은 부분은, 활성층 및 제2 도전형 반도체층이 제거되어 제1 도전형 반도체층이 노출되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  3. 청구항 2에 있어서, 상기 마이크로 LED 픽셀들이 형성되지 않은 부분의 제1 도전형 반도체층 상에는 상기 마이크로 LED 픽셀들과 이격되게 제1 도전형 메탈층이 형성되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  4. 청구항 3에 있어서, 상기 제1 도전형 메탈층은 상기 제1 도전형 반도체층 상에서 상기 마이크로 LED 패널의 외곽을 따라 형성되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  5. 청구항 3에 있어서, 상기 제1 도전형 메탈층의 높이는 상기 마이크로 LED 픽셀들의 높이와 동일한 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  6. 청구항 3에 있어서, 상기 제1 도전형 메탈층은 상기 마이크로 LED 픽셀들의 공통 전극으로서 기능하는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  7. 청구항 3에 있어서, 상기 CMOS 백플레인은, 상기 제1 도전형 메탈층에 대응되게 형성된 공통 셀을 포함하고, 상기 제1 도전형 메탈층과 상기 공통 셀은 공통 범프에 의해 전기적으로 연결되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  8. 청구항 2에 있어서, 상기 제1 도전형은 n형이고, 상기 제2 도전형은 p형인 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  9. 청구항 2에 있어서, 상기 기판은, 사파이어, SiC, Si, 유리, 및 ZnO 중 어느 하나로 이루어지는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이장치.
  10. 청구항 2에 있어서, 상기 범프들은 상기 CMOS 셀들 각각에 형성되어, 가열에 의해 녹음으로써, 상기 CMOS 셀들 각각과 상기 CMOS 셀들 각각에 대응되는 마이크로 LED 픽셀이 전기적으로 연결되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  11. 풀컬러 구현을 위한 마이크로 LED 어레이 디스플레이 장치로서,
    각각이, 복수 개의 마이크로 LED 픽셀들을 포함하며, 서로 다른 파장 대역의 광을 발광하는, 제1 내지 제3 마이크로 LED 패널;
    상기 마이크로 LED 픽셀들 각각에 대응하는 복수 개의 CMOS 셀들을 포함하는 단일 CMOS 백플레인; 및
    상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들과 상기 CMOS 셀들이 마주하도록 배치된 상태에서, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들 각각과, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들 각각에 대응하는 CMOS 셀을 전기적으로 연결하기 위한 범프들;을 포함하며, 상기 CMOS 백플레인 상에 형성된 상기 CMOS 셀들 각각에 상기 제1 내지 제3 마이크로 LED 패널의 마이크로 LED 픽셀들 각각이 대응되게 상기 범프들을 이용하여 플립칩 본딩함으로써 상기 마이크로 LED 픽셀들이 개별적으로 제어되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  12. 청구항 11에 있어서, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들은, 기판상에 차례대로 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 성장시킨 후 식각되어 형성되며, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들의 수직구조는, 차례대로, 기판, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하고, 상기 제1 내지 제3 마이크로 LED 패널 각각에서 마이크로 LED 픽셀들이 형성되지 않은 부분은, 활성층 및 제2 도전형 반도체층이 제거되어 제1 도전형 반도체층이 노출되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  13. 청구항 12에 있어서, 상기 제1 내지 제3 마이크로 LED 패널 각각에서 마이크로 LED 픽셀들이 형성되지 않은 부분의 제1 도전형 반도체층 상에는, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들과 이격되게, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층이 형성되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  14. 청구항 13에 있어서, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층은, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 반도체층 상에서 상기 제1 내지 제3 마이크로 LED 패널 각각의 외곽을 따라 형성되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  15. 청구항 13에 있어서, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층의 높이는, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들의 높이와 동일한 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  16. 청구항 13에 있어서, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층은, 상기 제1 내지 제3 마이크로 LED 패널 각각의 마이크로 LED 픽셀들의 공통 전극으로서 기능하는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  17. 청구항 13에 있어서, 상기 단일 CMOS 백플레인은, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층에 대응되게 형성된 공통 픽셀들을 포함하고, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층과, 상기 제1 내지 제3 마이크로 LED 패널 각각의 제1 도전형 메탈층에 대응되는 공통 픽셀은, 공통 범프에 의해 전기적으로 연결되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  18. 청구항 12에 있어서, 상기 제1 도전형은 n형이고, 상기 제2 도전형은 p형인 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
  19. 청구항 12에 있어서, 상기 기판은, 사파이어, SiC, Si, 유리, 및 ZnO 중 어느 하나로 이루어지는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이장치.
  20. 청구항 12에 있어서, 상기 범프들은 상기 CMOS 셀들 각각에 형성되어, 가열에 의해 녹음으로써, 상기 CMOS 셀들 각각과 상기 CMOS 셀들 각각에 대응되는 마이크로 LED 픽셀이 전기적으로 연결되는 것을 특징으로 하는, 마이크로 LED 어레이 디스플레이 장치.
PCT/KR2017/005354 2016-07-18 2017-05-23 마이크로 led 어레이 디스플레이 장치 WO2018016728A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17831202.1A EP3487266A4 (en) 2016-07-18 2017-05-23 MICRO-LED NETWORK DISPLAY DEVICE
CN201780042188.8A CN109479354B (zh) 2016-07-18 2017-05-23 微led阵列显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160090600A KR102617466B1 (ko) 2016-07-18 2016-07-18 마이크로 led 어레이 디스플레이 장치
KR10-2016-0090600 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018016728A1 true WO2018016728A1 (ko) 2018-01-25

Family

ID=58714722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005354 WO2018016728A1 (ko) 2016-07-18 2017-05-23 마이크로 led 어레이 디스플레이 장치

Country Status (7)

Country Link
US (3) US10062675B2 (ko)
EP (1) EP3487266A4 (ko)
JP (3) JP6131374B1 (ko)
KR (1) KR102617466B1 (ko)
CN (1) CN109479354B (ko)
TW (1) TW201804608A (ko)
WO (1) WO2018016728A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489008B2 (en) 2021-02-23 2022-11-01 Toyoda Gosei Co., Ltd. Light-emitting device
US11908850B2 (en) 2018-09-05 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for manufacturing display device

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617466B1 (ko) * 2016-07-18 2023-12-26 주식회사 루멘스 마이크로 led 어레이 디스플레이 장치
WO2018137139A1 (en) * 2017-01-24 2018-08-02 Goertek. Inc Micro-led device, display apparatus and method for manufacturing a micro-led device
KR102305180B1 (ko) 2017-04-25 2021-09-28 주식회사 루멘스 마이크로 led 디스플레이 장치 및 그 제조방법
KR102399464B1 (ko) * 2017-06-27 2022-05-19 주식회사 루멘스 엘이디 패널
WO2019014036A1 (en) 2017-07-11 2019-01-17 Corning Incorporated MOSAIC SCREENS AND METHODS OF MAKING SAME
CN111052418A (zh) * 2017-07-31 2020-04-21 耶鲁大学 纳米多孔微led器件及其制造方法
CN111108613B (zh) * 2017-09-13 2024-01-16 夏普株式会社 Led单元、图像显示元件及其制造方法
WO2019083154A1 (ko) * 2017-10-26 2019-05-02 주식회사 루멘스 개별 제어되는 마이크로 led 픽셀들을 갖는 플래쉬 유닛을 포함하는 촬상 장치 및 피부 진단용 촬상 장치
KR102456882B1 (ko) * 2017-11-24 2022-10-21 주식회사 루멘스 고효율 마이크로 엘이디 모듈의 제조방법
US10989376B2 (en) * 2017-11-28 2021-04-27 Facebook Technologies, Llc Assembling of strip of micro light emitting diodes onto backplane
JP7079106B2 (ja) * 2018-01-24 2022-06-01 シャープ株式会社 画像表示素子、及び画像表示素子の製造方法
KR101997104B1 (ko) * 2018-02-21 2019-07-05 순천대학교 산학협력단 마이크로 어레이 발광 다이오드 및 이의 제조 방법
KR102521582B1 (ko) * 2018-04-03 2023-04-12 삼성전자주식회사 발광 다이오드 디스플레이 장치
TWI672683B (zh) * 2018-04-03 2019-09-21 友達光電股份有限公司 顯示面板
WO2019225761A1 (ja) 2018-05-24 2019-11-28 大日本印刷株式会社 自発光型表示体用または直下型バックライト用の封止材シート、自発光型表示体、直下型バックライト
EP3803976B1 (en) 2018-05-24 2024-05-22 Lumiode, Inc. Led display structures and fabrication of same
JP7066537B2 (ja) 2018-06-06 2022-05-13 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
JP7073198B2 (ja) 2018-06-07 2022-05-23 株式会社ジャパンディスプレイ 表示装置
KR102033108B1 (ko) 2018-07-06 2019-10-16 엘지전자 주식회사 디스플레이 장치 및 그 구동 방법
KR102587133B1 (ko) 2018-07-19 2023-10-10 삼성디스플레이 주식회사 표시 장치
TWI661575B (zh) 2018-07-20 2019-06-01 錼創顯示科技股份有限公司 微型發光元件及顯示裝置
CN110739380B (zh) * 2018-07-20 2021-02-19 錼创显示科技股份有限公司 微型发光元件及显示装置
KR102603399B1 (ko) 2018-08-09 2023-11-17 삼성디스플레이 주식회사 표시장치 및 그 제조방법
JP7206321B2 (ja) 2018-09-10 2023-01-17 ルミレッズ ホールディング ベーフェー 車両のための適応型ヘッドランプシステム
US11091087B2 (en) 2018-09-10 2021-08-17 Lumileds Llc Adaptive headlamp system for vehicles
KR102624297B1 (ko) 2018-10-02 2024-01-15 삼성디스플레이 주식회사 표시 장치
CN111048543A (zh) * 2018-10-12 2020-04-21 致伸科技股份有限公司 显示模块
KR20200062762A (ko) 2018-11-27 2020-06-04 삼성전자주식회사 마이크로 광원 어레이, 이를 포함한 디스플레이 장치 및 디스플레이 장치의 제조 방법
EP3899920A4 (en) 2018-12-21 2022-09-28 Lumiode, Inc. ADDRESSING FOR EMISSIVE INDICATORS
EP3903135A4 (en) * 2018-12-28 2022-10-19 Magic Leap, Inc. VIRTUAL AND AUGMENTED REALITY DISPLAY SYSTEM WITH MICRO-EMISSIVE DISPLAYS
WO2020142208A1 (en) * 2019-01-02 2020-07-09 Lumiode, Inc. System and method of fabricating display structures
US11355665B2 (en) 2019-06-19 2022-06-07 Facebook Technologies, Llc Process flow for hybrid TFT-based micro display projector
CN113366372B (zh) * 2019-02-05 2023-07-28 元平台技术有限公司 基于混合tft的微型显示投影仪的工艺流程
JP2020134716A (ja) 2019-02-20 2020-08-31 株式会社ジャパンディスプレイ 表示装置
CN109888085B (zh) * 2019-03-11 2021-01-26 京东方科技集团股份有限公司 显示面板及其制备方法
JP7289681B2 (ja) * 2019-03-20 2023-06-12 株式会社ジャパンディスプレイ 表示装置
US11626448B2 (en) * 2019-03-29 2023-04-11 Lumileds Llc Fan-out light-emitting diode (LED) device substrate with embedded backplane, lighting system and method of manufacture
CN109841710B (zh) * 2019-04-12 2020-05-15 南京大学 用于透明显示的GaN Micro-LED阵列器件及其制备方法
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
WO2020219039A1 (en) * 2019-04-24 2020-10-29 Hewlett-Packard Development Company, L.P. Displays with pixels coupled by beam splitters
US11710760B2 (en) 2019-06-21 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and manufacturing method of display device
JP2021012282A (ja) 2019-07-05 2021-02-04 株式会社ジャパンディスプレイ 表示装置
US11508700B2 (en) * 2019-12-10 2022-11-22 Meta Platforms Technologies, Llc Left and right projectors for display device
KR20210081512A (ko) 2019-12-23 2021-07-02 삼성디스플레이 주식회사 표시 장치 및 제조 방법
CN111063270B (zh) * 2019-12-30 2022-06-21 錼创显示科技股份有限公司 微型发光元件显示装置
KR20210089842A (ko) 2020-01-09 2021-07-19 주식회사 엘지화학 마이크로 led 디스플레이
KR102194978B1 (ko) * 2020-04-29 2020-12-24 (주) 리가스텍 마이크로 디스플레이 장치 및 이를 제조하는 방법
CN115997289A (zh) * 2020-07-21 2023-04-21 Lg电子株式会社 用于制造显示装置的转移基板、显示装置及其制造方法
US11830862B2 (en) 2020-11-12 2023-11-28 Excellence Opto. Inc. Chip structure of micro light-emitting diode display
CN112669715B (zh) * 2020-12-24 2022-08-05 深圳市华星光电半导体显示技术有限公司 连接件、显示面板及其制作方法、显示装置
WO2023112599A1 (ja) * 2021-12-14 2023-06-22 ソニーセミコンダクタソリューションズ株式会社 発光装置及び電子機器
KR102579242B1 (ko) 2022-02-22 2023-09-18 한국에너지공과대학교 마이크로 led 표시 장치 및 마이크로 led 표시 장치 제조 방법
CN114627773B (zh) * 2022-03-11 2024-02-20 武汉华星光电半导体显示技术有限公司 拼接显示面板
WO2023244694A1 (en) * 2022-06-15 2023-12-21 Lumileds Llc Sparse led array applications
KR102607680B1 (ko) 2023-02-07 2023-11-29 웨이브로드 주식회사 마이크로디스플레이 패널 제조 방법
KR102665039B1 (ko) 2023-03-13 2024-05-13 웨이브로드 주식회사 칼라필터가 불필요한 수직 적층형 마이크로디스플레이 패널 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324583A (ja) * 2006-05-01 2007-12-13 Mitsubishi Chemicals Corp 集積型半導体発光装置およびその製造方法
US20140094878A1 (en) * 2012-10-01 2014-04-03 Albert-Ludwigs-Universitat Freiburg Method for producing a micro-led matrix, micro-led matrix and use of a micro-led matrix
WO2015095614A1 (en) * 2013-12-18 2015-06-25 Leupold & Stevens, Inc. Micro-pixelated led reticle display for optical aiming devices
US20150254046A1 (en) * 2013-12-31 2015-09-10 Ultravision Technologies, Llc Multi-Panel Display with Hot Swappable Display Panels and Methods of Servicing Thereof
KR20160027730A (ko) * 2014-09-02 2016-03-10 서울바이오시스 주식회사 발광 다이오드

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537278B2 (ko) * 1973-07-17 1978-03-16
JP3195720B2 (ja) * 1994-12-20 2001-08-06 シャープ株式会社 多色led素子およびその多色led素子を用いたled表示装置、並びに多色led素子の製造方法
JP3976812B2 (ja) * 1995-03-09 2007-09-19 セイコーエプソン株式会社 偏光照明装置および投写型表示装置
US5621225A (en) * 1996-01-18 1997-04-15 Motorola Light emitting diode display package
JP2001044502A (ja) * 1999-07-28 2001-02-16 Matsushita Electronics Industry Corp 複合発光素子及びその製造方法
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
JP2001326388A (ja) * 2000-05-12 2001-11-22 Rohm Co Ltd 半導体発光装置
JP2001343706A (ja) * 2000-05-31 2001-12-14 Sony Corp 映像表示装置
JP3906653B2 (ja) * 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
KR100470904B1 (ko) 2002-07-20 2005-03-10 주식회사 비첼 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법
JP2004055944A (ja) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd 半導体発光装置の製造方法
JP2004079972A (ja) * 2002-08-22 2004-03-11 Fuji Photo Film Co Ltd 面発光型発光素子
JP2005079385A (ja) * 2003-09-01 2005-03-24 Toshiba Corp 光半導体装置および光信号入出力装置
US7285801B2 (en) * 2004-04-02 2007-10-23 Lumination, Llc LED with series-connected monolithically integrated mesas
JP2006073618A (ja) * 2004-08-31 2006-03-16 Toyoda Gosei Co Ltd 光学素子およびその製造方法
JP2006012916A (ja) * 2004-06-22 2006-01-12 Toyoda Gosei Co Ltd 発光素子
JP2010192802A (ja) * 2009-02-20 2010-09-02 Sony Corp 実装基板および表示装置
AU2010273544B2 (en) 2009-07-15 2013-05-02 Cardiac Pacemakers, Inc. Remote sensing in an implantable medical device
JP2011113989A (ja) * 2009-11-24 2011-06-09 Oki Data Corp 表示パネル及び投射型表示装置
WO2011071559A1 (en) * 2009-12-09 2011-06-16 Nano And Advanced Materials Institute Limited Method for manufacturing a monolithic led micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic led micro-display
US8642363B2 (en) * 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
KR101666442B1 (ko) * 2010-03-25 2016-10-17 엘지이노텍 주식회사 발광 다이오드 및 이를 포함하는 발광 소자 패키지
KR101150861B1 (ko) 2010-08-16 2012-06-13 한국광기술원 멀티셀 구조를 갖는 발광다이오드 및 그 제조방법
CN104081257B (zh) * 2011-12-06 2018-05-15 奥斯坦多科技公司 空间-光学以及时间空间-光学定向光调制器
DE102011056888A1 (de) * 2011-12-22 2013-06-27 Osram Opto Semiconductors Gmbh Anzeigevorrichtung und Verfahren zur Herstellung einer Anzeigevorrichtung
JP2013179215A (ja) * 2012-02-29 2013-09-09 Toyohashi Univ Of Technology Ledアレイ及び光電子集積装置
US9159700B2 (en) * 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
CN103456729B (zh) * 2013-07-26 2016-09-21 利亚德光电股份有限公司 发光二极管显示屏
US9831387B2 (en) * 2014-06-14 2017-11-28 Hiphoton Co., Ltd. Light engine array
FR3023065B1 (fr) * 2014-06-27 2017-12-15 Commissariat Energie Atomique Dispositif optoelectronique a jonction p-n permettant une ionisation de dopants par effet de champ
GB201420452D0 (en) * 2014-11-18 2014-12-31 Mled Ltd Integrated colour led micro-display
KR102617466B1 (ko) * 2016-07-18 2023-12-26 주식회사 루멘스 마이크로 led 어레이 디스플레이 장치
WO2018117361A1 (ko) * 2016-12-23 2018-06-28 주식회사 루멘스 마이크로 엘이디 모듈 및 그 제조방법
JP6366799B1 (ja) * 2017-02-10 2018-08-01 ルーメンス カンパニー リミテッド マイクロledモジュール及びその製造方法
KR102399464B1 (ko) * 2017-06-27 2022-05-19 주식회사 루멘스 엘이디 패널

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324583A (ja) * 2006-05-01 2007-12-13 Mitsubishi Chemicals Corp 集積型半導体発光装置およびその製造方法
US20140094878A1 (en) * 2012-10-01 2014-04-03 Albert-Ludwigs-Universitat Freiburg Method for producing a micro-led matrix, micro-led matrix and use of a micro-led matrix
WO2015095614A1 (en) * 2013-12-18 2015-06-25 Leupold & Stevens, Inc. Micro-pixelated led reticle display for optical aiming devices
US20150254046A1 (en) * 2013-12-31 2015-09-10 Ultravision Technologies, Llc Multi-Panel Display with Hot Swappable Display Panels and Methods of Servicing Thereof
KR20160027730A (ko) * 2014-09-02 2016-03-10 서울바이오시스 주식회사 발광 다이오드

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3487266A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908850B2 (en) 2018-09-05 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for manufacturing display device
US11489008B2 (en) 2021-02-23 2022-11-01 Toyoda Gosei Co., Ltd. Light-emitting device

Also Published As

Publication number Publication date
CN109479354B (zh) 2021-05-14
JP2018014481A (ja) 2018-01-25
TW201804608A (zh) 2018-02-01
JP6445075B2 (ja) 2018-12-26
US10607973B2 (en) 2020-03-31
KR102617466B1 (ko) 2023-12-26
JP2018014475A (ja) 2018-01-25
EP3487266A4 (en) 2019-06-26
CN109479354A (zh) 2019-03-15
JP6131374B1 (ja) 2017-05-17
JP2019068082A (ja) 2019-04-25
EP3487266A1 (en) 2019-05-22
KR20180009116A (ko) 2018-01-26
JP6722262B2 (ja) 2020-07-15
US20180331086A1 (en) 2018-11-15
US10062675B2 (en) 2018-08-28
US20180019233A1 (en) 2018-01-18
US10784241B2 (en) 2020-09-22
US20180331085A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018016728A1 (ko) 마이크로 led 어레이 디스플레이 장치
JP7387699B2 (ja) ディスプレイ装置
JP2018185515A (ja) マイクロledディスプレイ装置
TW201732770A (zh) 具有積體薄膜電晶體電路之半導體裝置
TWI689092B (zh) 具有透光基材之微發光二極體顯示模組及其製造方法
US10403614B2 (en) Micro LED display module
CN107240356B (zh) 全彩led显示单元及其制备方法
US11031380B2 (en) Manufacturing method of micro LED display module
EP2442362B1 (en) Light emitting device
KR102519201B1 (ko) 픽셀용 발광소자 및 엘이디 디스플레이 장치
US11031523B2 (en) Manufacturing method of micro LED display module
CN115911076A (zh) 一种显示装置及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017831202

Country of ref document: EP

Effective date: 20190218