WO2018008279A1 - リング状部品の製造方法及び製造装置 - Google Patents

リング状部品の製造方法及び製造装置 Download PDF

Info

Publication number
WO2018008279A1
WO2018008279A1 PCT/JP2017/019406 JP2017019406W WO2018008279A1 WO 2018008279 A1 WO2018008279 A1 WO 2018008279A1 JP 2017019406 W JP2017019406 W JP 2017019406W WO 2018008279 A1 WO2018008279 A1 WO 2018008279A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting blade
cylindrical material
cutting
ring
moving
Prior art date
Application number
PCT/JP2017/019406
Other languages
English (en)
French (fr)
Inventor
透一 野渡
Original Assignee
透一 野渡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 透一 野渡 filed Critical 透一 野渡
Priority to CN201780041336.4A priority Critical patent/CN109416125B/zh
Priority to US16/315,621 priority patent/US10486237B2/en
Priority to EP17823887.9A priority patent/EP3483483A4/en
Publication of WO2018008279A1 publication Critical patent/WO2018008279A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/36Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning specially-shaped surfaces by making use of relative movement of the tool and work produced by geometrical mechanisms, i.e. forming-lathes
    • B23B5/365Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning specially-shaped surfaces by making use of relative movement of the tool and work produced by geometrical mechanisms, i.e. forming-lathes for toroidal surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/007Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor for internal turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/02Cutting tools with straight main part and cutting edge at an angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/04Cutting-off tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/08Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning axles, bars, rods, tubes, rolls, i.e. shaft-turning lathes, roll lathes; Centreless turning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/61Plastics not otherwise provided for, e.g. nylon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/66Polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/16Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for bevelling, chamfering, or deburring the ends of bars or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a ring-shaped part.
  • O-rings are widely used for sealing.
  • O-rings are made of a resilient material to seal with the pressure generated when crushed.
  • a common material for the O-ring is rubber.
  • Patent Document 1 below discloses a method for producing an O-ring made of silicone rubber.
  • Patent Document 1 is a method of manufacturing an O-ring by press molding using a mold.
  • press molding since the mold is heated, the silicone rubber in the mold cavity expands and burrs are easily generated during press molding.
  • an object of the present invention is to provide a method and an apparatus for manufacturing a ring-shaped part, which can supply the ring-shaped part in a short time and is suitable for a variety and small-quantity production.
  • the method for manufacturing a ring-shaped part according to the present invention includes a rotating step of rotating a resin-made cylindrical material about its axial direction, and a first cutting blade of the cylindrical material rotating in the rotating step.
  • a rotating step of rotating a resin-made cylindrical material about its axial direction By reciprocating in the radial direction of the cylindrical material from a state where it is in contact with the thickness center of one end, the locus of the semicircular arc is moved by moving it relative to the other end side of the cylindrical material in the axial direction.
  • the inner cutting step of cutting the inner peripheral side of the cylindrical material while forming, and the thickness of the one end of the cylindrical material rotating the second cutting blade before, after or simultaneously with the inner cutting step A half-arc trajectory is formed by reciprocating in the radial direction of the cylindrical material from a state where it is in the center and moving relatively to the other end side of the cylindrical material in the axial direction. While cutting the outer peripheral side of the cylindrical material After the cutting step and the inner cutting step and the outer cutting step, the cylindrical material portion that has been cut on the inner peripheral side and the outer peripheral side is cut off from the remaining portion of the cylindrical material, and separated into a substantially circular shape. And a separation step of obtaining a ring-shaped component having a cross section.
  • a third cutting blade is applied to the other end side of the portion of the cylindrical material that is rotating and the inner periphery side and the outer periphery side are cut, and the cylindrical material portion May be cut and separated from the remainder of the cylindrical material.
  • the first cutting blade, the second cutting blade, and the third cutting blade are simultaneously gripped and perpendicular to the axial direction and the axial direction.
  • the cylindrical material may be processed using a processing apparatus having a blade moving mechanism that moves in the horizontal direction.
  • the resin may be a fluororesin.
  • the ring-shaped component manufacturing apparatus includes a material rotating mechanism that rotates a resin-made cylindrical material around its axial direction, and a first cutting blade moving mechanism that moves the first cutting blade.
  • the first cutting blade is reciprocated in the radial direction of the cylindrical material from a state where the first cutting blade is applied to the thickness center of one end of the cylindrical material rotated by the material rotation mechanism unit, A first cutting blade moving mechanism section that cuts the inner peripheral side of the cylindrical material while forming a semicircular arc locus by moving the cylindrical material to the other end side in the axial direction; and a second cutting A second cutting blade moving mechanism for moving the blade, wherein the second cutting blade is applied to the thickness center of the one end of the rotating cylindrical material; While reciprocating in the radial direction, the cylindrical material in the axial direction A second cutting blade moving mechanism for cutting the outer peripheral side of the cylindrical material while forming a semicircular arc trajectory by moving to the end side, and a third cutting blade moving mechanism for moving the third cutting blade The third cutting blade is
  • a ring-shaped part manufacturing method and a manufacturing apparatus that can supply ring-shaped parts in a short time and that are suitable for high-mix low-volume production.
  • FIG. 1 is a front view showing an apparatus for manufacturing a ring-shaped component according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the manufacturing apparatus.
  • FIG. 3A is a view showing a first cutting blade of the manufacturing apparatus.
  • FIG. 3B is a view showing a second cutting blade of the manufacturing apparatus.
  • FIG. 4A is an overall view showing an example of an O-ring manufactured according to the present invention. 4B is a cross-sectional view taken along line AA shown in FIG. 4A.
  • 5A to 5C are views showing an inner peripheral cutting process of the ring-shaped component in the method for manufacturing the ring-shaped component according to the embodiment of the present invention.
  • 6A to 6C are diagrams showing a peripheral cutting process of the ring-shaped component in the method for manufacturing the ring-shaped component according to the embodiment of the present invention.
  • 7A and 7B are diagrams showing a ring-shaped component separation step in the method for manufacturing a ring-shaped component according to an embodiment of the present invention.
  • the direction in which the central axis of the rotating shaft 14a of the manufacturing apparatus 1 extends is referred to as a main axis direction D1
  • the direction orthogonal to the main axis direction D1 on the horizontal plane is referred to as a depth direction D2
  • the direction to do is called up-down direction D3. Since the axial direction of the cylindrical material 91 made of resin coincides with the main axis direction D1, it is also referred to as the axial direction D1.
  • a direction approaching the chuck 14b of the manufacturing apparatus 1 is referred to as a first main shaft direction D11, and a direction opposite to the first main shaft direction D11 is referred to as a second main shaft direction D12.
  • the main axis direction D1 coincides with the axial direction of the cylindrical material 91 held by the material rotation mechanism unit 14 (the rotation shaft 14a and the chuck 14b). Therefore, the axial direction of the cylindrical material 91 is referred to as an axial direction D1.
  • a direction toward the front is referred to as a first depth direction D21
  • a direction opposite to the first depth direction D21 is referred to as a second depth direction D22.
  • the upward direction is referred to as an upward direction D31
  • the opposite direction to the upward direction D31 is referred to as a downward direction D32.
  • a direction toward the center is referred to as an inner diameter direction D41
  • a direction opposite to the inner diameter direction D41 is referred to as an outer diameter direction D42.
  • the direction extending along the horizontal plane in the radial direction D4 coincides with the depth direction D2.
  • the ring-shaped part manufacturing apparatus 1 is an apparatus for manufacturing a resin-made ring-shaped part 94 having a substantially circular cross section from a resin-made cylindrical material 91, as shown in FIGS. 4A to 7B.
  • the resin in this embodiment is a fluororesin. Examples of the fluororesin include PTFE, PFA, and FEP.
  • the substantially circular cross section is not limited to a perfect circle shape, and may be any shape that can be regarded as a circle. For example, an elliptical shape is mentioned.
  • the resin may be a resin other than a fluororesin.
  • the ring-shaped component 94 in this embodiment is an O-ring.
  • the ring-shaped component may be other than the O-ring.
  • the ring-shaped component manufacturing apparatus 1 includes a material rotating mechanism unit 14 (rotating shaft 14a, chuck 14b) that rotates a resin-made cylindrical material 91 about its axial direction D1.
  • the first cutting blade moving mechanism 11 for moving the first cutting blade 30 (first cutting blade holder 31, first tool post 32, depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18) and the second cutting blade moving mechanism 12 for moving the second cutting blade 40 (second cutting blade holder 41, second tool post 42, depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction)
  • a lower moving portion 18 A lower moving portion 18
  • a third cutting blade moving mechanism 13 for moving the third cutting blade 50 (a third cutting blade holder 51, a third tool post 52, a depth direction moving portion 16, a main axis direction upper moving portion 17).
  • the first cutting blade moving mechanism unit 11 (the first cutting blade holder 31, the first tool post 32, the depth direction moving unit 16, the main shaft direction upper moving unit 17, the main shaft direction lower moving unit 18) is a first cutting blade gripping unit. (First cutting blade holder 31, first tool post 32) and a tool moving mechanism unit 15 (depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18).
  • the first cutting blade moving mechanism unit 11 starts from the state in which the first cutting blade 30 is applied to the thickness center 91c of the one end 91a of the cylindrical material 91 rotated by the material rotation mechanism unit 14.
  • the cylindrical material 91 is moved back and forth in the radial direction D4 and moved to the other end 91b side of the cylindrical material 91 in the main axis direction D1 (in the first main axis direction D11) while forming a semicircular locus.
  • the inner circumference R1 side is cut.
  • the second cutting blade moving mechanism unit 12 (second cutting blade holder 41, second tool post 42, depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18) is a second cutting blade gripping unit. (Second cutting blade holder 41, second tool post 42) and a tool moving mechanism unit 15 (depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18).
  • the second cutting blade moving mechanism 12 reciprocates in the radial direction D4 of the cylindrical material 91 from the state where the second cutting blade 40 is applied to the thickness center 91c of the one end 91a of the rotating cylindrical material 91.
  • the outer peripheral R2 side of the cylindrical material 91 is cut while forming a semicircular locus by moving to the other end 91b side of the cylindrical material 91 in the main axis direction D1 (to the first main axis direction D11). To do.
  • the third cutting blade moving mechanism unit 13 (the third cutting blade holder 51, the third tool post 52, the depth direction moving unit 16, the main shaft direction upper moving unit 17, the main shaft direction lower moving unit 18) is a third cutting blade gripping unit. (Third cutting blade holder 51, third tool rest 52) and a tool moving mechanism 15 (depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18).
  • the third cutting blade moving mechanism unit 13 applies the third cutting blade 50 to the other end 91b side of the portion 92 of the cylindrical material 91 that is cut and rotated on the inner peripheral R1 side and the outer peripheral R2 side. (This contact position is also referred to as the other end 92 b), and the portion 92 of the cylindrical material 91 is cut and separated from the remaining portion 93 of the cylindrical material 91.
  • the material rotation mechanism unit 14 is installed on a rotation drive unit 21 of the ring-shaped part manufacturing apparatus 1 and includes a rotation shaft 14a and a chuck 14b.
  • the rotation shaft 14a rotates the cylindrical material 91 at an arbitrary rotation number and around the central axis at a constant rotation number.
  • the rotary shaft 14a is driven by a prime mover (not shown) in the rotary drive body 21 and is controlled by a control device (not shown) in the rotary drive body 21 to start, stop, and control the number of rotations.
  • the chuck 14b is provided at the tip of the rotating shaft 14a and holds the cylindrical material 91.
  • the chuck 14b is cylindrical so that the cylindrical material 91 is not moved or swung during cutting by the cutting force of the first cutting blade 30, the second cutting blade 40 or the third cutting blade 50.
  • the outer periphery R2 side of the cylindrical material 91 is held by a plurality of radially arranged claws (not shown) so that the rotation center of the cylindrical material 91 coincides with the main axis direction D1.
  • the blade movement mechanism unit 15 includes a depth direction movement unit 16, a main axis direction upper movement unit 17, and main axis direction lower movement units 18 and 18.
  • the blade moving mechanism unit 15 is shared by the first cutting blade moving mechanism unit 11, the second cutting blade moving mechanism unit 12, and the third cutting blade moving mechanism unit 13.
  • a pair of main axis direction lower moving parts 18, 18 are provided apart from each other in the depth direction D2, and on the bases 19, 19 of the manufacturing apparatus 1 by the driving mechanism of the rotary drive body 21, the main axis direction D1 (first Reciprocating in the main axis direction D11 and the second main axis direction D12).
  • the bases 19 and 19 extend in the second main axis direction D12 from the rotary drive body 21 in parallel to the main axis direction D1 on both sides in the depth direction D2 across the rotation axis 14a.
  • the main-axis-direction upper moving unit 17 is supported on the main-axis-direction lower moving units 18, 18 that are spanned and fixed on the main-axis-direction lower moving units 18, 18 that are separated in the depth direction D 2. Along with the movement, the movement in the main axis direction D1.
  • the main-axis-direction upper moving unit 17 moves the first cutting blade 30 to the thickness center 91c of one end 91a of the cylindrical material 91 rotated by the material rotation mechanism unit 14, and then the other of the cylindrical material 91 It moves to the end 91b side in the first main axis direction D11.
  • the main-axis-direction upper moving unit 17 moves the second cutting blade 40 to the thickness center 91c of the one end 91a of the rotating cylindrical material 91, and then moves the second cutting blade 40 to the other end 91b side of the cylindrical material 91. 1 Move in the main axis direction D11.
  • the main-axis-direction upper moving unit 17 moves the third cutting blade 50 in the first main-axis direction D11 to the other end 91b side of the cylindrical material 91 that is cut and rotated on the inner circumference R1 side and the outer circumference R2 side.
  • the depth direction moving unit 16 is configured to be slidable in the depth direction D2 with respect to the main axis direction upper moving unit 17.
  • the depth direction moving unit 16 has two inverted trapezoidal shapes (a trapezoid whose lower base is shorter than the upper base) extending in the depth direction D2 on the bottom surface. With parallel grooves. This groove is engaged with an inverted trapezoidal protrusion provided on the opposing surface of the upper moving part 17 in the main axis direction.
  • the depth direction moving unit 16 is driven in the depth direction D2 (first depth direction D21, second depth direction D22) relative to the main axis direction upper moving unit 17 by a signal from an actuator (not shown) and the rotary drive body 21. ) On the other hand, the depth direction moving unit 16 does not move in the vertical direction D3 and the main axis direction D1.
  • FIG. 2 shows a state in which the depth direction moving unit 16 has moved on the main axis direction upper moving unit 17 in the second depth direction D22.
  • the depth direction moving unit 16 moves the first cutting blade 30 in the depth direction D2 and hits the thickness center 91c of one end 91a of the cylindrical material 91 rotated by the material rotation mechanism unit 14. Then, the depth direction moving unit 16 reciprocates in the radial direction D4 of the cylindrical material 91 from the state where the depth direction moving unit 16 is in contact with the thickness center 91c, and the main axis direction upper moving unit 17 moves to the other end 91b of the cylindrical material 91. Move to the side. As a result, the first cutting blade 30 forms a semicircular locus and cuts the inner circumference R1 side of the cylindrical material 91.
  • the depth direction moving unit 16 moves the second cutting blade 40 in the depth direction D2 and applies it to the thickness center 91c of the one end 91a of the rotating cylindrical material 91. Then, the depth direction moving unit 16 reciprocates in the radial direction D4 of the cylindrical material 91 from the state where the depth direction moving unit 16 is in contact with the thickness center 91c, and the main axis direction upper moving unit 17 moves to the other end 91b of the cylindrical material 91. Move to the side. As a result, the second cutting blade 40 forms a semi-circular locus and cuts the outer peripheral R2 side of the cylindrical material 91.
  • the depth direction moving unit 16 moves the third cutting blade 50 in the second depth direction D22.
  • the third cutting blade cuts and separates the portion 92 of the cylindrical material 91 that is cut and rotated on the inner circumference R1 side and the outer circumference R2 side from the remaining portion 93.
  • the first cutting blade gripping unit includes a first cutting blade holder 31 and a first tool post 32, and fixes the first cutting blade 30 to the depth direction moving unit 16.
  • the first cutting blade 30 is gripped so that the cutting edge 30a is at the same height position as the central axis of the rotating shaft 14a and faces the second depth direction D22.
  • the first cutting blade holder 31 is fixed to the first tool post 32 while holding the first cutting blade 30.
  • the first tool post 32 is engaged with two parallel dovetail grooves provided on the depth direction moving unit 16 on the upper surface of the depth direction moving unit 16.
  • the first tool post 32 can be disposed at any position of the depth direction moving unit 16 as long as it is on the dovetail-shaped groove.
  • the second cutting blade gripping portion includes a second cutting blade holder 41 and a second tool post 42, and fixes the second cutting blade 40 to the depth direction moving portion 16.
  • the second cutting blade 40 is gripped so that the cutting edge 40a faces the first depth direction D21 at the same height position as the central axis of the rotation shaft 14a.
  • the second cutting blade holder 41 is fixed to the second tool post 42 while holding the second cutting blade 40.
  • the second tool post 42 is engaged with the above-described two parallel dovetail-shaped grooves on the upper surface of the depth direction moving unit 16. If the 2nd tool post 42 is on the groove
  • the third cutting blade gripping portion includes a third cutting blade holder 51 and a third tool post 52, and fixes the third cutting blade 50 to the depth direction moving portion 16.
  • the third cutting blade 50 is gripped so that the cutting edge 50a is at the same height position as the central axis of the rotating shaft 14a and faces the second depth direction D22.
  • the third cutting blade holder 51 is fixed to the third tool rest 52 while holding the third cutting blade 50.
  • the third tool post 52 is engaged with the above-described two parallel dovetail-shaped grooves on the upper surface of the depth direction moving unit 16. If the 3rd tool post 52 is on the dovetail-shaped groove
  • the first cutting blade 30, the second cutting blade 40, and the third cutting blade 50 are simultaneously fixed to the depth direction moving unit 16.
  • the first cutting blade 30 is a cutting blade for the inner cutting process of the cylindrical material 91, and the blade tip 30a has an inverted trapezoidal shape.
  • the first cutting blade 30 has its cutting edge 30a directed, for example, in the second depth direction D22, and a ridge line 30b-30c formed by the proximal end 30b and the distal end 30c of the cutting edge 30a is the axis of the rotating shaft 14a. It is held by the first cutting blade holder 31 so as to be parallel to the center.
  • the second cutting blade 40 is a cutting blade for the outer cutting process of the cylindrical material 91, and the cutting edge 40a has an inverted trapezoidal shape.
  • the second cutting blade 40 has its cutting edge 40a directed, for example, in the first depth direction D21, and a ridge line 40b-40c formed by the proximal end 40b and the distal end 40c of the cutting edge 40a is the axis of the rotating shaft 14a. It is held by the second cutting blade holder 41 so as to be parallel to the center.
  • the third cutting blade 50 is a cutting blade for separating the cylindrical material 91, and the blade tip 50a has a sword tip shape.
  • the cutting edge 50a of the third cutting blade 50 faces the second depth direction D22.
  • the manufacturing method of the ring-shaped component of one Embodiment of this invention is equipped with a rotation process, an inner side cutting process, and an outer side cutting process.
  • a rotation process is a process of rotating the cylindrical material 91 made of resin around its axial direction D1.
  • the first cutting blade 30 is reciprocated in the radial direction D4 of the cylindrical material 91 from a state where the first cutting blade 30 is in contact with the thickness center 91c of the one end 91a of the cylindrical material 91 rotating in the rotation process.
  • it is a step of cutting the inner circumference R1 side of the cylindrical material 91 while forming a semicircular locus by moving it relatively to the other end 91b side of the cylindrical material 91 in the axial direction D1.
  • the second cutting blade 40 is applied to the thickness center 91c of the one end 91a of the rotating cylindrical material 91 before, after or simultaneously with the inner cutting process.
  • the outer periphery R2 side of the cylindrical material 91 is cut while forming a semicircular locus. It is a process to do.
  • the separation step after the inner cutting step and the outer cutting step, the portion 92 of the cylindrical material 91 cut on the inner circumference R1 side and the outer circumference R2 side is cut from the remaining portion 93 of the cylindrical material 91 and separated.
  • This is a step of obtaining a ring-shaped component 94 having a substantially circular cross section. More specifically, in the separation step, the third cutting blade 50 is applied to the other end 91b side of the portion 92 of the cylindrical material 91 that is rotating and the inner periphery R1 side and the outer periphery R2 side are cut, so that the cylinder is cylindrical. The portion 92 of the cylindrical material 91 is cut and separated from the remaining portion 93 of the cylindrical material 91.
  • the first cutting blade 30, the second cutting blade 40, and the third cutting blade 50 are simultaneously grasped and perpendicular to the axial direction D1 and the axial direction D1.
  • the cylindrical material 91 is processed using the processing device 22 having the blade moving mechanism 15 (16, 17, 18) that moves in the lateral direction (depth direction) D2. Further details will be described below.
  • the cutting edge of the first cutting blade 30 is obtained by the movement in the first principal axis direction D11 of the main axis direction lower moving part 18 and the main axis direction upper moving part 17 and the movement in the depth direction D2 of the depth direction moving part 16.
  • the proximal end 30b of 30a hits the thickness center 91c of one end 91a of the rotating cylindrical material 91.
  • the blade moving mechanism 15 depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18 based on the cutting data input to the rotary drive body 21.
  • the proximal end 30b of the cutting edge 30a of the first cutting blade 30 moves in the inner diameter direction D41 of the cylindrical material 91 and moves in the first main axis direction D11.
  • the proximal end 30b of the cutting edge 30a of the first cutting blade 30 forms 50% of the semicircular arc on the inner circumference R1 side of the cylindrical material 91, that is, 1/4 arc shape while forming a semicircular locus.
  • the cutting edge moving portion 15 moves the cutting edge 30 a of the first cutting blade 30.
  • the distal end 30c moves in the outer diameter direction D42 of the cylindrical material 91 and moves in the first main axis direction D11.
  • the distal end 30c of the cutting edge 30a of the first cutting blade 30 has a range corresponding to the remaining 50% of the semicircular arc on the inner circumference R1 side of the cylindrical material 91 while forming a semicircular arc locus. , Cut into approximately 1/4 arc shape.
  • the distal end 30 c of the blade edge 30 a does not move to the thickness center 91 c of the cylindrical material 91.
  • the first cutting blade 30 is retracted from the cylindrical material 91 by the movement of the blade moving mechanism unit 15 (depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18). And as shown to FIG. 6A, the movement of the said blade moving mechanism part 15 (the depth direction moving part 16, the main axis direction upper moving part 17, the main axis direction lower moving part 18) of the cutting edge 40a of the 2nd cutting blade 40 is carried out.
  • the proximal end 40b hits the thickness center 91c of one end 91a of the rotating cylindrical material 91.
  • the blade moving mechanism unit 15 (the depth direction moving unit 16, the main shaft direction upper moving unit 17, the main shaft direction lower moving unit 18) based on the cutting data input to the rotary drive body 21.
  • the proximal end 40b of the cutting edge 40a of the second cutting blade 40 moves in the outer diameter direction D42 of the cylindrical material 91 and also moves in the first main axis direction D11.
  • the proximal end 40b of the cutting edge 40a of the second cutting blade 40 forms a semicircular locus, and the outer periphery R2 side of the cylindrical material 91 is formed into 50% of the semicircular arc, that is, a 1/4 arc shape.
  • the blade edge 40a of the second cutting blade 40 is moved to the blade moving mechanism 15 (depth direction moving portion 16, main shaft direction upper moving portion 17, main shaft direction lower moving portion 18).
  • the distal end 40c moves in the inner diameter direction D41 of the cylindrical material 91 and moves in the first main axis direction D11.
  • the distal end 40c of the cutting edge 40a of the second cutting blade 40 forms a semicircular locus while a range corresponding to the remaining 50% of the semicircular arc on the outer circumference R2 side of the cylindrical material 91, Cut to about 1/4 arc shape.
  • the distal end 30 c of the blade edge 30 a does not move to the thickness center 91 c of the cylindrical material 91.
  • the second cutting blade 40 is retracted from the cylindrical material 91 by the movement of the blade moving mechanism unit 15 (depth direction moving unit 16, main shaft direction upper moving unit 17, main shaft direction lower moving unit 18).
  • the cutting edge 50a of the third cutting blade 50 is moved by the movement of the blade moving mechanism 15 (the depth direction moving unit 16, the main shaft direction upper moving unit 17, the main shaft direction lower moving unit 18).
  • the other end 92b of the portion 92 of the cylindrical material 91 that is cut and rotated on the inner periphery R1 side and the outer periphery R2 side is disposed at a position on the extension line in the depth direction D2.
  • the cutting edge 50 a of the third cutting blade 50 is moved in the second depth direction D ⁇ b> 22 (outer diameter direction D ⁇ b> 42) by the movement of the depth direction moving unit 16, and a portion of the cylindrical material 91. It hits the other end 92b side of 92. Then, by further movement of the depth direction moving unit 16, the cutting edge 50 a of the third cutting blade 50 cuts and separates the portion 92 of the cylindrical material 91 from the remaining portion 93 of the cylindrical material 91. As a result, a ring-shaped component 94 having a substantially circular cross section shown in FIGS. 4A and 4B is obtained.
  • the ring-shaped component manufacturing method of the present embodiment includes a rotating step of rotating a resin-made cylindrical material 91 around its axial direction D1, and a cylindrical shape rotating the first cutting blade 30 in the rotating step.
  • the material 91 is moved back and forth in the radial direction D4 of the cylindrical material 91 from the state where it is in contact with the thickness center 91c of the one end 91a of the material 91, and is moved relatively to the other end 91b side of the cylindrical material 91 in the axial direction D1.
  • the second cutting blade 40 is rotated before, after, or simultaneously with the inner cutting step of cutting the inner circumference R1 side of the cylindrical material 91 and the inner cutting step while forming a semicircular arc locus.
  • the cylindrical material 91 is reciprocated in the radial direction D4 of the cylindrical material 91 from the state where it is in contact with the thickness center 91c of the one end 91a of the cylindrical material 91, and is relatively relative to the other end 91b side of the cylindrical material 91 in the axial direction D1.
  • an expensive metal mold is not required as compared with the manufacturing method of the ring-shaped part by molding.
  • the schedule required for the production of the mold is not necessary, it is possible to carry out a large variety and small quantity production when necessary.
  • the separation step is the third on the other end 91b side in the portion 92 of the cylindrical material 91 that is rotating and the inner periphery R1 side and the outer periphery R2 side are cut.
  • the portion 92 of the cylindrical material 91 is cut from the remaining portion 93 of the cylindrical material 91 and separated. Therefore, since the third cutting blade 50 is used as a dedicated cutting blade for cutting and separating the portion 92 of the cylindrical material 91, the first cutting blade 30 and the second cutting blade 40 are used. Compared to the case where the cylindrical material portion 92 is cut and separated, the separation process can be easily realized. Further, the finish of the end face of the ring-shaped part 94 is clean.
  • the first cutting blade 30, the second cutting blade 40, and the third cutting blade 50 are simultaneously grasped in the inner cutting process, the outer cutting process, and the separation process.
  • the cylindrical material 91 is processed using the processing device 22 having the blade moving mechanism 15 (16, 17, 18) that moves in the axial direction D1 and the lateral direction (depth direction) D2 perpendicular to the axial direction D1. Do. Therefore, it is not necessary to replace the cutting blade when changing the processes of the inner cutting process, the outer cutting process, and the separation process. Therefore, the time lag between processes can be reduced, and the resin ring-shaped component 94 can be produced more efficiently.
  • the present invention has been described above. However, the present invention is not limited to the above-described embodiments, and can be implemented in various forms.
  • the outer cutting process can be performed before the inner cutting process, and the outer cutting process can be performed simultaneously with the inner cutting process.
  • the cylindrical blank may be moved in the axial direction without moving the cutting blade in the axial direction, or both of them may be moved in the axial direction.
  • the third cutting blade 50 is omitted, and the cylinder is rotated and cut on the inner peripheral R1 side and the outer peripheral R2 side by using the first cutting blade 30 or the second cutting blade 40 in the separation step.
  • the portion 92 of the cylindrical material 91 may be cut and separated from the remaining portion 93 of the cylindrical material 91.
  • any one or more of the first cutting blade 30, the second cutting blade 40, and the third cutting blade 50 extend is not limited to the horizontal direction and the depth direction D2, and is, for example, the vertical direction D3. Also good. In that case, any one or more of the 1st cutting blade 30, the 2nd cutting blade 40, and the 3rd cutting blade 50 moves to an up-down direction.
  • the cutting blade is replaced with an automatic tool changer having a turret or the like.
  • the cutting blades can be sequentially replaced, or the cutting blades can be sequentially removed and replaced every time the inner cutting process, the outer cutting process, and the separation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turning (AREA)
  • Gasket Seals (AREA)

Abstract

本発明は、第1の切削刃を、回転している円筒状素材91の一端91aの厚さ中心に当てた状態から、径方向D4に往復移動させ、軸方向D1に他端91bの側に移動させて、半円弧の軌跡を形成しながら円筒状素材91の内周R1側を切削する内側切削工程と、内側切削工程の前、後又は同時に、第2の切削刃を、回転している円筒状素材91の一端91aの厚さ中心に当てた状態から、径方向D4に往復移動させて、軸方向D1に他端91bの側に移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の外周R2側を切削する外側切削工程と、内側切削工程及び外側切削工程の後に、内周R1側及び外周R2側を切削された円筒状素材91の部分92を円筒状素材91の残部93から切断して、略円状断面を有するリング状部品94を得る分離工程と、を備える。

Description

リング状部品の製造方法及び製造装置
 本発明は、リング状部品の製造方法及び製造装置に関する。
 Oリングは密封(シール)用として広く使用されている。Oリングは、押しつぶされたときに生じる圧力によって密封するため、弾力性のある材料で製造される。Oリングの材料として一般的なものはゴムである。下記特許文献1には、シリコーンゴム製のOリングを製造する方法が開示されている。
 特許文献1に開示されている製造方法は、金型を使用したプレス成形によってOリングを製造する方法である。プレス成形においては、金型を加熱して行われるため、プレス成形する際に金型キャビティー内のシリコーンゴムが膨張してバリが発生しやすい。
 この対策として、製品となるOリングの体積分以外の余分なシリコーンゴムや熱により膨張したシリコーンゴムをバリ吸収部に吸収させ、その後バリ吸収部を切除している。しかし、製品部分だけを綺麗に残して切除することは難しく、不良が発生しやすい。そこで、特許文献1の技術では、Oリングの金型キャビティーを有する固定側金型と押し金型との間に、厚さが25μm程度のフィルムを挟んでプレス成形を行っている。
特開平10-323845号公報
 しかし、プレス成形でOリングを製造する場合には、金型が必要であり、金型そのものの製作期間が必要である。また、Oリングの形状毎に異なる金型が必要であるため、多品種少量生産に適していない。
 したがって、本発明は、リング状部品を短時間に供給することができると共に、多品種少量生産に好適な、リング状部品の製造方法及び製造装置を提供することを目的とする。
 本発明のリング状部品の製造方法は、樹脂製の円筒状素材をその軸方向を中心に回転させる回転工程と、第1の切削刃を、前記回転工程において回転している前記円筒状素材の一端の厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の他端の側に相対的に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の内周側を切削する内側切削工程と、前記内側切削工程の前、後又は同時に、第2の切削刃を、回転している前記円筒状素材の前記一端の厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の前記他端の側に相対的に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の外周側を切削する外側切削工程と、前記内側切削工程及び前記外側切削工程の後に、内周側及び外周側を切削された前記円筒状素材の部分を、前記円筒状素材の残部から切断して分離させて、略円状断面を有するリング状部品を得る分離工程と、を備える、リング状部品の製造方法に関する。
 また、前記分離工程は、回転しており且つ内周側及び外周側を切削された前記円筒状素材の部分における前記他端の側に第3の切削刃を当てて、前記円筒状素材の部分を前記円筒状素材の残部から切断して分離させてもよい。
 また、前記内側切削工程、前記外側切削工程及び前記分離工程において、前記第1の切削刃、前記第2の切削刃及び前記第3の切削刃を、同時に把持して軸方向及び軸方向に垂直な横方向に移動する刃物移動機構部を有する加工装置を用いて、前記円筒状素材への加工を行ってもよい。
 また、前記樹脂はフッ素樹脂であってもよい。
 また、本発明のリング状部品の製造装置は、樹脂製の円筒状素材をその軸方向を中心に回転させる素材回転機構部と、第1の切削刃を移動させる第1切削刃移動機構部であって、前記第1の切削刃を、前記素材回転機構部により回転している前記円筒状素材の一端の厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の他端の側に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の内周側を切削する第1切削刃移動機構部と、第2の切削刃を移動させる第2切削刃移動機構部であって、前記第2の切削刃を、回転している前記円筒状素材の前記一端の前記厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の前記他端の側に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の外周側を切削する第2切削刃移動機構部と、第3の切削刃を移動させる第3切削刃移動機構部であって、内周側及び外周側を切削され且つ回転している前記円筒状素材の部分における前記他端の側に前記第3の切削刃を当てて、前記円筒状素材の部分を前記円筒状素材の残部から切断して分離させて、略円状断面を有するリング状部品を得る第3切削刃移動機構部と、を備える、リング状部品の製造装置に関する。
 本発明によれば、リング状部品を短時間に供給することができると共に、多品種少量生産に好適な、リング状部品の製造方法及び製造装置を提供することができる。
本発明の一実施形態のリング状部品の製造装置を示す正面図である。 前記製造装置の平面図である。 前記製造装置の第1の切削刃を示す図である。 前記製造装置の第2の切削刃を示す図である。 本発明により製造されるOリングの一例を示す全体図である。 本発明により製造されるOリングの一例を示す図で、図3Aに示すA-A線断面図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の内周切削工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の内周切削工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の内周切削工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の外周切削工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の外周切削工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の外周切削工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の分離工程を示す図である。 本発明の一実施形態のリング状部品の製造方法における、リング状部品の分離工程を示す図である。
 以下、図面を参照して、本発明の一実施形態のリング状部品の製造装置1について説明する。本発明の一実施形態のリング状部品の製造方法は、この製造装置により実施される。図1は、本発明の一実施形態のリング状部品の製造装置を示す正面図である。図2は、前記製造装置の平面図である。図3Aは前記製造装置の第1の切削刃を示す図である。図3Bは前記製造装置の第2の切削刃を示す図である。図4Aは、本発明により製造されるOリングの一例を示す全体図である。図4Bは図4Aに示すA-A線断面図である。図5A~図5Cは、本発明の一実施形態のリング状部品の製造方法における、リング状部品の内周切削工程を示す図である。図6A~図6Cは、本発明の一実施形態のリング状部品の製造方法における、リング状部品の外周切削工程を示す図である。図7A及び図7Bは、本発明の一実施形態のリング状部品の製造方法における、リング状部品の分離工程を示す図である。
 各図面において、製造装置1の回転軸14aの中心軸が延びる方向を主軸方向D1といい、水平面上で主軸方向D1と直交する方向を奥行方向D2といい、主軸方向D1及び奥行方向D2と直交する方向を上下方向D3という。樹脂製の円筒状素材91の軸方向は、主軸方向D1と一致するため、軸方向D1ともいう。また、主軸方向D1については、製造装置1のチャック14bに近づく方向を第1主軸方向D11といい、第1主軸方向D11とは反対方向を第2主軸方向D12という。主軸方向D1は、素材回転機構部14(回転軸14a、チャック14b)に保持された円筒状素材91の軸方向に一致する。そのため、円筒状素材91の軸方向を軸方向D1という。奥行方向D2については、手前に向かう方向を第1奥行方向D21といい、第1奥行方向D21とは反対方向を第2奥行方向D22という。また、上下方向3については、上に向かう方向を上方向D31、上方向D31とは反対方向を下方向D32という。円筒状素材91の径方向D4のうち、中心に向かう方向を内径方向D41といい、内径方向D41とは反対方向を外径方向D42という。本実施形態においては、径方向D4のうち水平面上に沿って延びる方向は、奥行方向D2に一致する。
〔リング状部品の製造装置の全体構成〕
 リング状部品の製造装置1は、図4A~図7Bに示すように、樹脂製の円筒状素材91から略円状断面を有する樹脂製のリング状部品94を製造する装置である。本実施形態における樹脂は、フッ素樹脂である。フッ素樹脂としては、PTFE、PFA、FEPが例示される。略円状断面は、真円形状に制限されず、円状にみなせる形状であればよい。例えば、楕円状が挙げられる。なお、樹脂は、フッ素樹脂以外の樹脂であってもよい。本実施形態におけるリング状部品94は、Oリングである。なお、リング状部品は、Oリング以外であってもよい。
 図1~図3Bに示すように、リング状部品の製造装置1は、樹脂製の円筒状素材91をその軸方向D1を中心に回転させる素材回転機構部14(回転軸14a、チャック14b)と、第1の切削刃30を移動させる第1切削刃移動機構部11(第1切削刃ホルダ31、第1刃物台32、奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)と、第2の切削刃40を移動させる第2切削刃移動機構部12(第2切削刃ホルダ41、第2刃物台42、奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)と、第3の切削刃50を移動させる第3切削刃移動機構部13(第3切削刃ホルダ51、第3刃物台52、奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)と、を備える。
 第1切削刃移動機構部11(第1切削刃ホルダ31、第1刃物台32、奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)は、第1切削刃把持部(第1切削刃ホルダ31、第1刃物台32)と刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)とを備える。第1切削刃移動機構部11は、第1の切削刃30を、素材回転機構部14により回転している円筒状素材91の一端91aの厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動させると共に、主軸方向D1に円筒状素材91の他端91bの側に(第1主軸方向D11に)移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の内周R1側を切削する。
 第2切削刃移動機構部12(第2切削刃ホルダ41、第2刃物台42、奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)は、第2切削刃把持部(第2切削刃ホルダ41、第2刃物台42)と刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)とを備える。第2切削刃移動機構部12は、第2の切削刃40を、回転している円筒状素材91の一端91aの厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動させると共に、主軸方向D1に円筒状素材91の他端91bの側に(第1主軸方向D11に)移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の外周R2側を切削する。
 第3切削刃移動機構部13(第3切削刃ホルダ51、第3刃物台52、奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)は、第3切削刃把持部(第3切削刃ホルダ51、第3刃物台52)と刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)とを備える。第3切削刃移動機構部13は、内周R1側及び外周R2側を切削され且つ回転している円筒状素材91の部分92における前記他端91bの側に第3の切削刃50を当てて(この当てる位置を、他端92bともいう)、円筒状素材91の部分92を円筒状素材91の残部93から切断して分離させる。
〔素材回転機構部14〕
 素材回転機構部14は、リング状部品の製造装置1の回転駆動駆体21に設置されており、回転軸14aとチャック14bとを備える。回転軸14aは、円筒状素材91を任意の回転数で、その中心軸の周りを一定の回転数で回転させる。回転軸14aは、回転駆動駆体21内の原動機(不図示)によって駆動され、回転駆動駆体21内の制御装置(不図示)によって、起動、停止及び回転数の制御が行われる。チャック14bは、回転軸14aの先端に設けられ、円筒状素材91を保持する。チャック14bは、円筒状素材91が、第1の切削刃30、第2の切削刃40又は第3の切削刃50による切削力によって、切削中に移動したり振れ回りしたりしないように、円筒状素材91の回転中心とその主軸方向D1とが一致するように、放射状に設置された複数の爪(不図示)によって円筒状素材91の外周R2側を保持する。
〔刃物移動機構部15〕
 刃物移動機構部15は、奥行方向移動部16と、主軸方向上部移動部17と、主軸方向下部移動部18、18とを備える。刃物移動機構部15は、第1切削刃移動機構部11と第2切削刃移動機構部12と第3切削刃移動機構部13とで共用される。主軸方向下部移動部18、18は、奥行方向D2に離間して一対設けられており、製造装置1の基台19、19上を、回転駆動駆体21の駆動機構によって主軸方向D1(第1主軸方向D11、第2主軸方向D12)に往復移動する。基台19、19は、回転軸14aを挟んだ奥行方向D2の両サイドで、回転駆動駆体21から主軸方向D1に平行に、第2主軸方向D12に延びている。
 主軸方向上部移動部17は、奥行方向D2に離間した主軸方向下部移動部18、18上に掛け渡されて固定されて支持されており、そのため、主軸方向下部移動部18、18の主軸方向D1の移動と一緒に、主軸方向D1に移動する。
 主軸方向上部移動部17は、第1の切削刃30を、素材回転機構部14により回転している円筒状素材91の一端91aの厚さ中心91cに移動させ、その後、円筒状素材91の他端91bの側に第1主軸方向D11へ移動させる。
 主軸方向上部移動部17は、第2の切削刃40を、回転している円筒状素材91の一端91aの厚さ中心91cに移動させ、その後、円筒状素材91の他端91bの側に第1主軸方向D11へ移動させる。
 主軸方向上部移動部17は、第3の切削刃50を、内周R1側及び外周R2側を切削され且つ回転している円筒状素材91の他端91bの側に第1主軸方向D11へ移動させる。
 奥行方向移動部16は、主軸方向上部移動部17に奥行方向D2にスライド移動可能に構成される。本実施形態においては、図1、図2に示すように、奥行方向移動部16は、底面部に、奥行方向D2に延びる逆台形状(下底が上底よりも短い台形状)の2本の平行な溝を備える。この溝は、主軸方向上部移動部17における対向する面に設けられる逆台形形状の突起に掛合している。
 奥行方向移動部16は、不図示のアクチュエータ及び回転駆動駆体21からの信号によって、主軸方向上部移動部17に対して相対的に、奥行方向D2(第1奥行方向D21、第2奥行方向D22)に移動する。一方、奥行方向移動部16は、上下方向D3及び主軸方向D1には移動しない。なお、図2では、奥行方向移動部16が主軸方向上部移動部17上を第2奥行方向D22に移動した状態を示している。
 奥行方向移動部16は、第1の切削刃30を、奥行方向D2に移動させ、素材回転機構部14により回転している円筒状素材91の一端91aの厚さ中心91cに当てる。そして、奥行方向移動部16が、厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動すると共に、主軸方向上部移動部17が、円筒状素材91の他端91bの側へ移動する。これによって、第1の切削刃30は、半円弧の軌跡を形成して円筒状素材91の内周R1側を切削する。
 奥行方向移動部16は、第2の切削刃40を奥行方向D2に移動させ、回転している円筒状素材91の一端91aの厚さ中心91cに当てる。そして、奥行方向移動部16が、厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動すると共に、主軸方向上部移動部17が、円筒状素材91の他端91bの側へ移動する。これによって、第2の切削刃40は、半円弧の軌跡を形成して円筒状素材91の外周R2側を切削する。
 奥行方向移動部16は、第3の切削刃50を、第2奥行方向D22に移動させる。これにより、第3の切削刃は、内周R1側及び外周R2側を切削され且つ回転している円筒状素材91の部分92を残部93から切断して分離する。
〔第1~第3切削刃把持部〕
 図1、図2に示すように、第1切削刃把持部は、第1切削刃ホルダ31と第1刃物台32とを備え、第1の切削刃30を奥行方向移動部16に固定する。第1の切削刃30は、刃先30aが回転軸14aの中心軸と同一の高さ位置で、第2奥行方向D22に向くように把持される。第1切削刃ホルダ31は、第1の切削刃30を保持しながら第1刃物台32に固定される。
 第1刃物台32は、奥行方向移動部16の上面で、奥行方向移動部16に設けられた2本の平行なダブテール形状の溝に掛合される。第1刃物台32は、ダブテール形状の溝の上であれば、奥行方向移動部16の任意の位置に配置されることができる。
 第2切削刃把持部は、第2切削刃ホルダ41と第2刃物台42とを備え、第2の切削刃40を奥行方向移動部16に固定する。第2の切削刃40は、刃先40aが回転軸14aの中心軸と同一の高さ位置で、第1奥行方向D21に向くように把持される。第2切削刃ホルダ41は、第2の切削刃40を保持しながら第2刃物台42に固定される。
 第2刃物台42は、奥行方向移動部16の上面で、前述の2本の平行なダブテール形状の溝に掛合されている。第2刃物台42は、ダブテール形状の溝の上であれば、奥行方向移動部16の任意の位置に配置されることができる。
 第3切削刃把持部は、第3切削刃ホルダ51と第3刃物台52とを備え、第3の切削刃50を奥行方向移動部16に固定する。第3の切削刃50は、刃先50aが回転軸14aの中心軸と同一の高さ位置で、第2奥行方向D22に向くように把持される。第3切削刃ホルダ51は、第3の切削刃50を保持しながら第3刃物台52に固定される。
 第3刃物台52は、奥行方向移動部16の上面で、前述の2本の平行なダブテール形状の溝に掛合されている。第3刃物台52は、ダブテール形状の溝の上であれば、奥行方向移動部16の任意の位置に配置されることができる。
 つまり、図2に示されるように、第1の切削刃30、第2の切削刃40及び第3の切削刃50は、同時に奥行方向移動部16に固定される。
〔第1~第3の切削刃〕
 図3Aに示すように、第1の切削刃30は、円筒状素材91の内側切削工程用の切削刃であって、刃先30aは逆台形形状をしている。第1の切削刃30は、その刃先30aを、例えば、第2奥行方向D22に向け、刃先30aの近位端30bと遠位端30cで形成される稜線30b-30cが、回転軸14aの軸心と並行になるように、第1切削刃ホルダ31に保持される。
 図3Bに示すように、第2の切削刃40は、円筒状素材91の外側切削工程用の切削刃であって、刃先40aは逆台形形状をしている。第2の切削刃40は、その刃先40aを、例えば、第1奥行方向D21に向け、刃先40aの近位端40bと遠位端40cで形成される稜線40b-40cが、回転軸14aの軸心と平行になるように、第2切削刃ホルダ41に保持される。
 第3の切削刃50は、円筒状素材91の分離工程用の切削刃であって、刃先50aは剣先形状である。第3の切削刃50の刃先50aは、第2奥行方向D22に向いている。
 次に、前記製造装置1により実施される、本発明の一実施形態のリング状部品の製造方法について詳述する。
 本発明の一実施形態のリング状部品の製造方法は、回転工程と内側切削工程と外側切削工程とを備える。
 回転工程は、樹脂製の円筒状素材91をその軸方向D1を中心に回転させる工程である。
 内側切削工程は、第1の切削刃30を、回転工程において回転している円筒状素材91の一端91aの厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動させると共に、軸方向D1に円筒状素材91の他端91bの側に相対的に移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の内周R1側を切削する工程である。
 外側切削工程は、内側切削工程の前、後又は同時に、第2の切削刃40を、回転している円筒状素材91の一端91aの厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動させると共に、軸方向D1に円筒状素材91の他端91bの側に相対的に移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の外周R2側を切削する工程である。
 分離工程は、内側切削工程及び外側切削工程の後に、内周R1側及び外周R2側を切削された円筒状素材91の部分92を、円筒状素材91の残部93から切断して分離させて、略円状断面を有するリング状部品94を得る工程である。詳述すると、分離工程は、回転しており且つ内周R1側及び外周R2側を切削された円筒状素材91の部分92における前記他端91b側に第3の切削刃50を当てて、円筒状素材91の部分92を円筒状素材91の残部93から切断して分離させる。
 また、内側切削工程、外側切削工程及び分離工程において、第1の切削刃30、第2の切削刃40及び第3の切削刃50を、同時に把持して軸方向D1及び軸方向D1に垂直な横方向(奥行方向)D2に移動する刃物移動機構部15(16,17,18)を有する加工装置22を用いて、円筒状素材91への加工を行う。
 以下に更に詳述する。
〔内側切削工程〕
 図5Aに示すように、主軸方向下部移動部18及び主軸方向上部移動部17の第1主軸方向D11の移動及び奥行方向移動部16の奥行方向D2の移動により、第1の切削刃30の刃先30aの近位端30bは、回転している円筒状素材91の一端91aの厚さ中心91cに当たる。
 その後、図5Bに示すように、回転駆動駆体21に入力された切削データに基づく上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第1の切削刃30の刃先30aの近位端30bは、円筒状素材91の内径方向D41に移動すると共に、第1主軸方向D11に移動する。これにより、第1の切削刃30の刃先30aの近位端30bは、半円弧の軌跡を形成しながら、円筒状素材91の内周R1側を半円弧の50%、つまり1/4円弧形状に切削する。
 その後、図5Cに示すように、上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第1の切削刃30の刃先30aの遠位端30cは、円筒状素材91の外径方向D42に移動すると共に、第1主軸方向D11に移動する。これにより、第1の切削刃30の刃先30aの遠位端30cは、半円弧の軌跡を形成しながら、円筒状素材91の内周R1側において半円弧の残りの50%に相当する範囲を、約1/4円弧形状に切削する。刃先30aの遠位端30cは、円筒状素材91の厚さ中心91cまでは移動しない。
〔外側切削工程〕
 その後、上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第1の切削刃30は円筒状素材91から退避される。そして、図6Aに示すように、上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第2の切削刃40の刃先40aの近位端40bは、回転している円筒状素材91の一端91aの厚さ中心91cに当たる。
 その後、図6Bに示すように、回転駆動駆体21に入力された切削データに基づく上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第2の切削刃40の刃先40aの近位端40bは、円筒状素材91の外径方向D42に移動すると共に、第1主軸方向D11に移動する。これにより、第2の切削刃40の刃先40aの近位端40bは、半円弧の軌跡を形成しながら、円筒状素材91の外周R2側を半円弧の50%、つまり1/4円弧形状に切削する。
 その後、図6Cに示すように、上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)に移動により、第2の切削刃40の刃先40aの遠位端40cは、円筒状素材91の内径方向D41に移動すると共に、第1主軸方向D11に移動する。これにより、第2の切削刃40の刃先40aの遠位端40cは、半円弧の軌跡を形成しながら、円筒状素材91の外周R2側において半円弧の残りの50%に相当する範囲を、約1/4円弧形状に切削する。刃先30aの遠位端30cは、円筒状素材91の厚さ中心91cまでは移動しない。
 図6Cに示すように、内側切削工程及び外側切削工程の完了時には、内周R1側及び外周R2側を切削された円筒状素材91の部分92と、円筒状素材91の残部93とは、依然として、繋がっており、一体的となっている。
〔分離工程〕
 その後、上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第2の切削刃40は円筒状素材91から退避される。そして、図7Aに示すように、上記刃物移動機構部15(奥行方向移動部16、主軸方向上部移動部17、主軸方向下部移動部18)の移動により、第3の切削刃50の刃先50aは、内周R1側及び外周R2側を切削され且つ回転している円筒状素材91の部分92の他端92bに対して、奥行方向D2の延長線上の位置に配置される。
 その後、図7Bに示すように、奥行方向移動部16の移動により、第3の切削刃50の刃先50aは、第2奥行方向D22(外径方向D42)に移動し、円筒状素材91の部分92の他端92bの側に当たる。そして、奥行方向移動部16の更なる移動により、第3の切削刃50の刃先50aは、円筒状素材91の部分92を円筒状素材91の残部93から切断して分離させる。これによって、図4A及び図4Bに示す、略円状断面を有するリング状部品94が得られる。
〔実施形態の効果〕
 本実施形態のリング状部品の製造方法によれば、例えば、以下の効果が奏される。
 本実施形態のリング状部品の製造方法は、樹脂製の円筒状素材91をその軸方向D1を中心に回転させる回転工程と、第1の切削刃30を、回転工程において回転している円筒状素材91の一端91aの厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動させると共に、軸方向D1に円筒状素材91の他端91bの側に相対的に移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の内周R1側を切削する内側切削工程と、内側切削工程の前、後又は同時に、第2の切削刃40を、回転している円筒状素材91の一端91aの厚さ中心91cに当てた状態から、円筒状素材91の径方向D4に往復移動させると共に、軸方向D1に円筒状素材91の他端91bの側に相対的に移動させることにより、半円弧の軌跡を形成しながら円筒状素材91の外周R2側を切削する外側切削工程と、内側切削工程及び外側切削工程の後に、内周R1側及び外周R2側を切削された円筒状素材91の部分92を、円筒状素材91の残部93から切断して分離させて、略円状断面を有するリング状部品94を得る分離工程と、を備える。
 そのため、本実施形態のリング状部品の製造方法及び製造装置1によれば、金型成形によるリング状部品の製造方法に比べて、高価な金型が不要となる。また、金型の製作に要する日程も不要であるため、必要なときに、多品種少量生産を行うことができる。
 本実施形態のリング状部品の製造方法においては、分離工程は、回転しており且つ内周R1側及び外周R2側を切削された円筒状素材91の部分92における他端91bの側に第3の切削刃50を当てて、円筒状素材91の部分92を円筒状素材91の残部93から切断して分離させる。
 そのため、円筒状素材91の部分92を切断して分離させるための専用の切削刃として、第3の切削刃50を使用するため、第1の切削刃30及び第2の切削刃40を用いて円筒状素材の部分92を切断して分離する場合と比べ、分離工程の実現が容易である。また、リング状部品94の端面の仕上がりがきれいになる。
 本実施形態のリング状部品の製造方法においては、内側切削工程、外側切削工程及び分離工程において、第1の切削刃30、第2の切削刃40及び第3の切削刃50を、同時に把持して軸方向D1及び軸方向D1に垂直な横方向(奥行方向)D2に移動する刃物移動機構部15(16,17,18)を有する加工装置22を用いて、円筒状素材91への加工を行う。
 そのため、内側切削工程、外側切削工程及び分離工程の工程変更の際に、切削刃の交換が不要である。従って、工程間のタイムラグを低減することができ、樹脂製のリング状部品94をより効率的に生産できる。
〔変形例〕
 以上、本発明の実施形態について説明した。しかし、本発明は、上述した実施形態に限定されることはなく、種々の形態で実施することができる。
 例えば、外側切削工程を内側切削工程の前に行うことができ、また、外側切削工程を内側切削工程と同時に行うことができる。切削刃を軸方向に移動させずに円筒状素材を軸方向に移動させてもよく、又は、その両方を互いに軸方向に移動させてもよい。
 また、第3の切削刃50を省略し、分離工程において第1の切削刃30又は第2の切削刃40を用いて、回転しており且つ内周R1側及び外周R2側を切削された円筒状素材91の部分92を円筒状素材91の残部93から切断して分離させてもよい。
 第1の切削刃30、第2の切削刃40及び第3の切削刃50のいずれか一つ以上が延びる方向は、横方向、奥行方向D2に制限されず、例えば、上下方向D3であってもよい。その場合、第1の切削刃30、第2の切削刃40及び第3の切削刃50のいずれか一つ以上は、上下方向に移動する。
 リング状部品の製造装置1において、第1の切削刃30、第2の切削刃40及び第3の切削刃50を同時に把持する代わりに、タレット等を有する自動工具交換装置を用いて切削刃を順次交換し、又は、内側切削工程、外側切削工程及び分離工程の度毎に切削刃を順次取外し交換することもできる。
1 製造装置
14 素材回転機構部
11 第1切削刃移動機構部
12 第2切削刃移動機構部
13 第3切削刃移動機構部
15 刃物移動機構部
22 加工装置
30 第1の切削刃
40 第2の切削刃
50 第3の切削刃
91 円筒状素材
91a 一端
91b 他端
91c 厚さ中心
92 部分
93 残部
94 リング状部品
D1 軸方向、主軸方向
D2 横方向、奥行方向
D3 上下方向
D4 径方向
R1 内周
R2 外周

Claims (5)

  1.  樹脂製の円筒状素材をその軸方向を中心に回転させる回転工程と、
     第1の切削刃を、前記回転工程において回転している前記円筒状素材の一端の厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の他端の側に相対的に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の内周側を切削する内側切削工程と、
     前記内側切削工程の前、後又は同時に、第2の切削刃を、回転している前記円筒状素材の前記一端の厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の前記他端の側に相対的に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の外周側を切削する外側切削工程と、
     前記内側切削工程及び前記外側切削工程の後に、内周側及び外周側を切削された前記円筒状素材の部分を、前記円筒状素材の残部から切断して分離させて、略円状断面を有するリング状部品を得る分離工程と、
    を備える、リング状部品の製造方法。
  2.  前記分離工程は、回転しており且つ内周側及び外周側を切削された前記円筒状素材の部分における前記他端の側に第3の切削刃を当てて、前記円筒状素材の部分を前記円筒状素材の残部から切断して分離させる、請求項1に記載のリング状部品の製造方法。
  3.  前記内側切削工程、前記外側切削工程及び前記分離工程において、前記第1の切削刃、前記第2の切削刃及び前記第3の切削刃を、同時に把持して軸方向及び軸方向に垂直な横方向に移動する刃物移動機構部を有する加工装置を用いて、前記円筒状素材への加工を行う、請求項2に記載のリング状部品の製造方法。
  4.  前記樹脂はフッ素樹脂である、請求項1~3のいずれかに記載のリング状部品の製造方法。
  5.  樹脂製の円筒状素材をその軸方向を中心に回転させる素材回転機構部と、
     第1の切削刃を移動させる第1切削刃移動機構部であって、前記第1の切削刃を、前記素材回転機構部により回転している前記円筒状素材の一端の厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の他端の側に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の内周側を切削する第1切削刃移動機構部と、
     第2の切削刃を移動させる第2切削刃移動機構部であって、前記第2の切削刃を、回転している前記円筒状素材の前記一端の前記厚さ中心に当てた状態から、前記円筒状素材の径方向に往復移動させると共に、軸方向に前記円筒状素材の前記他端の側に移動させることにより、半円弧の軌跡を形成しながら前記円筒状素材の外周側を切削する第2切削刃移動機構部と、
     第3の切削刃を移動させる第3切削刃移動機構部であって、内周側及び外周側を切削され且つ回転している前記円筒状素材の部分における前記他端の側に前記第3の切削刃を当てて、前記円筒状素材の部分を前記円筒状素材の残部から切断して分離させて、略円状断面を有するリング状部品を得る第3切削刃移動機構部と、
    を備える、リング状部品の製造装置。
PCT/JP2017/019406 2016-07-07 2017-05-24 リング状部品の製造方法及び製造装置 WO2018008279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780041336.4A CN109416125B (zh) 2016-07-07 2017-05-24 环状部件的制造方法及制造装置
US16/315,621 US10486237B2 (en) 2016-07-07 2017-05-24 Production method and production apparatus for ring-shaped part
EP17823887.9A EP3483483A4 (en) 2016-07-07 2017-05-24 MANUFACTURING METHOD AND MANUFACTURING DEVICE FOR A RING-SHAPED PART

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016135418A JP6466371B2 (ja) 2016-07-07 2016-07-07 リング状部品の製造方法及び製造装置
JP2016-135418 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018008279A1 true WO2018008279A1 (ja) 2018-01-11

Family

ID=60912601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019406 WO2018008279A1 (ja) 2016-07-07 2017-05-24 リング状部品の製造方法及び製造装置

Country Status (6)

Country Link
US (1) US10486237B2 (ja)
EP (1) EP3483483A4 (ja)
JP (1) JP6466371B2 (ja)
CN (1) CN109416125B (ja)
TW (1) TWI666397B (ja)
WO (1) WO2018008279A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092373B1 (ko) 2018-04-19 2020-03-23 한국수력원자력 주식회사 원자력 시설의 해체 방법
CN110976913B (zh) * 2019-11-22 2021-01-26 中国航发沈阳黎明航空发动机有限责任公司 一种高温合金环形件的车削切断方法
CN111299616B (zh) * 2019-12-10 2020-10-16 诸暨市金美机械厂 一种自动快速仿形车床
JP7429976B2 (ja) 2021-06-04 2024-02-09 株式会社桑山 指輪の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201289A (ja) * 1998-01-09 1999-07-27 Nok Corp シールリングおよびその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1676937A (en) * 1923-02-17 1928-07-10 Eric E Vidarshof Adjustable boring-bar holder
US1815756A (en) * 1928-05-18 1931-07-21 Aulenback James Roy Boring tool
US2192267A (en) * 1935-03-01 1940-03-05 Alvie E Kelley Lathe for turning special shapes
US2328359A (en) * 1942-03-06 1943-08-31 Frederick M Ramsdell Tool holder
US2788566A (en) * 1950-04-11 1957-04-16 Purser Edwina Circular cutter for general machine work
CS220401B1 (en) * 1973-12-04 1983-04-29 Karel Sommer Method of manufacturing hollow circular workpieces
GB1535562A (en) * 1976-06-15 1978-12-13 Formflo Ltd Preparation of annular blanks from tube stock
GB2144351B (en) * 1983-08-03 1986-09-03 Formflo Ltd Making rings from tube or bar stock
DD292162A5 (de) * 1986-05-06 1991-07-25 Kombinat Waelzlager Und Normteile,De Verfahren zur herstellung von vorzugsweise waelzlagerringen aus rohrmaterial
DE4314723C2 (de) * 1993-05-04 1996-02-29 Boschert Ludwig Masch Verfahren und Vorrichtung zur Herstellung einer torusförmigen Fläche an einem Drehteil
DE19635682A1 (de) * 1996-09-03 1998-03-05 Rudolf Hildebrand Verfahren und Vorrichtung zum Abstechen von Ringen
JPH10323845A (ja) 1997-05-23 1998-12-08 Toshiba Silicone Co Ltd シリコーンゴムoリングの製造方法及びシリコーンゴムoリング
ITTO20040314A1 (it) * 2004-05-14 2004-08-14 Skf Ab Apparato e metodo per la lavorazione di elementi a sezione trasversale non circolare, particolarmente per giunti assiali di collegamento meccanico e giunti realizzati con tale metodo e apparato
JP4059247B2 (ja) * 2004-12-10 2008-03-12 日産自動車株式会社 粗面化加工方法および切削工具
EP1698953A1 (en) * 2005-03-02 2006-09-06 Yamazaki Mazak Corporation Noncircular working device with a plurality of tools
CN201456057U (zh) * 2009-05-15 2010-05-12 上海义美复合材料有限公司 O型圈加工专用刀具
CN202517065U (zh) * 2011-12-23 2012-11-07 瑞钛(南京)科技有限公司 一种加工o型橡塑密封圈的切削刀具
JP6442753B2 (ja) * 2012-10-30 2018-12-26 Nok株式会社 密封装置の製造方法
CN104128940B (zh) * 2014-07-22 2016-09-07 安徽京鸿密封件技术有限公司 一种橡胶密封圈剪切机
CN104525973B (zh) * 2014-11-26 2017-06-09 东莞市科雷明斯智能科技有限公司 橡胶密封圈自动加工方法及机构
CN204300354U (zh) * 2014-12-04 2015-04-29 陕西科隆能源科技有限公司 超高压新型静密封
DE102015102900A1 (de) * 2015-02-27 2016-09-01 Optotech Optikmaschinen Gmbh Simultan-Drehmaschine für die Brillenglasfertigung
EP3287214A4 (en) * 2015-04-20 2019-01-23 Murata Machinery, Ltd. MACHINE TOOL AND CUTTING METHOD
CN105033285A (zh) * 2015-07-23 2015-11-11 浙江亚泰连接盘制造有限公司 一种双车刀车床

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201289A (ja) * 1998-01-09 1999-07-27 Nok Corp シールリングおよびその製造方法

Also Published As

Publication number Publication date
US20190184466A1 (en) 2019-06-20
EP3483483A4 (en) 2020-03-18
CN109416125A (zh) 2019-03-01
JP6466371B2 (ja) 2019-02-06
TWI666397B (zh) 2019-07-21
TW201807335A (zh) 2018-03-01
EP3483483A1 (en) 2019-05-15
JP2018004042A (ja) 2018-01-11
US10486237B2 (en) 2019-11-26
CN109416125B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2018008279A1 (ja) リング状部品の製造方法及び製造装置
JP6287386B2 (ja) 成形品のバリ取り方法、成形品のバリ取り台及び成形品のバリ取り装置
JP2008260042A (ja) プレス成形装置
KR102387724B1 (ko) 보틀 캔 제조 장치 및 보틀 캔 제조 방법
JP2019070443A (ja) リング状部品の製造方法及び製造装置
JP5353375B2 (ja) 切削加工方法
JP6457169B2 (ja) 旋盤制御システム
US9579813B2 (en) Cutting apparatus
JP2007229807A (ja) 金属製ボトル缶の製造方法および製造装置
TWI840517B (zh) 管之軌道切割及校準用設備及包含其之機器
TW202045275A (zh) 管之軌道切割及校準用設備及包含其之機器
JP4673802B2 (ja) 放射状羽根及びその製造方法
KR20160143637A (ko) 원통 중공 물품 절단
JP6615434B2 (ja) 未加硫ゴムシートのくり抜き装置および方法
JP5968164B2 (ja) ゴムローラーのゴム分離装置およびそのゴム分離方法
JP6383311B2 (ja) 切削装置
RU2651001C1 (ru) Способ вырубки отверстия в пластиковой заготовке и устройство для его осуществления
US8671550B1 (en) Wire electrical discharge machined rupture disk and method
JP6500604B2 (ja) 空気式防舷材のオーバーフロー取り除き治具
KR101869688B1 (ko) 하우징 내경 연마 장치
CN109290745A (zh) 一种铜帽的生产工艺
EP3080495A1 (en) Wire electrical discharge machined rupture disk and method
JP2011045772A (ja) 放射状羽根
JP2012092738A (ja) インペラの製造方法
JP2008504973A (ja) リングを形成するプロセス、そのようなリングを具備するプッシュベルトに加えて、そのようなプロセス用の形成ツール及び形成マシン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017823887

Country of ref document: EP

Effective date: 20190207