WO2018012252A1 - フィルムおよび積層体 - Google Patents
フィルムおよび積層体 Download PDFInfo
- Publication number
- WO2018012252A1 WO2018012252A1 PCT/JP2017/023202 JP2017023202W WO2018012252A1 WO 2018012252 A1 WO2018012252 A1 WO 2018012252A1 JP 2017023202 W JP2017023202 W JP 2017023202W WO 2018012252 A1 WO2018012252 A1 WO 2018012252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- thickness
- layers
- unit
- Prior art date
Links
- 238000002834 transmittance Methods 0.000 claims abstract description 54
- 239000010410 layer Substances 0.000 claims description 677
- 238000010030 laminating Methods 0.000 claims description 113
- 229920005992 thermoplastic resin Polymers 0.000 claims description 100
- 238000009826 distribution Methods 0.000 claims description 50
- 230000007423 decrease Effects 0.000 claims description 13
- 230000002745 absorbent Effects 0.000 claims description 10
- 239000002250 absorbent Substances 0.000 claims description 10
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 10
- 239000012790 adhesive layer Substances 0.000 claims description 6
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 5
- 229920006127 amorphous resin Polymers 0.000 claims 1
- 229920006038 crystalline resin Polymers 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 37
- 238000003475 lamination Methods 0.000 abstract description 28
- 238000013461 design Methods 0.000 abstract description 6
- 230000002411 adverse Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 400
- 229920005989 resin Polymers 0.000 description 59
- 239000011347 resin Substances 0.000 description 59
- 238000000034 method Methods 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 32
- -1 polyethylene Polymers 0.000 description 29
- 239000002344 surface layer Substances 0.000 description 29
- 239000011248 coating agent Substances 0.000 description 17
- 229920000139 polyethylene terephthalate Polymers 0.000 description 16
- 239000005020 polyethylene terephthalate Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 13
- 239000011112 polyethylene naphthalate Substances 0.000 description 12
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 11
- 230000009477 glass transition Effects 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 239000003999 initiator Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 229920001225 polyester resin Polymers 0.000 description 8
- 239000004645 polyester resin Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 238000005266 casting Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 6
- 150000001463 antimony compounds Chemical class 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- VPXSRGLTQINCRV-UHFFFAOYSA-N dicesium;dioxido(dioxo)tungsten Chemical compound [Cs+].[Cs+].[O-][W]([O-])(=O)=O VPXSRGLTQINCRV-UHFFFAOYSA-N 0.000 description 5
- 150000002472 indium compounds Chemical class 0.000 description 5
- 150000002604 lanthanum compounds Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920001707 polybutylene terephthalate Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000001273 butane Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 150000003606 tin compounds Chemical class 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 3
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000000016 photochemical curing Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000007707 calorimetry Methods 0.000 description 2
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- YMRMDGSNYHCUCL-UHFFFAOYSA-N 1,2-dichloro-1,1,2-trifluoroethane Chemical compound FC(Cl)C(F)(F)Cl YMRMDGSNYHCUCL-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- BSMGLVDZZMBWQB-UHFFFAOYSA-N 2-methyl-1-phenylpropan-1-one Chemical compound CC(C)C(=O)C1=CC=CC=C1 BSMGLVDZZMBWQB-UHFFFAOYSA-N 0.000 description 1
- POYODSZSSBWJPD-UHFFFAOYSA-N 2-methylprop-2-enoyloxy 2-methylprop-2-eneperoxoate Chemical compound CC(=C)C(=O)OOOC(=O)C(C)=C POYODSZSSBWJPD-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- ACMIJDVJWLMBCX-PXAZEXFGSA-N 4-[(3ar,6ar)-2,3,3a,4,6,6a-hexahydro-1h-pyrrolo[2,3-c]pyrrol-5-yl]-6-fluoro-n-methyl-2-(2-methylpyrimidin-5-yl)oxy-9h-pyrimido[4,5-b]indol-8-amine Chemical compound CNC1=CC(F)=CC(C2=C(N3C[C@@H]4NCC[C@@H]4C3)N=3)=C1NC2=NC=3OC1=CN=C(C)N=C1 ACMIJDVJWLMBCX-PXAZEXFGSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 1
- WHVLVEATLPIRED-UHFFFAOYSA-N C=C.F.F.F Chemical group C=C.F.F.F WHVLVEATLPIRED-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- DVQGYGDSAGBRSZ-UHFFFAOYSA-N bis(1-cyclohexylcyclohexa-2,4-dien-1-yl)methanone Chemical compound C1C=CC=CC1(C1CCCCC1)C(=O)C1(C2CCCCC2)CC=CC=C1 DVQGYGDSAGBRSZ-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- DJZHPOJZOWHJPP-UHFFFAOYSA-N magnesium;dioxido(dioxo)tungsten Chemical compound [Mg+2].[O-][W]([O-])(=O)=O DJZHPOJZOWHJPP-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- 150000002848 norbornenes Chemical class 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000003658 tungsten compounds Chemical class 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
- G02B5/282—Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/0825—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
- G02B5/0841—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/287—Interference filters comprising deposited thin solid films comprising at least one layer of organic material
Definitions
- the present invention relates to a film and a laminate.
- a heat ray absorbent is contained in an intermediate film used in glass or laminated glass, and heat rays are blocked by the heat ray absorbent (for example, Patent Document 1), and a metal film is made of glass.
- a film that is formed on the surface by sputtering or the like and reflects and blocks heat rays for example, Patent Document 2).
- a polymer multilayer laminated film in which polymers having different refractive indexes are alternately laminated is inserted between glass and an intermediate film to heat rays.
- Patent Document 3 etc. which reflects and interrupts.
- JP 2010-17854 A Japanese Patent No. 3901911 Japanese Patent No. 4310312 International Publication No. 2005/095097 US Pat. No. 5,360,659
- the polymer multilayer laminated film described in Patent Document 3 can control the layer thickness and select the wavelength to be reflected, it can selectively reflect light in the near-infrared region, and visible light.
- the heat shielding performance can be improved while maintaining the transmittance.
- a layer configuration for selectively reflecting light in a polymer multilayer laminated film for example, a layer configuration satisfying the following formula (1) as described in Patent Document 4 is known.
- m-th order interference reflection occurs at a wavelength of ⁇ / m (m is a natural number). For this reason, for example, when the layer thickness is controlled so that the main reflection wavelength (primary) exists in the wavelength band of 1200 nm or more, third-order interference reflection also occurs in the visible light region of 400 nm or more. In such a case, there is a problem that it cannot be used for applications such as car windshields where transparency is important.
- a layer configuration (layer configuration called a 711 configuration) in which the ratio of layer thicknesses is 1: 7: 1 is known as described in Patent Document 5.
- the present inventors examined, since the multilayer laminated film which consists of this 711 structure has a low reflectance compared with the layer structure as described in patent document 4, when trying to obtain a desired reflectance, As the number increases, there is a problem that the cost of the apparatus increases. Moreover, as the number of layers increases, the film thickness also increases. As the film becomes thicker, the rigidity of the film becomes stronger. Therefore, when the film is pasted on a glass having a high curvature, the film is difficult to follow the glass and cannot be pasted. Moreover, even if it could be pasted, there was a problem that it was peeled off immediately due to the influence of wind and vibration. In particular, glass with high curvature has been increasing due to design in recent years, and the problem has been clarified.
- the reflectance in the near infrared region is improved while increasing the transmittance in the visible light band, the reflectance can be increased up to a wavelength of 1200 nm.
- the transmittance in the visible light band can be increased while reflecting the reflection band having a wavelength of 1200 nm or more, but in order to obtain a high reflectance, the number of layers is large. Is necessary, and the film thickness increases, so that it cannot be applied to glass having a high curvature.
- the present invention has at least a reflection band in which a reflectance is 30% or more in a range of 100 nm or more continuously in a wavelength range of 1200 to 1800 nm when light is incident from at least one surface.
- the average transmittance in the wavelength range of 430 to 600 nm is 70% or more, and the average value of axial rigidity in the direction of the main orientation axis of the film and the direction orthogonal thereto is 10 N / m or more and 45 N / m or less.
- the present invention it becomes possible to provide a film having a high visible light transmittance while maintaining a high reflectance while expanding the reflection band so far, and it is easy to achieve a glass with a high curvature because of its low axial rigidity. Can be pasted together.
- stacking unit 1 is shown.
- stacking unit 2 is shown.
- An example of a layer structure generated when the slit plate 1 and the slit plate 2 are combined is shown.
- the relationship between the slit plate 1 and the slit plate 2 in the laminating apparatus 1 is shown.
- An enlarged view of 1 to 51 layers is shown.
- the film of the present invention has at least one reflection band having a reflectance of 30% or more in a range of 100 nm or more continuously in a wavelength range of 1200 to 1800 nm when light is incident from at least one surface,
- the average transmittance in the wavelength range of 430 to 600 nm is required to be 70% or more.
- the reflectance at a wavelength of 1200 to 1800 nm is more preferably 50% or more, and further preferably 70% or more.
- Having at least one reflection band of 30% or more here means having a reflection band of 100 nm or more and a reflectance of 30% or more continuously.
- the band where the reflectance is 30% or more is more preferably 200 nm or more, and further preferably 300 nm or more.
- the average transmittance at a wavelength of 430 to 600 nm needs to be 70% or more, more preferably 80% or more. In order to improve the average transmittance at wavelengths of 430 to 600 nm, it is necessary to design a layer that suppresses higher-order reflection.
- the average value of the axial stiffness in the main orientation axis direction of the film and the direction orthogonal thereto needs to be 10 N / m or more and 45 N / m or less.
- the main orientation axis is the direction in which the refractive index is highest when the refractive index is measured in the film plane.
- the axial rigidity can be expressed by the product of Young's modulus and film cross-sectional area. When the axial rigidity is large, the followability to a glass having a large curvature is deteriorated. For example, the bonding property to a glass having a large curvature such as a windshield is deteriorated, which is not preferable.
- the average value of the shaft rigidity is 45 N / m or less at the maximum, more preferably 40 N / m or less, and still more preferably 35 N / m or less.
- the shaft rigidity is preferably 10 N / m or more, more preferably 15 N / m or more, and still more preferably 20 N / m or more.
- the average transmittance in the wavelength range of 400 to 800 nm is 80% or more when light is incident from at least one surface.
- the average transmittance in the wavelength range of 400 to 800 nm is 80% or more when light is incident from at least one surface.
- the film of the present invention preferably has an average reflectance of 70% or more in the wavelength range of 900 to 1400 nm.
- the film of the present invention preferably has an average reflectance of 70% or more in the wavelength range of 900 to 1400 nm.
- it is transparent and has high heat ray cutting performance. It can be a film with.
- the reflection band is widened and sunlight can be reflected over a wavelength range of 900 to 1400 nm, a film that cuts 22% of the total sunlight intensity can be produced.
- Sunlight mainly has an intensity distribution in the visible light region, and the intensity distribution tends to decrease as the wavelength increases, but for use in applications where high transparency is required,
- the intensity distribution tends to decrease as the wavelength increases, but for use in applications where high transparency is required.
- high heat ray cutting performance can be imparted, and by expanding the reflection band, the solar heat gain rate specified by ISO 9050 is made 70% or less. It will be possible.
- the average reflectance at a wavelength of 900 to 1800 nm is 70% or more. If the reflection band is expanded to a wavelength of 900 to 1800 nm, about 29% of sunlight is cut. If it is limited to only the wavelength of 900 nm or more, a film capable of cutting about 99% can be created. Heat acquisition rate can be lowered. In order to increase the average reflectance, it can be realized by increasing the difference in the in-plane refractive index of two or more resins having different optical characteristics.
- a multilayer laminated film in which layers comprising the above and layers made of low-refractive-index copolyesters that are kept amorphous at the time of stretching or are melted in a heat treatment step are alternately laminated.
- a method of increasing the number of layers is used.
- the film thickness is designed to be as thin as possible by changing the ratio of the laminated unit 1 and the laminated unit 2 described later.
- the film of the present invention is a laminated unit 1 satisfying the following (i) in which layers (A layer) mainly composed of a thermoplastic resin A and layers (B layer) mainly composed of a thermoplastic resin B are laminated alternately. And a laminate unit 2 satisfying the following (ii), in which layers having a thermoplastic resin C as a main component (C layer) and layers having a thermoplastic resin D as a main component (D layer) are alternately laminated. preferable.
- the ratio of the thicknesses of the adjacent A layer and B layer (A layer thickness / B layer thickness) is 0.7 or more and 1.4 or less.
- the thickness of one of the remaining two layers is 1.0 or more and 1.4 or less, and the thickness of the other is 5 or more and 9 or less.
- thermoplastic resin A and the thermoplastic resin C are preferably the same resin
- thermoplastic resin B and the thermoplastic resin D are preferably the same resin
- only the thermoplastic resins A and C are the same
- thermoplastic resin B And only D may be the same.
- the thermoplastic resin A needs to have optically different properties from the thermoplastic resin B
- the thermoplastic resin C needs to have optically different properties from the thermoplastic resin D.
- the optically different property means that the refractive index is different by 0.01 or more in any of two orthogonal directions arbitrarily selected in the plane and a direction selected from the direction perpendicular to the plane.
- alternately laminated means that layers made of different resins are laminated in a regular arrangement in the thickness direction, for example, two polyester resins A and polyester resins having different optical properties.
- B if each layer is expressed as an A layer and a B layer, the layers are stacked in a regular arrangement such as A (BA) n (n is a natural number).
- a (BA) n n is a natural number.
- the total number of layers of the film of the present invention is preferably 51 layers or more, more preferably 201 layers or more.
- the above-described interference reflection can achieve a high reflectance with respect to light in a wider wavelength band as the number of layers increases, and a film having a high light cut performance can be obtained.
- the manufacturing cost increases due to the increase in the size of the manufacturing apparatus, and the handling properties deteriorate due to the increase in film thickness. Within 1000 layers is the practical range.
- the optical thicknesses of the adjacent A layer and B layer simultaneously satisfy the following expressions (1) and (2).
- ⁇ is the reflected wavelength
- d A is the thickness of the A layer
- n B-plane refractive index of the layer B is the thickness of the B layer
- m is an order , A natural number.
- the thick layer is preferably 5 to 9 times, more preferably 6 to 8 times, and the other layer is The ratio is preferably 1.0 to 1.4 times, more preferably 1.0 to 1.2 times. With such a range, even when the reflection band is 1200 nm or more, a film in which the secondary and tertiary reflections are eliminated in the visible light region (wavelength 400 to 800 nm) can be obtained.
- the layer thickness at this time as shown in FIG. 2, the first to third layers from the top are regarded as the C ′ layer, and the fourth to sixth layers are regarded as the D ′ layer.
- the following formulas (3) and (4) are applied.
- the present inventors have succeeded in finding an optimum prescription by adjusting the thickness ratio of the laminated units in each slit plate and inserting an intermediate thick film layer between the slit plates.
- the multilayer unit 2 reflects a band of 1200 nm or more so as to supplement the reflection band of the multilayer unit 1.
- the thickness per unit of the laminated unit 1 (the sum of the adjacent A layer and B layer) is 250 nm or more and 400 nm or less and has a layer thickness distribution from the formula (1).
- the thickness of the unit 2 for six layers (the sum of d c ′ and d D ′ in FIG. 2) is preferably 300 nm to 600 nm.
- the total thickness d2 of the laminated unit 2 of the film of the present invention is preferably 20 ⁇ m or more. If the total thickness d2 of the multilayer unit 2 is 20 ⁇ m or more, the average reflectance at a wavelength of 1200 nm to 1800 nm can be set to 50% or more. Therefore, in the wavelength range of 900 to 1800 nm, the average reflectance is 70% or more. It is easy to achieve. More preferably, they are 20 micrometers or more and 50 micrometers or less.
- the total thickness of the film of the present invention is preferably 100 ⁇ m or less. If the total thickness of the film exceeds 100 ⁇ m, it will lead to deterioration of handling properties, which will in turn lead to a work burden of a glass contractor. In addition, since the winding form becomes enormous, the cost of transportation increases.
- the optical performance is improved, so the versatility is enhanced.
- the layer corresponding to the boundary between the films, particularly the slit plate in the film production stage has a layer of 1 ⁇ m or more, more preferably 2 ⁇ m or more.
- the method for producing the intermediate thick film layer as shown in FIG. 3, the A layer discharged from the slit plate 1 and the A layer discharged from the slit plate 2 in the film manufacturing stage are overlapped (FIG. 3).
- a (intermediate thick film layer) discharged from the slit plate 1 and A (intermediate thick film layer) discharged from the slit plate 2 are overlapped to form one intermediate thick film layer).
- the above formula indicates that the total thickness (d1 ( ⁇ m)) of the multilayer unit 1 is 1% or more and less than 40% with respect to the sum of the total thickness of the multilayer unit 1 and the multilayer unit 2 (d1 + d2 ( ⁇ m)). . Since the multilayer unit 1 has a relatively high reflectance even with a small number of layers, it is preferable to form a reflection band over as wide a range as possible. When an attempt is made to increase the average reflectance in the range of 1800 nm, high-order reflection occurs at a wavelength of 400 to 600 nm. Therefore, it is preferable to reflect the wavelength range of 900 to 1200 nm with as few layers as possible.
- the multilayer unit 2 is less likely to cause higher-order reflection even if all the units are the multilayer unit 2, but the reflectivity tends to decrease. Therefore, when laminating a resin having the same refractive index difference between the laminated unit 1 and the laminated unit 2, in order to keep the reflectivity as high as possible and prevent high-order reflection in the visible light region, the laminated unit
- the ratio of the total thickness (d1 ( ⁇ m)) of the multilayer unit 1 to the sum of the total thickness of 1 and the multilayer unit 2 (d1 + d2 ( ⁇ m)) is preferably 1% or more, more preferably 10% or more. Is preferably less than 40%.
- thermoplastic resin examples include polyolefins such as polyethylene, polypropylene, and poly (4-methylpentene-1), Cycloolefins include ring-opening metathesis polymerization, addition polymerization of norbornenes, alicyclic polyolefins that are addition copolymers with other olefins, Biodegradable polymers such as polylactic acid and polybutyl succinate, polyamides such as nylon 6, nylon 11, nylon 12 and nylon 66, Aramid, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene copolymer polymethyl methacrylate, polycarbonate, Polyesters such as polypropylene terephthalate, polyethylene terephthalate, polybutylene
- Examples thereof include dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, and the like.
- Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferred. These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
- diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
- polyesters polyethylene terephthalate and copolymers thereof, polyethylene naphthalate and copolymers thereof, polybutylene terephthalate and copolymers thereof, polybutylene naphthalate and copolymers thereof, and polyhexamethylene terephthalate and copolymers thereof.
- a polyethylene naphthalate resin as the resin on the high refractive index side.
- the thermoplastic resin includes various additives such as antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, charging agents.
- An inhibitor, a nucleating agent, a good fluidizing agent, or the like may be added to such an extent that the characteristics are not deteriorated.
- the refractive index of the film of the present invention in the unoriented state of the thermoplastic resin A and the thermoplastic resin C is 1.55 to 1.7, and the refractive index in the unoriented state of the thermoplastic resin B and the thermoplastic resin D. Is preferably 1.5 to 1.65.
- the refractive index in the non-oriented state is the refractive index of the resin melted after scraping off each resin of the laminated film. If the refractive index of the thermoplastic resin A and the thermoplastic resin C in an unoriented state is 1.55 to 1.7, the refractive index tends to be high after stretching.
- thermoplastic resin B and the thermoplastic resin D have a refractive index in an unoriented state of 1.5 to 1.65, more preferably 1.55 to 1.6
- the stretched thermoplastic resin It is easy to make a difference in refractive index between A and the thermoplastic resin C.
- said measuring method it can measure by measuring a refractive index with various measuring methods, after having melt
- the resin used for A layer and C layer is crystalline
- the resin used for the B layer and the D layer may be a resin whose orientation is relaxed by a heat treatment at a melting point or higher and the refractive index is reduced, or a mixture of an amorphous or amorphous thermoplastic resin and a crystalline thermoplastic resin. preferable. In this case, it becomes possible to further widen the refractive index difference in the stretching and heat treatment steps in the production of the film, and it becomes easy to have a reflection band with a reflectance of 30% or more.
- the hard coat layer is close to at least one surface of the film, and the visible light transmittance defined by ISO 9050 is 70% or more and the solar heat gain is 50% or less. It is also preferable that The hard coat layer in the present invention refers to a layer having a pencil hardness of HB or more based on JIS K5600-5-4. By providing such a layer, a film excellent in cut resistance and reliability when applied as a heat shielding member can be obtained.
- the hard coat layer preferably contains a heat ray absorbent. Examples of the heat ray absorbent include tungsten compounds, lanthanum compounds, antimony compounds, indium compounds, tin compounds, etc. Among them, tungsten oxide compounds are preferably used.
- the tungsten oxide compound has high heat ray absorption performance not only in the wavelength band longer than the wavelength of 1500 nm but also in the wavelength band of wavelengths of 700 to 1500 nm.
- lanthanum compounds, antimony compounds, indium compounds, and tin compounds have a high absorption performance in the wavelength band longer than the wavelength of 1500 nm, whereas the absorption performance is not sufficient in the wavelength range of 700 to 1500 nm.
- the film of the present invention has a reflection band with a wavelength of 900 to 1800 nm, but since the wavelength after 1200 nm is composed of the laminated unit 2, the reflectance may not be sufficient.
- the hard coat layer of the laminate of the present invention preferably has a total content of lanthanum compound, antimony compound, indium compound, and tin compound of 1% by mass or less.
- the tungsten oxide compound here includes not only simple tungsten oxide but also tungsten oxide containing a metal other than tungsten.
- the metal other than tungsten here is not particularly limited, and for example, cesium tungsten oxide, thallium tungsten oxide, indium tungsten oxide, magnesium tungsten oxide and the like are preferably used.
- cesium tungsten oxide is preferable from the viewpoints of high infrared cut rate (high heat ray absorption efficiency), low visible light absorption, and stability of its optical characteristics.
- the content of the tungsten oxide compound in the hard coat layer is not particularly limited as long as the average transmittance at a wavelength of 400 to 800 nm and a wavelength of 900 to 1200 nm, which will be described later, is preferable. % To 80% by mass is preferable. If it is less than 1% by mass, it is necessary to make the hard coat layer excessively thick in order to reduce the transmittance at a wavelength of 900 to 1200 nm, which is not preferable from the viewpoint of handling properties and cost. On the other hand, when it contains more than 80 mass%, control of the light transmittance by film thickness control becomes difficult, and dropping off of a tungsten oxide compound (heat ray absorbent) may occur easily. Preferably it is 10 mass% or more and 75% or less, More preferably, 20 mass% or more and 70% or less are preferable.
- the resin for forming the hard coat layer is selected from acrylic resin, urethane resin, polyester resin, silanol and the like, and the kind thereof is not particularly limited, and these are used alone or in combination.
- acrylic resin include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, methacrylic acid.
- Hydroxypropyl acid acrylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-hexyl acrylate, lauryl acrylate, 2-ethylhexyl glycidyl acrylate, glycidyl methacrylate 4-hydroxybutyl acrylate glycidyl ether, 4-hydroxybutyl methacrylate glycidyl ether, phenyl glycidyl acrylate, epoxy acrylic Over DOO, epoxy methacrylate, dipentaerythritol hexaacrylate and the like are preferably exemplified.
- Examples of acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
- examples of the thermal polymerization initiator include peroxides and azo compounds.
- examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, amine compounds, and the like. As the photopolymerization initiator, an alkylphenone compound is preferable from the viewpoint of curability.
- alkylphenone type compounds include 1-hydroxy-cyclohexyl-phenyl-ketone, 2.2-dimethoxy-1.2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl)- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropan-1-one, 1- [4- ( - ( -
- the thickness of the hard coat layer in the present invention is not particularly limited, but is preferably 0.1 ⁇ m or more and 50 ⁇ m or less. More preferably, it is 30 micrometers or less, More preferably, it is 10 micrometers or less.
- the thickness of the hard coat layer is less than 0.1 ⁇ m, it tends to be difficult to control the thickness of the hard coat layer with high accuracy, and the heat shielding performance may vary.
- the thickness of the hard coat layer is larger than 50 ⁇ m, since the thickness of the hard coat layer with respect to the base film is increased, the influence of the hard coat layer is caused on the mechanical properties of the film of the present invention. There may not be.
- the layer thickness of the hard coat layer is 0.1 ⁇ m or more and 50 ⁇ m or less, even if a hard coat layer is provided, the layer thickness can be controlled to a high degree, so that variation in heat shielding performance can be suppressed, and Further, since the thickness of the hard coat layer is sufficiently thin with respect to the thickness of the base film, it is also possible to suppress changes in the physical properties of the laminate of the present invention.
- the laminate of the present invention is preferably provided with a hard coat layer only on one surface of the base film.
- Tungsten oxide used in the laminate of the present invention exhibits high absorption performance in the wavelength band of 850 to 1200 nm, but light incident on the base film through the hard coat layer is almost cut by the hard coat layer. Therefore, the heat shielding effect by reflection is not expected.
- the light cut by the reflection does not flow into the opposite side of the incident surface of the heat shield member, but the light cut by the absorption partly flows in as heat, so as compared to the reflection, the heat shield member Performance decreases.
- the laminate of the present invention it is preferable to have a hard coat layer adjacent to one side of the base film and an adhesive layer laminated to the other side.
- an acrylic adhesive, a silicone adhesive, a rubber adhesive, or the like is preferably used.
- a UV absorber having an absorption band at a wavelength of 200 to 400 nm it is preferable to add a UV absorber having an absorption band at a wavelength of 200 to 400 nm to the adhesive layer to suppress deterioration of the film of the present invention by UV.
- the pressure-sensitive adhesive layer herein refers to a layer having a peeling force of 0.1 N / mm or more when peeling off after placing the surface having the layer on glass under normal temperature and humidity. .
- polyester resin in the form of pellets.
- the pellets are dried in hot air or under vacuum as necessary, and then supplied to a separate extruder.
- the resin that has been heated and melted to a temperature higher than the melting point is made uniform in the amount of resin extruded by a gear pump or the like, and foreign matter or denatured resin is removed through a filter or the like.
- These resins are formed into a desired shape by a die and then discharged. And the sheet
- dye is extruded on cooling bodies, such as a casting drum, and is cooled and solidified, and a casting film is obtained.
- a wire-like, tape-like, needle-like, or knife-like electrode to be brought into close contact with a cooling body such as a casting drum by an electrostatic force and rapidly solidify.
- the plurality of resins are sent out from different flow paths using two or more extruders and fed into a laminating apparatus.
- a laminating apparatus a multi-manifold die, a feed block, a static mixer, or the like can be used.
- at least two members having a large number of fine slits are separately provided. It is preferred to use a feed block that contains. When such a feed block is used, since the apparatus does not become extremely large, there is little foreign matter due to thermal degradation, and high-precision lamination is possible even when the number of laminations is extremely large.
- the stacking accuracy in the width direction is significantly improved as compared with the prior art. It is also possible to form an arbitrary layer thickness configuration. In this apparatus, since the thickness of each layer can be adjusted by the shape (length, width) of the slit, any layer thickness can be achieved.
- the molten multilayer laminate formed in the desired layer structure in this way is led to a die, and a casting film is obtained in the same manner as described above.
- the stretching in the longitudinal direction refers to stretching for imparting molecular orientation in the longitudinal direction to the film, and is usually performed by a difference in peripheral speed of the roll, and this stretching may be performed in one stage. Alternatively, a plurality of roll pairs may be used in multiple stages.
- the draw ratio varies depending on the type of resin, it is usually preferably 2 to 15 times, and more preferably 2 to 7 times.
- the stretching temperature is preferably in the range of the glass transition temperature to the glass transition temperature + 100 ° C. of the resin having the highest glass transition point among the resins constituting the laminated film of the present invention.
- the stretching in the width direction refers to stretching for imparting the orientation in the width direction to the film.
- the film is stretched in the width direction by using a tenter while conveying both ends of the film with clips.
- the draw ratio varies depending on the type of resin, it is usually preferably 2 to 15 times, and more preferably 2 to 7 times.
- the stretching temperature is preferably in the range of the glass transition temperature to the glass transition temperature + 120 ° C. of the resin having the highest glass transition point among the resins constituting the laminated film of the present invention.
- the biaxially stretched film is preferably heat-treated in the tenter at a temperature not lower than the stretching temperature and not higher than the melting point Tm in order to impart flatness and dimensional stability.
- the dimensional stability of the film is improved. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up. Moreover, you may use a relaxation process etc. together in the case of annealing from heat processing as needed.
- the resulting cast film is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
- surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
- the function may be imparted by in-line coating.
- the cast film is guided to a simultaneous biaxial tenter, conveyed while holding both ends of the film with clips, and stretched in the longitudinal direction and the width direction simultaneously and / or stepwise.
- simultaneous biaxial stretching machines there are pantograph method, screw method, drive motor method, linear motor method, but it is possible to change the stretching ratio arbitrarily and drive motor method that can perform relaxation treatment at any place or A linear motor system is preferred.
- the stretching ratio varies depending on the type of resin, but usually the area ratio is preferably 6 to 50 times, and more preferably 8 to 30 times.
- the stretching temperature is preferably in the range of the glass transition temperature of the resin constituting the laminated film of the present invention to the glass transition temperature + 120 ° C.
- the film thus biaxially stretched is preferably subsequently subjected to a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability.
- a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability.
- thermoplastic resin A and the thermoplastic resin C, and the thermoplastic resin B and the thermoplastic resin D are different from each other, for example, the laminated film and the thermoplastic resin C made of the thermoplastic resin A and the thermoplastic resin B by the above method. It can also be achieved by laminating the laminated film prepared by the above method with the thermoplastic resin D. In addition, this can be achieved by using two laminating apparatuses to make two resins into a laminated melt and then superimposing the two laminated melts using a multi-manifold die or the like.
- the laminating apparatus 1 may have a slit plate made up of only the laminated unit 1
- the laminating apparatus 2 may have a slit plate made up of only the laminated unit 2. In that case, it is preferable to design the thermoplastic resin A and the thermoplastic resin C so as to overlap each other.
- a composition used for forming the hard coat layer and, if necessary, a coating liquid containing a solvent is added to one side of the base film, or A method of applying to both sides can be mentioned.
- a known coating method such as a gravure coating method, a micro gravure coating method, a die coating method, a reverse coating method, a knife coating method, or a bar coating method can be applied.
- photo-curing / electro-curing can be performed after heating. Since the hard coat layer can be fixed in a shorter time by using the photo-curing resin or the electro-curing resin in combination, the performance such as productivity and film stability is improved.
- EB rays electron beams
- UV rays ultraviolet rays
- examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method.
- the laminate of the present invention preferably has a hard coat layer adjacent to at least one surface of the base film.
- Having a hard coat layer adjacent to at least one surface of the base film means that the distance between the interface of at least one surface of the base film and the hard coat layer is 1 ⁇ m or less. That is, having a hard coat layer adjacent to at least one surface of the base film means an embodiment in which the hard coat layer is directly provided on at least one surface of the base film, or at least one of the base film It includes an embodiment in which a hard coat layer is provided on the surface via another layer having a thickness of 1 ⁇ m or less.
- the cross section of the film was magnified 10,000 to 40,000 times under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, the layer configuration and the thickness of each layer was measured.
- a staining technique using a known RuO 4 or OsO 4 was used.
- the thin film layer thickness is 50 nm or more and 500 nm. When it was less than 40,000 times, and when it was 500 nm or more, observation was carried out at a magnification of 10,000 times.
- the solar heat acquisition rate and the visible light reflectance were calculated using the calculation method described in ISO 9050 using the results of the reflectance measurement and the transmittance measurement.
- the solar energy is calculated using a burden coefficient, so the reflectance in the visible light region and the visible light reflectance are not exactly the same.
- Refractive index in-plane orientation refractive index It measured according to JIS K7142 (1996) A method. Further, the refractive index of the film of the present invention in the unoriented state was measured by the above method after the layers were shaved and then heated once at the melting point or higher.
- Tm measurement of film A film to be measured is cut out, and differential scanning calorimetry “Robot DSC-RDC220” manufactured by Seiko Electronics Industry Co., Ltd. according to JIS-K-7122 (1987) using differential calorimetry (DSC). "In the data analysis, the disk session” SSC / 5200 "was used, and the temperature was raised from 25 ° C to 300 ° C at a rate of 20 ° C / min (first temperature rise) and held there for 5 minutes. Quenched to be as follows. Subsequently, again from room temperature to 20 ° C./min. The temperature was increased to 300 ° C. at the rate of temperature increase (second temperature increase), and the measurement was performed. The melting point Tm was determined using the obtained differential operation calorimetry chart (second temperature rise curve). In addition, when there existed two or more, it was set as each value with the highest temperature respectively.
- Relative error (maximum value-minimum value) depending on the value of solar heat acquisition rate and visible light reflectance specified by ISO 9050 when measuring the spectrum at 100 mm intervals over 1 m in the width direction. / Average value ⁇ 100.
- ⁇ Relative error is less than 2% for both solar heat gain and visible light reflectance
- ⁇ The larger relative error of solar heat gain and visible light reflectivity is 2% or more and less than 5% ⁇ ; Larger relative error between solar heat acquisition rate and visible light reflectance is greater than 5% and less than 10% x; Larger relative error among solar heat acquisition rate and visible light reflectance relative error Is 10% or more.
- Axial rigidity In the film plane, three strips each having a width of 1 cm ⁇ 10 cm were created in the direction where the refractive index is high and the direction perpendicular to the direction, and Balswin Tensilon Universal Testing Machine (RTG) -1210) was used to measure the Young's modulus of the film. The Young's modulus was averaged, and the axial stiffness was calculated by taking the average Young's modulus x cross-sectional area (thickness ⁇ m x 1 cm) ⁇ length (10 cm).
- thermoplastic resins A and B were each melted at 300 ° C. with a vented twin-screw extruder, and then the ratio of the optical thickness excluding the thick film layer was A through a gear pump and a filter.
- Layer / B layer 0.9, weigh in layering apparatus 1 and merge (surface layer thick film layer made of thermoplastic resin A) / (alternately A layer and B layer in thickness direction) 111 laminated layers 1) / (intermediate thick film layer made of thermoplastic resin A) / (laminated unit 1 in which 111 layers are alternately laminated in the thickness direction) / (thermoplastic resin A)
- the laminating apparatus 1 is composed of only the laminating unit 1 and has a reflection band with a wavelength of 1800 nm or less and an average reflectance of a wavelength of 900 nm to 1800 nm or less of 70% or more. As shown in FIG.
- This uniaxially stretched film was guided to a tenter, preheated with hot air at 135 ° C., and then stretched 4.0 times at a temperature of 140 ° C. at a uniform stretching speed in the transverse direction.
- the stretched film was directly heat-treated in a tenter with hot air of 240 ° C., subsequently subjected to a relaxation treatment of 3% in the width direction at the same temperature, and then gradually cooled to room temperature and wound up.
- the thickness of the obtained laminated film was about 60 ⁇ m.
- the obtained laminated film had a region having a high reflectance over 430 to 600 nm, and a film colored blue-green was obtained.
- the average reflectance at a wavelength of 1200 to 1800 nm and the average reflectance at a wavelength of 900 to 1800 nm were 78% and 75%, respectively, which were very high results.
- the results are shown in Tables 1 to 4.
- the thermoplastic resin D a PET resin obtained by copolymerizing 30 mol% of cyclohexanedimethanol and polyethylene terephthalate (manufactured by Toray Industries, Inc .; IV0. 65, Tg 79 ° C., Tm 255 ° C.) mixed in a mass ratio of 82:18 (shown as PETG resin in the
- the obtained laminated film had a thickness of 120 ⁇ m.
- the optical characteristics it was found that the average reflectance at a wavelength of 900 to 1800 nm was high in a state where the visible light reflectance was kept low even when compared with Example 1. However, since the shaft rigidity was 46 N / m, the bonding to the curvature glass was bad. The results are shown in Tables 1 to 4.
- Example 2 The procedure was the same as in Example 1 except that the laminating apparatus 3 was changed.
- the layer thickness of the laminating apparatus 3 is 5 ⁇ m as the surface thick film layer, the laminating unit 1 is 149 layers, and then the intermediate thick film layer is 5 ⁇ m, and then the laminating unit 2 is 297 layers.
- the total thickness (d1) of the multilayer unit 1 is 23 ⁇ m
- the total thickness (d2) of the multilayer unit 2 is 21 ⁇ m
- d1 / (d1 + d2) is 0.52.
- the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region.
- the reflectance at 1200 to 1800 nm was higher than that in Example 5.
- the results are shown in Tables 1 to 4.
- the total thickness (d1) of the multilayer unit 1 is 23 ⁇ m
- the total thickness (d2) of the multilayer unit 2 is 10 ⁇ m
- d1 / (d1 + d2) is 0.63.
- the intermediate thick film to be the A layer is 1 ⁇ m on the laminated unit 1 side
- the intermediate thick film to be the A layer on the laminated unit 2 side is 4 ⁇ m, for a total of 5 ⁇ m. It was.
- the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region.
- the laminated unit 1 is merged with Example 1, so that the reflectance at a wavelength of 900 to 1200 nm is increased, and as a result, the reflectance at a wavelength of 900 to 1800 nm is increased. As a result, it was found that the solar heat gain rate was low.
- Tables 1 to 4 The results are shown in Tables 1 to 4.
- the resulting laminated film had an increased reflectance at a wavelength of 900 to 1200 m due to an increase in the refractive index difference, and an increase in the solar heat gain rate. Moreover, since the axial rigidity was 26 N / m, the bonding property to glass was also good. The results are shown in Tables 1 to 4.
- Example 13 The same operation as in Example 12 was performed except that the laminating apparatus 12 was changed.
- the structure of the layer thickness of the film produced using the laminating apparatus 12 is almost the same as that using the laminating apparatus 11, but there is an 8 ⁇ m layer as the surface thick film layer, the laminating unit 1 is 53 layers, and thereafter After forming the intermediate thick film layer to 5 ⁇ m, there are 255 laminated units 2, and there is a 2 ⁇ m layer as the surface thick film layer on the laminated unit 2 side (surface thick film layer made of thermoplastic resin A) / ( Laminate unit 1 in which 53 layers of A and B layers are alternately laminated in the thickness direction) / (intermediate thick film layer made of thermoplastic resin A) / (255 layers of C and D layers are alternately laminated in the thickness direction)
- a laminated film (total thickness of 40 ⁇ m) having a total laminated number of 311 layers having a layer structure of (multilayer unit 2) / (surface thick film layer made of thermoplastic resin A
- the obtained laminated film had a slight flow mark, but the reflectance of 900 to 1200 nm was lower than that of Example 12, so the solar heat acquisition rate was low.
- the results are shown in Tables 5-8.
- Example 14 The same operation as in Example 12 was performed except that the laminating apparatus 13 was changed.
- the structure of the layer thickness of the film produced using the laminating apparatus 13 is almost the same as that using the laminating apparatus 11, but there is an 8 ⁇ m layer as the surface thick film layer, the laminating unit 1 is 35 layers, and thereafter After forming the intermediate thick film layer to 5 ⁇ m, there are 297 laminated units 2, and there is a 2 ⁇ m layer as the surface thick film layer on the laminated unit 2 side (surface thick film layer made of thermoplastic resin A) / ( Laminating unit 1 in which 35 layers of A and B layers are alternately laminated in the thickness direction) / (intermediate thick film layer made of thermoplastic resin A) / (297 layers of C and D layers are alternately laminated in the thickness direction)
- a laminated film (total thickness 40 ⁇ m) having a total number of laminated layers of 335 layers having a layer structure of (multilayer unit 2) / (surface thick film layer made of thermoplastic
- the total thickness (d1) of the multilayer unit 1 is 5 ⁇ m
- the total thickness (d2) of the multilayer unit 2 is 20 ⁇ m
- d1 / (d1 + d2) is 0.20.
- the intermediate thick film serving as the A layer on the laminated unit 1 side is 4 ⁇ m
- the intermediate thick film serving as the A layer on the laminated unit 2 side is 1 ⁇ m, for a total of 5 ⁇ m. It was.
- the obtained laminated film had some flow marks, it was a highly transparent film because of its high transmittance at a wavelength of 400 to 800 nm in the visible light region.
- the reflectance of light having a wavelength of 900 to 1200 nm is considerably low, the average reflectance at a wavelength of 900 to 1400 nm is also worse than that of Comparative Example 2, and the solar heat acquisition rate is deteriorated.
- Tables 5-8 The results are shown in Tables 5-8.
- the total thickness (d1) of the multilayer unit 1 is 22 ⁇ m
- the total thickness (d2) of the multilayer unit 2 is 5 ⁇ m
- d1 / (d1 + d2) is 0.88.
- the intermediate thick film serving as the A layer on the laminated unit 1 side is 4 ⁇ m
- the intermediate thick film serving as the A layer on the laminated unit 2 side is 1 ⁇ m, for a total of 5 ⁇ m. It was.
- the sum of the thicknesses of two adjacent layers of the stacked unit 1 excluding the thick film layer in the stacking device 5 is 260 to 350 nm, and the ratio of the thicknesses of the two adjacent layers is 0.89 to 1.11.
- the sum of the thicknesses of the six adjacent layers of the laminated unit 2 is 345 to 430 nm.
- the thickness of the thinnest layer among the three adjacent layers is 1, the thickness of the remaining two layers is 1 To 1.2 or 6.1 to 7.8.
- Example 16 The same procedure as in Example 12 was performed except that the laminating apparatus 15 was changed.
- the structure of the layer thickness of the film produced using the laminating apparatus 15 is almost the same as that using the laminating apparatus 11, but the surface layer has a 6 ⁇ m layer, the laminating unit 1 is 99 layers, and then the intermediate thickness.
- the total thickness (d1) of the multilayer unit 1 is 15 ⁇ m
- the total thickness (d2) of the multilayer unit 2 is 20 ⁇ m
- d1 / (d1 + d2) is 0.43.
- the sum of the thicknesses of two adjacent layers of the lamination unit 1 excluding the thick film layer when using the laminating apparatus 15 is 260 to 350 nm
- the ratio of the thicknesses of the two adjacent layers is 0.89 to 1 .11
- the sum of the thicknesses of the six adjacent layers of the laminated unit 2 is 345 to 430 nm.
- the thickness of the thinnest layer among the three adjacent layers is 1, the remaining two layers
- the thickness was 1 to 1.2 or 6.1 to 8.0.
- the obtained laminated film has almost no flow mark as in Example 12, has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, and the reflectance at a wavelength of 900 to 1800 nm is in Example. It was higher than 12, and the solar heat acquisition rate was better than that of Example 12.
- Tables 5-8 The results are shown in Tables 5-8.
- Example 17 The same operation as in Example 12 was performed except that the laminating apparatus 16 was changed.
- the structure of the layer thickness of the film produced using the laminating device 16 is almost the same as that using the laminating device 3, but the surface layer has an 8 ⁇ m layer, the laminating unit 1 is 149 layers, and then the intermediate thickness After the film layer is formed to have a thickness of 5 ⁇ m, there are 447 laminated units 2, and there is a 4 ⁇ m layer as the surface thick film layer on the laminated unit 2 side, (surface thick film layer made of thermoplastic resin A) / (A layer and Laminated unit 1 in which 149 layers are alternately laminated in the thickness direction B) / (Intermediate thick film layer made of thermoplastic resin A) / (Laminated unit in which 447 layers are alternately laminated in the thickness direction of C layer and D layer) 2) A laminated film having a total number of 599 layers (total thickness 68 ⁇ m) having a layer structure of 2 / (surface thick film layer made
- the total thickness (d1) of the multilayer unit 1 is 22 ⁇ m
- the total thickness (d2) of the multilayer unit 2 is 29 ⁇ m
- d1 / (d1 + d2) is 0.43.
- the sum of the thicknesses of two adjacent layers of the stacking unit 1 excluding the thick film layer in the stacking device 8 is 260 to 350 nm
- the ratio of the thicknesses of the two adjacent layers is 0.89 to 1.11.
- the sum of the thicknesses of the six adjacent layers of the laminated unit 2 is 345 to 430 nm. When the thickness of the thinnest layer among the three adjacent layers is 1, the thickness of the remaining two layers is 1 To 1.2 or 6.1 to 8.0.
- the obtained laminated film has almost no flow mark as in Example 12, has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, and the reflectance at a wavelength of 900 to 1800 nm is in Example. It was higher than 12, and the solar heat gain was better than Example 13. The results are shown in Tables 5-8.
- Example 4 When the layer thickness ratio of the laminated unit 2 of the film produced using the laminating device 15 is changed to 1: 5: 1 and the thickness of the thinnest layer among the three adjacent layers of the laminated unit 2 is set to 1. In addition, the same procedure as in Example 16 was performed except that the remaining two layers had a thickness of 1 to 1.2 or 4.5 to 6 (lamination apparatus 17).
- the obtained laminated film had no flow mark as in Example 16, but the reflectance was improved at a wavelength of 400 to 450 nm in the visible light region.
- the results are shown in Tables 5-8.
- Example 19 The ratio of the layer thickness of the laminated unit 2 of the film produced using the laminating apparatus 15 was changed to 1: 8: 1, and the thickness of the thinnest layer among the three adjacent layers of the laminated unit 2 was set to 1. In this case, the same procedure as in Example 16 was performed except that the thickness of the remaining two layers was 1 to 2 or 7.0 to 9.3 (lamination apparatus 19).
- the obtained laminated film had no flow mark as in Example 16, but the reflectance was improved at a wavelength of 400 to 450 nm in the visible light region.
- the results are shown in Tables 5-8.
- the obtained laminated film had no flow mark as in Example 12, but it was slightly higher at a wavelength of 400 to 450 nm in the visible light region, but sufficient transparency could be secured.
- the results are shown in Tables 5-8.
- the obtained laminated film had no flow mark as in Example 16, but the reflectance was improved at a wavelength of 400 to 450 nm in the visible light region.
- the results are shown in Tables 5-8.
- (Comparative Example 7) The lamination ratio (A / B) of the lamination unit 1 of the film produced using the lamination device 15 is changed to 0.65, and the thickness of the adjacent layers of the lamination unit 1 is 0.65 to 1.55. Except for this, the same procedure as in Example 16 was performed (lamination apparatus 23).
- the obtained laminated film had no flow mark as in Example 12, but became high at a wavelength of 400 to 450 nm in the visible light region, and the film itself was colored blue.
- the results are shown in Tables 5-8.
- Example 21 Change the thickness of both surface layers of the film created using the laminating device 16 to 0.5 ⁇ m, change the intermediate thick film layer to 8 ⁇ m on the slit plate 1 side, 1 ⁇ m on the slit plate 2 side, and change to 9 ⁇ m as the intermediate thick film layer Except that, it was performed under the same conditions as in Example 17 (lamination apparatus 24). The thickness of the entire film was 61 ⁇ m.
- the obtained laminated film has slight flow marks as in Example 12, and has a large spectral non-uniformity in the width direction (direction perpendicular to the longitudinal direction of the film). It was done.
- the optical properties at the center of the film were similar to those in Example 3. The results are shown in Tables 5-8.
- the thickness of the intermediate thick film layer of the film produced using the laminating apparatus 16 is set to 0.5 ⁇ m for each plate and 1 ⁇ m as the intermediate thick film layer so that the thicknesses from the plate 1 and the plate 2 are the same.
- the same procedure as in Example 17 was performed except that the surface layer thick film layer on the laminated unit 1 side was changed to 12 ⁇ m and the surface layer thick film layer on the laminated unit 2 side was changed to 5 ⁇ m (lamination apparatus 25).
- the total thickness of the film was 69 ⁇ m.
- the obtained laminated film showed remarkable flow marks.
- the sample physical properties could not be measured well.
- the resin extrusion temperature PEN side was adjusted to 320 ° C.
- the PETG resin side was adjusted to 300 ° C.
- the resin viscosity was changed so that the flow mark was not easily generated.
- the ratio of the thicknesses of the two adjacent layers of the laminated unit 1 is 0.73 to 1.3, and the laminated units 2 are adjacent to each other.
- the thickness of the thinnest layer among the three layers was 1, the remaining two layers had a thickness of 1 to 1.5 or 5.0 to 10.5.
- the obtained laminated film had a high reflectance in the visible light region. The results are shown in Tables 5-8.
- Example 22 The arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 is arranged as shown in FIG. 12 (the laminating unit 1 from the vicinity of the surface layer and the laminating unit 2 from the other surface layer toward the center toward each other. (Laminating apparatus 26).
- the ratio of the thicknesses of two adjacent layers of the multilayer unit 1 is 0.89 to 1.11, and the thickness of the thinnest layer among the three adjacent layers of the multilayer unit 2 is 1, the remaining thickness The thickness of the two layers was 1 to 1.2 or 6.1 to 8.0.
- Example 23 Implementation was performed except that the arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 was changed to the arrangement shown in FIG. 13 (only the laminating unit 1 of Example 17 was reduced toward the center). It carried out like Example 15 (lamination apparatus 27). The ratio of the thicknesses of two adjacent layers of the multilayer unit 1 is 0.89 to 1.11. When the thickness of the thinnest layer among the three adjacent layers of the multilayer unit 2 is 1, the remaining 2 The layer thickness was 1 to 1.2 or 6.1 to 8.0. As a result, Example 16, Example 22, and Example 23 obtained almost the same optical performance. It was found that when the layer thickness distribution of each of the multilayer unit 1 and the multilayer unit 2 is not uneven, the optical characteristics are hardly changed.
- Example 24 The arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 was changed to an arrangement as shown in FIG. 14 (the arrangement of Example 17 in which the lamination unit 1 was arranged so as to protrude downward). Except for this, the same procedure as in Example 17 was performed (lamination apparatus 28).
- the sum of the thicknesses of two adjacent layers of the multilayer unit 1 excluding the thick film layer in the stacking device 29 is 260 to 350 nm
- the sum of the thicknesses of the six adjacent layers of the multilayer unit 2 is 345 to 430 nm. It was.
- Example 25 Example 5 with the exception of the arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 as shown in FIG. 15 (in which the laminated unit 1 in the arrangement of Example 24 is changed to a convex shape). It carried out similarly (lamination apparatus 29).
- the sum of the thicknesses of two adjacent layers of the multilayer unit 1 excluding the thick film layer in the stacking apparatus 30 is 260 to 350 nm, and the sum of the thicknesses of the six adjacent layers of the multilayer unit 2 is 345 to 430 nm. It was.
- Example 26 The arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 is as shown in FIG. 16 (in addition to the arrangement of Example 24, the laminated unit 2 is also arranged so as to protrude downward). The procedure was the same as in Example 17 except that the layer was changed to (Laminating apparatus 30).
- Example 27 The same procedure as in Example 17 was performed except that the arrangement of the layer thickness distribution of the film produced using the laminating apparatus 16 was changed to the arrangement shown in FIG. 17 (laminating apparatus 31). However, since the slit plate 1 and the slit plate 2 are symmetric, the surface thick film layer (5 ⁇ m) and the intermediate thick film layer (2.5 ⁇ m for each plate) have the same thickness.
- Example 28 A hard coat layer was applied to the film prepared in Example 12.
- a coating material for forming a hard coat layer a mixture of DPHA (dipentaerythritol hexaacrylate) and a photoinitiator (IRGACURE (registered trademark) 184 manufactured by BASF Japan) at a weight ratio of 99: 1 is MEK (methyl ethyl ketone).
- MEK methyl ethyl ketone
- a coating agent A adjusted to a solid part concentration of 40%.
- This coating agent A and a slurry of cesium tungsten oxide particles Cs0.33WO3 having a solid content concentration of 18.5% by mass were mixed at a weight ratio of 2: 7 to obtain a coating agent B for forming a hard coat layer.
- the obtained laminate had a high reflectance of light having a wavelength of 900 to 1400 nm and a low transmittance.
- the results are shown in Table 9.
- Example 29 The same operation as in Example 28 was performed except that the film prepared in Example 13 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 30 The same operation as in Example 28 was performed except that the film prepared in Example 14 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 31 The same operation as in Example 28 was performed except that the film prepared in Example 15 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 32 The same operation as in Example 28 was carried out except that the film prepared in Example 16 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 33 The same operation as in Example 28 was performed except that the film prepared in Example 18 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 34 The same operation as in Example 28 was performed except that the film prepared in Example 19 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 35 The same operation as in Example 28 was performed except that the film prepared in Example 22 was used.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 36 This was carried out in the same manner as in Example 35 except that the thickness of the hard coat layer was 2.5 ⁇ m.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 37 The same operation as in Example 35 was performed except that the thickness of the hard coat layer was 1.7 ⁇ m.
- the obtained laminate had a high reflectance of light with a wavelength of 900 to 1400 nm and a low transmittance. The results are shown in Table 9.
- Example 38 The same operation as in Example 28 was performed except that the film prepared in Example 4 was used.
- the obtained laminate had a high reflectance of light having a wavelength of 900 to 1800 nm and a low transmittance. The results are shown in Table 9.
- Example 39 The same operation as in Example 28 was performed except that the film prepared in Example 10 was used.
- the obtained laminate had a high reflectance of light having a wavelength of 900 to 1800 nm and a low transmittance. The results are shown in Table 9.
- Example 9 The same operation as in Example 28 was performed except that the film prepared in Comparative Example 5 was used.
- the obtained laminate had a high reflectance of light having a wavelength of 400 to 900 nm, and when a hard coat layer was provided so as to have a visible light transmittance of 70%, the solar heat gain rate was low.
- Table 10 The results are shown in Table 10.
- Example 10 The same operation as in Example 28 was performed except that the film prepared in Comparative Example 6 was used.
- the obtained laminate had a high reflectance of light having a wavelength of 400 to 900 nm, and when a hard coat layer was provided so as to have a visible light transmittance of 70%, the solar heat gain rate was low.
- Table 10 The results are shown in Table 10.
- Comparative Example 11 The same operation as in Example 28 was performed except that the film prepared in Comparative Example 7 was used.
- the obtained laminate had a high reflectance of light having a wavelength of 400 to 900 nm, and when a hard coat layer was provided so as to have a visible light transmittance of 70%, the solar heat gain rate was low.
- Table 10 The results are shown in Table 10.
- Example 12 The same operation as in Example 36 was performed except that the thickness of the hard coat layer was reduced.
- the obtained laminate had a low transmittance of light having a wavelength of 900 to 1200 nm and a low solar heat acquisition rate. Moreover, since the pencil hardness was low, it was easy to be damaged and was of poor quality. The results are shown in Table 10.
- Example 13 The coating was performed in the same manner as in Example 36 except that the solid content concentration of the coating A for providing the hard coat layer was 1/3 (coating A ′).
- the obtained laminate had a low transmittance of light having a wavelength of 900 to 1200 nm and a low solar heat acquisition rate. The results are shown in Table 10.
- Comparative Example 15 The same procedure as in Comparative Example 14 was performed except that the hard coat layer was provided so that the visible light transmittance was 70%.
- the obtained laminate had a low transmittance of light having a wavelength of 900 to 1200 nm and a low solar heat acquisition rate. The results are shown in Table 10.
- thermoplastic resins A and B This was carried out in the same manner as in Example 36 except that polyethylene terephthalate (manufactured by Toray Industries, Inc .: IV0.65, Tg 79 ° C., Tm 255 ° C.) was used as the thermoplastic resins A and B, and a single film substrate film was obtained. .
- the obtained laminate did not reflect the reflection of light having a wavelength of 900 to 1200 nm, and the solar heat gain rate was low. The results are shown in Table 10.
- Comparative Example 20 This was carried out in the same manner as in Comparative Example 18 except that the hard coat layer was provided so that the visible light transmittance was 80%. The obtained laminate did not reflect the reflection of light having a wavelength of 900 to 1200 nm, and the solar heat gain rate was low. The results are shown in Table 10.
- the laminated film of the present invention is particularly excellent in transparency and can reflect heat rays over a wide band. Therefore, it is used for various applications such as building materials, automobiles, and liquid crystal displays, and particularly reflects light of a specific wavelength. It can be used as an optical film. It can also be bonded to glass with high curvature.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
Abstract
Description
(i)隣接するA層とB層の厚みの比(A層厚み/B層厚み)が0.7以上、1.4以下であること。
(ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方の厚みが5以上9以下であること。
シクロオレフィンとしては、ノルボルネン類の開環メタセシス重合,付加重合,他のオレフィン類との付加共重合体である脂環族ポリオレフィン、
ポリ乳酸、ポリブチルサクシネートなどの生分解性ポリマー、ナイロン6、ナイロン11、ナイロン12、ナイロン66などのポリアミド、
アラミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、エチレン酢酸ビニルコポリマー、ポリアセタール、ポリグルコール酸、ポリスチレン、スチレン共重合ポリメタクリル酸メチル、ポリカーボネート、
ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル、
ポリエーテルサルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリアリレート、
4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデンなどが挙げられる。これらの中で、強度・耐熱性・透明性の観点から、特にポリエステルを用いることが好ましく、ポリエステルとしては芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールあるいはそれらの誘導体を用いて得られるポリエステルが好ましい。ここで、芳香族ジカルボン酸として、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、4,4′-ジフェニルスルホンジカルボン酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも好ましくはテレフタル酸と2,6-ナフタレンジカルボン酸を挙げることができる。これらの酸成分は1種のみ用いてもよく、2種以上併用してもよく、さらには、ヒドロキシ安息香酸等のオキシ酸などを一部共重合してもよい。
[物性の測定方法]
(1)層厚み、積層数、積層構造
フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面を10000~40000倍に拡大観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、場合によっては、コントラストを高く得るために、公知のRuO4やOsO4などを使用した染色技術を用いた。また、1枚の画像に取り込められるすべての層の中で最も厚みの薄い層(薄膜層)の厚みにあわせて、薄膜層厚みが50nm未満の場合は10万倍、薄膜層厚みが50nm以上500nm未満である場合は4万倍、500nm以上である場合は1万倍の拡大倍率にて観察を実施した。
(1)項で得られたTEM写真画像を画像処理ソフト Image-Pro Plus ver.4(販売元 プラネトロン(株))を用いて、このファイルを開き、画像解析を行った。画像解析処理は、垂直シックプロファイルモードで、厚み方向位置と幅方向の2本のライン間で挟まれた領域の平均明るさとの関係を、数値データとして読み取った。表計算ソフト(Excel 2000)を用いて、位置(nm)と明るさのデータに対してサンプリングステップ2(間引き2)でデータ採用した後に、5点移動平均の数値処理を施した。さらに、この得られた周期的に明るさが変化するデータを微分し、VBA(Visual Basic for Applications)プログラムにより、その微分曲線の極大値と極小値を読み込み、隣り合う明るさが極大の領域と極小の領域の間隔を1層の層厚みとして層厚みを算出した。この操作を写真毎に行い、全ての層の層厚みを算出した。
5cm×5cmで切り出したサンプルを日立製作所(株)製分光光度計(U-4100 Spectrophotomater)に付属の積分球を用いた基本構成で反射率測定を行った。反射率測定では、装置付属の酸化アルミニウムの副白板を基準として測定した後、サンプルの長手方向を上下方向にして測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分で測定し、方位角0度における反射率、透過率を得た。得られたスペクトルを元に、1nm毎の反射率を1200-1800nmに渡って平均化した。また、連続で反射率30%、50%、70%を超える反射帯域の幅について最長のものを表4、8に記載した。
JIS K7142(1996)A法に従って測定した。また、本発明のフィルムの未配向状態の屈折率は、各層を削り取った後、一度融点以上で加熱した後、上記方法にて屈折率を測定した。
測定するフィルムを切り出し、示差熱量分析(DSC)を用いてJIS-K-7122(1987年)に従って、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC-RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、25℃から300℃まで20℃/minで昇温(第一の昇温)しその状態で5分間保持し、次いで25℃以下となるよう急冷した。引き続いて、再度室温から20℃/min.の昇温速度で300℃まで昇温(第二の昇温)を行って測定を行った。得られた示差操作熱量測定チャート(第二の昇温カーブ)を用いて、融点Tmを求めた。なお、複数存在する場合には、それぞれ温度が一番高い値でもって、それぞれの値とした。
多層積層フィルムを構成する材料の構造解析方法は、特に手法は限定されないが、以下のような方法が例示できる。例えば、まずガスクロマトグラフ質量分析(GC-MS)により重量ピークを確認する。次に、フーリエ変換型赤外分光(FT-IR)にて、推定される構造が有する各原子間の結合に由来するピークの有無を確認する。さらに、プロトン核磁気共鳴分光(1H-NMR)にて、構造式上の水素原子の位置に由来する化学シフトの位置と水素原子の個数に由来するプロトン吸収線面積を確認する。これらの結果を合わせて総合的に判断することが好ましい。
長手方向のある地点に対して、A4の大きさでサンプリングし、下記の要領で、採点した。
◎;筋が全く見えない
○;ランダムで10枚採取したうちで、1~2枚で筋が見える
△;ランダムで10枚採取したうちで、3枚以上で筋が見える
×;全てのフィルムで筋が見える。
幅方向に1mにわたって100mm間隔で分光を測定した際にISO9050で規定される日射熱取得率、可視光線反射率の値により、相対誤差=(最大値-最小値)/平均値 ×100として求めた。
◎;日射熱取得率、可視光線反射率のいずれも相対誤差が2%以内
○;日射熱取得率、可視光線反射率の相対誤差のうち、大きい方の相対誤差が2%以上5%未満
△;日射熱取得率、可視光線反射率の相対誤差のうち、大きい方の相対誤差が5%以上10%未満
×;日射熱取得率、可視光線反射率の相対誤差のうち、大きい方の相対誤差が10%以上。
フィルム面内で、屈折率が高い方向、およびそれと垂直に交わる方向に対して、幅1cm×10cmの短冊をそれぞれ3本作成し、(株)ボールドウィン製テンシロン万能試験機(RTG-1210)を用いて、フィルムのヤング率を測定した。そのヤング率を平均し、平均ヤング率×断面積(厚みμm×1cm)÷長さ(10cm)とすることで、軸剛性を算出した。
A4サイズのフィルムの一方の面に、(株)巴川製紙所製感圧粘着剤(PSA)シートをラミネートした後、曲面ガラス(R1000mm、210mm×247mm×3mm)にヒートガンで温風を当てながら、ガラスへの貼り合わせを行った。そのガラスを24h静置した後、観察を行い、気泡が無いもの、ガラスエッジ付近での剥がれが無いものを○、それ以外を×とした。
JIS K5600(1999年制定)に準じて測定した。測定面はハードコート面とした。ハードコート面のない場合は両面を測定し、硬度の高い方を採用した。
熱可塑性樹脂Aとして、固有粘度0.60、Tm=268℃のポリエチレンナフタレート(PEN)を用い、熱可塑性樹脂Bとして、シクロヘキサンジメタノールを30mol%共重合したポリエチレンテレフタレート(PET)樹脂とPET(東レ(株)製;IV0.65、Tg79℃、Tm255℃)を82:18の質量比となるように混合したもの(表中でPETG系樹脂と示す)を用いた。なお、未配向状態での屈折率は、PENが1.65、PETG系樹脂が1.58であった。
熱可塑性樹脂Cとして、固有粘度0.60、Tm=268℃のPENを用い、熱可塑性樹脂Dとして、シクロヘキサンジメタノールを30mol%共重合したPET樹脂とポリエチレンテレフタレート(東レ(株)製;IV0.65、Tg79℃、Tm255℃)を82:18の質量比となるように混合したもの(表中でPETG系樹脂と示す)を用い、積層装置を積層装置2に変えた以外は比較例1と同様にして行った。積層装置2は、両表層にそれぞれ7、3μmの厚膜層と中間厚膜層、さらに積層ユニット2が654層のみで構成される積層装置であり、(熱可塑性樹脂Cからなる表層厚膜層)/(C層とD層を厚み方向に交互に327層積層された積層ユニット2)/(熱可塑性樹脂Cからなる中間厚膜層)/(C層とD層を厚み方向に交互に327層積層された積層ユニット2)/(熱可塑性樹脂Cからなる表層厚膜層)の層構成を有する、全積層数657層の積層フィルムが得られる。各スリットプレートには327層の積層ユニット2用の間隙(711構成の層厚み比が1:7:1)があり、さらに中間厚膜を形成する層が2枚のスリットプレートにそれぞれ3μm、2μmあり、トータルで中間厚膜層が5μmとなるようにした。トータルの層厚みは約60μmとなった。積層装置2の層厚み分布を図5に示す。
実施例1の積層装置2を用いて得られる溶融体を、面内に2つに分割し、厚み方向に重ねることで、1313層(厚膜層でC層が合流するため、見かけ上1層分減る)からなる溶融体をT-ダイに導いてシート状にした以外は、実施例1と同様にして行った。層厚み分布は図6のようになった。
積層装置3に変えた以外は実施例1と同様にして行った。積層装置3の層厚みの構成は、表層厚膜層として5μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が297層あり、さらに積層ユニット2側の表層厚膜層として5μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数449層の積層フィルム(総厚み60μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は21μmであり、d1/(d1+d2)は0.52である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を2μm、積層ユニット2側のA層となる中間厚膜を3μm、トータルで計5μmとした。また、積層装置3中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は255~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は330~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.0~8.3とした。積層装置の層厚み分布を図7に示す。
積層装置4に変えた以外は実施例2と同様にして行った。積層装置4の層厚みの構成は、表層厚膜層として6μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が357層あり、さらに積層ユニット2側の表層厚膜層として4μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に357層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数599層の積層フィルム(総厚み63μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は25μmであり、d1/(d1+d2)は0.47である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を3μm、積層ユニット2側のA層となる中間厚膜を2μm、トータルで計5μmとした。また、積層装置3中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。
積層装置5に変えた以外は実施例2と同様にして行った。積層装置5は、積層装置2のスリットプレート2をもう一枚同じ構成のスリットプレートを追加し、全部で3枚構成にしたものであり、総厚みの構成は、表層厚膜層として6μmの層があり、積層ユニット1が149層、その後、中間厚膜層1を5μm形成した後、積層ユニット2が297層あり、中間厚膜層2を5μm、さらに積層ユニット2が297層あり、その後表層厚膜層として5μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層1)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Cからなる中間厚膜層2)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/熱可塑性樹脂Cからなる表層厚膜層)の層構成を有する、全積層数747層の積層フィルム(総厚み86μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は43μmであり、d1/(d1+d2)は0.35である。これらは積層ユニット1を1枚、積層ユニット2でスリットプレート2枚とし、各中間厚膜層で分割するようにした。また各スリットプレートから出てくる厚みができるだけ近くなるように、中間厚膜部分で調整した(例えば、積層ユニット1側にA層となる中間厚膜を1.5μm、積層ユニット2側のA層となる中間厚膜を3.5μm、トータルで計5μm)。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。積層装置の層厚み分布を図8に示す。
積層装置6に変えた以外は実施例2と同様にして行った。積層装置6は、実施例4のスリットプレート2、及び3に入れる積層ユニット2の層数をそれぞれ357層にした以外は、同様にした。つまり、表層厚膜層として7μmの層があり、積層ユニット1が149層、その後、中間厚膜層1を5μm形成した後、積層ユニット2が357層あり、中間厚膜層2を5μm、さらに積層ユニット2が357層あり、その後表層厚膜層として5μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層1)/(C層とD層を厚み方向に交互に357層積層された積層ユニット2)/(熱可塑性樹脂Cからなる中間厚膜層2)/(C層とD層を厚み方向に交互に357層積層された積層ユニット2)/熱可塑性樹脂Cからなる表層厚膜層)の層構成を有する、全積層数867層の積層フィルム(総厚99μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は55μmであり、d1/(d1+d2)は0.29である。これらは積層ユニット1を1枚、積層ユニット2でスリットプレート2枚とし、各中間厚膜層で分割するようにした。また各スリットプレートから出てくる厚みができるだけ近くなるように、中間厚膜部分で調整した(例えば、積層ユニット1側にA層となる中間厚膜を3μm、積層ユニット2側のA層となる中間厚膜を2μm、トータルで計5μm)。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。積層装置の層厚み分布を図9に示す。
積層装置7に変えた以外は実施例2と同様にして行った。積層装置7は、実施例5のスリットプレートの層配置を図9の構成から図10のように変更し、スリットプレート2側で波長1050~1400nm、スリットプレート3側で波長1350~1800nmを反射するように設計した以外は同様にした。全積層数867層の積層フィルム(総厚み95μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は52μmであり、d1/(d1+d2)は0.30である。これらは積層ユニット1を1枚、積層ユニット2でスリットプレート2枚とし、各中間厚膜層で分割するようにした。また各スリットプレートから出てくる厚みができるだけ近くなるように、中間厚膜部分で調整した(例えば、積層ユニット1側にA層となる中間厚膜を3μm、積層ユニット2側のA層となる中間厚膜を2μm、トータルで計5μm)。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。
積層装置8に変えた以外は実施例2と同様にして行った。積層装置8の層厚みの構成は、表層厚膜層として2μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が183層あり、さらに積層ユニット2側の表層厚膜層として8μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に183層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数339層の積層フィルム(総厚み48μm)が得られる。積層ユニット1の総厚み(d1)は23μm、積層ユニット2の総厚み(d2)は10μmであり、d1/(d1+d2)は0.63である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を1μm、積層ユニット2側のA層となる中間厚膜を4μm、トータルで計5μmとした。また、積層装置8中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~360nmであり、隣接する2層の厚みの比が0.84~1.18であり、積層ユニット2の隣接する6層の厚みの和は340~540nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.17または6.6~8.2とした。
積層装置9に変えた以外は実施例2と同様にして行った。積層装置9は、積層装置8のスリットプレート1のみを用いて、新たな積層装置として使用した(積層ユニット1のみ)。
積層装置10に変えた以外は実施例2と同様にして行った。積層装置9の層厚みの構成は、積層装置2のスリットプレート1の表層厚膜層5μmのあとに、積層ユニット1が46層だけ入った層構成とした以外は、すべて同様にした。また、積層ユニット1の隣接する2層の厚みの和は263~347nmであり、隣接する2層の厚みの比が0.84~1.18とし、波長900~1050nmまでを反射するよう設計し、また積層ユニット1は実施例1の層厚み分布となるようにし、波長900~1800nmを反射するように設計した。
熱可塑性樹脂A及びCとして、固有粘度0.60、Tm=247℃のネオペンチルグリコールを10モル%共重合したPEN(以下、PEN/NPG(10))を用い、熱可塑性樹脂B、Dとして、シクロヘキサンジメタノールを30mol%共重合したPET樹脂(表中でPETGと示す)を用いた以外は実施例6と同様に行った。なお、未配向状態での屈折率は、PENが1.64、PETG系樹脂が1.56であった。
熱可塑性樹脂A及びCとして、PEN/NPGに粘度調整剤として、ポリブチレンテレフタレート系樹脂を5%ほど添加した樹脂(表中PEN/NPG+PBT系樹脂)、熱可塑性樹脂B及びDとして、スピログリコールを21mol%、シクロヘキサンジカルボン酸を15mol%共重合したPETとポリエチレンテレフタレート(東レ(株)製;IV0.65、Tg79℃、Tm255℃)を85:15の比率で混合した樹脂(表中、SPG系樹脂と示す。)を用いた以外は実施例9と同様にして行った。PEN/NPG+PBT系樹脂の未配向状態での屈折率は1.64、SPG系樹脂の屈折率は1.55であった。
熱可塑性樹脂A及びCとしてIV=0.65のポリエチレンテレフタレート(PET)を用い、PETの延伸条件で製膜した以外は同様に行った。PET条件での製膜とは、縦延伸温度を90℃、倍率を3.3倍、横延伸温度を110℃、横倍率を4.0倍、熱処理温度を240℃の条件で行った。また未配向状態での屈折率はPETで1.60、SPG系樹脂で1.55であった。
実施例12以降は反射帯域が900~1400nmとなるように設計しており、積層装置11に変えた以外は実施例1と同様にして行った。積層装置11を用いて作成されるフィルムは、両表層に5μmの層があり、積層ユニット1が73層、その後、中間厚膜層を5μm形成した後、積層ユニット2が219層の、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に73層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に219層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数295層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は11μm、積層ユニット2の総厚み(d2)は14μmであり、d1/(d1+d2)は0.44である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みが合うように、積層ユニット1側にA層となる中間厚膜を4μm、積層ユニット2側のA層となる中間厚膜を1μm、トータルで計5μmとなるように設計した。積層装置11の層厚み分布を図11に示す。積層装置11中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.2~7.9とした。
積層装置12に変えた以外は実施例12と同様にして行った。積層装置12を用いて作成されるフィルムの層厚みの構成は、積層装置11を用いたものとほとんど同じであるが、表層厚膜層として8μmの層があり、積層ユニット1が53層、その後、中間厚膜層を5μm形成した後、積層ユニット2が255層あり、さらに積層ユニット2側の表層厚膜層として2μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に53層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に255層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数311層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は8μm、積層ユニット2の総厚み(d2)は17μmであり、d1/(d1+d2)は0.32である。また各スリットプレートから出てくる厚みが合うように、積層ユニット1側にA層となる層が4μm、積層ユニット2側に1μm、トータルで計5μmとなるように設計した。また、積層装置12中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.2~7.8とした。
積層装置13に変えた以外は実施例12と同様にして行った。積層装置13を用いて作成されるフィルムの層厚みの構成は、積層装置11を用いたものとほとんど同じであるが、表層厚膜層として8μmの層があり、積層ユニット1が35層、その後、中間厚膜層を5μm形成した後、積層ユニット2が297層あり、さらに積層ユニット2側の表層厚膜層として2μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に35層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数335層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は5μm、積層ユニット2の総厚み(d2)は20μmであり、d1/(d1+d2)は0.20である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を4μm、積層ユニット2側のA層となる中間厚膜を1μm、トータルで計5μmとした。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~7.8とした。
積層装置14に変えた以外は実施例12と同様にして行った。積層装置14を用いたフィルムの層厚みの構成は積層装置11を用いたものとほとんど同じであるが、表層厚膜層として2μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が45層あり、さらに積層ユニット2側の表層厚膜層として8μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に45層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数197層の積層フィルム(総厚み40μm)が得られる。積層ユニット1の総厚み(d1)は22μm、積層ユニット2の総厚み(d2)は5μmであり、d1/(d1+d2)は0.88である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また各スリットプレートから出てくる厚みができるだけ近くなるように、積層ユニット1側にA層となる中間厚膜を4μm、積層ユニット2側のA層となる中間厚膜を1μm、トータルで計5μmとした。また、積層装置5中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~7.8とした。
積層装置15に変えた以外は実施例12と同様にして行った。積層装置15を用いて作成されるフィルムの層厚みの構成は、積層装置11を用いたものとほとんど同じであるが、表層に6μmの層があり、積層ユニット1が99層、その後、中間厚膜層を5μm形成した後、積層ユニット2が297層あり、さらに積層ユニット2側の表層厚膜層として4μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に99層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に297層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数399層の積層フィルム(総厚み50μm)が得られる。積層ユニット1の総厚み(d1)は15μm、積層ユニット2の総厚み(d2)は20μmであり、d1/(d1+d2)は0.43である。これらは積層ユニット1と積層ユニット2でスリットプレート1枚ずつとした。また、積層装置15を用いた時のフィルムの厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0とした。
積層装置16に変えた以外は実施例12と同様にして行った。積層装置16を用いて作成されるフィルムの層厚みの構成は、積層装置3を用いたものとほとんど同じであるが、表層に8μmの層があり、積層ユニット1が149層、その後、中間厚膜層を5μm形成した後、積層ユニット2が447層あり、さらに積層ユニット2側の表層厚膜層として4μmの層があり、(熱可塑性樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(熱可塑性樹脂Aからなる中間厚膜層)/(C層とD層を厚み方向に交互に447層積層された積層ユニット2)/(熱可塑性樹脂Aからなる表層厚膜層)の層構成を有する、全積層数599層の積層フィルム(総厚み68μm)が得られる。積層ユニット1の総厚み(d1)は22μm、積層ユニット2の総厚み(d2)は29μmであり、d1/(d1+d2)は0.43である。また、積層装置8中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する6層の厚みの和は345~430nmであり、隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0とした。
積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:5:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または4.5~6となるようにした以外は実施例16と同様にして行った(積層装置17)。
積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:6:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または5.3~7となるようにした以外は実施例16と同様にして行った(積層装置18)。
積層装置15を用いて作成されるフィルムの積層ユニット2の層厚みの比率を1:8:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~2または7.0~9.3となるようにした以外は実施例16と同様にして行った(積層装置19)。
積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:9:1に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~2または7.9~10.5となるようにした以外は実施例16と同様にして行った(積層装置20)。
積層装置15を用いて作成されるフィルムの積層ユニット2の層厚みの比率を1:7:1.3に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~5または6.1~8.0となるようにした以外は実施例16と同様にして行った(積層装置21)。
積層装置15を用いて作成されるフィルムの積層ユニット2の層厚み比率を1:7:1.4に変え、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~6または6.1~8.0となるようにした以外は実施例16と同様にして行った(積層装置22)。
(比較例7)
積層装置15を用いて作成されるフィルムの積層ユニット1の積層比(A/B)が0.65となるように変え、積層ユニット1の隣接する層の厚みが0.65~1.55となるようにした以外は実施例16と同様にして行った(積層装置23)。
積層装置16を用いて作成されるフィルムの両表層の厚みを0.5μmに変え、中間厚膜層をスリットプレート1側に8μm、スリットプレート2側に1μmとし、中間厚膜層として9μmに変更した以外は、実施例17と同様の条件で行った(積層装置24)。フィルム全体の厚み61μmとなった。
積層装置16を用いて作成されるフィルムの中間厚膜層を各プレートで0.5μmとし、中間厚膜層として1μmとなるようにし、プレート1とプレート2からでてくる厚みが同じとなるように、積層ユニット1側の表層厚膜層を12μm、積層ユニット2側の表層厚膜層を5μmに変えた以外は、実施例17と同様の条件で行った(積層装置25)。フィルム全体の厚みは69μmとなった。
積層装置16を用いて作成されるフィルムの層厚み分布の配置を図12に記載のような配置(積層ユニット1を表層付近から、積層ユニット2をもう一方の表層付近からお互いに中央に向かって厚くする)に変えた以外は実施例15と同様にして行った(積層装置26)。積層ユニット1の隣接する2層の厚みの比が0.89~1.11であり、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0であった。
積層装置16を用いて作成されるフィルムの層厚み分布の配置を図13に記載のような配置(実施例17の積層ユニット1のみを中央に行くにつれて減少させたもの)に変えた以外は実施例15と同様にして行った(積層装置27)。積層ユニット1の隣接する2層の厚みの比0.89~1.11であり、積層ユニット2の隣接する3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層の厚みが、1~1.2または6.1~8.0であった。その結果、実施例16と実施例22と実施例23はほとんど光学性能的には変わらない結果を得た。積層ユニット1及び、積層ユニット2それぞれの層厚み分布に凹凸がない場合、その光学特性はほとんど変わらないことが分かった。
積層装置16を用いて作成されるフィルムの層厚み分布の配置を図14に記載のような配置(実施例17の配置に積層ユニット1を下に凸となるように配置したもの)に変えた以外は実施例17と同様にして行った(積層装置28)。なお、積層装置29中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、積層ユニット2の隣接する6層の厚みの和は345~430nmとなった。
積層装置16を用いて作成されるフィルムの層厚み分布の配置を図15に記載のような配置(実施例24の配置の積層ユニット1を上に凸に変えたもの)以外は実施例5と同様にして行った(積層装置29)。なお、積層装置30中の厚膜層を除く、積層ユニット1の隣接する2層の厚みの和は260~350nmであり、積層ユニット2の隣接する6層の厚みの和は345~430nmとなった。
積層装置16を用いて作成されるフィルムの層厚み分布の配置を図16に記載のような配置(実施例24の配置に、さらに、積層ユニット2も下に凸となるように配置したもの)に変えた以外は実施例17と同様にして行った(積層装置30)。
積層装置16を用いて作成されるフィルムの層厚み分布の配置を図17に記載のような配置に変えた以外は実施例17と同様にして行った(積層装置31)。ただし、スリットプレート1とスリットプレート2は左右対称であるため、表層厚膜層(5μm)と中間厚膜層(各プレートで2.5μm)は同じ厚みとした。
実施例12で作成したフィルムにハードコート層を塗布した。ハードコート層を形成するための塗材として、DPHA(ジペンタエリスリトールヘキサアクリレート)と光開始剤(BASFジャパン製 IRGACURE(登録商標)184)を重量比99:1で混合させたものをMEK(メチルエチルケトン)で固形部濃度40%に調整した塗剤Aを得る。この塗剤Aと、セシウム酸化タングステン粒子Cs0.33WO3の固形分濃度18.5質量%のスラリーを重量比2:7の割合で混合してハードコート層形成用の塗剤Bとした。この塗剤をワイヤーバーコーターにて基材フィルムの片面にコーティングしたのち、熱風オーブンにて80℃で2分間乾燥させ、UV照射装置にて紫外線を300mJ/cm2照射して塗膜を硬化させてハードコート層を形成し、積層フィルムを得た。得られたハードコート層の厚みは3.3μmであった。
実施例13で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例14で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例15で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例16で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例18で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例19で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例22で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
ハードコート層の厚みを2.5μmとした以外は実施例35と同様にして行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
ハードコート層の厚みを1.7μmとした以外は実施例35と同様にして行った。得られた積層体は波長900~1400nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例4で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1800nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
実施例10で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長900~1800nmの光の反射率が高く、かつ透過率の低いものであった。結果を表9に示す。
比較例5で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長400~900nmの光の反射率が高く、可視光線透過率70%となるようにハードコート層を設けると、日射熱取得率が低いものとなった。結果を表10に示す。
比較例6で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長400~900nmの光の反射率が高く、可視光線透過率70%となるようにハードコート層を設けると、日射熱取得率が低いものとなった。結果を表10に示す。
比較例7で作成したフィルムを用いた以外は実施例28と同様に行った。得られた積層体は波長400~900nmの光の反射率が高く、可視光線透過率70%となるようにハードコート層を設けると、日射熱取得率が低いものとなった。結果を表10に示す。
ハードコート層の厚みを薄くした以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。また鉛筆硬度が低いために傷が付き易く、品位の悪いものであった。結果を表10に示す。
ハードコート層を設ける塗剤Aの固形分濃度を1/3とした(塗剤A´)以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
セシウム酸化タングステン粒子ではなくスズドープ酸化インジウム(ITO)を用い(塗剤B)、可視光線透過率が75%となるようにハードコート層を設けた以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
可視光線透過率が70%となるようにハードコート層を設けた以外は比較例14と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
セシウム酸化タングステン粒子ではなくアンチモンドープ酸化スズ(ATO)を用い(塗剤C)、可視光線透過率が75%となるようにハードコート層を設けた以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
可視光線透過率が70%となるようにハードコート層を設けた以外は比較例9と同様にして行った。得られた積層体は波長900~1200nmの光の透過率が低く、日射熱取得率が低いものとなった。結果を表10に示す。
熱可塑性樹脂A、Bとしてポリエチレンテレフタレート(東レ(株)製、:IV0.65、Tg79℃、Tm255℃)を用いて単膜の基材フィルムを得た以外は実施例36と同様にして行った。得られた積層体は波長900~1200nmの光の反射を反射せず、日射熱取得率が低いものとなった。結果を表10に示す。
可視光線透過率が75%となるようにハードコート層を設けた以外は比較例18と同様にして行った。得られた積層体は波長900~1200nmの光の反射を反射せず、日射熱取得率が低いものとなった。結果を表10に示す。
可視光線透過率が80%となるようにハードコート層を設けた以外は比較例18と同様にして行った。得られた積層体は波長900~1200nmの光の反射を反射せず、日射熱取得率が低いものとなった。結果を表10に示す。
Claims (20)
- 少なくとも一方の面から光を入射した際に、波長1200~1800nmの範囲において連続して100nm以上の範囲で反射率が30%以上となる反射帯域を少なくとも1つ有し、
且つ波長430~600nmの範囲における平均透過率が70%以上あり、フィルムの主配向軸方向とそれに直交する方向の軸剛性の平均値が10N/m以上45N/m以下であるフィルム。 - 少なくとも一方の面から光を入射した際に、波長400~800nmの範囲における平均透過率が80%以上である請求項1に記載のフィルム。
- 熱可塑性樹脂Aを主成分とする層(A層)と熱可塑性樹脂Bを主成分とする層(B層)を交互に積層した、以下(i)を満たす積層ユニット1と、
熱可塑性樹脂Cを主成分とする層(C層)と熱可塑性樹脂Dを主成分とする層(D層)を交互に積層した、以下(ii)を満たす積層ユニット2を有する請求項1または2に記載のフィルム。
(i)隣接するA層とB層の厚みの比(A層厚み/B層厚み)が0.7以上、1.4以下であること
(ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること - 前記積層ユニット1の総層厚みd1が5μm以上である請求項3に記載のフィルム。
- 前記積層ユニット2の総層厚みd2が20μm以上である請求項3または4に記載のフィルム。
- 前記熱可塑性樹脂A及びCが結晶性樹脂であり、前記熱可塑性樹脂B及びDが非晶性樹脂である請求項3~5のいずれかに記載のフィルム。
- 該積層ユニット1、該積層ユニット2、該積層ユニット1と該積層ユニット2の両方、が連続する6層の層厚みの和がフィルムの厚み方向に対して層厚み分布を有する請求項3~6のいずれかに記載のフィルム。
- 該積層ユニット1の隣接する6層の層厚みの和が、一方の表面から中央部に向かって徐々に薄くなる領域を含む請求項3~7のいずれかに記載のフィルム。
- 該積層ユニット2の隣接する6層の層厚みの和が、一方の表面から中央部に向かって徐々に薄くなる領域を含む請求項3~8のいずれかに記載のフィルム
- 該積層ユニット1の隣接する6層の層厚みの和が、一方の表面から中央部に向かって徐々に薄くなる領域を含み、
且つ該積層ユニット2の隣接する6層の層厚みの和が、もう一方の表面から中央部に向かって徐々に薄くなる領域を含む請求項3~9のいずれかに記載のフィルム。 - 1層の厚みが1μm以上である層を有する請求項3~10のいずれかに記載のフィルム。
- 前記積層ユニット1の総層厚みd1(μm)と前記積層ユニット2の総層厚みd2(μm)が下記式(1)または式(2)を満たす請求項3~11のいずれかに記載のフィルム。
0.4≦d1/(d1+d2)<1 式(1)
0.01≦d1/(d1+d2)<0.4 式(2) - フィルム厚みが100μm以下である請求項1~12のいずれかに記載のフィルム。
- 少なくとも一方の面から光を入射した際に、波長900~1400nmの範囲における平均反射率が70%以上である請求項1~13のいずれかに記載のフィルム。
- 少なくとも一方の面から光を入射した際に、波長900nm~1800nmの範囲における平均反射率が70%以上である請求項1~14のいずれかに記載のフィルム。
- 請求項1~15のいずれかに記載のフィルムの少なくとも一方の面にハードコート層を近接して有する積層体であって、前記積層体のISO9050で規定される可視光線透過率が70%以上、日射熱取得率が50%以下である積層体。
- 前記ハードコート層が熱線吸収剤を含む請求項16に記載の積層体。
- 前記熱線吸収剤が酸化タングステン成分を含む請求項17に記載に積層体。
- 請求項1~15のいずれかに記載のフィルムの少なくとも一方の面にハードコート層を近接して有し、もう一方の面に粘着層を積層してなる積層体。
- 前記ハードコート層の厚みが0.1μm以上50μm以下である請求項16~19のいずれかに記載の積層体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780042145.XA CN109416422B (zh) | 2016-07-15 | 2017-06-23 | 膜及叠层体 |
EP17827382.7A EP3486697B1 (en) | 2016-07-15 | 2017-06-23 | Film and layered body |
US16/316,106 US11360251B2 (en) | 2016-07-15 | 2017-06-23 | Film and layered body having specified thickness ratios of thermoplastic layers |
KR1020187032421A KR102301855B1 (ko) | 2016-07-15 | 2017-06-23 | 필름 및 적층체 |
JP2017534747A JP7006270B2 (ja) | 2016-07-15 | 2017-06-23 | フィルムおよび積層体 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-139956 | 2016-07-15 | ||
JP2016139956 | 2016-07-15 | ||
JP2016237298 | 2016-12-07 | ||
JP2016-237298 | 2016-12-07 | ||
JP2017019243 | 2017-02-06 | ||
JP2017-019243 | 2017-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018012252A1 true WO2018012252A1 (ja) | 2018-01-18 |
Family
ID=60951737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023202 WO2018012252A1 (ja) | 2016-07-15 | 2017-06-23 | フィルムおよび積層体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11360251B2 (ja) |
EP (1) | EP3486697B1 (ja) |
JP (1) | JP7006270B2 (ja) |
KR (1) | KR102301855B1 (ja) |
CN (1) | CN109416422B (ja) |
TW (1) | TWI733848B (ja) |
WO (1) | WO2018012252A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024014417A1 (ja) * | 2022-07-13 | 2024-01-18 | Agc株式会社 | 熱線反射基板及びその製造方法、並びに窓ガラス |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12117641B2 (en) * | 2019-03-26 | 2024-10-15 | Toray Industries, Inc. | Laminated body and manufacturing method thereof, light guide plate unit, light source unit, display device, projection image display member, projection image display device, and display screen filter |
JP7516426B2 (ja) | 2019-05-23 | 2024-07-16 | スリーエム イノベイティブ プロパティズ カンパニー | 多層光学フィルム |
CN110456348B (zh) * | 2019-08-19 | 2020-08-25 | 中国石油大学(华东) | 多视向sar海浪谱数据融合的海浪截断波长补偿方法 |
CN115574485A (zh) * | 2019-10-31 | 2023-01-06 | 高丽大学校产学协力团 | 辐射冷却元件及其制作方法 |
WO2024079723A1 (en) * | 2022-10-14 | 2024-04-18 | Red Sea Farms Ltd | A structure for facilitating spectrally selective transformation of light waves |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360659A (en) | 1993-05-24 | 1994-11-01 | The Dow Chemical Company | Two component infrared reflecting film |
WO2005095097A1 (ja) | 2004-03-31 | 2005-10-13 | Toray Industries, Inc. | 積層フィルム |
JP3901911B2 (ja) | 2000-04-28 | 2007-04-04 | 帝人株式会社 | 透明積層フィルム |
JP2007307893A (ja) | 2006-04-20 | 2007-11-29 | Toray Ind Inc | マット調フィルムおよび成形品 |
JP4310312B2 (ja) | 2003-10-27 | 2009-08-05 | 帝人デュポンフィルム株式会社 | 近赤外線遮蔽フィルム |
JP2010017854A (ja) | 2008-07-08 | 2010-01-28 | Bridgestone Corp | 機能性フィルム |
WO2014010532A1 (ja) * | 2012-07-10 | 2014-01-16 | コニカミノルタ株式会社 | 誘電多層膜構造を有する赤外遮蔽フィルム |
JP2014228837A (ja) * | 2013-05-27 | 2014-12-08 | 帝人デュポンフィルム株式会社 | 二軸延伸積層ポリエステルフィルム |
WO2016006388A1 (ja) * | 2014-07-08 | 2016-01-14 | コニカミノルタ株式会社 | 光学フィルム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002074532A1 (fr) * | 2001-03-15 | 2002-09-26 | Mitsui Chemicals Inc. | Corps lamine et dispositif d'affichage utilisant ce corps lamine |
WO2003034106A1 (fr) * | 2001-10-18 | 2003-04-24 | Bridgestone Corporation | Element optique et procede de production de cet element, filtre passe bande, filtre de coupure des ondes proche infrarouge et film anti-reflexion |
KR101185613B1 (ko) * | 2004-04-27 | 2012-09-24 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | 소프트 리소그래피용 복합 패터닝 장치 |
JP5242883B2 (ja) * | 2005-01-20 | 2013-07-24 | リンテック株式会社 | 反射防止フィルム |
JP2009042578A (ja) * | 2007-08-09 | 2009-02-26 | Andes Denki Kk | 光制御多層膜構造体および調光構造体 |
CN101896339B (zh) * | 2007-10-25 | 2013-05-15 | 大科能树脂有限公司 | 红外反射性层合体 |
JP2012013822A (ja) * | 2010-06-30 | 2012-01-19 | Fujifilm Corp | 光反射性フィルムの製造方法、及び光反射性フィルム |
US9405048B2 (en) * | 2011-06-17 | 2016-08-02 | Teijin Limited | Reflective polarizing film, and optical member for liquid crystal display device, and liquid crystal display device formed from same |
CN104066580B (zh) * | 2011-11-29 | 2016-01-13 | 帝人杜邦薄膜日本有限公司 | 双轴拉伸层叠聚酯膜、包含其的夹层玻璃用红外线屏蔽结构体以及包含它们的夹层玻璃 |
US20150177433A1 (en) * | 2012-07-13 | 2015-06-25 | Konica Minolta, Inc. | Infrared shielding film |
WO2014021406A1 (ja) * | 2012-07-31 | 2014-02-06 | 積水化学工業株式会社 | 合わせガラス及び合わせガラスの取り付け方法 |
JPWO2014024873A1 (ja) * | 2012-08-06 | 2016-07-25 | コニカミノルタ株式会社 | 光反射フィルムおよびこれを用いた光反射体 |
JP2014231467A (ja) * | 2013-05-30 | 2014-12-11 | 日本化薬株式会社 | 赤外線反射フィルムおよびこれを用いた合わせガラス |
-
2017
- 2017-06-23 CN CN201780042145.XA patent/CN109416422B/zh active Active
- 2017-06-23 KR KR1020187032421A patent/KR102301855B1/ko active IP Right Grant
- 2017-06-23 EP EP17827382.7A patent/EP3486697B1/en active Active
- 2017-06-23 JP JP2017534747A patent/JP7006270B2/ja active Active
- 2017-06-23 US US16/316,106 patent/US11360251B2/en active Active
- 2017-06-23 WO PCT/JP2017/023202 patent/WO2018012252A1/ja unknown
- 2017-07-05 TW TW106122533A patent/TWI733848B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360659A (en) | 1993-05-24 | 1994-11-01 | The Dow Chemical Company | Two component infrared reflecting film |
JP3901911B2 (ja) | 2000-04-28 | 2007-04-04 | 帝人株式会社 | 透明積層フィルム |
JP4310312B2 (ja) | 2003-10-27 | 2009-08-05 | 帝人デュポンフィルム株式会社 | 近赤外線遮蔽フィルム |
WO2005095097A1 (ja) | 2004-03-31 | 2005-10-13 | Toray Industries, Inc. | 積層フィルム |
JP2007307893A (ja) | 2006-04-20 | 2007-11-29 | Toray Ind Inc | マット調フィルムおよび成形品 |
JP2010017854A (ja) | 2008-07-08 | 2010-01-28 | Bridgestone Corp | 機能性フィルム |
WO2014010532A1 (ja) * | 2012-07-10 | 2014-01-16 | コニカミノルタ株式会社 | 誘電多層膜構造を有する赤外遮蔽フィルム |
JP2014228837A (ja) * | 2013-05-27 | 2014-12-08 | 帝人デュポンフィルム株式会社 | 二軸延伸積層ポリエステルフィルム |
WO2016006388A1 (ja) * | 2014-07-08 | 2016-01-14 | コニカミノルタ株式会社 | 光学フィルム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024014417A1 (ja) * | 2022-07-13 | 2024-01-18 | Agc株式会社 | 熱線反射基板及びその製造方法、並びに窓ガラス |
Also Published As
Publication number | Publication date |
---|---|
KR102301855B1 (ko) | 2021-09-14 |
KR20190027776A (ko) | 2019-03-15 |
EP3486697B1 (en) | 2021-04-07 |
US11360251B2 (en) | 2022-06-14 |
CN109416422B (zh) | 2021-08-13 |
EP3486697A1 (en) | 2019-05-22 |
TW201823008A (zh) | 2018-07-01 |
EP3486697A4 (en) | 2020-04-08 |
CN109416422A (zh) | 2019-03-01 |
TWI733848B (zh) | 2021-07-21 |
US20210278578A1 (en) | 2021-09-09 |
JP7006270B2 (ja) | 2022-02-10 |
JPWO2018012252A1 (ja) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018012252A1 (ja) | フィルムおよび積層体 | |
JP5700953B2 (ja) | 積層ポリエステルフィルム | |
JP6427925B2 (ja) | ウインドウフィルム | |
JP5807466B2 (ja) | 積層フィルムおよびそれを用いた自動車用窓ガラス | |
WO2013002130A1 (ja) | 積層フィルムおよびそれを用いた自動車用窓ガラス | |
JP5424987B2 (ja) | 積層ポリエステルフィルム | |
JP5520138B2 (ja) | 積層ポリエステルフィルム | |
JP6414380B2 (ja) | 偏光子保護フィルム及びこれを用いた偏光板、液晶表示装置 | |
JP2012173374A (ja) | 熱線反射部材 | |
JP2018205615A (ja) | フィルム | |
JP5031883B2 (ja) | 積層ポリエステルフィルム | |
JP2006281731A (ja) | 積層フィルム | |
JP6015382B2 (ja) | 積層フィルムならびに遮熱部材 | |
JP2014097595A (ja) | 積層フィルムおよびこれを用いた遮熱部材 | |
JP6291830B2 (ja) | 多層積層フィルム | |
JP5489971B2 (ja) | 積層ポリエステルフィルム | |
JP2012000823A (ja) | 積層ポリエステルフィルム | |
JP2019139228A (ja) | フィルム及びその製造方法 | |
JP2019014836A (ja) | フィルム | |
JP5489972B2 (ja) | 積層ポリエステルフィルム | |
JP2018054800A (ja) | 熱可塑性樹脂フィルム | |
JP2018164993A (ja) | 積層フィルム | |
JP2017052273A (ja) | 積層フィルム | |
WO2024062961A1 (ja) | フィルムおよびその製造方法、積層構成体、合わせガラス、自動車 | |
JP2017064967A (ja) | 積層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017534747 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187032421 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17827382 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017827382 Country of ref document: EP Effective date: 20190215 |