WO2018012252A1 - フィルムおよび積層体 - Google Patents

フィルムおよび積層体 Download PDF

Info

Publication number
WO2018012252A1
WO2018012252A1 PCT/JP2017/023202 JP2017023202W WO2018012252A1 WO 2018012252 A1 WO2018012252 A1 WO 2018012252A1 JP 2017023202 W JP2017023202 W JP 2017023202W WO 2018012252 A1 WO2018012252 A1 WO 2018012252A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
thickness
layers
unit
Prior art date
Application number
PCT/JP2017/023202
Other languages
English (en)
French (fr)
Inventor
有家隆文
増田嘉丈
青山滋
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020187032421A priority Critical patent/KR102301855B1/ko
Priority to JP2017534747A priority patent/JP7006270B2/ja
Priority to CN201780042145.XA priority patent/CN109416422B/zh
Priority to EP17827382.7A priority patent/EP3486697B1/en
Priority to US16/316,106 priority patent/US11360251B2/en
Publication of WO2018012252A1 publication Critical patent/WO2018012252A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0841Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material

Definitions

  • the present invention relates to a film and a laminate.
  • a heat ray absorbent is contained in an intermediate film used in glass or laminated glass, and heat rays are blocked by the heat ray absorbent (for example, Patent Document 1), and a metal film is made of glass.
  • a film that is formed on the surface by sputtering or the like and reflects and blocks heat rays for example, Patent Document 2).
  • a polymer multilayer laminated film in which polymers having different refractive indexes are alternately laminated is inserted between glass and an intermediate film to heat rays.
  • Patent Document 3 etc. which reflects and interrupts.
  • JP 2010-17854 A Japanese Patent No. 3901911 Japanese Patent No. 4310312 International Publication No. 2005/095097 US Pat. No. 5,360,659
  • the polymer multilayer laminated film described in Patent Document 3 can control the layer thickness and select the wavelength to be reflected, it can selectively reflect light in the near-infrared region, and visible light.
  • the heat shielding performance can be improved while maintaining the transmittance.
  • a layer configuration for selectively reflecting light in a polymer multilayer laminated film for example, a layer configuration satisfying the following formula (1) as described in Patent Document 4 is known.
  • m-th order interference reflection occurs at a wavelength of ⁇ / m (m is a natural number). For this reason, for example, when the layer thickness is controlled so that the main reflection wavelength (primary) exists in the wavelength band of 1200 nm or more, third-order interference reflection also occurs in the visible light region of 400 nm or more. In such a case, there is a problem that it cannot be used for applications such as car windshields where transparency is important.
  • a layer configuration (layer configuration called a 711 configuration) in which the ratio of layer thicknesses is 1: 7: 1 is known as described in Patent Document 5.
  • the present inventors examined, since the multilayer laminated film which consists of this 711 structure has a low reflectance compared with the layer structure as described in patent document 4, when trying to obtain a desired reflectance, As the number increases, there is a problem that the cost of the apparatus increases. Moreover, as the number of layers increases, the film thickness also increases. As the film becomes thicker, the rigidity of the film becomes stronger. Therefore, when the film is pasted on a glass having a high curvature, the film is difficult to follow the glass and cannot be pasted. Moreover, even if it could be pasted, there was a problem that it was peeled off immediately due to the influence of wind and vibration. In particular, glass with high curvature has been increasing due to design in recent years, and the problem has been clarified.
  • the reflectance in the near infrared region is improved while increasing the transmittance in the visible light band, the reflectance can be increased up to a wavelength of 1200 nm.
  • the transmittance in the visible light band can be increased while reflecting the reflection band having a wavelength of 1200 nm or more, but in order to obtain a high reflectance, the number of layers is large. Is necessary, and the film thickness increases, so that it cannot be applied to glass having a high curvature.
  • the present invention has at least a reflection band in which a reflectance is 30% or more in a range of 100 nm or more continuously in a wavelength range of 1200 to 1800 nm when light is incident from at least one surface.
  • the average transmittance in the wavelength range of 430 to 600 nm is 70% or more, and the average value of axial rigidity in the direction of the main orientation axis of the film and the direction orthogonal thereto is 10 N / m or more and 45 N / m or less.
  • the present invention it becomes possible to provide a film having a high visible light transmittance while maintaining a high reflectance while expanding the reflection band so far, and it is easy to achieve a glass with a high curvature because of its low axial rigidity. Can be pasted together.
  • stacking unit 1 is shown.
  • stacking unit 2 is shown.
  • An example of a layer structure generated when the slit plate 1 and the slit plate 2 are combined is shown.
  • the relationship between the slit plate 1 and the slit plate 2 in the laminating apparatus 1 is shown.
  • An enlarged view of 1 to 51 layers is shown.
  • the film of the present invention has at least one reflection band having a reflectance of 30% or more in a range of 100 nm or more continuously in a wavelength range of 1200 to 1800 nm when light is incident from at least one surface,
  • the average transmittance in the wavelength range of 430 to 600 nm is required to be 70% or more.
  • the reflectance at a wavelength of 1200 to 1800 nm is more preferably 50% or more, and further preferably 70% or more.
  • Having at least one reflection band of 30% or more here means having a reflection band of 100 nm or more and a reflectance of 30% or more continuously.
  • the band where the reflectance is 30% or more is more preferably 200 nm or more, and further preferably 300 nm or more.
  • the average transmittance at a wavelength of 430 to 600 nm needs to be 70% or more, more preferably 80% or more. In order to improve the average transmittance at wavelengths of 430 to 600 nm, it is necessary to design a layer that suppresses higher-order reflection.
  • the average value of the axial stiffness in the main orientation axis direction of the film and the direction orthogonal thereto needs to be 10 N / m or more and 45 N / m or less.
  • the main orientation axis is the direction in which the refractive index is highest when the refractive index is measured in the film plane.
  • the axial rigidity can be expressed by the product of Young's modulus and film cross-sectional area. When the axial rigidity is large, the followability to a glass having a large curvature is deteriorated. For example, the bonding property to a glass having a large curvature such as a windshield is deteriorated, which is not preferable.
  • the average value of the shaft rigidity is 45 N / m or less at the maximum, more preferably 40 N / m or less, and still more preferably 35 N / m or less.
  • the shaft rigidity is preferably 10 N / m or more, more preferably 15 N / m or more, and still more preferably 20 N / m or more.
  • the average transmittance in the wavelength range of 400 to 800 nm is 80% or more when light is incident from at least one surface.
  • the average transmittance in the wavelength range of 400 to 800 nm is 80% or more when light is incident from at least one surface.
  • the film of the present invention preferably has an average reflectance of 70% or more in the wavelength range of 900 to 1400 nm.
  • the film of the present invention preferably has an average reflectance of 70% or more in the wavelength range of 900 to 1400 nm.
  • it is transparent and has high heat ray cutting performance. It can be a film with.
  • the reflection band is widened and sunlight can be reflected over a wavelength range of 900 to 1400 nm, a film that cuts 22% of the total sunlight intensity can be produced.
  • Sunlight mainly has an intensity distribution in the visible light region, and the intensity distribution tends to decrease as the wavelength increases, but for use in applications where high transparency is required,
  • the intensity distribution tends to decrease as the wavelength increases, but for use in applications where high transparency is required.
  • high heat ray cutting performance can be imparted, and by expanding the reflection band, the solar heat gain rate specified by ISO 9050 is made 70% or less. It will be possible.
  • the average reflectance at a wavelength of 900 to 1800 nm is 70% or more. If the reflection band is expanded to a wavelength of 900 to 1800 nm, about 29% of sunlight is cut. If it is limited to only the wavelength of 900 nm or more, a film capable of cutting about 99% can be created. Heat acquisition rate can be lowered. In order to increase the average reflectance, it can be realized by increasing the difference in the in-plane refractive index of two or more resins having different optical characteristics.
  • a multilayer laminated film in which layers comprising the above and layers made of low-refractive-index copolyesters that are kept amorphous at the time of stretching or are melted in a heat treatment step are alternately laminated.
  • a method of increasing the number of layers is used.
  • the film thickness is designed to be as thin as possible by changing the ratio of the laminated unit 1 and the laminated unit 2 described later.
  • the film of the present invention is a laminated unit 1 satisfying the following (i) in which layers (A layer) mainly composed of a thermoplastic resin A and layers (B layer) mainly composed of a thermoplastic resin B are laminated alternately. And a laminate unit 2 satisfying the following (ii), in which layers having a thermoplastic resin C as a main component (C layer) and layers having a thermoplastic resin D as a main component (D layer) are alternately laminated. preferable.
  • the ratio of the thicknesses of the adjacent A layer and B layer (A layer thickness / B layer thickness) is 0.7 or more and 1.4 or less.
  • the thickness of one of the remaining two layers is 1.0 or more and 1.4 or less, and the thickness of the other is 5 or more and 9 or less.
  • thermoplastic resin A and the thermoplastic resin C are preferably the same resin
  • thermoplastic resin B and the thermoplastic resin D are preferably the same resin
  • only the thermoplastic resins A and C are the same
  • thermoplastic resin B And only D may be the same.
  • the thermoplastic resin A needs to have optically different properties from the thermoplastic resin B
  • the thermoplastic resin C needs to have optically different properties from the thermoplastic resin D.
  • the optically different property means that the refractive index is different by 0.01 or more in any of two orthogonal directions arbitrarily selected in the plane and a direction selected from the direction perpendicular to the plane.
  • alternately laminated means that layers made of different resins are laminated in a regular arrangement in the thickness direction, for example, two polyester resins A and polyester resins having different optical properties.
  • B if each layer is expressed as an A layer and a B layer, the layers are stacked in a regular arrangement such as A (BA) n (n is a natural number).
  • a (BA) n n is a natural number.
  • the total number of layers of the film of the present invention is preferably 51 layers or more, more preferably 201 layers or more.
  • the above-described interference reflection can achieve a high reflectance with respect to light in a wider wavelength band as the number of layers increases, and a film having a high light cut performance can be obtained.
  • the manufacturing cost increases due to the increase in the size of the manufacturing apparatus, and the handling properties deteriorate due to the increase in film thickness. Within 1000 layers is the practical range.
  • the optical thicknesses of the adjacent A layer and B layer simultaneously satisfy the following expressions (1) and (2).
  • is the reflected wavelength
  • d A is the thickness of the A layer
  • n B-plane refractive index of the layer B is the thickness of the B layer
  • m is an order , A natural number.
  • the thick layer is preferably 5 to 9 times, more preferably 6 to 8 times, and the other layer is The ratio is preferably 1.0 to 1.4 times, more preferably 1.0 to 1.2 times. With such a range, even when the reflection band is 1200 nm or more, a film in which the secondary and tertiary reflections are eliminated in the visible light region (wavelength 400 to 800 nm) can be obtained.
  • the layer thickness at this time as shown in FIG. 2, the first to third layers from the top are regarded as the C ′ layer, and the fourth to sixth layers are regarded as the D ′ layer.
  • the following formulas (3) and (4) are applied.
  • the present inventors have succeeded in finding an optimum prescription by adjusting the thickness ratio of the laminated units in each slit plate and inserting an intermediate thick film layer between the slit plates.
  • the multilayer unit 2 reflects a band of 1200 nm or more so as to supplement the reflection band of the multilayer unit 1.
  • the thickness per unit of the laminated unit 1 (the sum of the adjacent A layer and B layer) is 250 nm or more and 400 nm or less and has a layer thickness distribution from the formula (1).
  • the thickness of the unit 2 for six layers (the sum of d c ′ and d D ′ in FIG. 2) is preferably 300 nm to 600 nm.
  • the total thickness d2 of the laminated unit 2 of the film of the present invention is preferably 20 ⁇ m or more. If the total thickness d2 of the multilayer unit 2 is 20 ⁇ m or more, the average reflectance at a wavelength of 1200 nm to 1800 nm can be set to 50% or more. Therefore, in the wavelength range of 900 to 1800 nm, the average reflectance is 70% or more. It is easy to achieve. More preferably, they are 20 micrometers or more and 50 micrometers or less.
  • the total thickness of the film of the present invention is preferably 100 ⁇ m or less. If the total thickness of the film exceeds 100 ⁇ m, it will lead to deterioration of handling properties, which will in turn lead to a work burden of a glass contractor. In addition, since the winding form becomes enormous, the cost of transportation increases.
  • the optical performance is improved, so the versatility is enhanced.
  • the layer corresponding to the boundary between the films, particularly the slit plate in the film production stage has a layer of 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the method for producing the intermediate thick film layer as shown in FIG. 3, the A layer discharged from the slit plate 1 and the A layer discharged from the slit plate 2 in the film manufacturing stage are overlapped (FIG. 3).
  • a (intermediate thick film layer) discharged from the slit plate 1 and A (intermediate thick film layer) discharged from the slit plate 2 are overlapped to form one intermediate thick film layer).
  • the above formula indicates that the total thickness (d1 ( ⁇ m)) of the multilayer unit 1 is 1% or more and less than 40% with respect to the sum of the total thickness of the multilayer unit 1 and the multilayer unit 2 (d1 + d2 ( ⁇ m)). . Since the multilayer unit 1 has a relatively high reflectance even with a small number of layers, it is preferable to form a reflection band over as wide a range as possible. When an attempt is made to increase the average reflectance in the range of 1800 nm, high-order reflection occurs at a wavelength of 400 to 600 nm. Therefore, it is preferable to reflect the wavelength range of 900 to 1200 nm with as few layers as possible.
  • the multilayer unit 2 is less likely to cause higher-order reflection even if all the units are the multilayer unit 2, but the reflectivity tends to decrease. Therefore, when laminating a resin having the same refractive index difference between the laminated unit 1 and the laminated unit 2, in order to keep the reflectivity as high as possible and prevent high-order reflection in the visible light region, the laminated unit
  • the ratio of the total thickness (d1 ( ⁇ m)) of the multilayer unit 1 to the sum of the total thickness of 1 and the multilayer unit 2 (d1 + d2 ( ⁇ m)) is preferably 1% or more, more preferably 10% or more. Is preferably less than 40%.
  • thermoplastic resin examples include polyolefins such as polyethylene, polypropylene, and poly (4-methylpentene-1), Cycloolefins include ring-opening metathesis polymerization, addition polymerization of norbornenes, alicyclic polyolefins that are addition copolymers with other olefins, Biodegradable polymers such as polylactic acid and polybutyl succinate, polyamides such as nylon 6, nylon 11, nylon 12 and nylon 66, Aramid, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene copolymer polymethyl methacrylate, polycarbonate, Polyesters such as polypropylene terephthalate, polyethylene terephthalate, polybutylene
  • Examples thereof include dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, and the like.
  • Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferred. These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
  • polyesters polyethylene terephthalate and copolymers thereof, polyethylene naphthalate and copolymers thereof, polybutylene terephthalate and copolymers thereof, polybutylene naphthalate and copolymers thereof, and polyhexamethylene terephthalate and copolymers thereof.
  • a polyethylene naphthalate resin as the resin on the high refractive index side.
  • the thermoplastic resin includes various additives such as antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, charging agents.
  • An inhibitor, a nucleating agent, a good fluidizing agent, or the like may be added to such an extent that the characteristics are not deteriorated.
  • the refractive index of the film of the present invention in the unoriented state of the thermoplastic resin A and the thermoplastic resin C is 1.55 to 1.7, and the refractive index in the unoriented state of the thermoplastic resin B and the thermoplastic resin D. Is preferably 1.5 to 1.65.
  • the refractive index in the non-oriented state is the refractive index of the resin melted after scraping off each resin of the laminated film. If the refractive index of the thermoplastic resin A and the thermoplastic resin C in an unoriented state is 1.55 to 1.7, the refractive index tends to be high after stretching.
  • thermoplastic resin B and the thermoplastic resin D have a refractive index in an unoriented state of 1.5 to 1.65, more preferably 1.55 to 1.6
  • the stretched thermoplastic resin It is easy to make a difference in refractive index between A and the thermoplastic resin C.
  • said measuring method it can measure by measuring a refractive index with various measuring methods, after having melt
  • the resin used for A layer and C layer is crystalline
  • the resin used for the B layer and the D layer may be a resin whose orientation is relaxed by a heat treatment at a melting point or higher and the refractive index is reduced, or a mixture of an amorphous or amorphous thermoplastic resin and a crystalline thermoplastic resin. preferable. In this case, it becomes possible to further widen the refractive index difference in the stretching and heat treatment steps in the production of the film, and it becomes easy to have a reflection band with a reflectance of 30% or more.
  • the hard coat layer is close to at least one surface of the film, and the visible light transmittance defined by ISO 9050 is 70% or more and the solar heat gain is 50% or less. It is also preferable that The hard coat layer in the present invention refers to a layer having a pencil hardness of HB or more based on JIS K5600-5-4. By providing such a layer, a film excellent in cut resistance and reliability when applied as a heat shielding member can be obtained.
  • the hard coat layer preferably contains a heat ray absorbent. Examples of the heat ray absorbent include tungsten compounds, lanthanum compounds, antimony compounds, indium compounds, tin compounds, etc. Among them, tungsten oxide compounds are preferably used.
  • the tungsten oxide compound has high heat ray absorption performance not only in the wavelength band longer than the wavelength of 1500 nm but also in the wavelength band of wavelengths of 700 to 1500 nm.
  • lanthanum compounds, antimony compounds, indium compounds, and tin compounds have a high absorption performance in the wavelength band longer than the wavelength of 1500 nm, whereas the absorption performance is not sufficient in the wavelength range of 700 to 1500 nm.
  • the film of the present invention has a reflection band with a wavelength of 900 to 1800 nm, but since the wavelength after 1200 nm is composed of the laminated unit 2, the reflectance may not be sufficient.
  • the hard coat layer of the laminate of the present invention preferably has a total content of lanthanum compound, antimony compound, indium compound, and tin compound of 1% by mass or less.
  • the tungsten oxide compound here includes not only simple tungsten oxide but also tungsten oxide containing a metal other than tungsten.
  • the metal other than tungsten here is not particularly limited, and for example, cesium tungsten oxide, thallium tungsten oxide, indium tungsten oxide, magnesium tungsten oxide and the like are preferably used.
  • cesium tungsten oxide is preferable from the viewpoints of high infrared cut rate (high heat ray absorption efficiency), low visible light absorption, and stability of its optical characteristics.
  • the content of the tungsten oxide compound in the hard coat layer is not particularly limited as long as the average transmittance at a wavelength of 400 to 800 nm and a wavelength of 900 to 1200 nm, which will be described later, is preferable. % To 80% by mass is preferable. If it is less than 1% by mass, it is necessary to make the hard coat layer excessively thick in order to reduce the transmittance at a wavelength of 900 to 1200 nm, which is not preferable from the viewpoint of handling properties and cost. On the other hand, when it contains more than 80 mass%, control of the light transmittance by film thickness control becomes difficult, and dropping off of a tungsten oxide compound (heat ray absorbent) may occur easily. Preferably it is 10 mass% or more and 75% or less, More preferably, 20 mass% or more and 70% or less are preferable.
  • the resin for forming the hard coat layer is selected from acrylic resin, urethane resin, polyester resin, silanol and the like, and the kind thereof is not particularly limited, and these are used alone or in combination.
  • acrylic resin include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, methacrylic acid.
  • Hydroxypropyl acid acrylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-hexyl acrylate, lauryl acrylate, 2-ethylhexyl glycidyl acrylate, glycidyl methacrylate 4-hydroxybutyl acrylate glycidyl ether, 4-hydroxybutyl methacrylate glycidyl ether, phenyl glycidyl acrylate, epoxy acrylic Over DOO, epoxy methacrylate, dipentaerythritol hexaacrylate and the like are preferably exemplified.
  • Examples of acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
  • examples of the thermal polymerization initiator include peroxides and azo compounds.
  • examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, amine compounds, and the like. As the photopolymerization initiator, an alkylphenone compound is preferable from the viewpoint of curability.
  • alkylphenone type compounds include 1-hydroxy-cyclohexyl-phenyl-ketone, 2.2-dimethoxy-1.2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl)- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropan-1-one, 1- [4- ( - ( -
  • the thickness of the hard coat layer in the present invention is not particularly limited, but is preferably 0.1 ⁇ m or more and 50 ⁇ m or less. More preferably, it is 30 micrometers or less, More preferably, it is 10 micrometers or less.
  • the thickness of the hard coat layer is less than 0.1 ⁇ m, it tends to be difficult to control the thickness of the hard coat layer with high accuracy, and the heat shielding performance may vary.
  • the thickness of the hard coat layer is larger than 50 ⁇ m, since the thickness of the hard coat layer with respect to the base film is increased, the influence of the hard coat layer is caused on the mechanical properties of the film of the present invention. There may not be.
  • the layer thickness of the hard coat layer is 0.1 ⁇ m or more and 50 ⁇ m or less, even if a hard coat layer is provided, the layer thickness can be controlled to a high degree, so that variation in heat shielding performance can be suppressed, and Further, since the thickness of the hard coat layer is sufficiently thin with respect to the thickness of the base film, it is also possible to suppress changes in the physical properties of the laminate of the present invention.
  • the laminate of the present invention is preferably provided with a hard coat layer only on one surface of the base film.
  • Tungsten oxide used in the laminate of the present invention exhibits high absorption performance in the wavelength band of 850 to 1200 nm, but light incident on the base film through the hard coat layer is almost cut by the hard coat layer. Therefore, the heat shielding effect by reflection is not expected.
  • the light cut by the reflection does not flow into the opposite side of the incident surface of the heat shield member, but the light cut by the absorption partly flows in as heat, so as compared to the reflection, the heat shield member Performance decreases.
  • the laminate of the present invention it is preferable to have a hard coat layer adjacent to one side of the base film and an adhesive layer laminated to the other side.
  • an acrylic adhesive, a silicone adhesive, a rubber adhesive, or the like is preferably used.
  • a UV absorber having an absorption band at a wavelength of 200 to 400 nm it is preferable to add a UV absorber having an absorption band at a wavelength of 200 to 400 nm to the adhesive layer to suppress deterioration of the film of the present invention by UV.
  • the pressure-sensitive adhesive layer herein refers to a layer having a peeling force of 0.1 N / mm or more when peeling off after placing the surface having the layer on glass under normal temperature and humidity. .
  • polyester resin in the form of pellets.
  • the pellets are dried in hot air or under vacuum as necessary, and then supplied to a separate extruder.
  • the resin that has been heated and melted to a temperature higher than the melting point is made uniform in the amount of resin extruded by a gear pump or the like, and foreign matter or denatured resin is removed through a filter or the like.
  • These resins are formed into a desired shape by a die and then discharged. And the sheet
  • dye is extruded on cooling bodies, such as a casting drum, and is cooled and solidified, and a casting film is obtained.
  • a wire-like, tape-like, needle-like, or knife-like electrode to be brought into close contact with a cooling body such as a casting drum by an electrostatic force and rapidly solidify.
  • the plurality of resins are sent out from different flow paths using two or more extruders and fed into a laminating apparatus.
  • a laminating apparatus a multi-manifold die, a feed block, a static mixer, or the like can be used.
  • at least two members having a large number of fine slits are separately provided. It is preferred to use a feed block that contains. When such a feed block is used, since the apparatus does not become extremely large, there is little foreign matter due to thermal degradation, and high-precision lamination is possible even when the number of laminations is extremely large.
  • the stacking accuracy in the width direction is significantly improved as compared with the prior art. It is also possible to form an arbitrary layer thickness configuration. In this apparatus, since the thickness of each layer can be adjusted by the shape (length, width) of the slit, any layer thickness can be achieved.
  • the molten multilayer laminate formed in the desired layer structure in this way is led to a die, and a casting film is obtained in the same manner as described above.
  • the stretching in the longitudinal direction refers to stretching for imparting molecular orientation in the longitudinal direction to the film, and is usually performed by a difference in peripheral speed of the roll, and this stretching may be performed in one stage. Alternatively, a plurality of roll pairs may be used in multiple stages.
  • the draw ratio varies depending on the type of resin, it is usually preferably 2 to 15 times, and more preferably 2 to 7 times.
  • the stretching temperature is preferably in the range of the glass transition temperature to the glass transition temperature + 100 ° C. of the resin having the highest glass transition point among the resins constituting the laminated film of the present invention.
  • the stretching in the width direction refers to stretching for imparting the orientation in the width direction to the film.
  • the film is stretched in the width direction by using a tenter while conveying both ends of the film with clips.
  • the draw ratio varies depending on the type of resin, it is usually preferably 2 to 15 times, and more preferably 2 to 7 times.
  • the stretching temperature is preferably in the range of the glass transition temperature to the glass transition temperature + 120 ° C. of the resin having the highest glass transition point among the resins constituting the laminated film of the present invention.
  • the biaxially stretched film is preferably heat-treated in the tenter at a temperature not lower than the stretching temperature and not higher than the melting point Tm in order to impart flatness and dimensional stability.
  • the dimensional stability of the film is improved. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up. Moreover, you may use a relaxation process etc. together in the case of annealing from heat processing as needed.
  • the resulting cast film is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
  • surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
  • the function may be imparted by in-line coating.
  • the cast film is guided to a simultaneous biaxial tenter, conveyed while holding both ends of the film with clips, and stretched in the longitudinal direction and the width direction simultaneously and / or stepwise.
  • simultaneous biaxial stretching machines there are pantograph method, screw method, drive motor method, linear motor method, but it is possible to change the stretching ratio arbitrarily and drive motor method that can perform relaxation treatment at any place or A linear motor system is preferred.
  • the stretching ratio varies depending on the type of resin, but usually the area ratio is preferably 6 to 50 times, and more preferably 8 to 30 times.
  • the stretching temperature is preferably in the range of the glass transition temperature of the resin constituting the laminated film of the present invention to the glass transition temperature + 120 ° C.
  • the film thus biaxially stretched is preferably subsequently subjected to a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability.
  • a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability.
  • thermoplastic resin A and the thermoplastic resin C, and the thermoplastic resin B and the thermoplastic resin D are different from each other, for example, the laminated film and the thermoplastic resin C made of the thermoplastic resin A and the thermoplastic resin B by the above method. It can also be achieved by laminating the laminated film prepared by the above method with the thermoplastic resin D. In addition, this can be achieved by using two laminating apparatuses to make two resins into a laminated melt and then superimposing the two laminated melts using a multi-manifold die or the like.
  • the laminating apparatus 1 may have a slit plate made up of only the laminated unit 1
  • the laminating apparatus 2 may have a slit plate made up of only the laminated unit 2. In that case, it is preferable to design the thermoplastic resin A and the thermoplastic resin C so as to overlap each other.
  • a composition used for forming the hard coat layer and, if necessary, a coating liquid containing a solvent is added to one side of the base film, or A method of applying to both sides can be mentioned.
  • a known coating method such as a gravure coating method, a micro gravure coating method, a die coating method, a reverse coating method, a knife coating method, or a bar coating method can be applied.
  • photo-curing / electro-curing can be performed after heating. Since the hard coat layer can be fixed in a shorter time by using the photo-curing resin or the electro-curing resin in combination, the performance such as productivity and film stability is improved.
  • EB rays electron beams
  • UV rays ultraviolet rays
  • examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method.
  • the laminate of the present invention preferably has a hard coat layer adjacent to at least one surface of the base film.
  • Having a hard coat layer adjacent to at least one surface of the base film means that the distance between the interface of at least one surface of the base film and the hard coat layer is 1 ⁇ m or less. That is, having a hard coat layer adjacent to at least one surface of the base film means an embodiment in which the hard coat layer is directly provided on at least one surface of the base film, or at least one of the base film It includes an embodiment in which a hard coat layer is provided on the surface via another layer having a thickness of 1 ⁇ m or less.
  • the cross section of the film was magnified 10,000 to 40,000 times under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, the layer configuration and the thickness of each layer was measured.
  • a staining technique using a known RuO 4 or OsO 4 was used.
  • the thin film layer thickness is 50 nm or more and 500 nm. When it was less than 40,000 times, and when it was 500 nm or more, observation was carried out at a magnification of 10,000 times.
  • the solar heat acquisition rate and the visible light reflectance were calculated using the calculation method described in ISO 9050 using the results of the reflectance measurement and the transmittance measurement.
  • the solar energy is calculated using a burden coefficient, so the reflectance in the visible light region and the visible light reflectance are not exactly the same.
  • Refractive index in-plane orientation refractive index It measured according to JIS K7142 (1996) A method. Further, the refractive index of the film of the present invention in the unoriented state was measured by the above method after the layers were shaved and then heated once at the melting point or higher.
  • Tm measurement of film A film to be measured is cut out, and differential scanning calorimetry “Robot DSC-RDC220” manufactured by Seiko Electronics Industry Co., Ltd. according to JIS-K-7122 (1987) using differential calorimetry (DSC). "In the data analysis, the disk session” SSC / 5200 "was used, and the temperature was raised from 25 ° C to 300 ° C at a rate of 20 ° C / min (first temperature rise) and held there for 5 minutes. Quenched to be as follows. Subsequently, again from room temperature to 20 ° C./min. The temperature was increased to 300 ° C. at the rate of temperature increase (second temperature increase), and the measurement was performed. The melting point Tm was determined using the obtained differential operation calorimetry chart (second temperature rise curve). In addition, when there existed two or more, it was set as each value with the highest temperature respectively.
  • Relative error (maximum value-minimum value) depending on the value of solar heat acquisition rate and visible light reflectance specified by ISO 9050 when measuring the spectrum at 100 mm intervals over 1 m in the width direction. / Average value ⁇ 100.
  • Relative error is less than 2% for both solar heat gain and visible light reflectance
  • The larger relative error of solar heat gain and visible light reflectivity is 2% or more and less than 5% ⁇ ; Larger relative error between solar heat acquisition rate and visible light reflectance is greater than 5% and less than 10% x; Larger relative error among solar heat acquisition rate and visible light reflectance relative error Is 10% or more.
  • Axial rigidity In the film plane, three strips each having a width of 1 cm ⁇ 10 cm were created in the direction where the refractive index is high and the direction perpendicular to the direction, and Balswin Tensilon Universal Testing Machine (RTG) -1210) was used to measure the Young's modulus of the film. The Young's modulus was averaged, and the axial stiffness was calculated by taking the average Young's modulus x cross-sectional area (thickness ⁇ m x 1 cm) ⁇ length (10 cm).
  • thermoplastic resins A and B were each melted at 300 ° C. with a vented twin-screw extruder, and then the ratio of the optical thickness excluding the thick film layer was A through a gear pump and a filter.
  • Layer / B layer 0.9, weigh in layering apparatus 1 and merge (surface layer thick film layer made of thermoplastic resin A) / (alternately A layer and B layer in thickness direction) 111 laminated layers 1) / (intermediate thick film layer made of thermoplastic resin A) / (laminated unit 1 in which 111 layers are alternately laminated in the thickness direction) / (thermoplastic resin A)
  • the laminating apparatus 1 is composed of only the laminating unit 1 and has a reflection band with a wavelength of 1800 nm or less and an average reflectance of a wavelength of 900 nm to 1800 nm or less of 70% or more. As shown in FIG.
  • This uniaxially stretched film was guided to a tenter, preheated with hot air at 135 ° C., and then stretched 4.0 times at a temperature of 140 ° C. at a uniform stretching speed in the transverse direction.
  • the stretched film was directly heat-treated in a tenter with hot air of 240 ° C., subsequently subjected to a relaxation treatment of 3% in the width direction at the same temperature, and then gradually cooled to room temperature and wound up.
  • the thickness of the obtained laminated film was about 60 ⁇ m.
  • the obtained laminated film had a region having a high reflectance over 430 to 600 nm, and a film colored blue-green was obtained.
  • the average reflectance at a wavelength of 1200 to 1800 nm and the average reflectance at a wavelength of 900 to 1800 nm were 78% and 75%, respectively, which were very high results.
  • the results are shown in Tables 1 to 4.
  • the thermoplastic resin D a PET resin obtained by copolymerizing 30 mol% of cyclohexanedimethanol and polyethylene terephthalate (manufactured by Toray Industries, Inc .; IV0. 65, Tg 79 ° C., Tm 255 ° C.) mixed in a mass ratio of 82:18 (shown as PETG resin in the
  • the obtained laminated film had a thickness of 120 ⁇ m.
  • the optical characteristics it was found that the average reflectance at a wavelength of 900 to 1800 nm was high in a state where the visible light reflectance was kept low even when compared with Example 1. However, since the shaft rigidity was 46 N / m, the bonding to the curvature glass was bad. The results are shown in Tables 1 to 4.
  • Example 2 The procedure was the same as in Example 1 except that the laminating apparatus 3 was changed.
  • the layer thickness of the laminating apparatus 3 is 5 ⁇ m as the surface thick film layer, the laminating unit 1 is 149 layers, and then the intermediate thick film layer is 5 ⁇ m, and then the laminating unit 2 is 297 layers.
  • the total thickness (d1) of the multilayer unit 1 is 23 ⁇ m
  • the total thickness (d2) of the multilayer unit 2 is 21 ⁇ m
  • d1 / (d1 + d2) is 0.52.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region.
  • the reflectance at 1200 to 1800 nm was higher than that in Example 5.
  • the results are shown in Tables 1 to 4.
  • the total thickness (d1) of the multilayer unit 1 is 23 ⁇ m
  • the total thickness (d2) of the multilayer unit 2 is 10 ⁇ m
  • d1 / (d1 + d2) is 0.63.
  • the intermediate thick film to be the A layer is 1 ⁇ m on the laminated unit 1 side
  • the intermediate thick film to be the A layer on the laminated unit 2 side is 4 ⁇ m, for a total of 5 ⁇ m. It was.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region.
  • the laminated unit 1 is merged with Example 1, so that the reflectance at a wavelength of 900 to 1200 nm is increased, and as a result, the reflectance at a wavelength of 900 to 1800 nm is increased. As a result, it was found that the solar heat gain rate was low.
  • Tables 1 to 4 The results are shown in Tables 1 to 4.
  • the resulting laminated film had an increased reflectance at a wavelength of 900 to 1200 m due to an increase in the refractive index difference, and an increase in the solar heat gain rate. Moreover, since the axial rigidity was 26 N / m, the bonding property to glass was also good. The results are shown in Tables 1 to 4.
  • Example 13 The same operation as in Example 12 was performed except that the laminating apparatus 12 was changed.
  • the structure of the layer thickness of the film produced using the laminating apparatus 12 is almost the same as that using the laminating apparatus 11, but there is an 8 ⁇ m layer as the surface thick film layer, the laminating unit 1 is 53 layers, and thereafter After forming the intermediate thick film layer to 5 ⁇ m, there are 255 laminated units 2, and there is a 2 ⁇ m layer as the surface thick film layer on the laminated unit 2 side (surface thick film layer made of thermoplastic resin A) / ( Laminate unit 1 in which 53 layers of A and B layers are alternately laminated in the thickness direction) / (intermediate thick film layer made of thermoplastic resin A) / (255 layers of C and D layers are alternately laminated in the thickness direction)
  • a laminated film (total thickness of 40 ⁇ m) having a total laminated number of 311 layers having a layer structure of (multilayer unit 2) / (surface thick film layer made of thermoplastic resin A
  • the obtained laminated film had a slight flow mark, but the reflectance of 900 to 1200 nm was lower than that of Example 12, so the solar heat acquisition rate was low.
  • the results are shown in Tables 5-8.
  • Example 14 The same operation as in Example 12 was performed except that the laminating apparatus 13 was changed.
  • the structure of the layer thickness of the film produced using the laminating apparatus 13 is almost the same as that using the laminating apparatus 11, but there is an 8 ⁇ m layer as the surface thick film layer, the laminating unit 1 is 35 layers, and thereafter After forming the intermediate thick film layer to 5 ⁇ m, there are 297 laminated units 2, and there is a 2 ⁇ m layer as the surface thick film layer on the laminated unit 2 side (surface thick film layer made of thermoplastic resin A) / ( Laminating unit 1 in which 35 layers of A and B layers are alternately laminated in the thickness direction) / (intermediate thick film layer made of thermoplastic resin A) / (297 layers of C and D layers are alternately laminated in the thickness direction)
  • a laminated film (total thickness 40 ⁇ m) having a total number of laminated layers of 335 layers having a layer structure of (multilayer unit 2) / (surface thick film layer made of thermoplastic
  • the total thickness (d1) of the multilayer unit 1 is 5 ⁇ m
  • the total thickness (d2) of the multilayer unit 2 is 20 ⁇ m
  • d1 / (d1 + d2) is 0.20.
  • the intermediate thick film serving as the A layer on the laminated unit 1 side is 4 ⁇ m
  • the intermediate thick film serving as the A layer on the laminated unit 2 side is 1 ⁇ m, for a total of 5 ⁇ m. It was.
  • the obtained laminated film had some flow marks, it was a highly transparent film because of its high transmittance at a wavelength of 400 to 800 nm in the visible light region.
  • the reflectance of light having a wavelength of 900 to 1200 nm is considerably low, the average reflectance at a wavelength of 900 to 1400 nm is also worse than that of Comparative Example 2, and the solar heat acquisition rate is deteriorated.
  • Tables 5-8 The results are shown in Tables 5-8.
  • the total thickness (d1) of the multilayer unit 1 is 22 ⁇ m
  • the total thickness (d2) of the multilayer unit 2 is 5 ⁇ m
  • d1 / (d1 + d2) is 0.88.
  • the intermediate thick film serving as the A layer on the laminated unit 1 side is 4 ⁇ m
  • the intermediate thick film serving as the A layer on the laminated unit 2 side is 1 ⁇ m, for a total of 5 ⁇ m. It was.
  • the sum of the thicknesses of two adjacent layers of the stacked unit 1 excluding the thick film layer in the stacking device 5 is 260 to 350 nm, and the ratio of the thicknesses of the two adjacent layers is 0.89 to 1.11.
  • the sum of the thicknesses of the six adjacent layers of the laminated unit 2 is 345 to 430 nm.
  • the thickness of the thinnest layer among the three adjacent layers is 1, the thickness of the remaining two layers is 1 To 1.2 or 6.1 to 7.8.
  • Example 16 The same procedure as in Example 12 was performed except that the laminating apparatus 15 was changed.
  • the structure of the layer thickness of the film produced using the laminating apparatus 15 is almost the same as that using the laminating apparatus 11, but the surface layer has a 6 ⁇ m layer, the laminating unit 1 is 99 layers, and then the intermediate thickness.
  • the total thickness (d1) of the multilayer unit 1 is 15 ⁇ m
  • the total thickness (d2) of the multilayer unit 2 is 20 ⁇ m
  • d1 / (d1 + d2) is 0.43.
  • the sum of the thicknesses of two adjacent layers of the lamination unit 1 excluding the thick film layer when using the laminating apparatus 15 is 260 to 350 nm
  • the ratio of the thicknesses of the two adjacent layers is 0.89 to 1 .11
  • the sum of the thicknesses of the six adjacent layers of the laminated unit 2 is 345 to 430 nm.
  • the thickness of the thinnest layer among the three adjacent layers is 1, the remaining two layers
  • the thickness was 1 to 1.2 or 6.1 to 8.0.
  • the obtained laminated film has almost no flow mark as in Example 12, has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, and the reflectance at a wavelength of 900 to 1800 nm is in Example. It was higher than 12, and the solar heat acquisition rate was better than that of Example 12.
  • Tables 5-8 The results are shown in Tables 5-8.
  • Example 17 The same operation as in Example 12 was performed except that the laminating apparatus 16 was changed.
  • the structure of the layer thickness of the film produced using the laminating device 16 is almost the same as that using the laminating device 3, but the surface layer has an 8 ⁇ m layer, the laminating unit 1 is 149 layers, and then the intermediate thickness After the film layer is formed to have a thickness of 5 ⁇ m, there are 447 laminated units 2, and there is a 4 ⁇ m layer as the surface thick film layer on the laminated unit 2 side, (surface thick film layer made of thermoplastic resin A) / (A layer and Laminated unit 1 in which 149 layers are alternately laminated in the thickness direction B) / (Intermediate thick film layer made of thermoplastic resin A) / (Laminated unit in which 447 layers are alternately laminated in the thickness direction of C layer and D layer) 2) A laminated film having a total number of 599 layers (total thickness 68 ⁇ m) having a layer structure of 2 / (surface thick film layer made
  • the total thickness (d1) of the multilayer unit 1 is 22 ⁇ m
  • the total thickness (d2) of the multilayer unit 2 is 29 ⁇ m
  • d1 / (d1 + d2) is 0.43.
  • the sum of the thicknesses of two adjacent layers of the stacking unit 1 excluding the thick film layer in the stacking device 8 is 260 to 350 nm
  • the ratio of the thicknesses of the two adjacent layers is 0.89 to 1.11.
  • the sum of the thicknesses of the six adjacent layers of the laminated unit 2 is 345 to 430 nm. When the thickness of the thinnest layer among the three adjacent layers is 1, the thickness of the remaining two layers is 1 To 1.2 or 6.1 to 8.0.
  • the obtained laminated film has almost no flow mark as in Example 12, has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, and the reflectance at a wavelength of 900 to 1800 nm is in Example. It was higher than 12, and the solar heat gain was better than Example 13. The results are shown in Tables 5-8.
  • Example 4 When the layer thickness ratio of the laminated unit 2 of the film produced using the laminating device 15 is changed to 1: 5: 1 and the thickness of the thinnest layer among the three adjacent layers of the laminated unit 2 is set to 1. In addition, the same procedure as in Example 16 was performed except that the remaining two layers had a thickness of 1 to 1.2 or 4.5 to 6 (lamination apparatus 17).
  • the obtained laminated film had no flow mark as in Example 16, but the reflectance was improved at a wavelength of 400 to 450 nm in the visible light region.
  • the results are shown in Tables 5-8.
  • Example 19 The ratio of the layer thickness of the laminated unit 2 of the film produced using the laminating apparatus 15 was changed to 1: 8: 1, and the thickness of the thinnest layer among the three adjacent layers of the laminated unit 2 was set to 1. In this case, the same procedure as in Example 16 was performed except that the thickness of the remaining two layers was 1 to 2 or 7.0 to 9.3 (lamination apparatus 19).
  • the obtained laminated film had no flow mark as in Example 16, but the reflectance was improved at a wavelength of 400 to 450 nm in the visible light region.
  • the results are shown in Tables 5-8.
  • the obtained laminated film had no flow mark as in Example 12, but it was slightly higher at a wavelength of 400 to 450 nm in the visible light region, but sufficient transparency could be secured.
  • the results are shown in Tables 5-8.
  • the obtained laminated film had no flow mark as in Example 16, but the reflectance was improved at a wavelength of 400 to 450 nm in the visible light region.
  • the results are shown in Tables 5-8.
  • (Comparative Example 7) The lamination ratio (A / B) of the lamination unit 1 of the film produced using the lamination device 15 is changed to 0.65, and the thickness of the adjacent layers of the lamination unit 1 is 0.65 to 1.55. Except for this, the same procedure as in Example 16 was performed (lamination apparatus 23).
  • the obtained laminated film had no flow mark as in Example 12, but became high at a wavelength of 400 to 450 nm in the visible light region, and the film itself was colored blue.
  • the results are shown in Tables 5-8.
  • Example 21 Change the thickness of both surface layers of the film created using the laminating device 16 to 0.5 ⁇ m, change the intermediate thick film layer to 8 ⁇ m on the slit plate 1 side, 1 ⁇ m on the slit plate 2 side, and change to 9 ⁇ m as the intermediate thick film layer Except that, it was performed under the same conditions as in Example 17 (lamination apparatus 24). The thickness of the entire film was 61 ⁇ m.
  • the obtained laminated film has slight flow marks as in Example 12, and has a large spectral non-uniformity in the width direction (direction perpendicular to the longitudinal direction of the film). It was done.
  • the optical properties at the center of the film were similar to those in Example 3. The results are shown in Tables 5-8.
  • the thickness of the intermediate thick film layer of the film produced using the laminating apparatus 16 is set to 0.5 ⁇ m for each plate and 1 ⁇ m as the intermediate thick film layer so that the thicknesses from the plate 1 and the plate 2 are the same.
  • the same procedure as in Example 17 was performed except that the surface layer thick film layer on the laminated unit 1 side was changed to 12 ⁇ m and the surface layer thick film layer on the laminated unit 2 side was changed to 5 ⁇ m (lamination apparatus 25).
  • the total thickness of the film was 69 ⁇ m.
  • the obtained laminated film showed remarkable flow marks.
  • the sample physical properties could not be measured well.
  • the resin extrusion temperature PEN side was adjusted to 320 ° C.
  • the PETG resin side was adjusted to 300 ° C.
  • the resin viscosity was changed so that the flow mark was not easily generated.
  • the ratio of the thicknesses of the two adjacent layers of the laminated unit 1 is 0.73 to 1.3, and the laminated units 2 are adjacent to each other.
  • the thickness of the thinnest layer among the three layers was 1, the remaining two layers had a thickness of 1 to 1.5 or 5.0 to 10.5.
  • the obtained laminated film had a high reflectance in the visible light region. The results are shown in Tables 5-8.
  • Example 22 The arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 is arranged as shown in FIG. 12 (the laminating unit 1 from the vicinity of the surface layer and the laminating unit 2 from the other surface layer toward the center toward each other. (Laminating apparatus 26).
  • the ratio of the thicknesses of two adjacent layers of the multilayer unit 1 is 0.89 to 1.11, and the thickness of the thinnest layer among the three adjacent layers of the multilayer unit 2 is 1, the remaining thickness The thickness of the two layers was 1 to 1.2 or 6.1 to 8.0.
  • Example 23 Implementation was performed except that the arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 was changed to the arrangement shown in FIG. 13 (only the laminating unit 1 of Example 17 was reduced toward the center). It carried out like Example 15 (lamination apparatus 27). The ratio of the thicknesses of two adjacent layers of the multilayer unit 1 is 0.89 to 1.11. When the thickness of the thinnest layer among the three adjacent layers of the multilayer unit 2 is 1, the remaining 2 The layer thickness was 1 to 1.2 or 6.1 to 8.0. As a result, Example 16, Example 22, and Example 23 obtained almost the same optical performance. It was found that when the layer thickness distribution of each of the multilayer unit 1 and the multilayer unit 2 is not uneven, the optical characteristics are hardly changed.
  • Example 24 The arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 was changed to an arrangement as shown in FIG. 14 (the arrangement of Example 17 in which the lamination unit 1 was arranged so as to protrude downward). Except for this, the same procedure as in Example 17 was performed (lamination apparatus 28).
  • the sum of the thicknesses of two adjacent layers of the multilayer unit 1 excluding the thick film layer in the stacking device 29 is 260 to 350 nm
  • the sum of the thicknesses of the six adjacent layers of the multilayer unit 2 is 345 to 430 nm. It was.
  • Example 25 Example 5 with the exception of the arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 as shown in FIG. 15 (in which the laminated unit 1 in the arrangement of Example 24 is changed to a convex shape). It carried out similarly (lamination apparatus 29).
  • the sum of the thicknesses of two adjacent layers of the multilayer unit 1 excluding the thick film layer in the stacking apparatus 30 is 260 to 350 nm, and the sum of the thicknesses of the six adjacent layers of the multilayer unit 2 is 345 to 430 nm. It was.
  • Example 26 The arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 is as shown in FIG. 16 (in addition to the arrangement of Example 24, the laminated unit 2 is also arranged so as to protrude downward). The procedure was the same as in Example 17 except that the layer was changed to (Laminating apparatus 30).
  • Example 27 The same procedure as in Example 17 was performed except that the arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 was changed to the arrangement shown in FIG. 17 (laminating apparatus 31). However, since the slit plate 1 and the slit plate 2 are symmetric, the surface thick film layer (5 ⁇ m) and the intermediate thick film layer (2.5 ⁇ m for each plate) have the same thickness.
  • Example 28 A hard coat layer was applied to the film prepared in Example 12.
  • a coating material for forming a hard coat layer a mixture of DPHA (dipentaerythritol hexaacrylate) and a photoinitiator (IRGACURE (registered trademark) 184 manufactured by BASF Japan) at a weight ratio of 99: 1 is MEK (methyl ethyl ketone).
  • MEK methyl ethyl ketone
  • a coating agent A adjusted to a solid part concentration of 40%.
  • This coating agent A and a slurry of cesium tungsten oxide particles Cs0.33WO3 having a solid content concentration of 18.5% by mass were mixed at a weight ratio of 2: 7 to obtain a coating agent B for forming a hard coat layer.
  • the obtained laminate had a high reflectance of light having a wavelength of 900 to 1400 nm and a low transmittance.
  • the results are shown in Table 9.
  • Example 29 The same operation as in Example 28 was performed except that the film prepared in Example 13 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 30 The same operation as in Example 28 was performed except that the film prepared in Example 14 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 31 The same operation as in Example 28 was performed except that the film prepared in Example 15 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 32 The same operation as in Example 28 was carried out except that the film prepared in Example 16 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 33 The same operation as in Example 28 was performed except that the film prepared in Example 18 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 34 The same operation as in Example 28 was performed except that the film prepared in Example 19 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 35 The same operation as in Example 28 was performed except that the film prepared in Example 22 was used.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 36 This was carried out in the same manner as in Example 35 except that the thickness of the hard coat layer was 2.5 ⁇ m.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 37 The same operation as in Example 35 was performed except that the thickness of the hard coat layer was 1.7 ⁇ m.
  • the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
  • Example 38 The same operation as in Example 28 was performed except that the film prepared in Example 4 was used.
  • the obtained laminate had a high reflectance of light having a wavelength of 900 to 1800 nm and a low transmittance. The results are shown in Table 9.
  • Example 39 The same operation as in Example 28 was performed except that the film prepared in Example 10 was used.
  • the obtained laminate had a high reflectance of light having a wavelength of 900 to 1800 nm and a low transmittance. The results are shown in Table 9.
  • Example 9 The same operation as in Example 28 was performed except that the film prepared in Comparative Example 5 was used.
  • the obtained laminate had a high reflectance of light having a wavelength of 400 to 900 nm, and when a hard coat layer was provided so as to have a visible light transmittance of 70%, the solar heat gain rate was low.
  • Table 10 The results are shown in Table 10.
  • Example 10 The same operation as in Example 28 was performed except that the film prepared in Comparative Example 6 was used.
  • the obtained laminate had a high reflectance of light having a wavelength of 400 to 900 nm, and when a hard coat layer was provided so as to have a visible light transmittance of 70%, the solar heat gain rate was low.
  • Table 10 The results are shown in Table 10.
  • Comparative Example 11 The same operation as in Example 28 was performed except that the film prepared in Comparative Example 7 was used.
  • the obtained laminate had a high reflectance of light having a wavelength of 400 to 900 nm, and when a hard coat layer was provided so as to have a visible light transmittance of 70%, the solar heat gain rate was low.
  • Table 10 The results are shown in Table 10.
  • Example 12 The same operation as in Example 36 was performed except that the thickness of the hard coat layer was reduced.
  • the obtained laminate had a low transmittance of light having a wavelength of 900 to 1200 nm and a low solar heat acquisition rate. Moreover, since the pencil hardness was low, it was easy to be damaged and was of poor quality. The results are shown in Table 10.
  • Example 13 The coating was performed in the same manner as in Example 36 except that the solid content concentration of the coating A for providing the hard coat layer was 1/3 (coating A ′).
  • the obtained laminate had a low transmittance of light having a wavelength of 900 to 1200 nm and a low solar heat acquisition rate. The results are shown in Table 10.
  • Comparative Example 15 The same procedure as in Comparative Example 14 was performed except that the hard coat layer was provided so that the visible light transmittance was 70%.
  • the obtained laminate had a low transmittance of light having a wavelength of 900 to 1200 nm and a low solar heat acquisition rate. The results are shown in Table 10.
  • thermoplastic resins A and B This was carried out in the same manner as in Example 36 except that polyethylene terephthalate (manufactured by Toray Industries, Inc .: IV0.65, Tg 79 ° C., Tm 255 ° C.) was used as the thermoplastic resins A and B, and a single film substrate film was obtained. .
  • the obtained laminate did not reflect the reflection of light having a wavelength of 900 to 1200 nm, and the solar heat gain rate was low. The results are shown in Table 10.
  • Comparative Example 20 This was carried out in the same manner as in Comparative Example 18 except that the hard coat layer was provided so that the visible light transmittance was 80%. The obtained laminate did not reflect the reflection of light having a wavelength of 900 to 1200 nm, and the solar heat gain rate was low. The results are shown in Table 10.
  • the laminated film of the present invention is particularly excellent in transparency and can reflect heat rays over a wide band. Therefore, it is used for various applications such as building materials, automobiles, and liquid crystal displays, and particularly reflects light of a specific wavelength. It can be used as an optical film. It can also be bonded to glass with high curvature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

可視光線透過率が高く、高い反射率を有するには、これまでの層設計では波長1200nmまでの反射が限界であった。一方で、711構成を用いると、波長1200nm以上の波長を反射させつつ、可視光線透過率を高い状態で維持できるものの、高い反射率を得るには、多くの層数が必要であり、フィルム厚みが大きくなるため、曲率の高いガラスへの貼り合わせが悪くなる。これらを解決する。 少なくとも一方の面から光を入射した際に、波長1200~1800nmの範囲において連続して100nm以上の範囲で反射率が30%以上となる反射帯域を少なくとも1つ有し、且つ波長430~600nmの範囲における平均透過率が70%以上あり、フィルムの主配向軸方向とそれに直交する方向の軸剛性の平均値が45N/m以下であるフィルムである。

Description

フィルムおよび積層体
 本発明は、フィルムおよび積層体に関する。
 近年、環境保護による二酸化炭素排出規制を受けて、夏場の外部、特に太陽光による熱の流入を抑制できる遮熱ガラスを自動車や電車などの乗り物、建物の窓ガラスに用いることが注目されている。
 このような遮熱ガラスの一例として、ガラス中や合わせガラスに用いられる中間膜中に熱線吸収剤を含有させ、熱線を熱線吸収剤にて遮断するもの(たとえば特許文献1)、金属膜をガラス表面上にスパッタなどにより形成し熱線を反射させて遮断するもの(たとえば特許文献2)、屈折率の異なるポリマーが交互に積層されたポリマー多層積層フィルムをガラス及び中間膜の間に挿入して熱線を反射させて遮断するもの(たとえば特許文献3)などがある。
特開2010-17854号公報 特許第3901911号公報 特許第4310312号公報 国際公開第2005/095097号 米国特許第5360659号
 特許文献1に記載される、熱線吸収剤を用いる方法では、外部から入射される太陽光を熱エネルギーに変換するため、その熱が室内へと放射されて遮熱効率が低下する問題がある。加えて、熱線を吸収することでガラス温度が上昇し、外気温との差によりガラス本体が破損する場合もある。また、特許文献2に記載される、金属膜をガラス表面上にスパッタなどにより形成する方法では、熱線のみではなく電磁波も遮蔽するために、自動車や建物内部で通信機器などが使用できない場合もある。
 一方、特許文献3に記載される、ポリマー多層積層フィルムは、その層厚みを制御して、反射する波長を選択できるため、近赤外領域の光を選択的に反射することができ、可視光線透過率を維持しつつ遮熱性能を向上させることができる。また、金属など電波を遮断するものを含まないために、優れた電波透過性を保持したものとなる。ポリマー多層積層フィルムにおいて、光を選択的に反射する層構成としては、例えば特許文献4に記載されているような下記式(1)を満たす層構成が知られている。
Figure JPOXMLDOC01-appb-M000001
 この場合、目的とする反射波長(主反射波長λ)以外にも、λ/m(mは自然数)の波長においてもm次の干渉反射が生じる。このため、たとえば、1200nm以上の波長帯域に主反射波長(1次)が存在するように層厚みを制御した場合、3次の干渉反射が400nm以上の可視光領域にも生じることとなる。このような場合、透明性が重視される、車のフロントガラスなどのような用途には用いることが出来なくなってしまう課題があった。
 このような高次反射を抑制する方法として、特許文献5に記載のように、層厚みの比率を1:7:1とする層構成(711構成と呼ばれる層構成)が知られている。しかし、本発明者らが検討したところ、この711構成からなる多層積層フィルムは、特許文献4に記載の層構成に比べて反射率が低いため、所望の反射率を得ようとした場合、層数が増えるため、装置コストが高くなるという課題があった。また、層数が増えると、フィルム厚みも厚くなる。フィルムが厚くなるとフィルムの剛性が強くなるため、曲率の高いガラスに貼る場合、フィルムがガラスに追従しにくいため、貼ることができない。また貼ることが出来たとしても、風や振動の影響ですぐに剥がれてしまう課題があった。特に、近年はデザインにより、曲率の高いガラスが増えてきており、その課題が明確化してきている。
 すなわち、特許文献4に記載されるような層設計では、可視光線帯域の透過率を高くしつつ、近赤外領域の反射率を向上させようとすると、反射率を高くできるのは波長1200nmまでが限界であった。一方で、特許文献5に記載されるような711構成では、波長1200nm以上の反射帯域を反射させつつ、可視光線帯域の透過率を高くできるものの、高い反射率を得るには、多くの層数が必要であり、フィルム厚みが大きくなるため、曲率の高いガラスに貼ることが出来ないことが問題であった。
 係る課題を解決するため、本発明は、少なくとも一方の面から光を入射した際に、波長1200~1800nmの範囲において連続して100nm以上の範囲で反射率が30%以上となる反射帯域を少なくとも1つ有し、且つ波長430~600nmの範囲における平均透過率が70%以上あり、フィルムの主配向軸方向とそれに直交する方向の軸剛性の平均値が10N/m以上45N/m以下であるフィルム、である。
 本発明によって、これまでの反射帯域を拡大させつつ、高反射率を維持し、さらに高い可視光線透過率を有するフィルムを提供することが可能となり、軸剛性が小さいため曲率の高いガラスへも容易に貼り合わせる事ができる。
積層ユニット1の概念図を示す。 積層ユニット2の概念図を示す。 スリットプレート1とスリットプレート2を組み合わせた時に生じる層構成の一例を示す。 積層装置1でのスリットプレート1とスリットプレート2の関係を示す。 (a)積層装置1~2を用いた時のフィルムの全層厚み分布、(b)1~51層までの拡大図を示す。 (a)比較例2のフィルムの全層厚み分布、(b)631~681層までの拡大図を示す。 (a)積層装置3を用いた時のフィルムの全層厚み分布、(b) 131~181層までの拡大図を示す。 (a)積層装置5を用いた時のフィルムの全層厚み分布、(b) 431~481層までの拡大図を示す。 (a)積層装置6を用いた時のフィルムの全層厚み分布、(b)481~531層までの拡大図を示す。 (a)積層装置7を用いた時のフィルムの全層厚み分布、(b)481~531層までの拡大図を示す。 (a)積層装置11を用いた時のフィルムの全層厚み分布、(b)61~111層までの拡大図を示す。 (a)積層装置26を用いた時のフィルムの全層厚み分布、(b)131~181層までの拡大図を示す。 (a)積層装置27を用いた時のフィルムの全層厚み分布、(b) 131~181層までの拡大図を示す。 (a)積層装置28を用いた時のフィルムの全層厚み分布、(b) 131~181層までの拡大図を示す。 (a)積層装置29を用いた時のフィルムの全層厚み分布、(b) 131~181層までの拡大図を示す。 (a)積層装置30を用いた時のフィルムの全層厚み分布、(b) 131~181層までの拡大図を示す。 (a)積層装置31を用いた時のフィルムの全層厚み分布、(b)201~251層までの拡大図を示す。
 以下に本発明の実施の形態について述べるが、本発明は以下の実施例を含む実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲内においての種々の変更は当然あり得る。
 本発明のフィルムは、少なくとも一方の面から光を入射した際に、波長1200~1800nmの範囲において連続して100nm以上の範囲で反射率が30%以上となる反射帯域を少なくとも1つ有し、且つ波長430~600nmの範囲における平均透過率が70%以上必要である。波長1200~1800nmでの反射率は、より好ましくは50%以上であり、更に好ましくは70%以上である。ここでいう30%以上となる反射帯域を少なくとも1つ有するとは、連続して100nm以上反射率が30%以上となる反射帯域を有することを表す。反射率が30%以上となる帯域は、より好ましくは200nm以上であり、更に好ましくは300nm以上である。波長1200~1800nm範囲の波長を反射することで、全太陽光エネルギーの内12%カットすることができる。一方で、光の干渉を利用して1200~1800nmの範囲を反射させる場合、その波長の2分の1、もしくは3分の1付近に高次反射が立ち上がり、可視光線透過率が低下する。可視光線透過率を向上させるためには、波長430~600nmでの平均透過率を70%以上とする必要があり、より好ましくは80%以上である。波長430~600nmでの平均透過率を向上させるためには、高次反射を抑制する層設計とする必要がある。
 また、フィルムの主配向軸方向とそれに直交する方向の軸剛性の平均値が10N/m以上45N/m以下である必要がある。主配向軸とは、フィルム面内で屈折率を測定した際に、屈折率が最も高い方向である。また軸剛性とは、ヤング率とフィルム断面積の積で表記できる。軸剛性が大きいと、曲率の大きなガラスへの追従性が悪くなるため、例えばフロントガラスのような曲率の大きなガラスへの貼合性が悪くなるため好ましくない。軸剛性の平均値は最大でも45N/m以下であり、より好ましくは40N/m以下、更に好ましくは35N/m以下である。一方で軸剛性が小さすぎると、フィルム自体が脆くなり、ハンドリング性が低下する。従って、軸剛性は10N/m以上が好ましく、より好ましくは15N/m以上、さらに好ましくは20N/m以上である。
 また、少なくとも一方の面から光を入射した際に、波長400~800nmの範囲における平均透過率が80%以上であることも好ましい。このような範囲とすることで、透明性が高いフィルムとなるため、熱線吸収剤を含む層を設けたとしても、高い透明性を維持しやすいため、より多くの種類の熱線吸収剤と組み合わせることができ、その厚みを厚くすることが出来るようになるため、高い遮熱性能を有することができる。
 本発明のフィルムは、波長900~1400nmの範囲における平均反射率が70%以上となることが好ましい。例えば、可視光領域よりもやや大きな波長900~1200nm(全太陽光のうち、波長900~1200nmに占める強度の割合は約18%)の光を反射することにより、透明でしかも高い熱線カット性能を持つフィルムとすることができる。さらに、反射帯域を広げ、波長900~1400nmに渡って太陽光を反射できれば、全太陽光の強度のうち22%をカットするフィルムを作成することができる。太陽光は可視光領域に主に強度分布を備えており、波長が大きくなるにつれてその強度分布は小さくなる傾向にあるが、高い透明性が求められる用途で使用するために、可視光領域よりもやや大きな波長900~1400nmの光を効率的に反射することにより、高い熱線カット性能を付与することができ、反射帯域を広げることで、ISO9050で規定される日射熱取得率を70%以下とすることが出来るようになる。
 さらに、波長900~1800nmの平均反射率が70%以上となることも好ましい。波長900~1800nmまで反射帯域を広げれば、約29%の太陽光をカットすることになり、波長900nm以上のみに限って言えば、約99%をカットできるフィルムを作成することができ、さらに日射熱取得率を下げることができる。平均反射率を大きくするためには、光学特性の異なる2種以上の樹脂の面内屈折率の差を大きくすることにより実現できるので、二軸延伸フィルムとする場合は結晶性であるポリエステル樹脂からなる層と、延伸時に非晶性を保持もしくは熱処理工程で融解される低屈折率の共重合ポリエステルからなる層が交互に積層された多層積層フィルムとすることが好ましい。さらに平均反射率を大きくするためには、層数を増加する方法が用いられるが、フィルム厚みの増加につながり、フィルム軸剛性の増加、及びハンドリング性を悪化させるため、適切な範囲に設定する必要がある。特に本発明では、後述する積層ユニット1と積層ユニット2の割合を変化させることにより、フィルム厚みがなるべく薄くなるように設計した。
 本発明のフィルムは、熱可塑性樹脂Aを主成分とする層(A層)と熱可塑性樹脂Bを主成分とする層(B層)を交互に積層した、以下(i)を満たす積層ユニット1と、熱可塑性樹脂Cを主成分とする層(C層)と熱可塑性樹脂Dを主成分とする層(D層)を交互に積層した、以下(ii)を満たす積層ユニット2を有することが好ましい。
(i)隣接するA層とB層の厚みの比(A層厚み/B層厚み)が0.7以上、1.4以下であること。
(ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方の厚みが5以上9以下であること。
 ここで、熱可塑性樹脂Aと熱可塑性樹脂Cは同一の樹脂、熱可塑性樹脂Bと熱可塑性樹脂Dは同一の樹脂であることが好ましく、熱可塑性樹脂AとCのみが同一、熱可塑性樹脂BとDのみが同一であってもよい。熱可塑性樹脂Aは熱可塑性樹脂Bと、熱可塑性樹脂Cは熱可塑性樹脂Dと光学的に異なる性質を有する必要がある。光学的に異なる性質とは、面内で任意に選択される直交する2方向および該面に垂直な方向から選ばれる方向のいずれかにおいて、屈折率が0.01以上異なることをいう。また、ここでいう交互に積層されてなるとは、異なる樹脂からなる層が厚み方向に規則的な配列で積層されていることをいい、たとえば異なる光学的性質を有する2つのポリエステル樹脂A、ポリエステル樹脂Bからなる場合、各々の層をA層、B層と表現すれば、A(BA)n(nは自然数)といったように規則的な配列で積層されたものである。このように光学的性質の異なる樹脂が交互に積層されることにより、各層の屈折率の差と層厚みとの関係によって特定の波長の光を反射させることが可能となる。また、積層する層の全総数が多いほど広い帯域に渡り高い反射率を得ることが出来る。本発明のフィルムの全層数は、好ましくは51層以上であり、より好ましくは201層以上である。前述の干渉反射は、層数が増えるほどより広い波長帯域の光に対して高い反射率を達成できるようになり、高い光線カット性能を備えたフィルムが得られるようになる。また、層数に上限はないものの、層数が増えるに従い製造装置の大型化に伴う製造コストの増加や、フィルム厚みが厚くなることでのハンドリング性の悪化が生じるために、現実的にはそれぞれ1000層以内が実用範囲となる。
 ここで、上記積層ユニット1(図1参照)は、隣接するA層とB層の光学厚みが下記(1)(2)式を同時に満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここでλは反射波長、nはA層の面内屈折率、dはA層の厚み、nはB層の面内屈折率、dはB層の厚み、mは次数であり、自然数である。(1)式と(2)式とを同時に満たす層厚み分布を持つことで偶数次の反射を解消できる。そのため、波長900nm~1200nmの範囲における平均反射率を高くしつつ、可視光領域である波長400~800nmの範囲における平均反射率を低くすることができ、透明でかつ、熱線カット性能の高いフィルムを得ることができる。一般的に熱可塑性樹脂を成形し、延伸した後のフィルムの屈折率としては、約1.4~1.9となるため、隣接するA層とB層の厚みの比(A層の厚み/B層の厚み)を0.7以上1.4以下とすることで、偶数次の反射を抑制したフィルムを得ることができる。従って、隣接するA層とB層の厚みの比(A層の厚み/B層の厚み)を0.7以上1.4以下とすることが好ましい。より好ましくは、0.8以上1.2以下である。
 また上記積層ユニット2は、積層ユニット2における隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方の厚みが5以上9以下の厚みであることが好ましい。上記構成は、米国特許5360659号明細書に記載されている711構成を基本としている。この構成は、ある層に対して、光学的に性質が異なり、且つ厚みが約1/7である層で挟んだ層を形成することにより、擬似的に1層とみなすことができ、それにより、2次の反射だけでなく、3次の反射までも抑制する方法である(図2参照)。隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、厚い層は好ましくは5~9倍、より好ましくは6~8倍であり、もう一方の層は好ましくは1.0~1.4倍であり、より好ましくは1.0~1.2倍であることが好ましい。このような範囲とすることで、反射帯域を1200nm以上としても、可視光領域(波長400~800nm)において、2次、3次の反射が解消されたフィルムを得ることができる。このときの層厚みとしては、図2の通り、上から1~3層目までがC’層、4~6層目までがD’層とみなされるため、反射波長は式(1)(2)を改良した、下記式(3)(4)が適用される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 本発明のフィルムを開発するに当たって、積層ユニット1のみからなるフィルムで波長900nm~1800nmの範囲の波長を反射させようとした場合、3次(m=3)の反射が300nm~600nm付近に生じるため、可視光領域である400nm~600nmの範囲で干渉反射してしまい、可視光線透過率が低下しまうことがあった。一方で、本発明者が積層ユニット2のみからなるフィルムで検討したところ、所望の反射帯域(たとえば、波長900~1800nm)で、且つ積層ユニット1と同程度の平均反射率を達成しようとした場合、積層ユニット1のみからなるフィルムに比較して同程度のフィルム厚みでは、平均反射率が劣ることがあった。これは、積層ユニット2が薄膜により擬似的な界面を形成しているために、平均反射率が向上しないということが原因であると推定している。従って、積層ユニット2のみからなるフィルムを構成した場合、より多くの層が必要となるため、装置コストが高くなるだけではなく、フィルム厚みも厚くなり、フィルム軸剛性の増加、及びハンドリング性が悪くなるということが分かった。そこで本発明者が鋭意検討した結果、積層ユニット1と積層ユニット2を適切な比率、及び条件で組み合わせることにより、波長900~1400nm、または波長900~1800nmの反射帯域を高反射率で反射し、且つフィルム厚みを薄くすることに成功した。さらに、積層ユニット1と積層ユニット2を単純に組み合わせた場合、後述するスリットプレート、及びスリットにかかる樹脂の圧力が積層ユニット1と積層ユニット2では異なるため、フローマークが出やすくなるという課題や、幅方向の光学特性にムラができることが判明した。これに関しても、本発明者が鋭意検討した結果、各スリットプレートでの積層ユニットの厚み比の調整、スリットプレート間への中間厚膜層の挿入により、最適な処方を見つけることに成功した。
 本発明のフィルムの層構成として、積層ユニット1は波長1200nm以下の波長を反射させるように設計するのが好ましい。上記で示したように、積層ユニット1は1200nm以上の波長を反射させようとすると、3次の反射が可視光領域に生じてしまう。一方で、積層ユニット2は900nm以上の波長を反射させてもよいが、積層ユニット1が900~1200nmの光を十分反射している場合には、1200nm以上の光を選択的に反射させるように設計することが好ましい。1200nm以下でも3次の反射は生じないが、波長900~1800nmに渡って反射させようとした場合、層数の増加に繋がる。従って、積層ユニット2は積層ユニット1の反射帯域を補うように1200nm以上の帯域を反射させることが好ましい。上記の反射帯域にするには、式(1)より積層ユニット1の1ユニット辺りの厚み(隣り合うA層とB層の和)は250nm以上400nm以下で層厚み分布を有するのが好ましく、積層ユニット2の6層分の厚み(図2中のdc’とdD’の和)は、300nm以上600nm以下とするのが好ましい。このような領域とすることで、屈折率が1.5~1.8の物質を積層させる場合には波長900~1800nmの波長を反射させることができる。
 また、本発明のフィルムの積層ユニット1の総厚みd1は5μm以上あることが好ましい。積層ユニット1の総厚みd1が5μm以上であれば、波長900~1200nmの帯域を効率よく反射することが可能となる。さらに好ましくは10μm以上であるが、厚くなりすぎても、最終的なフィルム厚みの増加、また所望の反射帯域において、反射率が上限の100%になってしまうため、好ましくは50μm以下である。
 また、本発明のフィルムの積層ユニット2の総厚みd2は、20μm以上あることが好ましい。積層ユニット2の総厚みd2が20μm以上であると、波長1200nm~1800nmでの平均反射率を50%以上とすることが出来るため、波長900~1800nmの範囲において、平均反射率が70%以上を達成することが容易となる。より好ましくは20μm以上50μm以下である。
 また本発明のフィルムの総厚みは100μm以下であることが好ましい。フィルムの全厚みが100μmを超えると、ハンドリング性の悪化に繋がるため、特にガラスの施工業者などの作業負担にも繋がる。また巻姿も巨大になるため、搬送のコストが増大する。
 本発明のフィルム中の積層ユニット1、該積層ユニット2、または該積層ユニット1と該積層ユニット2の両方が、隣接する6層の層厚みの和がフィルムの厚み方向に対して連続した層厚み分布を有することが好ましい。式(1)や式(3)からも分かるように、隣り合う層の厚みが一定であれば、単波長の反射のみになってしまう。また、連続的に分布を持つことが好ましく、例えば積層ユニット1と積層ユニット2が交互になるような層厚み分布でもかまわないが、層厚み分布は連続していたほうが、干渉反射は強くなるため、反射率の向上に繋がる。そのためには、厚み方向に対して、ある一定の傾斜を連続で有する層厚み分布であることが好ましい。連続とは、A(BA)nとした場合に、n=10以上であり、さらに好ましくは20以上である。
 また該積層ユニット1、該積層ユニット2、または該積層ユニット1と該積層ユニット2の両方が、隣接する6層の層厚みの和がフィルムのある一方の表面から中央部に向かって徐々に薄くなる領域を含むことが好ましい。本発明者らが鋭意研究を重ねた結果、層厚み分布が少なくとも一方の表面から薄くなることで、可視光領域での反射率が低下することが分かった。そのため、少なくとも一方の面から層厚みが徐々に減少することにより、ガラス等に本発明のフィルムを貼合し、外から観察する際に、見栄えが良くなる。
 さらに好ましい形態としては、フィルムの両面から中央に向かって徐々に薄くなる領域を含むことが好ましい。このようにすることで、合わせガラス化のような、両面からの見栄えが重要な場所においても、光学性能が良くなるため、汎用性が高くなる。
 また、該積層ユニット1、該積層ユニット2、または該積層ユニット1と該積層ユニット2の両方が、隣接する6層の層厚みの和がフィルムのある一方の表面から中央部に向かって徐々に薄くなる領域と、徐々に厚くなる領域の両方を含むことも好ましい。このようにすることで、その波長での反射率の増加につながり、また一方(例えば、徐々に薄くなる領域)の層厚みが乱れたとしても、他方(例えば、徐々に厚くなる領域)で補完できるため、所望の反射帯域、及び反射率を得られやすくなる。厚くなる領域と薄くなる領域をさらに繰り返せば、反射率の増加、及び反射帯域の抜けは少なくなるが、繰り返しが多くなると、フィルム厚みの増加に繋がるため、積層ユニット1と積層ユニット2を合わせて、徐々に薄くなる領域が2回、徐々に厚くなる領域が2回以下が好ましい。
 また、本発明のフィルムは、厚みが1μm以上の層を有することが好ましい。特に表層に1μm以上の層を有することが好ましい。層厚みが1μm以上の層を有することで、幅方向に積層厚みムラの発生を抑制でき、幅方向の光学性能を安定させることが可能となる。特に、表層が1μm以上の場合、ガラスと貼合した際に、ガラスとの界面での干渉を抑制し、虹ムラの発生を抑制することが可能となる。そのため、本発明のフィルムは、表層には1μm以上、さらに好ましくは2μm以上、最も好ましくは3μm以上の層を有することが好ましい。さらに、フィルムの表層以外(内部)にも1μm以上の層を有することが好ましい。特に、積層ユニット1と積層ユニット2の間、もしくは後述するフィルムの製造段階における各スリットプレートの端が形成する層(表層厚膜層、もしくは中間厚膜層にあたる部分)に有することが好ましい。積層ユニット1と積層ユニット2は、層厚み構成が異なるため、各スリットにかかる樹脂圧が異なる。そのため、特に積層ユニット1と積層ユニット2の境目で層乱れを起こしやすい。またフィルム製造段階におけるスリットプレート間でもせん断による樹脂の発熱の影響を受けるため、積層ムラが生じやすい。そのため、フィルムの間、特にフィルム製造段階におけるスリットプレートとの境にあたる層は1μm以上、さらに好ましくは2μm以上の層があることが好ましい。中間厚膜層の作成方法の一例としては、図3に記載のようにフィルム製造段階におけるスリットプレート1から排出されるA層とスリットプレート2から排出されるA層を重ね合わせて一層(図3の、スリットプレート1から排出されるA(中間厚膜層)とスリットプレート2から排出されるA(中間厚膜層)は重ね合わさって1層の中間厚膜層を形成する)とすることが好ましい。
 本発明のフィルムは、波長900~1400nmを反射させる場合、積層ユニット1の総厚みをd1、積層ユニット2を総厚みd2とした場合、下記式(5)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000006
 上記式は、積層ユニット1の総厚み(d1(μm))が、積層ユニット1と積層ユニット2の総厚みの和(d1+d2(μm))に対して40%以上100%未満であることを示す。積層ユニット1は少ない層数でも比較的高い反射率を有するため、できるだけ広い範囲に渡って反射帯域を形成することが好ましいが、全ての層が積層ユニット1の場合、上述の通り、波長900~1400nmの範囲で平均反射率を高くしようとした場合、波長400~450nmで高次の反射が生じる。そのため、波長900~1200nmの範囲をできるだけ少ない層数で反射させるのが好ましい。一方で、積層ユニット2は全てのユニットを積層ユニット2にしても高次の反射は生じ難いが、反射率が低下しやすい。そのため、積層ユニット1と積層ユニット2で同程度の屈折率差を有した樹脂を積層させる場合、できるだけ反射率を高く保ち、且つ可視光領域に高次の反射を生じさせないためには、積層ユニット1と積層ユニット2の総厚みの和(d1+d2(μm))に占める積層ユニット1の総厚み(d1(μm))の割合が、40%以上が好ましく、さらに好ましくは50%以上であり、上限は100%未満が好ましく、さらに好ましくは60%未満である。このような範囲とすることで、最も効率よく波長900~1400nmの範囲の波長を反射でき、フィルム厚みも薄くできるものである。
 また、本発明のフィルムは、波長900~1800nmを反射させる場合、積層ユニット1の総厚みをd1、積層ユニット2を総厚みd2とした場合、下記式(6)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000007
 上記式は、積層ユニット1の総厚み(d1(μm))が、積層ユニット1と積層ユニット2の総厚みの和(d1+d2(μm))に対して1%以上40%未満であることを示す。積層ユニット1は少ない層数でも比較的高い反射率を有するため、できるだけ広い範囲に渡って反射帯域を形成することが好ましいが、全ての層が積層ユニット1の場合、上述の通り、波長900~1800nmの範囲で平均反射率を高くしようとした場合、波長400~600nmで高次の反射が生じる。そのため、波長900~1200nmの範囲をできるだけ少ない層数で反射させるのが好ましい。一方で、積層ユニット2は全てのユニットを積層ユニット2にしても高次の反射は生じ難いが、反射率が低下しやすい。そのため、積層ユニット1と積層ユニット2で同程度の屈折率差を有した樹脂を積層させる場合、できるだけ反射率を高く保ち、且つ可視光領域に高次の反射を生じさせないためには、積層ユニット1と積層ユニット2の総厚みの和(d1+d2(μm))に占める積層ユニット1の総厚み(d1(μm))の割合が、1%以上が好ましく、さらに好ましくは10%以上であり、上限は40%未満が好ましい。このような範囲とすることで、最も効率よく波長900~1800nmの範囲の波長を反射でき、フィルム厚みも薄くできるものである。
 本発明に係る多層積層フィルムに用い得る熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン-1)などのポリオレフィン、
シクロオレフィンとしては、ノルボルネン類の開環メタセシス重合,付加重合,他のオレフィン類との付加共重合体である脂環族ポリオレフィン、
ポリ乳酸、ポリブチルサクシネートなどの生分解性ポリマー、ナイロン6、ナイロン11、ナイロン12、ナイロン66などのポリアミド、
アラミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、エチレン酢酸ビニルコポリマー、ポリアセタール、ポリグルコール酸、ポリスチレン、スチレン共重合ポリメタクリル酸メチル、ポリカーボネート、
ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル、
ポリエーテルサルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリアリレート、
4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデンなどが挙げられる。これらの中で、強度・耐熱性・透明性の観点から、特にポリエステルを用いることが好ましく、ポリエステルとしては芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールあるいはそれらの誘導体を用いて得られるポリエステルが好ましい。ここで、芳香族ジカルボン酸として、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、4,4′-ジフェニルスルホンジカルボン酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも好ましくはテレフタル酸と2,6-ナフタレンジカルボン酸を挙げることができる。これらの酸成分は1種のみ用いてもよく、2種以上併用してもよく、さらには、ヒドロキシ安息香酸等のオキシ酸などを一部共重合してもよい。
 また、ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート、スピログリコールなどを挙げることができる。中でもエチレングリコールが好ましく用いられる。これらのジオール成分は1種のみ用いてもよく、2種以上併用してもよい。
 上記ポリエステルのうち、ポリエチレンテレフタレートおよびその共重合体、ポリエチレンナフタレートおよびその共重合体、ポリブチレンテレフタレートおよびその共重合体、ポリブチレンナフタレートおよびその共重合体、さらにはポリヘキサメチレンテレフタレートおよびその共重合体並びにポリヘキサメチレンナフタレートおよびその共重合体の中から選択されるポリエステルを用いることが好ましい。
 特に上記の中でも、高屈折率側の樹脂はポリエチレンナフタレート系の樹脂を使うことが好ましい。そうすることで、低屈樹脂との屈折率差がつきやすいため、反射帯域の増加とフィルム厚みの減少を同時に達成することができる。
 また、上記熱可塑性樹脂には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機または無機の微粒子、充填剤、帯電防止剤、核剤、良流動化剤などがその特性を悪化させない程度に添加されていてもよい。
 本発明のフィルムの該熱可塑性樹脂A及び熱可塑性樹脂Cの未配向状態での屈折率が1.55~1.7、該熱可塑性樹脂B及び熱可塑性樹脂Dの未配向状態での屈折率が1.5~1.65であることが好ましい。未配向状態での屈折率とは、積層フィルムのそれぞれの樹脂を削り取った後、融解させた樹脂の屈折率のことである。熱可塑性樹脂Aと熱可塑性樹脂Cの未配向状態での屈折率が1.55~1.7まであれば、延伸後にも屈折率が高くなりやすい。一方で、該熱可塑性樹脂B及び熱可塑性樹脂Dの未配向状態での屈折率が1.5~1.65、さらに好ましくは1.55~1.6であれば、延伸後の熱可塑性樹脂A及び熱可塑性樹脂Cの屈折率差をつけやすい。上記の測定方法としては、延伸したフィルムを削り取った後、一度高温で融解させた後、各種測定法方法で屈折率を測定することで測定することができる。
 また、樹脂を配向させた後に隣接する層(すなわちA層とB層、C層とD層)の屈折率差をつけるためには、A層とC層に用いる樹脂が結晶性であり、かつB層とD層に用いる樹脂が、融点以上の熱処理によって配向が緩和し、屈折率が小さくなる樹脂、または非晶性もしくは非晶性熱可塑性樹脂と結晶性熱可塑性樹脂の混合物とすることが好ましい。この場合、フィルムの製造における延伸、熱処理工程において更に屈折率差を広げることが可能となり、反射率が30%以上となる反射帯域を有することが容易となる。
 また本発明のフィルムにおいては、フィルムの少なくとも一方の面にハードコート層が近接しており、ISO9050で規定される可視光線透過率が70%以上、日射熱取得率が50%以下である積層体とすることも好ましい。本発明におけるハードコート層とは、JIS K5600-5-4に基づく鉛筆硬度がHB以上の層のことを指す。このような層を設けることで、遮熱部材として適用した際の耐切創性や信頼性に優れるフィルムとすることが出来る。またハードコート層には熱線吸収剤が含まれていることが好ましい。熱線吸収剤としては、タングステン化合物、ランタン化合物、アンチモン化合物、インジウム化合物、スズ化合物などが例示されるが、中でも酸化タングステン化合物が好ましく用いられる。酸化タングステン化合物は、波長1500nmよりも長波長帯域だけでなく、波長700~1500nmの波長帯域においても高い熱線吸収性能を有する。一方、ランタン化合物、アンチモン化合物、インジウム化合物、スズ化合物においては、波長1500nmよりも長波長帯域においては高い吸収性能を備えるものの、一方で波長700~1500nmの範囲においては、その吸収性能は十分でない場合がある。特に、本発明のフィルムは、波長900~1800nmの反射帯域を有するが、波長1200nm以降は積層ユニット2で構成されるため、反射率が十分でないことがある。そのため、本発明のフィルムにランタン化合物やアンチモン化合物、インジウム化合物を用いた場合、700~850nmならびに1200~1500nmの波長帯域の光を十分に遮蔽できない。一方、酸化タングステン化合物は、ランタン化合物やアンチモン化合物、インジウム化合物、スズ化合物と比較して700~1500nmにおいても高い遮熱性能を示すために、特に本発明のフィルムに酸化タングステン化合物を用いた場合、波長700nm以上の波長帯域の光をほぼカットでき、高い遮熱性能を達成できる。そのため、本発明の積層体のハードコート層は、ランタン化合物、アンチモン化合物、インジウム化合物、スズ化合物の含有量の和が、1質量%以下であることが好ましい。より好ましくは0.1質量%以下、更に好ましくは0.01質量%以下である。ここでいう酸化タングステン化合物とは、単純なタングステン酸化物に加えて、タングステン以外の金属を含有する酸化タングステンも含まれる。ここでいうタングステン以外の金属としては特に限定されるものではなく、例えば、セシウム酸化タングステン、タリウム酸化タングステン、インジウム酸化タングステン、マグネシウム酸化タングステンなどが好適に用いられる。特に本発明においては、赤外線のカット率が高く(熱線吸収効率が高く)、可視光線の吸収が少ないことやその光学特性の安定性という観点からセシウム酸化タングステンであることが好ましい。ハードコート層中の酸化タングステン化合物の含有量は、後述の波長400~800nmや波長900~1200nmの平均透過率が好ましい範囲であれば特に限定されないが、例えば、ハードコート層全体に対して1質量%以上80質量%以下が好ましい。1質量%未満であると、波長900~1200nmの透過率を低くするためにハードコート層を過度に厚くする必要があり、ハンドリング性やコストの観点から好ましくない場合がある。一方で80質量%よりも多く含有する場合は、フィルム厚み制御による光の透過率の制御が困難になり、酸化タングステン化合物(熱線吸収剤)の脱落などが起こり易くなる場合がある。好ましくは10質量%以上75%以下、更に好ましくは20質量%以上70%以下が好ましい。
 前記ハードコート層を形成する樹脂としては、アクリル樹脂やウレタン樹脂、ポリエステル樹脂やシラノールなどから選択され、その種類は特に限定されるものではなく、これらを単体、もしくは組み合わせて使用される。アクリル樹脂としては、例えば、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-ヘキシル、アクリル酸ラウリル、アクリル酸2-エチルヘキシルグリシジルアクリレート、グリシジルメタアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、4-ヒドロキシブチルメタアクリレートグリシジルエーテル、フェニルグリシジルアクリレート、エポキシアクリレート、エポキシメタアクリレート、ジペンタエリスリトールヘキサアクリレート等が好ましく例示される。
 また、開始剤や硬化剤や触媒を含むと硬化がより促進されるため好ましい。開始剤としては、アニオン、カチオン、ラジカル反応等による重合、縮合または架橋反応を開始あるいは促進できるものが好ましい。開始剤、硬化剤および触媒は種々のものを使用できる。また、開始剤、硬化剤および触媒はそれぞれ単独で用いてもよく、複数の開始剤、硬化剤および触媒を同時に用いてもよい。さらに、酸性触媒や、熱重合開始剤や光重合開始剤を併用してもよいが、中でも光重合開始剤が好ましい。酸性触媒の例としては、塩酸水溶液、蟻酸、酢酸などが挙げられる。熱重合開始剤の例としては、過酸化物、アゾ化合物が挙げられる。また、光重合開始剤の例としては、アルキルフェノン系化合物、含硫黄系化合物、アシルホスフィンオキシド系化合物、アミン系化合物などが挙げられる。光重合開始剤としては、硬化性の点から、アルキルフェノン系化合物が好ましい。アルキルフェノン形化合物の具体例としては、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2.2-ジメトキシ-1.2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-フェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-(4-フェニル)-1-ブタン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタン、1-シクロヒキシル-フェニルケトン、2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-エトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、などが挙げられる。
 本発明におけるハードコート層の厚みは特に制約されるものではないが、0.1μm以上50μm以下であることが好ましい。より好ましくは30μm以下、更に好ましくは10μm以下である。ハードコート層の厚みが0.1μm未満である場合、高精度にハードコート層の厚みを制御することが難しくなる傾向にあり、遮熱性能にばらつきが生じる場合もある。一方、ハードコート層の厚みが50μmよりも大きい場合には、基材フィルムに対するハードコート層の厚みが大きくなるために、本発明のフィルムの機械物性に対してハードコート層の影響が生じ、好ましくない場合がある。ハードコート層の厚みが0.1μm以上50μm以下である場合においては、ハードコート層を設けても層厚みを高度に制御しやすくなるために、遮熱性能のばらつきを抑制できるようになり、また、基材フィルムの厚みに対して十分にハードコート層の厚みが薄いために、本発明の積層体の物性に変化などが生じることを抑制することも可能となる。
 本発明の積層体は、基材フィルムの一方の面にのみハードコート層を設けてなることが好ましい。本発明の積層体に用いられる酸化タングステンは、850~1200nmの波長帯域において高い吸収性能を示すが、ハードコート層を通って基材フィルムに入射した光は、ハードコート層でほぼカットされているため反射による遮熱効果が期待されない。ここで、反射によりカットされた光は遮熱部材の入射面の反対側に流入することがないが、吸収によりカットされた光は熱となり一部流入するので、反射と比較すると遮熱部材として性能が低下する。そのため、遮熱部材として用いる際には、光が入射する面に基材フィルムを設けることで反射に伴う遮熱効率を高め、一方で光が出射する面にハードコート層を設けることで基材フィルムではカットできなかった光をカットする構成とする。このような構成であれば、より効率的に光・熱の流入を抑制することができ、高い遮熱性能を備えた遮熱部材とすることができる。
 また本発明の積層体においては、基材フィルムの一方の面にハードコート層を近接して有し、もう一方の面に粘着層を積層してなることが好ましい。粘着層としては、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤などが好適に用いられる。また窓ガラスに貼り、太陽光に晒すことを前提としているため、粘着層には本発明のフィルムのUVによる劣化抑制として、波長200~400nmに吸収帯域を有するUV吸収剤を添加することが好ましい。なおここでの粘着層とは、常温常湿下でガラスの上に該層を有する面を重ねて置いた後に、剥離する際の剥離力が0.1N/mm以上である層のことを指す。
 次に、本発明のフィルムの好ましい製造方法を熱可塑性樹脂Aと熱可塑性樹脂Cとが同一の樹脂,熱可塑性樹脂Bと熱可塑性樹脂Dとが同一の樹脂である場合を例にとり、二種のポリエステル樹脂を用いた例を以下に説明する。もちろん本発明は係る例に限定して解釈されるわけではない。また、本発明のフィルムの積層構造の形成自体は、特開2007-307893号公報の〔0053〕~〔0063〕段の記載を参考とすれば実現できるものである。
 ポリエステル樹脂をペレットなどの形態で用意する。ペレットは、必要に応じて、熱風中あるいは真空下で乾燥された後、別々の押出機に供給される。押出機内において、融点以上に加熱溶融された樹脂は、ギヤポンプ等で樹脂の押出量が均一化され、フィルター等を介して異物や変性した樹脂などが取り除かれる。これらの樹脂はダイにて目的の形状に成形された後、吐出される。そして、ダイから吐出された多層に積層されたシートは、キャスティングドラム等の冷却体上に押し出され、冷却固化され、キャスティングフィルムが得られる。この際、ワイヤー状、テープ状、針状あるいはナイフ状等の電極を用いて、静電気力によりキャスティングドラム等の冷却体に密着させ急冷固化させることが好ましい。また、スリット状、スポット状、面状の装置からエアーを吹き出してキャスティングドラム等の冷却体に密着させ急冷固化させたり、ニップロールにて冷却体に密着させ急冷固化させたりする方法も好ましい。
 また、複数のポリエステル樹脂からなる積層フィルムを作製する場合には、複数の樹脂を2台以上の押出機を用いて異なる流路から送り出し、積層装置に送り込む。積層装置としては、マルチマニホールドダイやフィードブロックやスタティックミキサー等を用いることができるが、特に、本発明の構成を効率よく得るためには、多数の微細スリットを有する部材を少なくとも別個に2個以上含むフィードブロックを用いることが好ましい。このようなフィードブロックを用いると、装置が極端に大型化することがないため、熱劣化による異物が少なく、積層数が極端に多い場合でも、高精度な積層が可能となる。また、幅方向の積層精度も従来技術に比較して格段に向上する。また、任意の層厚み構成を形成することも可能となる。この装置では、各層の厚みをスリットの形状(長さ、幅)で調整できるため、任意の層厚みを達成することが可能となったものである。
 このようにして所望の層構成に形成した溶融多層積層体をダイへと導き、上述と同様にキャスティングフィルムが得られる。
 このようにして得られたキャスティングフィルムは、二軸延伸されることが好ましい。ここで、二軸延伸とは、長手方向および幅方向に延伸することをいう。延伸は、逐次に二方向に延伸しても良いし、同時に二方向に延伸してもよい。また、さらに長手方向および/または幅方向に再延伸を行ってもよい。
 逐次二軸延伸の場合についてまず説明する。ここで、長手方向への延伸とは、フィルムに長手方向の分子配向を与えるための延伸をいい、通常は、ロールの周速差により施され、この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階に行っても良い。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、2~7倍が特に好ましく用いられる。また、延伸温度としては、本発明の積層フィルムを構成する樹脂の中で最もガラス転位点の高い樹脂のガラス転移温度~ガラス転移温度+100℃の範囲が好ましい。
 このようにして得られた一軸延伸されたフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 また、幅方向の延伸とは、フィルムに幅方向の配向を与えるための延伸をいい、通常は、テンターを用いて、フィルムの両端をクリップで把持しながら搬送して、幅方向に延伸する。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、2~7倍が特に好ましく用いられる。また、延伸温度としては、本発明の積層フィルムを構成する樹脂の中で最もガラス転位点の高い樹脂のガラス転移温度~ガラス転移温度+120℃の範囲が好ましい。
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、テンター内で延伸温度以上融点Tm以下の温度で熱処理を行うのが好ましい。熱処理を行うことにより、フィルムの寸法安定性が向上する。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、熱処理から徐冷の際に弛緩処理などを併用してもよい。
 同時二軸延伸の場合について次に説明する。同時二軸延伸の場合には、得られたキャストフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 次に、キャストフィルムを、同時二軸テンターへ導き、フィルムの両端をクリップで把持しながら搬送して、長手方向と幅方向に同時および/または段階的に延伸する。同時二軸延伸機としては、パンタグラフ方式、スクリュー方式、駆動モーター方式、リニアモーター方式があるが、任意に延伸倍率を変更可能であり、任意の場所で弛緩処理を行うことができる駆動モーター方式もしくはリニアモーター方式が好ましい。延伸の倍率としては樹脂の種類により異なるが、通常、面積倍率として6~50倍が好ましく、8~30倍が特に好ましく用いられる。特に同時二軸延伸の場合には、面内の配向差を抑制するために、長手方向と幅方向の延伸倍率を同一とするとともに、延伸速度もほぼ等しくなるようにすることが好ましい。また、延伸温度としては、本発明の積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃の範囲が好ましい。
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、引き続きテンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。この熱処理の際に、幅方向での主配向軸の分布を抑制するため、熱処理ゾーンに入る直前および/あるいは直後に瞬時に長手方向に弛緩処理することが好ましい。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。
 熱可塑性樹脂Aと熱可塑性樹脂C、熱可塑性樹脂Bと熱可塑性樹脂Dがことなる場合は、例えば、熱可塑性樹脂Aと熱可塑性樹脂Bを上記方法にて作成した積層フィルムと熱可塑性樹脂Cと熱可塑性樹脂Dを上記方法にて作成した積層フィルムを張り合わせることで、達成することもできる。また、2つの積層装置を用いて、それぞれで2つの樹脂を積層溶融体にした後、マルチマニホールドダイなどを用いて2つの積層溶融体を重ね合わせることで達成できる。例えば、積層装置1には積層ユニット1のみで構成されるスリットプレートを有し、積層装置2には積層ユニット2のみで構成されるスリットプレートを有することも可能である。その場合、熱可塑性樹脂Aと熱可塑性樹脂Cで重ねあうように設計することが好ましい。
 このようにして得られた基材フィルムの少なくとも一方の面に、ハードコート層を設けることも好ましい。
 基材フィルムの片面、または両面にハードコート層を形成するには、例えば、ハードコート層を形成するために用いる組成物と、必要に応じて溶媒を含む塗液を基材フィルムの片面、または両面に塗布する手法を挙げることができる。また、塗布方法としては、グラビアコート法、マイクログラビアコート法、ダイコート法、リバースコート法、ナイフコート法、バーコート法など公知の塗布方法を適用することができる。
 基材フィルムへハードコート層を形成するために用いる組成物が塗布された後、加熱によって溶媒を揮発させる。加熱方法は、加熱効率の点から熱風で行うのが好ましく、公知の熱風乾燥機、または、ロール搬送やフローティングなどの連続搬送が可能な熱風炉などを適用できる。ここでの乾燥温度は、120℃以下であることが好ましく、より好ましくは100℃以下、さらに好ましくは80℃以下である。
 また、場合によっては、加熱後に光硬化・電子硬化させることも可能である。光硬化性樹脂または電子硬化性樹脂を併用することで、より短時間でハードコート層を固定することが可能となるため、生産性や膜の安定性などの性能が向上する。光硬化・電子硬化させる場合は、汎用性の点から電子線(EB線)または紫外線(UV線)が好ましい。また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば、放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式等が挙げられる。中でも放電ランプ方式である高圧水銀灯を用いて紫外線硬化させることが好ましい。
 本発明の積層体は、基材フィルムの少なくとも一方の面にハードコート層を近接して有することが好ましい。基材フィルムの少なくとも一方の面にハードコート層を近接して有するとは、基材フィルムの少なくとも一方の面とハードコート層の界面の距離が、1μm以下であることをいう。すなわち、基材フィルムの少なくとも一方の面にハードコート層を近接して有するとは、基材フィルムの少なくとも一方の面にハードコート層が直接設けられてなる態様や、基材フィルムの少なくとも一方の面に厚さ1μm以下のその他の層を介してハードコート層が設けられてなる態様を含む。本発明においては、基材フィルムとハードコート層との間に接着性を向上させるために接着層を設けることも好ましい態様として挙げられる。
 本発明のフィルムおよび積層体は、特に900~1800nmの熱線を反射することができ、粘着剤等を介してガラスに貼り付けることが容易であるため、建材用、自動車用の熱線反射フィルムや、屋外用の大型ディスプレイの保護フィルムなどに好適に用いることができる。
[物性の測定方法]
 (1)層厚み、積層数、積層構造
 フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面を10000~40000倍に拡大観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、場合によっては、コントラストを高く得るために、公知のRuOやOsOなどを使用した染色技術を用いた。また、1枚の画像に取り込められるすべての層の中で最も厚みの薄い層(薄膜層)の厚みにあわせて、薄膜層厚みが50nm未満の場合は10万倍、薄膜層厚みが50nm以上500nm未満である場合は4万倍、500nm以上である場合は1万倍の拡大倍率にて観察を実施した。
 (2)層厚みの算出方法
 (1)項で得られたTEM写真画像を画像処理ソフト Image-Pro Plus ver.4(販売元 プラネトロン(株))を用いて、このファイルを開き、画像解析を行った。画像解析処理は、垂直シックプロファイルモードで、厚み方向位置と幅方向の2本のライン間で挟まれた領域の平均明るさとの関係を、数値データとして読み取った。表計算ソフト(Excel 2000)を用いて、位置(nm)と明るさのデータに対してサンプリングステップ2(間引き2)でデータ採用した後に、5点移動平均の数値処理を施した。さらに、この得られた周期的に明るさが変化するデータを微分し、VBA(Visual Basic for Applications)プログラムにより、その微分曲線の極大値と極小値を読み込み、隣り合う明るさが極大の領域と極小の領域の間隔を1層の層厚みとして層厚みを算出した。この操作を写真毎に行い、全ての層の層厚みを算出した。
 (3)反射率、透過率、日射熱取得率、可視光線反射率
 5cm×5cmで切り出したサンプルを日立製作所(株)製分光光度計(U-4100 Spectrophotomater)に付属の積分球を用いた基本構成で反射率測定を行った。反射率測定では、装置付属の酸化アルミニウムの副白板を基準として測定した後、サンプルの長手方向を上下方向にして測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分で測定し、方位角0度における反射率、透過率を得た。得られたスペクトルを元に、1nm毎の反射率を1200-1800nmに渡って平均化した。また、連続で反射率30%、50%、70%を超える反射帯域の幅について最長のものを表4、8に記載した。
 また、反射率測定及び透過率測定の結果を用い、ISO9050に記載されている計算方法を用いて、日射熱取得率、可視光線反射率を計算した。なお、ISO9050では、太陽光エネルギーに重荷係数を用いて計算しているため、可視光線領域での反射率と可視光線反射率は厳密には同じでない。
 (4)屈折率(面内配向屈折率)
 JIS K7142(1996)A法に従って測定した。また、本発明のフィルムの未配向状態の屈折率は、各層を削り取った後、一度融点以上で加熱した後、上記方法にて屈折率を測定した。
 (5)フィルムのTm測定
 測定するフィルムを切り出し、示差熱量分析(DSC)を用いてJIS-K-7122(1987年)に従って、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC-RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、25℃から300℃まで20℃/minで昇温(第一の昇温)しその状態で5分間保持し、次いで25℃以下となるよう急冷した。引き続いて、再度室温から20℃/min.の昇温速度で300℃まで昇温(第二の昇温)を行って測定を行った。得られた示差操作熱量測定チャート(第二の昇温カーブ)を用いて、融点Tmを求めた。なお、複数存在する場合には、それぞれ温度が一番高い値でもって、それぞれの値とした。
 (6)多層積層フィルムを構成する材料の構造解析
 多層積層フィルムを構成する材料の構造解析方法は、特に手法は限定されないが、以下のような方法が例示できる。例えば、まずガスクロマトグラフ質量分析(GC-MS)により重量ピークを確認する。次に、フーリエ変換型赤外分光(FT-IR)にて、推定される構造が有する各原子間の結合に由来するピークの有無を確認する。さらに、プロトン核磁気共鳴分光(H-NMR)にて、構造式上の水素原子の位置に由来する化学シフトの位置と水素原子の個数に由来するプロトン吸収線面積を確認する。これらの結果を合わせて総合的に判断することが好ましい。
 (7)フローマーク
 長手方向のある地点に対して、A4の大きさでサンプリングし、下記の要領で、採点した。
◎;筋が全く見えない
○;ランダムで10枚採取したうちで、1~2枚で筋が見える
△;ランダムで10枚採取したうちで、3枚以上で筋が見える
×;全てのフィルムで筋が見える。
 (8)幅方向の分光ムラ
 幅方向に1mにわたって100mm間隔で分光を測定した際にISO9050で規定される日射熱取得率、可視光線反射率の値により、相対誤差=(最大値-最小値)/平均値 ×100として求めた。
◎;日射熱取得率、可視光線反射率のいずれも相対誤差が2%以内
○;日射熱取得率、可視光線反射率の相対誤差のうち、大きい方の相対誤差が2%以上5%未満
△;日射熱取得率、可視光線反射率の相対誤差のうち、大きい方の相対誤差が5%以上10%未満
×;日射熱取得率、可視光線反射率の相対誤差のうち、大きい方の相対誤差が10%以上。
 (8)軸剛性
 フィルム面内で、屈折率が高い方向、およびそれと垂直に交わる方向に対して、幅1cm×10cmの短冊をそれぞれ3本作成し、(株)ボールドウィン製テンシロン万能試験機(RTG-1210)を用いて、フィルムのヤング率を測定した。そのヤング率を平均し、平均ヤング率×断面積(厚みμm×1cm)÷長さ(10cm)とすることで、軸剛性を算出した。
 (9)ガラス表面への貼り合わせ
 A4サイズのフィルムの一方の面に、(株)巴川製紙所製感圧粘着剤(PSA)シートをラミネートした後、曲面ガラス(R1000mm、210mm×247mm×3mm)にヒートガンで温風を当てながら、ガラスへの貼り合わせを行った。そのガラスを24h静置した後、観察を行い、気泡が無いもの、ガラスエッジ付近での剥がれが無いものを○、それ以外を×とした。
 (10)鉛筆硬度
 JIS K5600(1999年制定)に準じて測定した。測定面はハードコート面とした。ハードコート面のない場合は両面を測定し、硬度の高い方を採用した。
 以下、本発明について実施例を挙げて説明するが、本発明はかかる例に限定して解釈されるものではない。
 (比較例1)
 熱可塑性樹脂Aとして、固有粘度0.60、Tm=268℃のポリエチレンナフタレート(PEN)を用い、熱可塑性樹脂Bとして、シクロヘキサンジメタノールを30mol%共重合したポリエチレンテレフタレート(PET)樹脂とPET(東レ(株)製;IV0.65、Tg79℃、Tm255℃)を82:18の質量比となるように混合したもの(表中でPETG系樹脂と示す)を用いた。なお、未配向状態での屈折率は、PENが1.65、PETG系樹脂が1.58であった。
 準備した熱可塑性樹脂A,Bは、それぞれ、ベント付き二軸押出機にて300℃で溶融状態とした後、ギヤポンプおよびフィルターを介して、フィルムの厚膜層を除いた光学厚みの比がA層/B層=0.9になるように計量しながら、積層装置1にて合流させて、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に111層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(A層とB層を厚み方向に交互に111層積層された積層ユニット1)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数225層の積層フィルムとした。なお、A層同士を重ね合わせて形成する層、及び両表層の厚膜層分があるため、2枚のスリットプレートの間隙数は、それぞれ113個となる(図4参照)。また中間厚膜層用の層は、最終的なフィルムとして各スリットプレートで3.5、1.5μmの配分となるように中間厚膜層用の間隙を挿入し、さらに両表層にそれぞれ7、3μmの厚膜層が来るように間隙を挿入した。また、積層装置1は積層ユニット1のみで構成されており、波長1800nm以下の反射帯域で、かつ波長900nm~1800nm以下の平均反射率が70%以上とするために、積層フィルムの層厚み分布が図5になるようにした。積層装置1にて合流させた後、T-ダイに導いてシート状に成形した後、静電印加にて表面温度25℃に保たれたキャスティングドラム上で急冷固化し、キャストフィルムを得た。
 得られたキャストフィルムを、135℃に設定したロール群で加熱した後、延伸区間長100mmの間で、フィルム両面からラジエーションヒーターにより急速加熱しながら、縦方向に4.2倍延伸し、その後一旦冷却した。延伸時のフィルム温度は135℃であった。つづいて、この一軸延伸フィルムの両面に空気中でコロナ放電処理を施し、基材フィルムの濡れ張力を55mN/mとし、その処理面に(ガラス転移温度が18℃のポリエステル樹脂)/(ガラス転移温度が82℃のポリエステル樹脂)/平均粒径100nmのシリカ粒子からなる塗液を塗布し、透明・易滑・易接着層を形成した。
 この一軸延伸フィルムをテンターに導き、135℃の熱風で予熱後、140℃の温度で横方向に均一な延伸速度で4.0倍延伸した。延伸したフィルムは、そのまま、テンター内で240℃の熱風にて熱処理を行い、続いて同温度にて幅方向に3%の弛緩処理を施し、その後、室温まで徐冷後、巻き取った。得られた積層フィルムの厚みは約60μmであった。
 得られた積層フィルムは、430~600nmに渡って、反射率が高い領域があり、青緑に色付いたフィルムが得られた。一方で、波長1200~1800nmでの平均反射率、波長900~1800nmでの平均反射率はそれぞれ78%、75%と非常に高い結果であった。結果を表1~4に示す。
 (実施例1)
 熱可塑性樹脂Cとして、固有粘度0.60、Tm=268℃のPENを用い、熱可塑性樹脂Dとして、シクロヘキサンジメタノールを30mol%共重合したPET樹脂とポリエチレンテレフタレート(東レ(株)製;IV0.65、Tg79℃、Tm255℃)を82:18の質量比となるように混合したもの(表中でPETG系樹脂と示す)を用い、積層装置を積層装置2に変えた以外は比較例1と同様にして行った。積層装置2は、両表層にそれぞれ7、3μmの厚膜層と中間厚膜層、さらに積層ユニット2が654層のみで構成される積層装置であり、(熱可塑性樹脂Cからなる表層厚膜層)/(C層とD層を厚み方向に交互に327層積層された積層ユニット2)/(熱可塑性樹脂Cからなる中間厚膜層)/(C層とD層を厚み方向に交互に327層積層された積層ユニット2)/(熱可塑性樹脂Cからなる表層厚膜層)の層構成を有する、全積層数657層の積層フィルムが得られる。各スリットプレートには327層の積層ユニット2用の間隙(711構成の層厚み比が1:7:1)があり、さらに中間厚膜を形成する層が2枚のスリットプレートにそれぞれ3μm、2μmあり、トータルで中間厚膜層が5μmとなるようにした。トータルの層厚みは約60μmとなった。積層装置2の層厚み分布を図5に示す。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であり、透明性は高いものの、波長1200~1800nm出の平均反射率、波長900~1800nmの平均反射率はそれぞれ67%、65%であり、比較例1に比較して低かった。結果を表1~4に示す。
 (比較例2)
 実施例1の積層装置2を用いて得られる溶融体を、面内に2つに分割し、厚み方向に重ねることで、1313層(厚膜層でC層が合流するため、見かけ上1層分減る)からなる溶融体をT-ダイに導いてシート状にした以外は、実施例1と同様にして行った。層厚み分布は図6のようになった。
 得られた積層フィルムは、厚みが120μmであった。光学特性は、実施例1と比較しても、可視光反射率が低い状態を維持した状態で、波長900~1800nmの平均反射率が高くなっていることが分かった。しかし、軸剛性が46N/mであったため、曲率ガラスへの貼り合わせは悪かった。結果を表1~4に示す。
 (実施例2)
 積層装置3に変えた以外は実施例1と同様にして行った。積層装置3の層厚みの構成は、表層厚膜層として5μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が297層あり、さらに積層ユニット2側の表層厚膜層として5μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数449層の積層フィルム(総厚み60μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は21μmであり、d1/(d1+d2)は0.52である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を2μm、積層ユニット2側のA層となる中間厚膜を3μm、トータルで計5μmとした。また、積層装置3中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は255~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は330~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.0~8.3とした。積層装置の層厚み分布を図7に示す。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。また、波長1200~1800の平均反射率は実施例1よりも低かったが、波長900~1200nmの反射率を高くすることができたため、波長900~1800nmの平均反射率は実施例1よりも高く、同程度の厚みであれば実施例1よりも優れた遮熱性能(≒日射熱取得率)が得られた。結果を表1~4に示す。
 (実施例3)
 積層装置4に変えた以外は実施例2と同様にして行った。積層装置4の層厚みの構成は、表層厚膜層として6μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が357層あり、さらに積層ユニット2側の表層厚膜層として4μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に357層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数599層の積層フィルム(総厚み63μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は25μmであり、d1/(d1+d2)は0.47である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を3μm、積層ユニット2側のA層となる中間厚膜を2μm、トータルで計5μmとした。また、積層装置3中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。また、波長900~1800nmの平均反射率は実施例2よりも高く、波長1200~1800nmの反射率も向上していた。結果を表1~4に示す。
 (実施例4)
 積層装置5に変えた以外は実施例2と同様にして行った。積層装置5は、積層装置2のスリットプレート2をもう一枚同じ構成のスリットプレートを追加し、全部で3枚構成にしたものであり、総厚みの構成は、表層厚膜層として6μmの層があり、積層ユニット1が149層、その後、中間厚膜層1を5μm形成した後、積層ユニット2が297層あり、中間厚膜層2を5μm、さらに積層ユニット2が297層あり、その後表層厚膜層として5μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層1)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Cからなる中間厚膜層2)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/熱可塑性樹脂Cからなる表層厚膜層)の層構成を有する、全積層数747層の積層フィルム(総厚み86μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は43μmであり、d1/(d1+d2)は0.35である。これらは積層ユニット1を1枚、積層ユニット2でスリットプレート2枚とし、各中間厚膜層で分割するようにした。また各スリットプレートから出てくる厚みができるだけ近くなるように、中間厚膜部分で調整した(例えば、積層ユニット1側にA層となる中間厚膜を1.5μm、積層ユニット2側のA層となる中間厚膜を3.5μm、トータルで計5μm)。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。積層装置の層厚み分布を図8に示す。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。また、波長1200~1800nmの平均反射率は実施例3よりも高く、積層ユニット2の割合を高めることで、実施例2よりも高い反射率が得られた。また、波長900~1800nmについても、実施例3よりも高い反射率が得られており、結果として高い遮熱効果が得られた。結果を表1~4に示す。
 (実施例5)
 積層装置6に変えた以外は実施例2と同様にして行った。積層装置6は、実施例4のスリットプレート2、及び3に入れる積層ユニット2の層数をそれぞれ357層にした以外は、同様にした。つまり、表層厚膜層として7μmの層があり、積層ユニット1が149層、その後、中間厚膜層1を5μm形成した後、積層ユニット2が357層あり、中間厚膜層2を5μm、さらに積層ユニット2が357層あり、その後表層厚膜層として5μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層1)/(C層とD層を厚み方向に交互に357層積層された積層ユニット2)/(熱可塑性樹脂Cからなる中間厚膜層2)/(C層とD層を厚み方向に交互に357層積層された積層ユニット2)/熱可塑性樹脂Cからなる表層厚膜層)の層構成を有する、全積層数867層の積層フィルム(総厚99μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は55μmであり、d1/(d1+d2)は0.29である。これらは積層ユニット1を1枚、積層ユニット2でスリットプレート2枚とし、各中間厚膜層で分割するようにした。また各スリットプレートから出てくる厚みができるだけ近くなるように、中間厚膜部分で調整した(例えば、積層ユニット1側にA層となる中間厚膜を3μm、積層ユニット2側のA層となる中間厚膜を2μm、トータルで計5μm)。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。積層装置の層厚み分布を図9に示す。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。また、波長900~1800nmの平均反射率は実施例1よりも高く、優れた光学特性を示した。結果を表1~4に示す。
 (実施例6)
 積層装置7に変えた以外は実施例2と同様にして行った。積層装置7は、実施例5のスリットプレートの層配置を図9の構成から図10のように変更し、スリットプレート2側で波長1050~1400nm、スリットプレート3側で波長1350~1800nmを反射するように設計した以外は同様にした。全積層数867層の積層フィルム(総厚み95μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は52μmであり、d1/(d1+d2)は0.30である。これらは積層ユニット1を1枚、積層ユニット2でスリットプレート2枚とし、各中間厚膜層で分割するようにした。また各スリットプレートから出てくる厚みができるだけ近くなるように、中間厚膜部分で調整した(例えば、積層ユニット1側にA層となる中間厚膜を3μm、積層ユニット2側のA層となる中間厚膜を2μm、トータルで計5μm)。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。また1200~1800nmの反射率は実施例5よりも高いものであった。結果を表1~4に示す。
 (実施例7)
 積層装置8に変えた以外は実施例2と同様にして行った。積層装置8の層厚みの構成は、表層厚膜層として2μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が183層あり、さらに積層ユニット2側の表層厚膜層として8μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に183層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数339層の積層フィルム(総厚み48μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は10μmであり、d1/(d1+d2)は0.63である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を1μm、積層ユニット2側のA層となる中間厚膜を4μm、トータルで計5μmとした。また、積層装置8中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。しかし、711構成が少ないためか、1200~1800nmにおいて、反射帯域30%以上となる帯域はあるものの、その反射率は低く、結果として波長900~1800nmの平均反射率は実施例2よりも低くなっていた。結果を表1~4に示す。
 (比較例3)
 積層装置9に変えた以外は実施例2と同様にして行った。積層装置9は、積層装置8のスリットプレート1のみを用いて、新たな積層装置として使用した(積層ユニット1のみ)。
 得られた積層フィルムは、実施例7にあった1200~1800nmの反射が消失した結果、900~1800nmでの平均反射率は低くなっていた。その結果、日射熱取得率は高く、72%となっていた。以上の結果より、比較例3と実施例7を比較することにより、711構成を僅かに含むことで、日射熱取得率が上がることが分かった。結果を表1~4に示す。
 また、軸剛性が低いため、フィルム自体が脆くなっているため、ハンドリング性が悪く、曲面ガラスへ貼り合わせる際に、引っ張ることができず、張り合わせることが出来なかった。
 (実施例8)
 積層装置10に変えた以外は実施例2と同様にして行った。積層装置9の層厚みの構成は、積層装置2のスリットプレート1の表層厚膜層5μmのあとに、積層ユニット1が46層だけ入った層構成とした以外は、すべて同様にした。また、積層ユニット1の隣接する2層の厚みの和は263~347nmであり、隣接する2層の厚みの比が0.84~1.18とし、波長900~1050nmまでを反射するよう設計し、また積層ユニット1は実施例1の層厚み分布となるようにし、波長900~1800nmを反射するように設計した。
 得られた積層フィルムは、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。また、実施例1と比較して、積層ユニット1が実施例1に融合することにより、波長900~1200nmでの反射率が高くなっており、その結果波長900~1800nmでの反射率が増加した結果、日射熱取得率が低くなっていることが分かった。結果を表1~4に示す。
 (実施例9)
 熱可塑性樹脂A及びCとして、固有粘度0.60、Tm=247℃のネオペンチルグリコールを10モル%共重合したPEN(以下、PEN/NPG(10))を用い、熱可塑性樹脂B、Dとして、シクロヘキサンジメタノールを30mol%共重合したPET樹脂(表中でPETGと示す)を用いた以外は実施例6と同様に行った。なお、未配向状態での屈折率は、PENが1.64、PETG系樹脂が1.56であった。
 得られた積層フィルムは、屈折率差が大きくなったことに起因して、波長900~1200mでの反射率が増大しており、日射熱取得率も増加していた。また軸剛性も26N/mであったので、ガラスへの貼合性も良好であった。結果を表1~4に示す。
 (実施例10)
 熱可塑性樹脂A及びCとして、PEN/NPGに粘度調整剤として、ポリブチレンテレフタレート系樹脂を5%ほど添加した樹脂(表中PEN/NPG+PBT系樹脂)、熱可塑性樹脂B及びDとして、スピログリコールを21mol%、シクロヘキサンジカルボン酸を15mol%共重合したPETとポリエチレンテレフタレート(東レ(株)製;IV0.65、Tg79℃、Tm255℃)を85:15の比率で混合した樹脂(表中、SPG系樹脂と示す。)を用いた以外は実施例9と同様にして行った。PEN/NPG+PBT系樹脂の未配向状態での屈折率は1.64、SPG系樹脂の屈折率は1.55であった。
 得られた積層フィルムは、屈折率差が大きくなったことに起因して、波長900~1200mでの反射率が増大しており、日射熱取得率も増加していた。また軸剛性も26N/mであったので、ガラスへの貼合性も良好であった。結果を表1~4に示す。
 (実施例11)
 熱可塑性樹脂A及びCとしてIV=0.65のポリエチレンテレフタレート(PET)を用い、PETの延伸条件で製膜した以外は同様に行った。PET条件での製膜とは、縦延伸温度を90℃、倍率を3.3倍、横延伸温度を110℃、横倍率を4.0倍、熱処理温度を240℃の条件で行った。また未配向状態での屈折率はPETで1.60、SPG系樹脂で1.55であった。
 得られた積層フィルムは、屈折率差が小さいため、反射率は実施例9、10に劣るものの、900~1800nmに渡って、均一に反射しており、ガラスへの貼合性も良好であった。結果を表1~4に示す。
 (実施例12)
 実施例12以降は反射帯域が900~1400nmとなるように設計しており、積層装置11に変えた以外は実施例1と同様にして行った。積層装置11を用いて作成されるフィルムは、両表層に5μmの層があり、積層ユニット1が73層、その後、中間厚膜層を5μm形成した後、積層ユニット2が219層の、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に73層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に219層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数295層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は11μm、積層ユニット2の総厚み(d2)は14μmであり、d1/(d1+d2)は0.44である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みが合うように、積層ユニット1側にA層となる中間厚膜を4μm、積層ユニット2側のA層となる中間厚膜を1μm、トータルで計5μmとなるように設計した。積層装置11の層厚み分布を図11に示す。積層装置11中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.2~7.9とした。
 得られた積層フィルムは900~1400nmまでの反射帯域を有しており、フローマークがほとんど無く、可視光領域の波長400~800nmでの透過率も高く、透明であった。反射帯域が狭く、反射率も低いため、日射熱取得率は低いが、フィルム自体は薄いため、ガラスへの貼り合わせには問題なかった。結果を表5~8に示す。
 (実施例13)
 積層装置12に変えた以外は実施例12と同様にして行った。積層装置12を用いて作成されるフィルムの層厚みの構成は、積層装置11を用いたものとほとんど同じであるが、表層厚膜層として8μmの層があり、積層ユニット1が53層、その後、中間厚膜層を5μm形成した後、積層ユニット2が255層あり、さらに積層ユニット2側の表層厚膜層として2μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に53層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に255層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数311層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は8μm、積層ユニット2の総厚み(d2)は17μmであり、d1/(d1+d2)は0.32である。また各スリットプレートから出てくる厚みが合うように、積層ユニット1側にA層となる層が4μm、積層ユニット2側に1μm、トータルで計5μmとなるように設計した。また、積層装置12中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.2~7.8とした。
 得られた積層フィルムは若干フローマークが生じていたが、実施例12に比較して、900~1200nmの反射率が低いため、日射熱取得率は低かった。結果を表5~8に示す。
 (実施例14)
 積層装置13に変えた以外は実施例12と同様にして行った。積層装置13を用いて作成されるフィルムの層厚みの構成は、積層装置11を用いたものとほとんど同じであるが、表層厚膜層として8μmの層があり、積層ユニット1が35層、その後、中間厚膜層を5μm形成した後、積層ユニット2が297層あり、さらに積層ユニット2側の表層厚膜層として2μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に35層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数335層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は5μm、積層ユニット2の総厚み(d2)は20μmであり、d1/(d1+d2)は0.20である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を4μm、積層ユニット2側のA層となる中間厚膜を1μm、トータルで計5μmとした。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~7.8とした。
 得られた積層フィルムは若干フローマークが生じていたが、可視光領域の波長400~800nmにおいて透過率が高いため、透明性の高いフィルムであった。一方で、波長900~1200nmの光の反射率がかなり低くなるため、波長900~1400nmでの平均反射率も比較例2よりも悪化しており、日射熱取得率は悪化していた。結果を表5~8に示す。
 (実施例15)
 積層装置14に変えた以外は実施例12と同様にして行った。積層装置14を用いたフィルムの層厚みの構成は積層装置11を用いたものとほとんど同じであるが、表層厚膜層として2μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が45層あり、さらに積層ユニット2側の表層厚膜層として8μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に45層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数197層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は22μm、積層ユニット2の総厚み(d2)は5μmであり、d1/(d1+d2)は0.88である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を4μm、積層ユニット2側のA層となる中間厚膜を1μm、トータルで計5μmとした。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~7.8とした。
 得られた積層フィルムは若干フローマークが生じていたが、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であった。一方で、波長900~1200nmの光の反射率がかなり大きくなるため、日射熱取得率は実施例12より良化していた。一方で、波長1200nm~1400nmでの反射率はかなり低くなっていたため、波長1200~1800nmでの平均反射率は低かった。結果を表5~8に示す。
 (実施例16)
 積層装置15に変えた以外は実施例12と同様にして行った。積層装置15を用いて作成されるフィルムの層厚みの構成は、積層装置11を用いたものとほとんど同じであるが、表層に6μmの層があり、積層ユニット1が99層、その後、中間厚膜層を5μm形成した後、積層ユニット2が297層あり、さらに積層ユニット2側の表層厚膜層として4μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に99層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数399層の積層フィルム(総厚み50μm)が得られる。積層ユニット1の総厚み(d1)は15μm、積層ユニット2の総厚み(d2)は20μmであり、d1/(d1+d2)は0.43である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また、積層装置15を用いた時のフィルムの厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0とした。
 得られた積層フィルムは実施例12と同様にフローマークもほとんど無く、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であり、波長900~1800nmでの反射率は実施例12よりも高く、日射熱取得率は実施例12よりも良化した。結果を表5~8に示す。
 (実施例17)
 積層装置16に変えた以外は実施例12と同様にして行った。積層装置16を用いて作成されるフィルムの層厚みの構成は、積層装置3を用いたものとほとんど同じであるが、表層に8μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が447層あり、さらに積層ユニット2側の表層厚膜層として4μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に447層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数599層の積層フィルム(総厚み68μm)が得られる。積層ユニット1の総厚み(d1)は22μm、積層ユニット2の総厚み(d2)は29μmであり、d1/(d1+d2)は0.43である。また、積層装置8中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0とした。
 得られた積層フィルムは実施例12と同様にフローマークもほとんど無く、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布であり、波長900~1800nmでの反射率は実施例12よりも高く、日射熱取得率は実施例13よりも良化した。結果を表5~8に示す。
 (比較例4)
 積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:5:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または4.5~6となるようにした以外は実施例16と同様にして行った(積層装置17)。
 得られた積層フィルムは実施例16と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて、反射率が向上してしまった。結果を表5~8に示す。
 (実施例18)
 積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:6:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または5.3~7となるようにした以外は実施例16と同様にして行った(積層装置18)。
 得られた積層フィルムは実施例16と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて、僅かに高くなってしまったが、十分に透明性を確保できるものであった。結果を表5~8に示す。
 (実施例19)
 積層装置15を用いて作成されるフィルムの積層ユニット2の層厚みの比率を1:8:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~2または7.0~9.3となるようにした以外は実施例16と同様にして行った(積層装置19)。
 得られた積層フィルムは実施例16と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて、僅かに高くなってしまったが、十分に透明性を確保できるものであった。結果を表5~8に示す。
 (比較例5)
 積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:9:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~2または7.9~10.5となるようにした以外は実施例16と同様にして行った(積層装置20)。
 得られた積層フィルムは実施例16と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて、反射率が向上してしまった。結果を表5~8に示す。
 (実施例20)
 積層装置15を用いて作成されるフィルムの積層ユニット2の層厚みの比率を1:7:1.3に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~5または6.1~8.0となるようにした以外は実施例16と同様にして行った(積層装置21)。
 得られた積層フィルムは実施例12と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて、僅かに高くなってしまったが、十分に透明性を確保できるものであった。結果を表5~8に示す。
 (比較例6)
 積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:7:1.4に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~6または6.1~8.0となるようにした以外は実施例16と同様にして行った(積層装置22)。
 得られた積層フィルムは実施例16と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて、反射率が向上してしまった。結果を表5~8に示す。
(比較例7)
 積層装置15を用いて作成されるフィルムの積層ユニット1の積層比(A/B)が0.65となるように変え、積層ユニット1の隣接する層の厚みが0.65~1.55となるようにした以外は実施例16と同様にして行った(積層装置23)。
 得られた積層フィルムは実施例12と同様にフローマークも無かったが、可視光領域の波長400~450nmにおいて高くなってしまい、フィルム自体が青く色付いていた。結果を表5~8に示す。
 (実施例21)
 積層装置16を用いて作成されるフィルムの両表層の厚みを0.5μmに変え、中間厚膜層をスリットプレート1側に8μm、スリットプレート2側に1μmとし、中間厚膜層として9μmに変更した以外は、実施例17と同様の条件で行った(積層装置24)。フィルム全体の厚み61μmとなった。
 得られた積層フィルムは実施例12と同様にフローマークが僅かに発生しており、また幅方向(フィルムの長手方向に対して直角の方向)での分光ムラが大きく、積層精度の悪化が推測された。フィルム中央での光学特性は、実施例3と同程度のものであった。結果を表5~8に示す。
 (比較例8)
 積層装置16を用いて作成されるフィルムの中間厚膜層を各プレートで0.5μmとし、中間厚膜層として1μmとなるようにし、プレート1とプレート2からでてくる厚みが同じとなるように、積層ユニット1側の表層厚膜層を12μm、積層ユニット2側の表層厚膜層を5μmに変えた以外は、実施例17と同様の条件で行った(積層装置25)。フィルム全体の厚みは69μmとなった。
 得られた積層フィルムは実施例17と異なり、フローマークが顕著に発生した。サンプル物性を上手く測定できなかった。
 そこで、樹脂の押出温度PEN側を320℃、PETG系樹脂側を300℃に調整し、樹脂粘度を変えることで、フローマークが出にくいように調整した。しかし、合流部での樹脂間での熱移動が大きくなったため、積層精度が悪くなり、積層ユニット1の隣接する2層の厚みの比が0.73~1.3、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.5または5.0~10.5の積層フィルムとなった。得られた積層フィルムは、可視光領域での反射率が高い状態であった。結果を表5~8に示す。
 (実施例22)
 積層装置16を用いて作成されるフィルムの層厚み分布の配置を図12に記載のような配置(積層ユニット1を表層付近から、積層ユニット2をもう一方の表層付近からお互いに中央に向かって厚くする)に変えた以外は実施例15と同様にして行った(積層装置26)。積層ユニット1の隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0であった。
 (実施例23)
 積層装置16を用いて作成されるフィルムの層厚み分布の配置を図13に記載のような配置(実施例17の積層ユニット1のみを中央に行くにつれて減少させたもの)に変えた以外は実施例15と同様にして行った(積層装置27)。積層ユニット1の隣接する2層の厚みの比0.89~1.11であり、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0であった。その結果、実施例16と実施例22と実施例23はほとんど光学性能的には変わらない結果を得た。積層ユニット1及び、積層ユニット2それぞれの層厚み分布に凹凸がない場合、その光学特性はほとんど変わらないことが分かった。
 (実施例24)
 積層装置16を用いて作成されるフィルムの層厚み分布の配置を図14に記載のような配置(実施例17の配置に積層ユニット1を下に凸となるように配置したもの)に変えた以外は実施例17と同様にして行った(積層装置28)。なお、積層装置29中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、積層ユニット2の隣接する6層の厚みの和は345~430nmとなった。
 (実施例25)
 積層装置16を用いて作成されるフィルムの層厚み分布の配置を図15に記載のような配置(実施例24の配置の積層ユニット1を上に凸に変えたもの)以外は実施例5と同様にして行った(積層装置29)。なお、積層装置30中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、積層ユニット2の隣接する6層の厚みの和は345~430nmとなった。
 その結果、実施例22、23と比較して、実施例24、25は反射率がわずかに劣るものの、波長400~450nmの反射率が低下し、より色づきにくいフィルムとなった。また、積層ユニット1が2段構成となっているため、長手方向にも反射抜けが少ないフィルムとなった。結果を表5~8に示す。
 (実施例26)
 積層装置16を用いて作成されるフィルムの層厚み分布の配置を図16に記載のような配置(実施例24の配置に、さらに、積層ユニット2も下に凸となるように配置したもの)に変えた以外は実施例17と同様にして行った(積層装置30)。
 反射率は実施例23に比較して、わずかに低下したものの、赤外領域および可視光領域共に、熱線カット性能としては、十分満足するようなものであった。また幅方向に対して、分光特性が最もムラが少ないものであった。結果を表5~8に示す。
 (実施例27)
 積層装置16を用いて作成されるフィルムの層厚み分布の配置を図17に記載のような配置に変えた以外は実施例17と同様にして行った(積層装置31)。ただし、スリットプレート1とスリットプレート2は左右対称であるため、表層厚膜層(5μm)と中間厚膜層(各プレートで2.5μm)は同じ厚みとした。
 その結果、フローマークがほとんどなく、幅方向の分光ムラもほとんど無いものであった。熱線カット性能としては、実施例17に比較すると僅かに劣るものの、スリットプレート間の厚みを同じくすることが出来たため、トータルのフィルム厚みを最も薄くすることが出来た。結果を表5~8に示す。
 (実施例28)
 実施例12で作成したフィルムにハードコート層を塗布した。ハードコート層を形成するための塗材として、DPHA(ジペンタエリスリトールヘキサアクリレート)と光開始剤(BASFジャパン製 IRGACURE(登録商標)184)を重量比99:1で混合させたものをMEK(メチルエチルケトン)で固形部濃度40%に調整した塗剤Aを得る。この塗剤Aと、セシウム酸化タングステン粒子Cs0.33WO3の固形分濃度18.5質量%のスラリーを重量比2:7の割合で混合してハードコート層形成用の塗剤Bとした。この塗剤をワイヤーバーコーターにて基材フィルムの片面にコーティングしたのち、熱風オーブンにて80℃で2分間乾燥させ、UV照射装置にて紫外線を300mJ/cm2照射して塗膜を硬化させてハードコート層を形成し、積層フィルムを得た。得られたハードコート層の厚みは3.3μmであった。
 得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例29)
 実施例13で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例30)
 実施例14で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例31)
 実施例15で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例32)
 実施例16で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例33)
 実施例18で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例34)
 実施例19で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例35)
 実施例22で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例36)
 ハードコート層の厚みを2.5μmとした以外は実施例35と同様にして行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例37)
 ハードコート層の厚みを1.7μmとした以外は実施例35と同様にして行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例38)
 実施例4で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1800nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (実施例39)
 実施例10で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1800nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
 (比較例9)
 比較例5で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長400~900nmの光の反射率が高く、可視光線透過率70%となるようにハードコート層を設けると、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例10)
 比較例6で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長400~900nmの光の反射率が高く、可視光線透過率70%となるようにハードコート層を設けると、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例11)
 比較例7で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長400~900nmの光の反射率が高く、可視光線透過率70%となるようにハードコート層を設けると、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例12)
 ハードコート層の厚みを薄くした以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。また鉛筆硬度が低いために傷が付き易く、品位の悪いものであった。結果を表10に示す。
 (比較例13)
 ハードコート層を設ける塗剤Aの固形分濃度を1/3とした(塗剤A´)以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例14)
 セシウム酸化タングステン粒子ではなくスズドープ酸化インジウム(ITO)を用い(塗剤B)、可視光線透過率が75%となるようにハードコート層を設けた以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例15)
 可視光線透過率が70%となるようにハードコート層を設けた以外は比較例14と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例16)
 セシウム酸化タングステン粒子ではなくアンチモンドープ酸化スズ(ATO)を用い(塗剤C)、可視光線透過率が75%となるようにハードコート層を設けた以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例17)
 可視光線透過率が70%となるようにハードコート層を設けた以外は比較例9と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例18)
 熱可塑性樹脂A、Bとしてポリエチレンテレフタレート(東レ(株)製、:IV0.65、Tg79℃、Tm255℃)を用いて単膜の基材フィルムを得た以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の反射を反射せず、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例19)
 可視光線透過率が75%となるようにハードコート層を設けた以外は比較例18と同様にして行った。得られた積層体は波長900~1200nmの光の反射を反射せず、日射熱取得率が低いものとなった。結果を表10に示す。
 (比較例20)
 可視光線透過率が80%となるようにハードコート層を設けた以外は比較例18と同様にして行った。得られた積層体は波長900~1200nmの光の反射を反射せず、日射熱取得率が低いものとなった。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 本発明の積層フィルムは、特に透明性に優れ、且つ広帯域に渡って、熱線反射することが可能なため、建材、自動車、液晶ディスプレイなど種々の用途に用いられ、特に特定の波長の光を反射させる光学フィルムとして利用できる。また、曲率の高いガラスへも貼り合わせることが出来る。

Claims (20)

  1. 少なくとも一方の面から光を入射した際に、波長1200~1800nmの範囲において連続して100nm以上の範囲で反射率が30%以上となる反射帯域を少なくとも1つ有し、
     且つ波長430~600nmの範囲における平均透過率が70%以上あり、フィルムの主配向軸方向とそれに直交する方向の軸剛性の平均値が10N/m以上45N/m以下であるフィルム。
  2. 少なくとも一方の面から光を入射した際に、波長400~800nmの範囲における平均透過率が80%以上である請求項1に記載のフィルム。
  3. 熱可塑性樹脂Aを主成分とする層(A層)と熱可塑性樹脂Bを主成分とする層(B層)を交互に積層した、以下(i)を満たす積層ユニット1と、
     熱可塑性樹脂Cを主成分とする層(C層)と熱可塑性樹脂Dを主成分とする層(D層)を交互に積層した、以下(ii)を満たす積層ユニット2を有する請求項1または2に記載のフィルム。
     (i)隣接するA層とB層の厚みの比(A層厚み/B層厚み)が0.7以上、1.4以下であること
     (ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること
  4. 前記積層ユニット1の総層厚みd1が5μm以上である請求項3に記載のフィルム。
  5. 前記積層ユニット2の総層厚みd2が20μm以上である請求項3または4に記載のフィルム。
  6. 前記熱可塑性樹脂A及びCが結晶性樹脂であり、前記熱可塑性樹脂B及びDが非晶性樹脂である請求項3~5のいずれかに記載のフィルム。
  7. 該積層ユニット1、該積層ユニット2、該積層ユニット1と該積層ユニット2の両方、が連続する6層の層厚みの和がフィルムの厚み方向に対して層厚み分布を有する請求項3~6のいずれかに記載のフィルム。
  8. 該積層ユニット1の隣接する6層の層厚みの和が、一方の表面から中央部に向かって徐々に薄くなる領域を含む請求項3~7のいずれかに記載のフィルム。
  9. 該積層ユニット2の隣接する6層の層厚みの和が、一方の表面から中央部に向かって徐々に薄くなる領域を含む請求項3~8のいずれかに記載のフィルム
  10. 該積層ユニット1の隣接する6層の層厚みの和が、一方の表面から中央部に向かって徐々に薄くなる領域を含み、
     且つ該積層ユニット2の隣接する6層の層厚みの和が、もう一方の表面から中央部に向かって徐々に薄くなる領域を含む請求項3~9のいずれかに記載のフィルム。
  11. 1層の厚みが1μm以上である層を有する請求項3~10のいずれかに記載のフィルム。
  12. 前記積層ユニット1の総層厚みd1(μm)と前記積層ユニット2の総層厚みd2(μm)が下記式(1)または式(2)を満たす請求項3~11のいずれかに記載のフィルム。
     0.4≦d1/(d1+d2)<1    式(1)
     0.01≦d1/(d1+d2)<0.4   式(2)
  13. フィルム厚みが100μm以下である請求項1~12のいずれかに記載のフィルム。
  14. 少なくとも一方の面から光を入射した際に、波長900~1400nmの範囲における平均反射率が70%以上である請求項1~13のいずれかに記載のフィルム。
  15. 少なくとも一方の面から光を入射した際に、波長900nm~1800nmの範囲における平均反射率が70%以上である請求項1~14のいずれかに記載のフィルム。
  16. 請求項1~15のいずれかに記載のフィルムの少なくとも一方の面にハードコート層を近接して有する積層体であって、前記積層体のISO9050で規定される可視光線透過率が70%以上、日射熱取得率が50%以下である積層体。
  17. 前記ハードコート層が熱線吸収剤を含む請求項16に記載の積層体。
  18. 前記熱線吸収剤が酸化タングステン成分を含む請求項17に記載に積層体。
  19. 請求項1~15のいずれかに記載のフィルムの少なくとも一方の面にハードコート層を近接して有し、もう一方の面に粘着層を積層してなる積層体。
  20. 前記ハードコート層の厚みが0.1μm以上50μm以下である請求項16~19のいずれかに記載の積層体。
PCT/JP2017/023202 2016-07-15 2017-06-23 フィルムおよび積層体 WO2018012252A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187032421A KR102301855B1 (ko) 2016-07-15 2017-06-23 필름 및 적층체
JP2017534747A JP7006270B2 (ja) 2016-07-15 2017-06-23 フィルムおよび積層体
CN201780042145.XA CN109416422B (zh) 2016-07-15 2017-06-23 膜及叠层体
EP17827382.7A EP3486697B1 (en) 2016-07-15 2017-06-23 Film and layered body
US16/316,106 US11360251B2 (en) 2016-07-15 2017-06-23 Film and layered body having specified thickness ratios of thermoplastic layers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-139956 2016-07-15
JP2016139956 2016-07-15
JP2016237298 2016-12-07
JP2016-237298 2016-12-07
JP2017019243 2017-02-06
JP2017-019243 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018012252A1 true WO2018012252A1 (ja) 2018-01-18

Family

ID=60951737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023202 WO2018012252A1 (ja) 2016-07-15 2017-06-23 フィルムおよび積層体

Country Status (7)

Country Link
US (1) US11360251B2 (ja)
EP (1) EP3486697B1 (ja)
JP (1) JP7006270B2 (ja)
KR (1) KR102301855B1 (ja)
CN (1) CN109416422B (ja)
TW (1) TWI733848B (ja)
WO (1) WO2018012252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014417A1 (ja) * 2022-07-13 2024-01-18 Agc株式会社 熱線反射基板及びその製造方法、並びに窓ガラス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220155514A1 (en) * 2019-03-26 2022-05-19 Toray Industries, Inc. Laminated body and manufacturing method thereof, light guide plate unit, light source unit, display device, projection image display member, projection image display device, and display screen filter
US20220163713A1 (en) * 2019-05-23 2022-05-26 3M Innovative Properties Company Multilayer optical film
CN110456348B (zh) * 2019-08-19 2020-08-25 中国石油大学(华东) 多视向sar海浪谱数据融合的海浪截断波长补偿方法
CN113068406B (zh) * 2019-10-31 2022-11-22 高丽大学校产学协力团 辐射冷却元件及其制作方法
WO2024079723A1 (en) * 2022-10-14 2024-04-18 Red Sea Farms Ltd A structure for facilitating spectrally selective transformation of light waves

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
WO2005095097A1 (ja) 2004-03-31 2005-10-13 Toray Industries, Inc. 積層フィルム
JP3901911B2 (ja) 2000-04-28 2007-04-04 帝人株式会社 透明積層フィルム
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
JP4310312B2 (ja) 2003-10-27 2009-08-05 帝人デュポンフィルム株式会社 近赤外線遮蔽フィルム
JP2010017854A (ja) 2008-07-08 2010-01-28 Bridgestone Corp 機能性フィルム
WO2014010532A1 (ja) * 2012-07-10 2014-01-16 コニカミノルタ株式会社 誘電多層膜構造を有する赤外遮蔽フィルム
JP2014228837A (ja) * 2013-05-27 2014-12-08 帝人デュポンフィルム株式会社 二軸延伸積層ポリエステルフィルム
WO2016006388A1 (ja) * 2014-07-08 2016-01-14 コニカミノルタ株式会社 光学フィルム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540543B1 (ko) * 2001-03-15 2006-01-10 미쯔이카가쿠 가부시기가이샤 적층체 및 그것을 이용한 표시장치
EP1437609A4 (en) * 2001-10-18 2004-11-17 Bridgestone Corp OPTICAL ELEMENT AND MANUFACTURING METHOD THEREFOR AND BAND PASS FILTER, CLOSE-INFRARED BLOCKING FILTER AND ANTIREFLEX FILM
JP2008507114A (ja) * 2004-04-27 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ ソフトリソグラフィ用複合パターニングデバイス
JP5242883B2 (ja) * 2005-01-20 2013-07-24 リンテック株式会社 反射防止フィルム
JP2009042578A (ja) * 2007-08-09 2009-02-26 Andes Denki Kk 光制御多層膜構造体および調光構造体
TWI404635B (zh) * 2007-10-25 2013-08-11 Techno Polymer Co Ltd Multilayer body
JP2012013822A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp 光反射性フィルムの製造方法、及び光反射性フィルム
US9405048B2 (en) * 2011-06-17 2016-08-02 Teijin Limited Reflective polarizing film, and optical member for liquid crystal display device, and liquid crystal display device formed from same
JP5643441B2 (ja) * 2011-11-29 2014-12-17 帝人デュポンフィルム株式会社 二軸延伸積層ポリエステルフィルム、それからなる合わせガラス用赤外線遮蔽構成体およびそれらからなる合わせガラス
WO2014010562A1 (ja) * 2012-07-13 2014-01-16 コニカミノルタ株式会社 赤外遮蔽フィルム
CN108483949B (zh) * 2012-07-31 2021-06-01 积水化学工业株式会社 夹层玻璃用中间膜、夹层玻璃及夹层玻璃的安装方法
WO2014024873A1 (ja) 2012-08-06 2014-02-13 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体
JP2014231467A (ja) * 2013-05-30 2014-12-11 日本化薬株式会社 赤外線反射フィルムおよびこれを用いた合わせガラス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
JP3901911B2 (ja) 2000-04-28 2007-04-04 帝人株式会社 透明積層フィルム
JP4310312B2 (ja) 2003-10-27 2009-08-05 帝人デュポンフィルム株式会社 近赤外線遮蔽フィルム
WO2005095097A1 (ja) 2004-03-31 2005-10-13 Toray Industries, Inc. 積層フィルム
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
JP2010017854A (ja) 2008-07-08 2010-01-28 Bridgestone Corp 機能性フィルム
WO2014010532A1 (ja) * 2012-07-10 2014-01-16 コニカミノルタ株式会社 誘電多層膜構造を有する赤外遮蔽フィルム
JP2014228837A (ja) * 2013-05-27 2014-12-08 帝人デュポンフィルム株式会社 二軸延伸積層ポリエステルフィルム
WO2016006388A1 (ja) * 2014-07-08 2016-01-14 コニカミノルタ株式会社 光学フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014417A1 (ja) * 2022-07-13 2024-01-18 Agc株式会社 熱線反射基板及びその製造方法、並びに窓ガラス

Also Published As

Publication number Publication date
CN109416422B (zh) 2021-08-13
EP3486697A1 (en) 2019-05-22
JPWO2018012252A1 (ja) 2019-04-25
CN109416422A (zh) 2019-03-01
EP3486697A4 (en) 2020-04-08
KR20190027776A (ko) 2019-03-15
KR102301855B1 (ko) 2021-09-14
JP7006270B2 (ja) 2022-02-10
EP3486697B1 (en) 2021-04-07
TW201823008A (zh) 2018-07-01
US20210278578A1 (en) 2021-09-09
TWI733848B (zh) 2021-07-21
US11360251B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2018012252A1 (ja) フィルムおよび積層体
JP5700953B2 (ja) 積層ポリエステルフィルム
JP6427925B2 (ja) ウインドウフィルム
JP5807466B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
WO2013002130A1 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP5424987B2 (ja) 積層ポリエステルフィルム
JP5520138B2 (ja) 積層ポリエステルフィルム
JP6414380B2 (ja) 偏光子保護フィルム及びこれを用いた偏光板、液晶表示装置
JP2012173374A (ja) 熱線反射部材
JP5031883B2 (ja) 積層ポリエステルフィルム
JP2006281731A (ja) 積層フィルム
JP6015382B2 (ja) 積層フィルムならびに遮熱部材
JP2018205615A (ja) フィルム
JP2014097595A (ja) 積層フィルムおよびこれを用いた遮熱部材
JP5489971B2 (ja) 積層ポリエステルフィルム
JP2012000823A (ja) 積層ポリエステルフィルム
JP2019139228A (ja) フィルム及びその製造方法
JP6291830B2 (ja) 多層積層フィルム
JP2019014836A (ja) フィルム
JP5489972B2 (ja) 積層ポリエステルフィルム
JP2019059069A (ja) 積層フィルム
JP2018054800A (ja) 熱可塑性樹脂フィルム
JP2018164993A (ja) 積層フィルム
JP2017052273A (ja) 積層フィルム
WO2024062961A1 (ja) フィルムおよびその製造方法、積層構成体、合わせガラス、自動車

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017534747

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032421

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827382

Country of ref document: EP

Effective date: 20190215